Showing posts with label fossil. Show all posts
Showing posts with label fossil. Show all posts

Friday, 26 December 2025

CAMBRIAN FAUNA FROM THE EAST KOOTENAY REGION

Upper Cambrian Trilobite Outcrops
When most people imagine British Columbia, they picture sky-scraping mountains, temperate rainforests dripping with moss, and coastlines sculpted by Pacific storms. 

But beneath these landscapes lies a vastly older, stranger world—one that thrived more than half a billion years before humans set foot on this continent.

This was the Cambrian, the era of Earth’s first great biological flowering. And ruling those early seas were the trilobites.

Trilobites were among the earliest complex animals to populate Earth’s oceans—marine arthropods with armor-like exoskeletons, jointed legs, compound eyes, and astonishing evolutionary variety. 

Over 270 million years, they adapted to almost every marine habitat imaginable and diversified into more than 20,000 species.

Today, their fossilized forms—ribbed, spined, streamlined, or elaborately ornamented—are found on every continent. But few places on Earth preserve their story with the richness and fidelity of southeastern British Columbia.

A Fossil Time Machine in the Rockies

The province’s Cambrian-aged formations offer a rare window into early marine ecosystems. The world-famous Burgess Shale preserves soft-bodied creatures with near-photographic clarity. But nearby, just outside the city of Cranbrook, another treasure trove reveals the rise of the trilobites in even earlier seas.

This is the Eager Formation—a Burgess Shale–type Lagerstätte from Cambrian Series 2, Stage 4, roughly 515 million years old. Long considered a low-diversity deposit, new research has transformed its scientific importance.

New Species from an Ancient Sea

A sweeping study by Mark Webster, Jean-Bernard Caron and colleagues, published in the Journal of Paleontology in March 2025, combined with new trilobite taxonomy uncover a thriving community of early trilobites—including several species new to science or newly named favourites from some earlier known colloquially from Lisa Bohach's unpublished thesis.

Among them:

  • Olenellus santuccii Webster n. sp.
  • Wanneria cranbrookense Webster n. sp.
  • Olenellus? schofieldi
  • Mesonacis eagerensis

These four olenelloids dominate the fauna, forming the backbone of a “typical” benthic trilobite community from the middle Dyeran Stage in Laurentia (ancient North America).

Alongside them are rare representatives from the enigmatic dorypygid and “ptychoparioid” lineages—groups whose fragmentary preservation leaves some species unnamed but no less scientifically important.

This diversity places the Cranbrook trilobite assemblage on par with other remarkable Cambrian deposits across Laurentia, filling a major stratigraphic gap between earlier and later Burgess Shale–type localities.

Even more remarkable: sedimentologic and preservational clues indicate these creatures died close to where they lived, their bodies settling gently into Cambrian muds with minimal transport. This is time travel at its most precise.

Lower Cambrian – The Eager Formation

Wanneria cranbrookense Webster n. sp.
The site outcrops at a few locations as you head east out of Cranbrook towards Fort Steele. 

The first trilobites were discovered with the building of the Kootenay Highway connecting Cranbrook to Fort Steele and beyond. 

Several other localities, including the outcrops at the Silhouette Rife Range — which is literally on a Rifle Range where folks go to shoot at things — is a shade older than the Middle Cambrian Burgess Shale but the fauna here is much less varied. 

The site has been known and collected since the 1920s. Back in the day, fossil collecting was a family affair with folks heading out in their lightly coloured finery to picnic and surface collect the eroding exposures. 

Cranbrook local, Clement Hungerford Pollen was an engineer and avocational palaeontologist. He promoted collecting the exposures of the Eager Formation around 1921. As a pedigreed Englishman of considerable means, he had invested in the Kootenay Central Railway, revitalizing the town by opening up railway access within the region. Locals have been actively collecting at this site ever since. 

Recent work by Mark Webster et al. highlighted other Lower Cambrian species from this area, including:

  • Fritzaspis – a small, early olenellid.
  • Elliptocephala – known for its elongated head shield.
  • Repinaella – a primitive form key to understanding trilobite origins.

Together, these fossils help correlate the Eager Formation with Lower Cambrian deposits across western Laurentia, refining the timeline of trilobite evolution.

Upper Cambrian – The McKay Group

A short drive from the Eager outcrops lies the McKay Group, a sequence of shales and limestones preserving spectacular Upper Cambrian trilobites.

Here, paleontologists such as Brian Chatterton have documented a flourishing array of species, including:

  • Pterocephalia norfordi
  • Elvinia roemeri
  • Calyptaulax
  • Prosaukia
  • Orygmaspis contracta

Recent fieldwork by dedicated scientists and citizen collectors—Chris New, Chris Jenkins, Guy Santucci, Don Askew, and Stacey Gibb—continues to expand this list, even turning up Pseudagnostus securiger, a Jiangshanian-age species not previously known from southeastern BC.

