![]() |
A gull cries in protest at not getting his share of a meal |

Sunday, 15 June 2025
GULLS ON THE FORESHORE: TSIK'WI
Tuesday, 10 June 2025
EXPLORING WRANGELLIA: HAIDA GWAII
They form part of Wrangellia, an exotic tectonostratigraphic terrane that includes Vancouver Island, parts western British Columbia and Alaska.
The Geological Survey of Canada sponsored many expeditions to these remote islands and has produced numerous reference papers on this magnificent terrain, exploring both the geology and palaeontology of the area.
The praise was well-earned and foreshadowed his significant contributions to come. Sixteen years later, he wrote up and published his observations on a strange Mount Stephen fossil that resembled a kind of headless shrimp with poorly preserved appendages.
Whiteaves work on the palaeontology of Haida Gwaii provided excellent reference tools, particularly his work on the Cretaceous exposures and fauna that can be found there.
One of our fossil field trips was to the ruggedly beautiful Cretaceous exposures of Lina Island. We had planned this expedition as part of our “trips of a lifetime.”
With great sandstone beach exposures, the fossil-rich (Albian to Cenomanian) Haida formation provided ample specimens, some directly in the bedding planes and many in concretion. Many of the concretions contained multiple specimens of typical Haida Formation fauna, providing a window into this Cretaceous landscape.
It is always interesting to see who was making a living and co-existing in our ancient oceans at the time these fossils were laid down. We found multiple beautifully preserved specimens of the spiny ammonite, Douvelleiceras spiniferum along with Brewericeras hulenense, Cleoniceras perezianum and many cycads in concretion.
![]() |
Douvelliceras spiniferum, Cretaceous Haida Formation |
Missing from this trip log are tales of Rene Savenye, who passed away in the weeks just prior. While he wasn't there in body, he was with us in spirit. I thought of him often on the mist-shrouded days of collecting.
The genus Douvilleiceras range from Middle to Late Cretaceous and can be found in Asia, Africa, Europe and North and South America.
Monday, 19 May 2025
BRONZE BEAUTY: EIFELIAN PARALEJURUS
It was the colour of this amazing trilobite that captured the eye of David Appleton in whose collection it now resides. He is an avid collector and coming into his own as a macro photographer. I have shared three of his delightful photos for you here.
It initially thought that the gold we see here was added during prep, particularly considering the colouration of the matrix, but macro views of the surface show mineralization and the veins running right through the specimen into the matrix. There is certainly some repairs but that is common in the restoration of these specimens. Many of the trilobites I have seen from Morocco have bronze on black colouring but not usually this pronounced. Even so, there is a tremendous amount of fine anatomy to explore and enjoy in this wonderfully preserved specimen.
Paralejurus is a genus of trilobite in the phylum Arthropoda from the Late Silurian to the Middle Devonian of Africa and Europe. These lovelies grew to be up to nine centimetres, though the fellow you see here is a wee bit over half that size at 5.3 cm.
Paralejurus specimens are very pleasing to the eye with their long, oval outline and arched exoskeletons.
Their cephalon or head is a domed half circle with a smooth surface. The large facet eyes have very pleasing crescent-shaped lids. You can see this rather well in the first of the photos here. The detail is quite remarkable.
As you move down from his head towards the body, there is an almost inconspicuous occipital bone behind the glabella in the transition to his burnt bronze thorax.
The body or thorax has ten narrow segments with a clearly arched and broad axial lobe or rhachis. The pygidium is broad, smooth and strongly fused in contrast to the genus Scutellum in the family Styginidae, which has a pygidium with very attractive distinct furrows that I liken to the look of icing ridges on something sweet — though that may just be me and my sweet tooth talking. In Paralejurus, they look distinctly fused — or able to fuse — to add posterior protection against predators with both the look and function of Roman armour.
In Paralejurus, the axillary lobe is rounded off and arched upwards. It is here that twelve to fourteen fine furrows extend radially to complete the poetry of his body design.
Trilobites were amongst the earliest fossils with hard skeletons and they come in many beautiful forms. While they are extinct today, they were the dominant life form at the beginning of the Cambrian.As a whole, they were amongst some of the most successful of all early animals — thriving and diversifying in our ancient oceans for almost 300 million years. The last of their brethren disappeared at the end of the Permian — 252 million years ago. Now, we enjoy their beauty and the scientific mysteries they reveal about our Earth's ancient history.
Photos and collection of the deeply awesome David Appleton. Specimen: 5.3 cm.
Tuesday, 13 May 2025
SKØKKENMØDDINGER: CaCO3(s) + 2HCl(aq) → CaCl2(aq) + CO2(g) + H2O(l)
![]() |
Johnny Scow's Kwakwaka'wakw Kwakiutl House, 1918 |
The day-to-day activities of each of these communities were much like we have today. Babies were born, meals were served and life followed a natural cycle.
