Thursday 1 June 2017

CRETACEOUS SPINE LIZARD

Spinosaurus was a huge carnivorous theropod dinosaur who lived in the swamps of North Africa during the upper Albian to upper Turonian stages of the Cretaceous, some 112 to 93.5 million years ago.

Larger even than some Tyrannosaurus and Giganotosaurus, this fellow weighed up to 21,000 kg and with all that mass was still an accomplished swimmer.

Wednesday 31 May 2017

RADIOLARIAN TIMEKEEPERS

Anthocyrtium hispidum Haeckel
Radiolarian microfossils, tiny, siliceous, single-celled organisms, make for excellent timekeepers. Think of them as the world's smallest clocks. These wee fellows have been living in the world’s oceans for over 600 million years.

Radiolarians are unicellulars, wee little things with a diameter of 0.1–0.2 mm.

They produce intricate mineral skeletons, typically with a central capsule dividing the cell into the inner and outer portions of endoplasm and ectoplasm.Their beautifully elaborate mineral skeletons are usually made of silica. We find radiolaria as zooplankton throughout the ocean and their skeletal remains make up a large part of the cover of the ocean floor as siliceous ooze.

Due to their rapid turnover of species, they represent an important diagnostic fossil from the Cambrian onwards. Because they occur in continuous and well-dated sequences of rock, they act like a yardstick, helping geologists accurately date rock from around the globe.

In the Upper Triassic rocks, which predate the Triassic / Jurassic Mass Extinction event by about 10 million years, radiolarians are preserved in hundreds of forms. Just above them, in the early Jurassic rock layers laid down about the time of the great die-offs, only a fraction of the previous number of forms are represented. The more recent Jurassic rock shows a rebound of radiolarian diversity, though of course, in different forms, a diversity which continues to flourish and expand in today’s oceans.

Photo: Anthocyrtium hispidum Haeckel, magnification: 400x, bright field (negative image), stacked image Fundort / Site: Barbados Alter / Age: approx. 32-35 million years (late Eocene - early Oligocene) Präparation / Preparation: Andreas Drews

Tuesday 30 May 2017

CRETACEOUS DINOSAUR TRACKWAY

After an exciting hike in the dark through the woods and down a steep incline, we reached the river. 

The tracks in this photo are from a type of armored dinosaur that date from the very end of the Cretaceous, between 68-66 million years ago.

Imagine a meandering armored tank munching on ferns and low-growing vegetation.
This is a photograph of an ankylosaur trackway filled with water and lit by lamplight along Wolverine River, a research site of Lisa Buckley, one of two magnificent paleontologists working in the area.
Some of the prints contain skin impressions, which is lucky as many of the prints are so shallow that they can only be recognized by the skin impressions.

There are two types of footprints at the Wolverine River Tracksite, the meat-eating theropods (at least four different sizes) and the slow, lumbering plant-eating ankylosaurs. 

Filling the prints with water and using light in a clever way was a genius idea for viewing tracks that are all but invisible in bright sunlight by day.

Monday 29 May 2017

SUMAS SLIDE FOSSIL SITE

Heidi Henderson at Sumas Slide Eocene Fossil Site 

Sunday 28 May 2017

Monday 22 May 2017

Saturday 20 May 2017

AMMONITE BEAUTY: PALTECHIOCERA

This detail of the Jurassic ammonite, Paltechioceras sp. shot with an ultra-low f-stop, is from an all but inaccessible site in Sayward, Bonanza Group, Vancouver Island. By the time these ammonites were being buried in sediment, Wrangellia, the predominately volcanic terrane that now forms Vancouver Island and the Queen Charlotte Islands, had made its way to the northern mid-latitudes.

We did a fossil field trip up there a few years ago with the Courtenay & Qualicum beach crew. The drive up the mountain was thrilling as the road narrowed until it was barely the width of our wheel base -- thrilling to say the least. 

I’m headed back there this June for a wee look at what the Spring rains have revealed. This time, however, I believe I will hike up instead of driving as I’m not sure my heart could take going round-two on that road/trail via my jeep.

Tuesday 16 May 2017

Monday 15 May 2017

URSAVUS: CANADA'S GREAT BEARS

Hiking in BC, both grizzly and black bear sightings are common. These majestic beasts live up to 28 years and nearly half the world's population, some 25,000 grizzlies, roam the Canadian wilderness.