Names That Tell a Story of Some Very Awesome Folk...

Paleontology is not just about fossils—it’s also about the people who dedicate their lives (and weekends) to uncovering them. In British Columbia, several trilobite species honour those contributions:

  • Pterocephalia santuccii – named for geologist Guy Santucci, whose mapping and fieldwork brought attention to the Cranbrook area.
  • Orygmaspis newi – recognizing Chris New, a tireless and deeply awesome citizen scientist.
  • Calyptaulax jenkinsi – honouring Chris Jenkins, whose meticulous collecting enriched scientific collections.

These names are more than labels—they’re tributes to the collaboration between professionals, institutions, and passionate community members.

A Cast of Characters Spanning Millions of Years

Across the Cambrian rocks of BC, several trilobites stand out as icons of their time:

  • Olenoides serratus – the Burgess Shale classic, often preserved with legs and antennae intact.
  • Wanneria walcottana – an Early Cambrian form.
  • Mesonacis eagerensis – the signature trilobite of the Eager Formation.
  • Pterocephalia santuccii, Orygmaspis newi, Calyptaulax jenkinsi – Upper Cambrian forms marking the twilight of trilobite diversity in the region.

Together, these species chart an evolutionary journey from the earliest trilobites to the sophisticated, ornamented forms of the late Cambrian.

Collecting fossils is restricted in national parks like Yoho, but other formations around Cranbrook allow regulated scientific access. Here, fossil hunters navigate weathered shale slopes and scree-covered ridges, scanning for the ribbed arcs and crescent-shaped cephalons of long-dead arthropods.

Trilobites are as beautiful as they are informative. Their perfect bilateral symmetry, paired spines, and geometric patterns have inspired artists and scientists alike for centuries.

Tuzoia, Lower Cambrian, Eager Formation
For those eager to explore this deep past without a rock hammer, the Cranbrook History Centre, located on the traditional territory of the Ktunaxa First Nation, offers superb displays of Cambrian trilobites, including Tuzoia and other arthropods—plus a delightful collection of Devonian fish.

Trilobites may have vanished 250 million years ago, but their legacy endures.

They help us understand:

  • How ecosystems rebounded after ancient climate disruptions
  • How early animals diversified and competed
  • How continents moved and reshaped marine habitats
  • How life evolved complex sensory systems and behaviours

Every fossil is a data point from a vanished ocean, a chapter in Earth’s deep-time biography.

Next time you find yourself walking the rocky outcrops of southeastern British Columbia, pause for a moment. Beneath your feet lies the fossilized remains of vibrant, bustling seas—worlds where trilobites crawled, hunted, burrowed, and thrived long before mountains rose or forests took root.

These ancient mariners whisper stories from half a billion years ago. And thanks to ongoing research—from Caron’s foundational work to the newest species described by Webster and dedicated field collectors—we are finally learning to hear them.

Mark Webster and Jean-Bernard Caron "Trilobites of the Cranbrook Lagerstätte (Eager Formation, Cambrian Stage 4), British Columbia," Journal of Paleontology 98(4), 460-503, (6 March 2025). https://doi.org/10.1017/jpa.2023.89

Thursday, 25 December 2025

IT'S CHRISTMAS TIME: KISMIS'TSANX

Happy Holidays to You!
As the year winds down and winter settles in with her quiet magic, I am sending you all a snowstorm of love, warmth, and fossil-rich joy. It's Christmas time — Kismis'tsanx!

Thank you for walking this ancient, wonder-filled path with me through 2025 — from ammonites to elasmosaurs to the deep stories held in stone. 

As I snuggle in for the winter, I am thinking of all of you around the world. Each of you celebrating this season in your own way. 

Some gathering for Christmas lights and carols, some honouring the birth of the Prophet Muhammad with reflection and generosity, while others of you kindle candles for Hanukkah, share feasts for Yule, observe Dhanu Sankranti, Dongzhi, Bodhi Day, or simply welcome the return of longer days with quiet gratitude. 

Whether your traditions are rooted in Christianity, Islam, Judaism, Indigenous teachings, Buddhism, Pagan customs, or any of the many rich spiritual paths that shape our global community, this time of year carries a shared thread: connection, kindness, and hope for the year ahead. 

Wherever you are in the world, I wish you the very best of the season — and a 2026 filled with adventure, connection, and delight. May your days be bright, your field gear dry, and your pockets full of unexpected treasures.