These refuse heaps contain a wealth of information about how that community lived, what they ate and what environmental conditions looked like over time. They also provide insight into the local gastronomic record on diet, species diversity, availability and variation.
This physical history provides a wonderful resource for archaeologists in search of botanical material, artifacts, broken cooking implements and my personal favourite, mollusc shells. Especially those formed from enormous mounds of bivalves and clams. We call these middens. Left for a period of time, these unwanted dinner scraps transform through a process of preservation.
Shell middens are found in coastal or lakeshore zones all over the world. Consisting mostly of mollusc shells, they are interpreted as being the waste products of meals eaten by nomadic groups or hunting parties. Some are small examples relating to meals had by a handful of individuals, others are many metres in length and width and represent centuries of shell deposition. In Brazil, they are known as sambaquis, left between the 6th millennium BCE and the beginning of European colonization.
European shell middens are primarily found along the Atlantic seaboard and in Denmark from the 5th millennium BCE (Ertebølle and Early Funnel Beaker cultures), containing the remains of the earliest Neolithisation process (pottery, cereals and domestic animals).
Younger shell middens are found in Latvia (associated with Comb Ware ceramics), Sweden (associated with Pitted Ware ceramics), the Netherlands (associated with Corded Ware ceramics) and Schleswig-Holstein (Late Neolithic and Iron Age). All these are examples where communities practised a mixed farming and hunting/gathering economy.
On Canada's west coast, there are shell middens that run for more than 1 kilometre (0.62 mi) along the coast and are several meters deep. The midden in Namu, British Columbia is over 9 metres (30 ft) deep and spans over 10,000 years of continuous occupation.
Shell middens created in coastal regions of Australia by Indigenous Australians exist in Australia today. Middens provide evidence of prior occupation and are generally protected from mining and other developments. One must exercise caution in deciding whether one is examining a midden or a beach mound. There are good examples on the Freycinet Peninsula in Tasmania where wave action currently is combining charcoal from forest fire debris with a mix of shells into masses that storms deposit above high-water mark.
Shell mounds near Weipa in far north Queensland are claimed to be middens but are actually shell cheniers, beach ridges re-worked by nest mound-building birds. The midden below is from Santa Cruz, Argentina. We can thank Mikel Zubimendi for the photo.
Some shell middens are regarded as sacred sites, such as the middens of the Anbarra of the Burarra from Arnhem Land, a historical region of the Northern Territory of Australia — a vast wilderness of rivers, rocky escarpments, gorges and waterfalls.
The Danish use the term køkkenmøddinger, coined by Japetus Steenstrup, a Danish zoologist and biologist, to describe shell heaps and continues to be used by some researchers.
So what about these ancient shells is so intriguing? Well, many things, not the least being their ability to preserve the past. Shells have a high calcium carbonate content.
Calcium carbonate is one of my favourite chemical compounds. It is commonly found in rocks — as the minerals calcite and aragonite, most notably as limestone, which is a type of sedimentary rock consisting mainly of calcite — and is the main component of pearls, snails, eggs and the shells of marine organisms.
Time and pressure leach the calcium carbonate, CaCO3, from the surrounding marine shells and help embalm bone and antler artifacts that would otherwise decay. Much of what we know around the modification of natural objects into tools comes from this preservation. The calcium carbonate (CaCO3) in the discarded shells tends to make the middens alkaline, slowing the normal rate of decay caused by soil acidity and leaving a relatively high proportion of organic material — food remnants, organic tools, clothing, human remains — to sift through and study.
Calcium carbonate shares the typical properties of other carbonates. In prepping fossil specimens embedded in limestone, it is useful to know that limestone, itself a carbonate sedimentary rock, reacts with stronger acids. If you paint the specimen with hydrochloric acid, you'll hear a little fizzling sound as the limestone melts and carbon dioxide is released: CaCO3(s) + 2HCl(aq) → CaCl2(aq) + CO2(g) + H2O(l). I tend to use a 3-5 molar solution, then rinse with plain water.
Calcium carbonate reacts with water saturated with carbon dioxide to form the soluble calcium bicarbonate. Bone already contains calcium carbonate, as well as calcium phosphate, Ca2, but it is also made of protein, cells and living tissue.
I collected trade beads and treasures on the beachfront below the magnificent house you see in the first photo, but also found bits of bone and scraps of history of coastal living. I also collected many wonderful abalone buttons and wonderful shells.
The shells, beautiful in their own right, make the surrounding soil more alkaline, helping to preserve the bone and turn dinner scraps into exquisite scientific specimens for future generations.
Friday, 9 May 2025
FOSSILS OF HORNBY ISLAND
![]() |
Diplomoceras sp. |
Friday, 2 May 2025
AINOCERAS: VANCOUVER ISLAND HETEROMORPH
Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube.
By pushing air in or out, they were able to control their buoyancy in the water column. These little cuties were predators who hunted in Cretaceous seas.
They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.