Both bear families descend from a common ancestor, Ursavus, a bear-dog the size of a raccoon who lived more than 20 million years ago. Seems an implausible lineage given the size of their very large descendants.

An average Grizzly weighs in around 800 lbs (363 kg), but a recent find in Alaska tops the charts at 1600 lbs (726 kg). This mighty beast stood 12' 6' high at the shoulder, 14' to the top of his head. It is one of the largest grizzly bears ever recorded. This past September, the King of the forest was seen once again in the Washington Cascades -- the first sighting in over 50 years.

Friday 12 May 2017

Thursday 11 May 2017

STAY AT HOME PENGUINS

 This touching scene

Tuesday 2 May 2017

WASHINGTON RISING

Over vast expanses of time, powerful tectonic forces have massaged the western edge of the continent, smashing together a seemingly endless number of islands to produce what we now know as North America and the Pacific Northwest.

In the time expanse in which we live our very short human lives, the Earth's crust appears permanent. A fixed outer shell – terra firma. Aside from the rare event of an earthquake or the eruption of Mount St. Helen’s, our world seems unchanging, the landscape constant. In fact, it has been on the move for billions of years and continues to shift each day.

As the earth’s core began cooling, some 4.5 billion years ago, plates, small bits of continental crust, have become larger and smaller as they are swept up in or swept under their neighboring plates. Large chunks of the ocean floor have been uplifted, shifted and now find themselves thousands of miles in the air, part of mountain chains far from the ocean today or carved by glacial ice into valleys and basins.

Two hundred million years ago, Washington was two large islands, bits of the continent on the move westward, eventually bumping up against the North American continent and calling it home.

Even with their new fixed address, the shifting continues; the more extreme movement has subsided laterally and continues vertically. The upthrusting of plates continues to move our mountain ranges skyward, the path of least resistance.

This dynamic movement has created the landscape we see today and helped form the fossil record that tells much of Washington’s relatively recent history – the past 50 million years. Chuckanut Drive is much younger than other parts of Washington. The fossils found there lived and died some 40-55 million years ago, very close to where they are now, but in a much warmer, swampy setting. The exposures of the Chuckanut Formation were once part of a vast river delta; imagine, if you will, the bayou country of the Lower Mississippi.

The siltstones, sandstones, mudstones and conglomerates of this formation were laid down about 40-54 million years ago during the Eocene epoch, a time of luxuriant plant growth in the subtropical flood plain that covered much of the Pacific Northwest.

This ancient wetland provided ideal conditions to preserve the many trees, shrubs, and plants that thrived here. Plants are important in the fossil record because they are more abundant and can give us a lot of information about climate, temperature, the water cycle, and humidity of the region. The Chuckanut flora is made up predominantly of plants whose modern relatives live in tropical areas such as Mexico and Central America.

While less abundant, evidence of the animals that called this ancient swamp home are also found here. Rare bird, reptile, and mammal tracks have been immortalized in the outcrops of the Chuckanut Formation.

Tracks of a type of archaic mammal of the Orders Pantodonta or Dinocerata (blunt foot herbivores), footprints from a small shorebird, and tracks from an early equid or webbed bird track give evidence to the vertebrates that inhabited the swamps, lakes and river ways of the Pacific Northwest 50 million years ago.

Fossil mammals from Washington do get most of the press. The movement of these celebrity vertebrates captured in the soft mud on the banks of a river, one of the depositional environments favorable for track preservation.

The bone record is actually far less abundant that the plant record, except near shell middens, given the preserving qualities of calcium and an alkaline environment. While calcium-rich bones and teeth fossilize well, they often do not get laid down in a situation that makes this possible. Hence the terrestrial paleontological record of Washington State at sites like Chuckanut is primarily made up of plant material.

Sunday 30 April 2017

THE BIRTHPLACE OF LIFE

For millennia, we've sat at the edge of the world, taking in the impossible magnitude of the ocean.

Her beauty, her storms, such abundance and diversity of life amidst both the tranquillity and unforgiving power that this immensely deep and mostly unexplored frontier hold for us.