Merry Christmas, Joyeux Noël, Frohe Weihnachten, Feliz Navidad, Buon Natale, Kala Christougenna, 圣诞快乐, メリークリスマス, 메리 크리스마스, Feliz Natal, Veselé Vánoce, Hyvää Joulua, God Jul, С Рождеством, عيد ميلاد مجيد‎, Nadolig Llawen, Meri Kirihimete, Kilisimasi Fiefia, Mele Kalikimaka — from my heart and hearth to yours. 

Wherever your journey takes you, may 2026 bring new horizons, bold discoveries, and soft moments of joy. Here’s to another year of stories written in stone — and shared with the beautiful community that makes this journey worthwhile. I appreciate each and every one of you so much!

With love & ancient wonder,

The Fossil Huntress

Monday, 22 December 2025

MAMMOTHS, MYSTERY AND TEXAS-SIZED TIME TRAVEL: WAKO

Waco Mammoth National Moment Fossil Site
If you’ve ever wondered what happens when a herd of Columbian mammoths, a flash flood, and 21st-century paleontologists all meet in Waco, Texas… well, Waco Mammoth National Monument has your answer: deep time drama with a fossilized cast of 24 large, hairy, and extremely unlucky Pleistocene mammals.

But before we get to the scientists in khakis, let’s rewind 67,000 years and meet the star of the show.

Waco Mammoth National Monument in Waco, Texas, stands today as one of the most significant Pleistocene paleontological sites in North America. 

It preserves the remains of 24 Columbian mammoths, Mammuthus columbi, and several other large mammals—including camelids, a juvenile saber-toothed cat, and smaller fauna—offering an unparalleled window into Late Pleistocene ecosystems and catastrophic mortality events.

Among the individuals identified at the site, Adult Male Mammoth Q. is one of the most impressive. In life, he would have been:

  • Over 8 feet tall at the shoulder
  • Approximately 10 tons in mass
  • Equipped with tusks stretching up to 14 feet

As a mature bull Columbian mammoth, he likely lived a largely solitary life except during seasonal breeding periods. Columbian mammoths occupied open grasslands and savannas across the southern United States and Mexico, and Mammoth Q. would have spent his days feeding on grasses, sedges, and woody vegetation that thrived in the warm, dry climate of Pleistocene central Texas.

Sedimentology and taphonomic evidence suggest that Mammoth Q. met his end during a severe flooding event. 

The Bosque River and its tributaries were prone to flash flooding during the Pleistocene, and a sudden high-energy flow likely trapped and buried this large adult along with other isolated individuals. 

The result is an exceptionally preserved skeleton that provides key data on Columbian mammoth anatomy and population structure.

Most of the mammoths found at Waco belong not to solitary adults but to a nursery herd—an assemblage of females and juveniles that perished together in an earlier catastrophic flood event approximately 65,000–67,000 years ago. Their position within the sediments, the lack of significant post-mortem disturbance, and the articulation of many skeletons indicate rapid burial and minimal scavenging.

This makes the Waco site the only known fossil locality in North America containing a probable mammoth nursery herd, offering rare insight into social behavior, herd structure, and mortality patterns.

The site remained unknown until 1978, when local teenagers Paul Barron and Eddie Bufkin discovered a large bone eroding from a ravine near the Bosque River. Their discovery prompted the involvement of Calvin Smith, then director of Baylor University’s Strecker Museum, who recognized the bone as part of a mammoth femur.

Systematic excavation began in the 1980s and continued for decades under the leadership of:

  • Dr. Calvin Smith
  • Dr. David Lintz, who played a major role in interpreting the site’s multi-event deposition history
  • Dr. Brenda Scott, contributing to specimen documentation
  • Numerous Baylor University staff, students, and community volunteers

As excavations continued, researchers identified successive burial layers, additional individuals, and evidence for multiple flood events responsible for the mass mortality.

The importance of the site grew steadily, both for scientific research and for public education. A climate-controlled dig shelter was constructed to allow visitors to view fossils in situ, preserving the contextual integrity of the specimens.

In 2015, the site received national recognition when President Barack Obama designated it Waco Mammoth National Monument, protecting the locality and enabling continued collaboration among the National Park Service, Baylor University, and the City of Waco.

Waco Mammoth National Monument is unique in offering direct, above-surface access to an active fossil locality. Visitors can observe:

  • Articulated mammoth skeletons still embedded in the original Pleistocene sediments
  • The remains of a camel (Camelops sp.)
  • Evidence of multiple burial events and stratigraphic layers representing different moments in site history
  • Interpretive exhibits detailing paleoecology, taphonomy, and excavation history

The dig shelter provides a controlled environment that stabilizes the fossils and allows ongoing scientific research without removing specimens from their original context.