Not all ammonites have this whacky corkscrew design. Most are coiled and some are even shaped like massive paperclips. This one is so remarkable, so joyously perfect my internal thesaurus can’t keep up.
Wednesday, 30 April 2025
FOSSILS OF CANADA'S EASTERN SHORES
![]() |
Pennsylvanian Coal Age Ecosystem, 300-Million-Years-Old |
References & further reading:
Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/
Image: Hylonomus lyelli, Una ricostruzione di ilonomo by Matteo De Stefano/MUSEThis file was uploaded by MUSE - Science Museum of Trento in cooperation with Wikimedia Italia., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=48143186
Image: Arthropleura: Par Tim Bertelink — Travail personnel, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=48915156
Joggins Map: Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/
Tuesday, 29 April 2025
LOTUS FLOWER FRUIT
![]() |
Lotus Flower Fruit, Nelumbo |
The awesome possums from GRS are based out of North Logan, Utah, USA and have unearthed some world-class specimens. They've found Nelumbo leaves over the years but this is their first fossil specimen of the fruit.
And what a specimen it is! The spectacularly preserved fruit measures 6-1/2" round. Here you can see both the part and counterpart in fine detail. Doug Miller of Green River Stone sent copies to me this past summer and a copy to the deeply awesome Kirk Johnson, resident palaeontologist over at the Smithsonian Institute, to confirm the identification.
There is another spectacular specimen from Fossil Butte National Monument. They shared photos of a Nelumbo just yesterday. Nelumbo is a genus of aquatic plants in the order Proteales found living in freshwater ponds. You'll recognize them as the emblem of India, Vietnam and many wellness centres.
![]() |
Nelumbo Fruit, Green River Formation |
In the older classification systems, it was recognized under the biological order Nymphaeales or Nelumbonales. Nelumbo is currently recognized as the only living genus in Nelumbonaceae, one of several distinctive families in the eudicot order of the Proteales. Its closest living relatives, the (Proteaceae and Platanaceae), are shrubs or trees.
Interestingly, these lovelies can thermoregulate, producing heat. Nelumbo uses the alternative oxidase pathway (AOX) to exchange electrons. Instead of using the typical cytochrome complex pathway most plants use to power mitochondria, they instead use their cyanide-resistant alternative.
This is perhaps to generate a wee bit more scent in their blooms and attract more pollinators. The use of this thermogenic feature would have also allowed thermo-sensitive pollinators to seek out the plants at night and possibly use the cover of darkness to linger and mate.
So they functioned a bit little like a romantic evening meeting spot for lovers and a wee bit like the scent diffuser in your home. This lovely has an old lineage with fossil species in Eurasia and North America going back to the Cretaceous and represented in the Paleogene and Neogene. Photo Two: Doug Miller of Green River Stone Company
Friday, 18 April 2025
UNEARTHING THE PAST: TRILOBITES OF BRITISH COLUMBIA
But hidden within its rocky layers lies a much older and stranger world—one that predates dinosaurs by hundreds of millions of years. That world was once ruled by creatures known as trilobites.
What Are Trilobites?
Trilobites were marine arthropods that roamed the oceans for over 270 million years, from the Early Cambrian to the end of the Permian period.
These hard-shelled creatures looked a bit like a cross between a horseshoe crab and a pill bug, with segmented bodies, jointed legs, and a wide range of sizes and shapes. Over 20,000 species have been identified, making them one of the most diverse and successful early animal groups in Earth's history.
Their fossils are found all over the world—but some of the most remarkable specimens come from the ancient seabeds now uplifted and exposed in British Columbia.
Trilobites in BC: A Window Into the Cambrian Explosion
British Columbia holds a special place in the study of early life, particularly due to the world-renowned Burgess Shale fossil site in Yoho National Park. While the Burgess Shale is famous for preserving soft-bodied organisms, it also offers stunning examples of trilobites—often found with delicate spines and appendages intact, thanks to the unique preservation conditions.
The Burgess Shale trilobites date back to around 508 million years ago, during the Cambrian period—a time often referred to as the Cambrian Explosion due to the rapid diversification of complex life. Trilobites were among the most prominent creatures of this era, and their fossils help paleontologists understand how early ecosystems functioned.
Lower Cambrian Trilobites of the Eager Formation
Just east of Cranbrook, the Eager Formation preserves fossil assemblages from the Lower Cambrian—making it one of the oldest fossiliferous units in British Columbia. In a 2003 study, paleontologist Jean-Bernard Caron, along with co-authors, examined trilobite faunas from this formation, revealing a rich and diverse array of early trilobite life.
Among the trilobites described from the Eager Formation are:
Fritzaspis – A small, early trilobite representative of the Olenellid group.Mesonacis eagerensis – A species named after the formation itself, notable for its distinctive glabella (central lobe of the head).
Caron’s work emphasized the biostratigraphic and paleobiogeographic significance of these trilobites, helping to correlate the Eager Formation with other Lower Cambrian sites across Laurentia (ancient North America).