Our distant relatives and even those who meditate on these vast pools of blue and green today see the ocean as the birthplace of life. It's the story we tell our children, and they, in turn, tell their children's children. It's a reasonable conclusion. Upwelling currents bring cold, nutrient-rich water from the bottom to the surface. In this primordial soup, vitally important organic and inorganic compounds mix ceaselessly and give us the perfect conditions for photosynthesis, and by all accounts, the basic building blocks of life.

But, rather than the birthplace, I postulate that the ocean is simply the mixing ground for the expansion of life that began elsewhere. It is also possible, as yet we do not know, that these two streams ran in tandem. The delight of science is that we may one day know for sure.

From the oceans, it's just a slow crawl, evolutionarily speaking, from the sea to the terrestrial life we see today. So where to look for the beginnings. That story is a much harsher one. We find microbes of the Domain Archaea, prokaryotic single-celled microorganisms, distinct from bacteria and eukaryotes, living in some of the world's most unlikely and inhospitable places.

Extremely adaptable, Archaea not only survive but thrive in harsh environments, hot, cold, brutally acidic, you name it. But beyond the hot pools and salt lakes, they have also been found in rather pedestrian habitats, in soils, marshlands, and our oceans.

You may be surprised to learn that at this very moment, they are living in your colon, oral cavity, and skin. The methanogens that inhabit our guts have a symbiotic role, helping us with digestion.

Archaea possess genes and several metabolic pathways that allow for transcription and translation. They are able to access more energy sources than their wee microorganism peers, making use of sugars, ammonia, metal ions and hydrogen gas.

The salt-tolerant, Haloarchaea, uses sunlight as an energy source. All reproduce asexually by binary fission, fragmentation or budding and have been doing so for a very long time. Much to our surprise, Archaea have been found making their home in granite more than 3 kilometres beneath the Earth's surface. Well-preserved Archaea microfossils can be found between the quartz sand grains of the oldest known beach on Earth at Strelley Pool, about 1,500 km north of Perth, Australia. They were thriving here over 3.4 billion years ago in an oxygen-free world, metabolizing sulphur-based compounds and giving rise to the life we see today.

But there are also tubelike fossils, stromatolites, possible ancient microbial mats found in 3.77 billion-year-old rocks. Are these the birth of life? The court's still out. Plate tectonics is the Earth's greatest recycling program with only a handful of outcrops older than 3 billion years. Combine that with baking, cooling, subduction and pressure and it makes solving this ancient mystery even more challenging. So, the birthplace of life? So far, the best contender are the wee beasties from the planet's oldest beach.



Saturday 29 April 2017

Friday 28 April 2017

Tuesday 25 April 2017

ENHYDRA LUTRIS INSIDENTE GALEAE

Sea Otter / Enhydra lutris / Vancouver Island
Sea otters are playful, marine mammals with webbed hind feet and water-repelling fur perfectly adapted to the chilly seas in which they live. 

Sunday 23 April 2017

EOCENE PLANT & MAMMAL SITE

Reinforcing the block to safely transport the fossil trackway

Wednesday 19 April 2017

Monday 10 April 2017

TECTONIC SHIFTING: BAJA BC

Some 270 million plus years ago, had one wanted to buy waterfront property in what is now British Columbia, you’d be looking somewhere near Kakwa Provincial Park between Prince George and the Alberta border. 

The rest of the province had yet to arrive but would be made up of over twenty major terranes from around the Pacific. 

The rocks that would eventually become the Cariboo Mountains were far out in the Pacific Ocean, down near the equator.

With tectonic shifting, these rocks drifted north-eastward, riding their continental plate, until they collided with and joined the Cordillera in what is now British Columbia. Continued pressure and volcanic activity helped create the tremendous slopes of the Cariboo Range we see today with repeated bouts of glaciation during the Pleistocene carving their final shape.

Friday 7 April 2017

FARALLON PLATE

The Farallon Plate took a turn north some 57 million years ago, sweeping much of western coastal Oregon along with it. 

By the middle Oligocene, the Cascadia Subduction Zone was in full force with growing pressure erupting volcanoes along the Western Cascades, a pattern that was to continue well into the Miocene. 

The soft ocean sediments of Oregon contain beautifully preserved gastropods, bivalves and cephalopods.