Waco Mammoth National Monument stands today as one of the premier paleontological localities in the United States, preserving the story of a herd lost to sudden environmental change and of solitary individuals like Mammoth Q. who represent the broader ecology of the Pleistocene South.

Whether for scientific research, educational interest, or a firsthand view of ancient life preserved precisely where it fell, the site offers a rare opportunity to engage directly with deep time and the processes that shape the fossil record.


Saturday, 20 December 2025

DARWIN AND THE GREAT DEBATE: MEGALOSAURUS

Oxford University Museum of Natural History was established in 1860 to draw together scientific studies from across the University of Oxford.

On 30 June 1860, the Museum hosted a clash of ideologies that has become known as the Great Debate.

Even before the collections were fully installed, or the architectural decorations completed, the British Association for the Advancement of Science held its 30th annual meeting to mark the opening of the building, then known as the University Museum. 

It was at this event that Samuel Wilberforce, Bishop of Oxford, and Thomas Huxley, a biologist from London, went head-to-head in a debate about one of the most controversial ideas of the 19th century – Charles Darwin's theory of evolution by natural selection.

Notable collections include the world's first described dinosaur,  Megalosaurus bucklandii, and the world-famous Oxford Dodo, the only soft tissue remains of the extinct dodo. Although fossils from other areas have been assigned to the genus, the only certain remains of Megalosaurus come from Oxfordshire and date to the late Middle Jurassic. 

Megalosaurus
In 1824, Megalosaurus was the first genus of non-avian dinosaur to be validly named. The type species is Megalosaurus bucklandii, named in 1827.

In 1842, Megalosaurus was one of three genera on which Richard Owen based his Dinosauria. On Owen's direction, a model was made as one of the Crystal Palace Dinosaurs, which greatly increased the public interest for prehistoric reptiles. 

Subsequently, over fifty other species would be classified under the genus, originally because dinosaurs were not well known, but even during the 20th century after many dinosaurs had been discovered. 

Today it is understood these additional species were not directly related to M. bucklandii, which is the only true Megalosaurus species. Because a complete skeleton of it has never been found, much is still unclear about its build.

The Museum is as spectacular today as when it opened in 1860. As a striking example of Victorian neo-Gothic architecture, the building's style was strongly influenced by the ideas of 19th-century art critic John Ruskin. Ruskin believed that architecture should be shaped by the energies of the natural world, and thanks to his connections with a number of eminent Pre-Raphaelite artists, the Museum's design and decoration now stand as a prime example of the Pre-Raphaelite vision of science and art.

Friday, 19 December 2025

MISTER KANE AND THE ORIGINS OF CANINES

Mister Kane
The good-looking boy you see here is my dog Kane, a loveable Rhodesian Ridgeback who brought many years of happiness to my life. Fiercely loyal, funny, stubborn and oh, so charming. 

Dogs—those noble, tail-wagging companions who’ve perfected the art of begging for snacks and unconditional love—have a fossil record that’s as fascinating as their modern-day personalities.

The story of Canis familiaris begins long before tennis balls and belly rubs. Their lineage traces back over 40 million years to the Miacids, small, tree-dwelling carnivores that lived during the Eocene epoch. 

These early proto-dogs looked more like a ferret that hadn’t quite made up its mind about whether it wanted to be a cat or a weasel. From there, evolution took the scenic route—through genera like Hesperocyon (meaning “western dog”) and Leptocyon—as paws became better for running and teeth evolved for tearing meat.

Snuggle Bunnies — Mister Kane & Mozart
By about 6 million years ago, we see true members of the genus Canis: ancestors of wolves, coyotes, and eventually our best friends. Fossils of Canis lepophagus from North America show the first recognisable wolf-like snout. 

Fast forward to around 15,000–30,000 years ago, and humans and wolves began their historic friendship—one that likely started when hungry wolves realised hanging out with people meant easy leftovers. 

Humans realised wolves made excellent alarm systems (and very fluffy foot warmers).

Since then, dogs have spread across the globe, adapting faster than you can say “good boy.” From fossilized bones in Siberian caves to paw prints preserved in ancient mud, their story is one of partnership, adaptability, and the evolution of pure charisma.


Wednesday, 17 December 2025

FOSSIL FISHAPODS FROM THE CANADIAN ARCTIC

Qikiqtania wakei, a fishapod & relative to tetrapods
You will likely recall the amazing tetrapodomorpha fossil found on Ellesmere Island in the Canadian Arctic in 2004, Tiktaalik roseae

These were advanced forms transitional between fish and the early labyrinthodonts playfully referred to as fishapods — half-fish, half-tetrapod in appearance and limb morphology. 