Upper Cambrian Trilobites of the McKay Group
While the Eager Formation provides insight into the dawn of trilobite history, the McKay Group, also near Cranbrook, offers a detailed look at Upper Cambrian trilobite evolution. This group of rock formations—consisting primarily of shales and limestones—preserves an abundant and diverse trilobite fauna.
It has been the collaborative efforts of Chris New, Chris Jenkins, Guy Santucci, Don Askew and Stacey Gibb that has helped open up the region — including finding and identifying many new species or firsts including Pseudagnostus securiger, a widespread early Jiangshanian species not been previously recorded from southeastern British Columbia.
Paleontologist Brian Chatterton has published extensively on trilobites from the McKay Group, identifying a wide range of species that highlight evolutionary trends and faunal turnover toward the end of the Cambrian period.
Some of the trilobite genera and species Chatterton documented include:
Pterocephalia norfordi – A species named in honor of paleontologist B.S. Norford, noted for its distinctive broad cephalon.
Elvinia roemeri – An elegant Upper Cambrian species found throughout western North America.
Calyptaulax – With its spiny thorax and well-defined segmentation, it is a striking example of late Cambrian trilobite morphology.
Prosaukia – Often used in Upper Cambrian biostratigraphy for correlation across regions.
Orygmaspis contracta – A widespread trilobite in the Upper Cambrian that helps paleontologists understand geographic distribution.
Honouring the People Behind the Fossils
British Columbia’s trilobite story isn’t just about ancient animals—it’s also about the people who help uncover them.
Several trilobite species from the McKay and Eager formations have been named in honour of those who contributed to their discovery and study:
Pterocephalia santuccii – Named after Guy Santucci, a life-long friend and hugely respected geologist with the Geological Survey of Canada whose fieldwork and geological mapping helped bring attention to fossil-rich sites in southeastern BC. He
Orygmaspis newi – Honours Chris New, a dedicated citizen scientist and fossil enthusiast whose field observations and fossil contributions have aided formal scientific research in the region.
Calyptaulax jenkinsi – Recognizes Chris Jenkins, a citizen scientist whose careful collection and documentation of trilobite specimens played a key role in expanding the known diversity of the McKay Group fauna.
These species highlight the collaborative nature of paleontology, where discoveries often come from a blend of academic research, geological expertise, and passionate individuals in the community.
Notable BC Trilobites Across Time
Across the Cambrian layers of BC, notable trilobites include:
Olenoides serratus – From the Middle Cambrian Burgess Shale, often preserved with soft tissues.
Wanneria walcottana – An Early Cambrian form found in various parts of BC.
Mesonacis eagerensis – A Lower Cambrian species from the Eager Formation.
Pterocephalia santuccii, Orygmaspis newi, and Calyptaulax jenkinsi – Upper Cambrian trilobites named in honor of key contributors to BC paleontology.
Together, these fossils span tens of millions of years, tracing the evolutionary arc of trilobites from their origins to their diversification.
The Science (and Art) of Fossil Hunting
While fossil collection is restricted in national parks like Yoho, some other Cambrian formations near Cranbrook, including parts of the McKay and Eager Formations, are accessible for scientific study and regulated collection. These regions continue to offer paleontologists new insights into trilobite diversity, ecology, and biogeography.
Trilobite fossils are not just scientifically valuable—they’re also incredibly beautiful. Their symmetry, segmentation, and sometimes intricate ornamentation have made them prized by collectors and natural history museums alike.
If you would like to see some of the amazing specimens collected in British Columbia, I recommend a visit to the Cranbrook History Centre. Located on the Traditional territory of the Ktunaxa First Nation, it offers a look at local recent history and a deep dive into the past with many exceptional Cambrian trilobites on display along with their arthropod brethren, Tuzoia and associated species. Their collections also boast a rather nice display of Devonian fish.
Why They Matter Today
Trilobites may be extinct, but they still teach us a lot. Their evolutionary history helps scientists track how life responded to ancient climate changes, mass extinctions, and the rise of predators. In a way, trilobites are time travelers—messengers from a vanished ocean world that still speaks to the challenges and wonders of life on Earth today.
So next time you're the ancient outcrops of our beautiful province, remember: beneath your boots may lie the fossilized remains of a once-thriving marine world—where trilobites crawled, burrowed, and thrived in seas long since vanished.