Sunday 26 March 2017

EXPLORE YOUR CANADA | CANADA 150

HMS Oriole, Salt Spring Island

Saturday 25 March 2017

Friday 24 March 2017

Wednesday 15 March 2017

Friday 10 March 2017

Tuesday 7 March 2017

PADDLERS PARADISE


BIRTHPLACE OF ANTAEUS

Quintus Sertorius, a Roman statesman come general, grew up in Umbria, the green heart of what is now central Italy.

Born into a world at war just two years before the Romans sacked Corinth to bring Greece under Roman rule, Quintus lived much of his life as a military man far from the hills, mountains, and valleys of his birthplace.

In 81 BC, he traveled to Morocco, the land of opium, massive trilobites and the birthplace of Antaeus, the legendary North African ogre who was killed by the Greek hero Heracles.

The locals tell a tale that Quintus requested proof of Antaeus, hard evidence he could bring back to Rome to support their tales so they took him to a mound at Tingis, Morocco, where they unearthed the bones of a Neogene elephant, Tetralophodon.

During the Miocene and Pliocene, 12-1.6 million years ago, this diverse group of extinct proboscideans, elephant-like animals walked the Earth.

Most of these large beasts had four tusks and likely a trunk similar to modern elephants. They were creatures of legend, inspiring myths and stories of fanciful creatures to the first humans to encounter them.

Tetralophodon bones are large and skeletons singularly impressive. Impressive enough to be taken for something else entirely. By all accounts these proboscidean remains were that of the mythical ogre Antaeus and were thus reported back to Rome as such. It was hundreds of years before their true heritage was known.

I was lucky enough to travel to Morocco a few years ago and see the Tetralophodon remains. At the time, the tales of Antaeus ran through my head. Could this be the proof that Quintus wanted. As it happens, it was.

Monday 6 March 2017

Friday 3 March 2017

ROCKY MOUNTAIN HIGH


METASEQUOIA

Metasequoia (dawn redwood) is a fast-growing, deciduous tree native to Lichuan county in Hubei province in central China. It is the sole living species of Metasequoia glyptostruboides. It is one of three species of conifers known as redwoods.

Although the least tall of the redwoods, it grows to at least 200 feet (60 meters) in height. Local villagers refer to the original tree from which most others derive as Shui-sa, or "water fir", which is part of a local shrine. Since its rediscovery in 1944, the dawn redwood has become a popular ornamental tree in the Pacific Northwest. Metasequoia was first described as a fossil from the Mesozoic Era by Shigeru Miki in 1941. Later in 1944, a small stand of an unidentified tree species was discovered in China in Modaoxi (磨刀溪; presently, Moudao (谋道), in Lichuan County, Hubei province by Zhan Wang. 

While the find was exciting, it was overshadowed by China's ongoing conflict with Japan. In 1937, a clash between Chinese and Japanese troops at the Marco Polo Bridge, just outside Beijing, led to an all-out war. A year later, by mid-1938, the Chinese military situation was desperate. Most of eastern China lay in Japanese hands: Shanghai, Nanjing, Wuhan. Many outside observers assumed that China could not hold out, and the most likely scenario was a Japanese victory over China. Yet the Chinese hung on, and after Pearl Harbor, the war became genuinely global. The western Allies and China were now united in their war against Japan, a conflict that would finally end on September 2, 1945. 

With World War II behind them, the Chinese researchers were able to re-focus their energies on the sciences. In 1946, Wan Chun Cheng and Hu Hsen Hsu were able to further study the trees from Lichuan County and publish their work describing a new living species of Metasequoia in 1948. That same year, Arnold Arboretum of Harvard University sent an expedition to collect seeds and, soon after, seedling trees were distributed to various universities and arboreta worldwide for growth trials.

Thursday 23 February 2017

TACHYGLOSSIDAE — MONOTREMES

This chunky monkey is a Short-beaked Echidna, Tachyclossus aculeatus, which grows to about the size of an overweight cat. They are native to Australia and New Guinea. 

Echidnas are sometimes called spiny anteaters and belong in the family Tachyglossidae (Gill, 1872). They are monotremes, an order of egg-laying mammals. There are four species of echidnas living today. They, along with the platypus, are the only living mammals who lay eggs and the only surviving members of the order Monotremata. 

Superficially, they resemble the anteaters of South America and other spiny mammals like porcupines and adorable hedgehogs. They are usually a mix of brown, black and cream in colour. While rare, there have been several reported cases of albino echidnas, their eyes pink and their spines white. Echidnas have long, slender snouts that act as both nose and mouth for these cuties. The Giant Echidna we see in the fossil record had beaks more than double this size.  