Up to that point, the relationship of limbed vertebrates (tetrapods) to lobe-finned fish (sarcopterygians) was well known, but the origin of significant tetrapod features remained obscure for the lack of fossils that document the sequence of evolutionary changes — until Tiktaalik

While Tiktaalik is technically a fish, this fellow is as far from fish-like as you can be and still be a card-carrying member of the group. 

Interestingly, while Neil Shubin and crew were combing the icy tundra for Tiktaalik, another group was trying their luck just a few kilometres away. 

A week before the eureka moment of Tiktaalik's discovery, Tom Stewart and Justin Lemberg unearthed material that we now know to be a relative of Tiktaalik's. 

Meet Qikiqtania wakei, a fishapod and close relative to our dear tetrapods — and cousin to Tiktaalik — who shares features in the flattened triangular skull, shoulders and elbows in the fin. 

Qikiqtania (pronounced kick-kick-TAN-ee-ya)
But, and here’s the amazing part, its upper arm bone (humerus) is specialised for open water swimming, not walking. 

The story gets wilder when we look at Qikiqtania’s position on the evolutionary tree— all the features for this type of swimming are newly evolved, not primitive. 

This means that Qikiqtania secondarily reentered open water habitats from ancestors that had already had some aspect of walking behaviour. 

And, this whole story was playing out 365 million years ago — the transition from water to land was going both ways in the Devonian.

Why is this exciting? You and I descend from those early tetrapods. We share the legacy of their water-to-land transition and the wee bony bits in their wrists and paddles that evolved to become our hands. I know, mindblowing!

Thomas Stewart and Justin Lemberg put in thousands of hours bringing Qikiqtania to life. 

The analysis consisted of a long path of wild events— from a haphazard moment when it was first spotted, a random collection of a block that ended up containing an articulated fin, to a serendipitous discovery three days before Covid lockdowns in March 2020.

Both teams acknowledge the profound debt owed to the individuals, organizations and indigenous communities where they had the privilege to work — Grise Fiord and Resolute Bay— Ellesmere Island in Nunavut, the largest and northernmost territory of Canada. 

Part of that debt is honoured in the name chosen for this new miraculous species. 

Aerial View of Ellesmere Island
The generic name, Qikiqtania (pronounced kick-kick-TAN-ee-ya), is derived from the Inuktitut words Qikiqtaaluk and Qikiqtani which are the traditional place name of the region where the fossil was discovered. 

The specific name, wakei, is in memory of the evolutionary biologist David Wake — colleague, mentor and friend. 

He was a professor of integrative biology and Director and curator of herpetology at the Museum of Vertebrate Zoology at the University of California, Berkeley who passed away in April 2021. 

Wake is known for his work on the biology and evolution of salamanders and vertebrate evolutionary biology. 

If you look at the photo on the left you can imagine visiting these fossil localities in Canada's far north.

Qikiqtania was found on Inuit land and belongs to the community. Thomas Stewart and his colleagues were able to conduct this research because of the generosity and support of individuals in the hamlets of Resolute Bay and Grise Fiord, the Iviq Hunters and Trappers of Grise Fiord, and the Department of Heritage and Culture, Nunavut.

To them, on behalf of the larger scientific community — Nakurmiik. Thank you! 

Here is the link to Tom Stewart's article in The Conversation & paper in Nature:

Image One: An artist’s vision of Qikiqtania enjoying its fully aquatic, free-swimming lifestyle. Alex Boersma, CC BY-ND

Image Two: A new elpistostegalian from the Late Devonian of the Canadian Arctic, T. A. Stewart, J. B. Lemberg, A. Daly, E. B. Daeschler, & N. H. Shubin.

A huge shout out to the deeply awesome Neil Shubin who shared that the paper had been published and offered his insights on what played out behind the scenes!

Monday, 15 December 2025

TUSKED TITANS OF THE ARCTIC: WALRUS ᐊᐃᕕᖅ

A lazy walrus lounges on an ice floe, its massive, blubbery body shimmering under the low Arctic sun. 

With a deep, rumbling sigh, it shifts its weight and scratches an itch on its side—more out of habit than necessity. Life, for this marine titan, moves at the pace of the tides.

Odobenus rosmarus, the walrus is the only surviving member of the family Odobenidae, a once-diverse group of pinnipeds that includes extinct relatives such as Dusignathus and Pontolis

Fossil remains place their lineage back to the late Miocene, around 10–11 million years ago. Early odobenids first appeared in the North Pacific and were more varied than the tusked, bottom-feeding walrus we know today—some had shorter tusks or none at all, and many hunted fish rather than clams.