Tuesday, 15 April 2025
15TH BCPA SYMPOSIUM, COURTENAY: AUG 22-25, 2025
- Friday, August 22nd at the Courtenay and District Museum and Paleontological Centre, 207 - 4th Street, Courtenay, British Columbia including a Museum Tour with Pat Trask
- Saturday, August 23rd, 6 PM - 9:30 PM at the Florence Filberg Centre featuring Ray Troll as the Dinner Speaker
- Saturday, August 23rd, 9 AM - 4:30 PM
- Sunday, August 24th, 9 AM to 12:30 PM
- All presentations and poster sessions are at the Florence Filberg Centre at 411 Anderton Avenue in downtown Courtenay, Vancouver Island, British Columbia. The Florence Filberg Centre is 1/2 block from the Courtenay Museum, close to shops and restaurants
- Friday, August 22nd: Shelter Point
- Sunday, August 24th: Trent River
- Monday, August 25th: Hornby Island, Collishaw Point
- Sunday, August 25, 2025, 1:30 PM - 4:00 PM: Fossil Preparation Workshop with James Wood, Jay Hawley and Dan Bowen
Friday, 11 April 2025
ANCIENT ORNAMENTS OF THE SEA: FOSSIL PEARL
A simple search will show you a vast array of pearls being used for their ornamental value in cultures from all over the world. I suppose the best answer to why they are appealing is just that they are.
If you make your way to Paris, France and happen to visit the Louvre's Persian Gallery, do take a boo at one of the oldest pearl necklaces in existence — the Susa necklace. It hails from a 2,400-year-old tomb of long lost Syrian Queen. It is a showy piece with three rows of 72 pearls per strand strung upon a bronze wire.
A queen who truly knew how to accessorize.
I imagine her putting the final touches of her outfit together, donning the pearls and making an entrance to wow the elite of ancient Damascus. The workmanship is superb, intermixing pure gold to offset the lustre of the pearls. It is precious and ancient, crafted one to two hundred years before Christ. Perhaps a gift from an Egyptian Pharaoh or from one of the Sumerians, Eblaites, Akkadians, Assyrians, Hittites, Hurrians, Mitanni, Amorites or Babylonian dignitaries who sued for peace but brought war instead.
Questions, good questions, but questions without answers. So, what can we say of pearls? We do know what they are and it is not glamorous. Pearls form in shelled molluscs when a wee bit of sand or some other irritant gets trapped inside the shell, injuring the flesh. As a defensive and self-healing tactic, the mollusc wraps it in layer upon layer of mother-of-pearl — that glorious shiny nacre that forms pearls.
They come in all shapes and sizes from minute to a massive 32 kilograms or 70 pounds. While a wide variety of our mollusc friends respond to injury or irritation by coating the offending intruder with nacre, there are only a few who make the truly gem-y pearls.These are the marine pearl oysters, Pteriidae and a few freshwater mussels. Aside from Pteriidae and freshwater mussels, we sometimes find less gem-y pearls inside conchs, scallops, clams, abalone, giant clams and large marine gastropods.
Pearls are made up mostly of the carbonate mineral aragonite, a polymorphous mineral — the same chemical formula but different crystal structure — to calcite and vaterite, sometimes called mu-calcium carbonate. These polymorphous carbonates are a bit like Mexican food where it is the same ingredients mixed in different ways. Visually, they are easy to tell apart — vaterite has a hexagonal crystal system, calcite is trigonal and aragonite is orthorhombic.
As pearls fossilize, the aragonite usually gets replaced by calcite, though sometimes by vaterite or another mineral. When we are very lucky, that aragonite is preserved with its nacreous lustre — that shimmery mother-of-pearl we know and love.
Molluscs have likely been making pearls since they first evolved 530 million years ago. The oldest known fossil pearls found to date, however, are 230-210 million years old.
This was the time when our world's landmass was concentrated into the C-shaped supercontinent of Pangaea and the first dinosaurs were calling it home. In the giant ancient ocean of Panthalassa, ecosystems were recovering from the high carbon dioxide levels that fueled the Permian extinction. Death begets life. With 95% of marine life wiped out, new species evolved to fill each niche.
While this is where we found the oldest pearl on record, I suspect we will one day find one much older and hopefully with its lovely great-great grandmother-of-pearl intact.
Tuesday, 8 April 2025
DANGEROUS BEDFELLOWS: ANGLERFISH
The wee candle you see on her forehead is a photophore, a tiny bit of luminous dorsal spine. Many of our sea dwellers have these candle-like bits illuminating the depths. You may have noticed them glowing around the eyes of many of our cephalopod friends.
In anglerfish' world, this swaying light is dead sexy. It's an adaptation used to attract prey and mates alike.
Deep in the murky depths of the Atlantic and Antarctic oceans, hopeful female anglerfish light up their sexy lures. When a male latches onto this tasty bit of flesh, he fuses himself totally. He might be one of several potential mates. She's not picky, just hungry. Lure. Feed. Mate. Repeat.
A friend asked if anglerfish mate for life. Well, yes.... yes, indeed they do.
Mating is a tough business down in the depths. Her body absorbs all the yummy nutrients of his body over time until all that's left are his testes. While unusual, it is only one of many weird and whacky ways our fishy friends communicate, entice, hunt and creatively survive and thrive. The deepest, darkest part of the ocean isn't empty — its hungry.