Wednesday 22 February 2017

Monday 13 February 2017

Saturday 11 February 2017

Thursday 9 February 2017

Tuesday 7 February 2017

Monday 6 February 2017

Sunday 5 February 2017

Friday 3 February 2017

Thursday 2 February 2017

EOCENE DIATRYMA TRACK

Diatryma, a giant flightless bird trackway from an Eocene deposit in Washington State.

LATE JURASSIC CADOCERAS TONNIENSE

Cadoceras tonniense, Mysterious Creek Formation

IN SEARCH OF TRIASSIC BEASTIES

So, what's next in the story of marine reptiles and dinosaurs? Where are the next big finds to be found?

Well, if finds like Shonisaurus sikanniensis are any indication, my guess would be northern British Columbia.

After almost no large finds over the past hundred years, they have revealed the largest marine reptile on record, along with countless terrestrial finds that make that area one of the richest searching grounds on the globe.

There are Triassic marine outcrops in northern British Columbia that extend from Wapiti Lake to the Yukon border. Without the fossil finds, this area is just pure, raw Canadian gold in terms of scenery and environmental importance. Well worth exploring for its sheer beauty.

With the paleontological possibilities, it's the stuff of dreams. The big reveal may be new species of dinosaurs, large marine reptiles and greater insight into their behaviour and interactions deep in the Triassic.

I'm excited for the future of paleontology in the region as more of these fruitful outcrops are discovered, collected and studied.

Wednesday 1 February 2017

Thursday 26 January 2017

MIDDLE TRIASSIC-ANISIAN AMMONOID

A specimen of Grambergia sp., a Middle Triassic-Ansian ammonoid from the Toad Formation of northeastern British Columbia.

EOCENE LOVE BUG

The Love Boat, soon you'll be sailing away... Well, perhaps you will but that ship has sailed for this wee fellow.

This is a Fossil Love Bug, one of the most satisfying fossils to collect in the Eocene deposits of Princeton, British Columbia.

Love Bugs or March Flies are hardy, medium-sized flies in the Order Diptera, with a body length ranging from 4.0 to 10.0 mm. The body is black, brown, or rusty, and thickset, with thick legs. The antennae are moniliform. The front tibiae bear large strong spurs or a circlet of spines. The tarsi are five-segmented and bear tarsal claws, pulvilli, and a well-developed empodium.

As it is with many species, these guys included, the teens of this species are troublesome but the adults turn out alright. As larvae, Bibionidae are pests of agricultural crops, devouring all those tasty young seedlings you've just planted.

Then, as they mature their tastes turn to the nectar of flowers from fruit trees and la voila, they become your best friends again. With their physical and behavioral transformation complete, Bibionidae become a welcome garden visitor, pulling their weight in the ecosystems they live in by being important pollinators.

Monday 16 January 2017

AMMONITE CRUSHED BY PREDATOR

Here a partial ammonite with lovely oil-spill coloured nacre (ammolite) shows several bite marks.

One of the natural predators to ammonites were the marine reptiles, particularly mosasaurs and elasmosaurs.

Mosasaurs, while robust predators, lived nearer to the ocean surface, preying on fish, turtles, birds, and sadly for this fellow, ammonites.

Ammonites were also prey to the elasmosaurs, a genus of plesiosaur that lived in the Late Cretaceous. With their long necks, the could move unseen in the depths then chomp down with their cage-like teeth to munch on fish and those unfortunate enough to be the tasty bounty of ancient times.

Saturday 14 January 2017

Thursday 12 January 2017

Tuesday 10 January 2017

FLORISSANTIA SP. (STERCULIACEAE)

Florissantia, an extinct genus in the Cocoa Tree Family
Beautifully preserved specimens of Florissantia can be found in the Eocene deposits near Cache Creek in the Tranquile Formation, Kamloops Group, at Quilchena, Coldwater Beds, Kamloops Group and near Princeton, British Columbia in the Allenby Formation.

This specimen is from the Allenby Formation, which is predominately fine-grained shales and mudrocks. Florissantia are quite commonly found here alongside other plant remains and rarer, insect and fish fossils.