These ancient walruses belonged to a broader superfamily, the Pinnipedia, which also includes seals and sea lions. Genetic and fossil evidence suggests pinnipeds split from terrestrial carnivores roughly 25–30 million years ago, likely from bear-like ancestors that took to the water during the Oligocene. Odobenids evolved later, perfecting their specialization as suction feeders. 

Their powerful tongues can vacuum soft-bodied mollusks straight from their shells—a skill that defines modern walrus diets.

Today, walruses inhabit the icy Arctic and subarctic waters of the Northern Hemisphere, with two recognized subspecies: the Atlantic walrus, O. r. rosmarus, found in the Canadian Arctic and Greenland, and the Pacific walrus, O. r. divergens, ranging from the Bering Sea to the Chukchi Sea. They prefer shallow continental shelf regions where bivalves abound and haul out on sea ice or rocky shores in vast, noisy colonies.

Despite their ponderous appearance, walruses are powerful swimmers and social creatures with intricate communication and hierarchy systems. Their tusks—elongated canines present in both males and females—serve for dominance displays, hauling out, and defense. 

To Arctic peoples, walruses have long been vital for food, hides, and ivory, woven into traditional lifeways and mythology.

In Inuktitut, the word for walrus is “aiviq” (ᐊᐃᕕᖅ). It’s pronounced roughly eye-vik or ay-vik, depending on the dialect. The plural form is “aiviat” (ᐊᐃᕕᐊᑦ). The walrus, aiviq, holds deep cultural and spiritual importance in Inuit communities, long valued for its meat, ivory, and hide—vital resources for survival in the Arctic.

From Miocene shores to the modern polar ice, the walrus story is one of adaptation and endurance—a lineage that has survived shifting seas and ice ages, still scratching its ancient itch beneath the northern sun.

Sunday, 14 December 2025

ANCIENT ELEGANCE: UINTACRINUS SOCIALIS

There is a particular kind of quiet magic in the world, the sort that sends a small shiver of awe through you when all the elements of deep time align. 

Every so often, nature grants us a perfect moment: minerals seep gently into ancient flesh, sediments cradle a creature’s delicate form, and the slow choreography of preservation captures a life in astonishing detail. 

For me, nothing embodies that magic quite like crinoids. These elegant echinoderms—equal parts flower and animal—feel like whispers from an ancient sea, caught forever in stone.

The specimen before us is no exception. If you lean in close and let your eyes wander across its intricate geometry, you will find yourself face to face with a stunning representative of Uintacrinus socialis

This Upper Cretaceous beauty, hailing from the Santonian roughly 85 million years ago, was first named nearly a century and a half ago by O.C. Marsh in honour of the Uinta Mountains of Utah. 

This specimen hail from the soft chalky layers of the Smoky Hills Niobrara Formation in central Kansas—a region that once lay beneath the warm, shallow waters of the Western Interior Seaway. Here, entire colonies of Uintacrinus drifted like living chandeliers, their feathery arms extended into the sun-dappled currents.

Crinoids are the quiet dancers of the animal kingdom. Although they appear plant-like—an underwater blossom swaying gracefully in the tide—they are very much animals, part of the illustrious echinoderm clan that includes sea stars, brittle stars, and urchins. 

Imagine a lily turned sentient: a cup-shaped central body holding a mouth on its upper surface, surrounded by delicate, branching arms that sweep food particles from the water. 

And, in true echinoderm fashion, add an anus inconveniently positioned right beside the mouth. Evolution, it seems, has a sense of humour.

The anchored species, traditionally called sea lilies, rise from the seafloor on slender stalks composed of stacked calcite rings—columnals—that resemble beads fallen from some ancient necklace. In shallower waters, the stalks can be short and sturdy, but in deeper seas they may stretch a metre or more, holding the crinoid aloft like the mast of a living ship, swaying gently with each passing current.

Yet most crinoids in today’s oceans are not anchored at all. The feather stars, or comatulids, break free from their juvenile stalks and spend their adulthood drifting, crawling, or even swimming with slow, balletic strokes of their arms. 

They cling to rocks and coral with tiny curved structures called cirri—delicate as eyelashes yet strong enough to grip firmly in swirling water. These cirri also allowed many fossil crinoids to hold fast to the Cretaceous seafloor, weathering tides and storms in the vast expanse of the Western Interior Seaway.

Like all echinoderms, crinoids exhibit pentaradial symmetry: a five-fold architecture expressed in their plates, arms, and feeding grooves. The aboral, or underside, of the calyx is encased in a mosaic of calcium carbonate plates that form their internal skeleton—robust enough to fossilize beautifully. 