The evolution of fish began about 530 million years ago with the first fish lineages belonging to the Agnatha, a superclass of jawless fish. We still see them in our waters as cyclostomes but have lost the conodonts and ostracoderms to the annals of time. Like all vertebrates, fish have bilateral symmetry; when divided down the middle or central axis, each half is the same. Organisms with bilateral symmetry are generally more agile, making finding a mate, hunting or avoiding being hunted a whole lot easier.
When we envision fish, we generally picture large eyes, gills, a well-developed mouth. The earliest animals that we classify as fish appeared as soft-bodied chordates who lacked a true spine. While they were spineless, they did have notochords, a cartilaginous skeletal rod that gave them more dexterity than the cold-blooded invertebrates who shared those ancient seas and evolved without a backbone.
Fish in general respire using gills, are most often covered with bony scales and propel themselves using fins. There are two main types of fins, median fins and paired fins. The median fins include the caudal fin or tail fin, the dorsal fin, and the anal fin. Now there may be more than one dorsal, and one anal fin in some fishes.
The paired fins include the pectoral fins and the pelvic fins. And these paired fins are connected to, and supported by, pectoral and pelvic girdles, at the shoulder and hip; in the same way, our arms and legs are connected to and supported by, pectoral and pelvic girdles. This arrangement is something we inherited from the ancestors we share with fish. They are homologous structures.
When we speak of early vertebrates, we are often talking about fish. Fish is a term we use a lot in our everyday lives but taxonomically it is not all that useful. When we say, fish we generally mean an ectothermic, aquatic vertebrate with gills and fins.
Fortunately, many of our fishy friends have ended up in the fossil record. We may see some of the soft bits from time to time, as in the lovely fossil fish found in concretion in Brazil, but we often see fish skeletons. Vertebrates with hard skeletons had a much better chance of being preserved.
![]() |
Eohiodon Fish, McAbee Fossil Beds |
There are fragments of bone-like tissues from as early as the Late Cambrian with the oldest fossils that are truly recognizable as fishes come from the Middle Ordovician from North America, South America and Australia. At the time, South America and Australia were part of a supercontinent called Gondwana. North America was part of another supercontinent called Laurentia and the two were separated by deep oceans.
These two supercontinents and others that were also present were partially covered by shallow equatorial seas and the continents themselves were barren and rocky. Land plants didn't evolve until later in the Silurian Period. In these shallow equatorial seas, a large diverse and widespread group of armoured, jawless fishes evolved: the Pteraspidomorphi. The first of our three groups of ostracoderms. The Pteraspidomorphi are divided into three major groups: the Astraspida, Arandaspida and the Heterostraci.
The oldest and most primitive pteraspidomorphs were the Astraspida and the Arandaspida. You'll notice that all three of these taxon names contain 'aspid', which means shield. This is because these early fishes — and many of the Pteraspidomorphi — possessed large plates of dermal bone at the anterior end of their bodies. This dermal armour was very common in early vertebrates, but it was lost in their descendants.
Monday, 7 April 2025
FOSSIL FISHAPODS OF CANADA'S FAR NORTH
Qikiqtania wakei, a fishapod & relative to tetrapods |
Up to that point, the relationship of limbed vertebrates (tetrapods) to lobe-finned fish (sarcopterygians) was well known, but the origin of significant tetrapod features remained obscure for the lack of fossils that document the sequence of evolutionary changes — until Tiktaalik.
While Tiktaalik is technically a fish, this fellow is as far from fish-like as you can be and still be a card-carrying member of the group.
Interestingly, while Neil Shubin and crew were combing the icy tundra for Tiktaalik, another group was trying their luck just a few kilometres away.
A week before the eureka moment of Tiktaalik's discovery, Tom Stewart and Justin Lemberg unearthed material that we now know to be a relative of Tiktaalik's.
Meet Qikiqtania wakei, a fishapod and close relative to our dear tetrapods — and cousin to Tiktaalik — who shares features in the flattened triangular skull, shoulders and elbows in the fin.
![]() |
Qikiqtania (pronounced kick-kick-TAN-ee-ya) |
The story gets wilder when we look at Qikiqtania’s position on the evolutionary tree— all the features for this type of swimming are newly evolved, not primitive.
This means that Qikiqtania secondarily reentered open water habitats from ancestors that had already had some aspect of walking behaviour.
And, this whole story was playing out 365 million years ago — the transition from water to land was going both ways in the Devonian.
Why is this exciting? You and I descend from those early tetrapods. We share the legacy of their water-to-land transition and the wee bony bits in their wrists and paddles that evolved to become our hands. I know, mindblowing!
Thomas Stewart and Justin Lemberg put in thousands of hours bringing Qikiqtania to life.
The analysis consisted of a long path of wild events— from a haphazard moment when it was first spotted, a random collection of a block that ended up containing an articulated fin, to a serendipitous discovery three days before Covid lockdowns in March 2020.