The top surface, the oral area, is mostly soft tissue in life, opening into five deep ambulacral grooves where tube feet once reached outward like tiny graceful fingers. Between these lie the interambulacral zones, together forming the elegant star-like pattern that both living and fossil crinoids display.

Their fossil record is ancient and abundant. Crinoids first appear in the Ordovician over 450 million years ago—unless one counts Echmatocrinus, that strange and controversial form from the Burgess Shale whose affinities still spark debate among paleontologists. 

Through the Paleozoic, crinoids flourished in such numbers that their disarticulated columnals often blanket limestone beds. In some places, these columnals form the very fabric of the rock itself, creating entire cliffs built from the remnants of ancient underwater meadows. To run your fingers along such a rock is to touch a community that lived hundreds of millions of years before humans ever drew breath.

And yet, crinoids endure. They survive today in tropical reefs, deep ocean slopes, and soft-bottomed basins, their lineage stretching unbroken from those early Paleozoic seas to the modern oceans. 

Some cling to the seafloor in twilight depths; others drift like feathered ghosts, arms unfurling in silent, rhythmic pulses. 

When a fossil like Uintacrinus socialis emerges from the chalk of Kansas or the limestone of Utah, we are granted a rare window into that vanished age. 

And for those of us who spend our days searching riverbeds, quarries, and sea cliffs for such wonders, as I am sure you do, it is for the thrill of having a satisfying split and letting the past shine through.

That, to me, is pure magic.

Tuesday, 9 December 2025

URSUS CURIOUS: TLA'YI

A young Black Bear cub, Ursus americanus, tip-toes toward a frisky (and very startled) Striped Skunk, Mephitis mephitis — two wonderfully charismatic neighbours here in southern British Columbia.

Skunks, despite their reputation as the great olfactory villains of the mammal world, are actually closer to Old World stink badgers than to true polecats. 

Their infamous spray comes from paired anal scent glands capable of delivering a sulphur-rich chemical cocktail with uncanny accuracy — up to three metres, cross-wind. 

A single blast contains thiols so potent that predators learn, very quickly, that curiosity is overrated. Well… most predators. This wee bear clearly didn’t get the memo.

Black Bear cubs are, by nature, little bundles of kinetic joy and overwhelming inquisitiveness. Born in mid-winter, blind and tiny (weighing little more than a can of soup), they spend their first months cozied up in the den. 

By spring, though? Trouble. Pure, adorable trouble. Cubs stay with their mothers for about two years, learning every essential skill — how to climb, what to eat, what not to poke — but sometimes a particularly irresistible mystery will lure one a few metres away for a solo investigation.

Skunks, meanwhile, are far more than their signature scent. They’re accomplished insectivores with surprisingly strong forelimbs, adapted for rooting out beetle larvae, grubs, and other soil-dwelling goodies. 

They’re also bold. A skunk will usually stomp its feet, click its teeth, and arch its tail in a dramatic “Don’t make me do it” warning display. 

And yet — miracle of miracles — nobody got skunked. A karmic win for everyone involved.

This charming moment is also a reminder of the rich biodiversity we’re blessed with on the rugged west coast of British Columbia, where coastal rainforests shelter everything from salmon-loving black bears to nocturnal, grub-snuffling skunks.

Bears and skunks also have deep, fascinating roots in the fossil record. The lineage leading to modern skunks (Mephitidae) first appears in the Oligocene, roughly 30–32 million years ago, with early forms like Promephitis showing many of the skeletal hallmarks — and likely the scent-gland superpowers — of their modern cousins. 

Bears (Ursidae), meanwhile, trace their ancestry back even further. Their earliest known relatives emerge in the late Eocene, around 38 million years ago, with small, doglike proto-bears such as Parictis and later the hemicyonids, sometimes called “dog-bears,” bridging the evolutionary steps toward the true bears we know today. 

By the Miocene, both families were well established across North America, sharing ancient forests and floodplains just as their modern descendants do today — though hopefully with just as few skunk-related mishaps.

In the Kwak'wala language of the Kwakwaka'wakw First Nations of the Pacific Northwest, this playful black bear is t̕ła'yi — a name that captures both its spirit and its place within these lands. 

A perfect word for a perfect little explorer with an arguably questionable sense of danger.

Monday, 8 December 2025

HOLCOPHYLLOCERAS: A JEWEL OF JURASSIC SEAS

What is most wonderful about natural science is that every fossil—every spiral, ridge, and suture—opens a window onto a vanished world. 

Take, for instance, this tremendously robust, intricately sutured ammonite: Holcophylloceras mediterraneum (Neumayr, 1871). Collected from Late Jurassic (Oxfordian) deposits near Sokoja, Madagascar, it is a marvel of paleontological sculpture, a testament to evolutionary experimentation that thrived in the tropical Tethyan seas some 160 million years ago.