Both teams acknowledge the profound debt owed to the individuals, organizations and indigenous communities where they had the privilege to work — Grise Fiord and Resolute Bay— Ellesmere Island in Nunavut, the largest and northernmost territory of Canada.
Part of that debt is honoured in the name chosen for this new miraculous species.
![]() |
Aerial View of Ellesmere Island |
The specific name, wakei, is in memory of the evolutionary biologist David Wake — colleague, mentor and friend.
He was a professor of integrative biology and Director and curator of herpetology at the Museum of Vertebrate Zoology at the University of California, Berkeley who passed away in April 2021.
Wake is known for his work on the biology and evolution of salamanders and vertebrate evolutionary biology.
If you look at the photo on the left you can imagine visiting these fossil localities in Canada's far north.
Qikiqtania was found on Inuit land and belongs to the community. Thomas Stewart and his colleagues were able to conduct this research because of the generosity and support of individuals in the hamlets of Resolute Bay and Grise Fiord, the Iviq Hunters and Trappers of Grise Fiord, and the Department of Heritage and Culture, Nunavut.
To them, on behalf of the larger scientific community — Nakurmiik. Thank you!
Here is the link to Tom Stewart's article in The Conversation & paper in Nature:
Stewart, Thomas A.; Lemberg, Justin B.; Daly, Ailis; Daeschler, Edward B.; Shubin, Neil H. (2022-07-20). "A new elpistostegalian from the Late Devonian of the Canadian Arctic". Nature. doi:10.1038/s41586-022-04990-w. ISSN 0028-0836.
Stewart, Thomas. "Meet Qikiqtania, a fossil fish with the good sense to stay in the water while others ventured onto land" The Conversation. Retrieved 2022-07-20.
Image One: An artist’s vision of Qikiqtania enjoying its fully aquatic, free-swimming lifestyle. Alex Boersma, CC BY-ND
Image Two: A new elpistostegalian from the Late Devonian of the Canadian Arctic, T. A. Stewart, J. B. Lemberg, A. Daly, E. B. Daeschler, & N. H. Shubin.
A huge shout out to the deeply awesome Neil Shubin who shared that the paper had been published and offered his insights on what played out behind the scenes!
Tuesday, 1 April 2025
UNEARTHING FOSSIL BIRD BONES ON SOUTHERN VANCOUVER ISLAND
![]() |
Stemec suntokum, a Fossil Plopterid from Sooke, BC |
As romantic as it sounds, it happens more often than you think.
I can think of more than a dozen new fossil species from my home province of British Columbia on Canada’s far western shores that have been named after people I know who have collected those specimens or contributed to their collection over the past 20 years.
British Columbia, Canada, is a paleontological treasure trove, and one of its most rewarding spots is tucked away near the southwestern tip of Vancouver Island: the Sooke Formation along the rugged shores of Muir Beach.
A Beach Walk into Deep Time
Follow Highway 14 out of the town of Sooke, just west of Victoria, and you’ll soon find yourself staring at the cool, clear waters of the Strait of Juan de Fuca. Step onto the gravel parking area near Muir Creek, and from there, walk right (west) along the beach. The low yellow-brown cliffs up ahead mark the outcrop of the upper Oligocene Sooke Formation, part of the larger Carmanah Group.
For collectors, families, and curious wanderers alike, this spot is a dream. On a sunny summer day, the sandstone cliffs glow under the warm light, and if you’re lucky enough to visit in the quieter seasons, there’s a certain magic in the mist and drizzle—just you, the crashing surf, and the silent secrets of a world long gone.
Geological Canvas of the Oligocene
The Sooke Formation is around 25 to 30 million years old (upper Oligocene), when ocean temperatures had cooled to levels not unlike those of today. That ancient shoreline supported many of the marine organisms we’d recognize in modern Pacific waters—gastropods, bivalves, echinoids, coral, chitons, and limpets. Occasionally, larger remains turn up: bones from marine mammals, cetaceans, and, in extremely rare instances, birds.
Beyond Birds: Other Fossil Treasures
The deposits in this region yield abundant fossil molluscs. Look carefully for whitish shell material in the grey sandstone boulders along the beach. You may come across Mytilus (mussels), barnacles, surf clams (Spisula, Macoma), or globular moon snails. Remember, though, to stay clear of the cliffs—collecting directly from them is unsafe and discouraged.
These same rock units have produced fossilized remains of ancient marine mammals. Among them are parts of desmostylids—chunky, herbivorous marine mammals from the Oligocene—and the remains of Chonecetus sookensis, a primitive baleen whale ancestor. There are even rumors of jaw sections from Kolponomos, a bear-like coastal carnivore from the early Miocene, found in older or nearby formations.
Surprisingly, avian fossils at this site do exist, though they’re few and far between. Which brings us to one of the most exciting paleontological stories on the island: the discovery of a flightless diving bird.
The Suntok Family’s Fortuitous Find
In 2013, while strolling the shoreline near Sooke, Steve Suntok and his family picked up what they suspected were fossilized bones. Their instincts told them these were special, so they brought the specimens to the Royal British Columbia Museum (RBCM) in Victoria.
Enter Gary Kaiser: a biologist by profession who, after retirement, turned his focus to avian paleontology. As a research associate with the RBCM, Kaiser examined the Suntoks’ finds and realized these were no ordinary bones. They were the coracoid of a 25-million-year-old flightless diving bird—a rare example of the extinct Plotopteridae. In honor of the region’s First Nations and the intrepid citizen scientists who found it, he named the new genus and species Stemec suntokum.
Meet the Plotopterids
Plotopterids once lived around the North Pacific from the late Eocene to the early Miocene. They employed wing-propelled diving much like modern penguins, “flying” through the water using robust, flipper-like wings. Fossils of these extinct birds are known from outcrops in the United States and Japan, where some specimens reached up to two meters in length.
The Sooke fossil, on the other hand, likely belonged to a much smaller individual—somewhere in the neighborhood of 50–65 cm long and 1.7–2.2 kg, about the size and weight of a small Magellanic Penguin (Spheniscus magellanicus) chick. The key to identifying Stemec suntokum was its coracoid, a delicate shoulder bone that provides insight into how these birds powered their underwater movements.
From Penguin Waddle to Plotopterid Dive
If you’ve ever seen a penguin hopping near the ocean’s edge or porpoising through the water, you can imagine the locomotion of these ancient Plotopterids. The coracoid bone pivots as a bird flaps its wings, providing a hinge for the up-and-down stroke. Because avian bones are so delicate—often scavenged or destroyed by ocean currents before they can fossilize—finding such a beautifully preserved coracoid is a stroke of incredible luck.
Kaiser’s detailed observations on the coracoid of Stemec suntokum—notably its unusually narrow, conical shaft—sparked debate among avian paleontologists. You can read his paper, co-authoried with Junya Watanabe and Marji Johns, was published in Palaeontologia Electronica in November 2015. You can find the paper online at:
https://palaeo-electronica.org/content/2015/1359-plotopterid-in-canada
The Suntok Legacy
It turns out the Suntok family’s bird discovery wasn’t their last remarkable find. Last year, they unearthed part of a fish dental plate that caught the attention of Russian researcher Evgeny Popov. He named it Canadodus suntoki (meaning “Tooth from Canada”), another nod to the family’s dedication as citizen scientists.
While the name may not be as lyrical as Stemec suntokum, it underscores the continuing tradition of everyday fossil lovers making big contributions to science.
Planning Your Own Expedition
Location: From Sooke, drive along Highway 14 for about 14 km. Just after crossing Muir Creek, look for the gravel pull-out on the left. Park and walk down to the beach; turn right (west) and stroll about 400 meters toward the sandstone cliffs.
Tip: Check the tide tables and wear sturdy footwear or rubber boots. Fossils often appear as white flecks in the greyish rocks on the beach. A small hammer and chisel can help extract specimens from coquinas (shell-rich rock), but always use eye protection and respect the local environment.
Coordinates: 48.4°N, 123.9°W (modern), which corresponds to around 48.0°N, 115.0°W in Oligocene paleo-coordinates.
Why Head to Sooke? Pure Gorgeousness!
Whether you’re scanning the shoreline for ancient bird bones or simply soaking in the Pacific Northwest vistas, Muir Beach offers a blend of natural beauty and deep-time adventure. For many, the idea of unearthing a brand-new fossil species seems almost mythical.
Yet the Suntok family’s story proves it can—and does—happen. With an appreciative eye, a sense of curiosity, and a willingness to learn, any of us could stumble upon the next chapter of Earth’s distant past.
So pack your boots, bring a hammer and some enthusiasm, and you just might find yourself holding a piece of ancient avian history—like Stemec suntokum—in your hands.
References & Further Reading
Clark, B.L. and Arnold, R. (1923). Fauna of the Sooke Formation, Vancouver Island, B.C. University of California Publications in Geological Sciences 14(6).
Hasegawa et al. (1979); Olson and Hasegawa (1979, 1996); Olson (1980); Kimura et al. (1998); Mayr (2005); Sakurai et al. (2008); Dyke et al. (2011).
Russell, L.S. (1968). A new cetacean from the Oligocene Sooke Formation of Vancouver Island, British Columbia. Canadian Journal of Earth Sciences, 5, 929–933.
Barnes, L.G. & Goedert, J.L. (1996). Marine vertebrate palaeontology on the Olympic Peninsula. Washington Geology, 24(3), 17–25.
Kaiser, G., Watanabe, J. & Johns, M. (2015). A new member of the family Plotopteridae (Aves) from the late Oligocene of British Columbia, Canada. Palaeontologia Electronica.
Howard, H. (1969). A new avian fossil from the Oligocene of California. Described Plotopterum joaquinensis.
Wetmore, A. (1928). Avian fossils from the Miocene and Pliocene of California.