Madagascar has long been recognized as a treasure trove of beautifully preserved fossils. From its Cretaceous dinosaurs to its Triassic amphibians and its extraordinary Jurassic ammonites, the island offers a richness few regions can rival. 

The spiraled shell of Holcophylloceras mediterraneum is no exception—its ornate sutures and lustrous preservation hint at a creature exquisitely adapted to the warm, shallow continental shelf of Gondwana’s eastern margin.

Like all ammonites, Holcophylloceras built its shell in a series of chambers divided by walls known as septa. These septa, when intersecting the outer shell, formed the elaborate suture patterns that make collectors swoon—tangled, fractal-like lines that resemble botanical tracings or rivers on an ancient map.

Running through each chamber was the siphuncle, a biological marvel that allowed the ammonite to adjust the gas and fluid content inside its shell. In effect, ammonites carried a set of built-in ballast tanks, enabling them to rise and sink through the water column almost effortlessly. Their final and largest chamber—the body chamber—housed the soft tissues, including the tentacles, eyes, and muscular arms.

Picture, if you will, a squid or octopus, then surround it with a coiled, beautifully ribbed shell. Now place it in a warm tropical sea filled with predators and prey, reefs and drifting plankton, and a ton upon ton of water pressing down from above. That was the world Holcophylloceras mastered.

The Oxfordian oceans surrounding Madagascar were not quiet waters. They were alive—thrumming with movement, colour, and competition. The ammonite’s elegant spiral belies the reality of its bustling neighbourhood. Some of the many animals that would have swum, crawled, hunted, or drifted around Holcophylloceras mediterraneum include:

Marine Reptiles
  • Plesiosaurs – long-necked Cryptoclidus–like forms gliding between shoals of fish.
  • Ichthyosaurs – such as Ophthalmosaurus, sleek torpedo-shaped hunters with dinner-plate eyes built for dim, deeper waters.
  • Pliosaurs – apex predators like Liopleurodon, whose cavernous jaws could swallow a human whole.
Other Cephalopods

Belemnites – dart-shaped squid-relatives such as Hibolithes, flickering through the water column like living arrows.

Other ammonite genera sharing these seas:
  • Perisphinctes
  • Asaphoceras
  • Physodoceras
  • Aspidoceras
  • Glochiceras
Each species filled its own ecological niche, from fast-swimming pursuit hunters to slow-drifting plankton feeders.

Fishes and Sharks
  • Hybodont sharks – including Hybodus and Asteracanthus, equipped with crushing teeth for shelled prey and formidable dorsal spines.
  • Teleost fishes – early ray-finned fishes beginning to diversify.
  • Coelacanths – ancient lobe-finned holdovers patrolling calmer waters.
Invertebrates
  • Bivalves – oysters, rudists, and inoceramids carpeting the shallow seafloor.
  • Gastropods – from turreted turritellids to broad-shelled neritids.
  • Crustaceans – shrimp, lobsters, and small crabs scraping algae from reef structures.
  • Sea urchins and echinoids – spiny architects of sandy burrows.
Reefs & Drifting Life
  • Sponges and corals creating pocket reefs in warm carbonate-rich environments.
  • Planktonic foraminifera and radiolarians – the drifting micro-architecture of the Jurassic sea, powering food webs from below.
Ammonites like Holcophylloceras thrived in these diverse ecosystems by filling a mid-level trophic niche. They were both predator and prey—nimble enough to hunt small fish and crustaceans, yet vulnerable to larger hunters. Their greatest evolutionary advantage was their ability to regulate buoyancy, adjusting depth as easily as a modern submarine.

But their most beautiful legacy remains their shells. In death, they fell to the seafloor, where their chambers filled with sediment, minerals, and eventually time itself. 

Today, polished by erosion or revealed in limestone, they offer a perfect blend of geometry, biology, and ancient artistry.

Sunday, 7 December 2025

MASSIVE ICHTHYOSAUR VERTEBRAE FROM NEVADA

The massive marine reptile vertebra you see here—broad, five-sided, drum-shaped, and heavy enough to require two hands to lift—once belonged to an ichthyosaur, one of the most impressive lineages of marine reptiles ever to patrol Earth’s oceans. 

This particular fossil hails from Berlin–Ichthyosaur State Park in central Nevada, a high desert landscape where sagebrush now whispers over ground that was once submerged beneath a warm, tropical Triassic sea.

During the Late Triassic, roughly 217 million years ago, this region lay along the western margin of the supercontinent Pangaea. 

Shallow, nutrient-rich waters supported a thriving marine ecosystem dominated by ammonites, early fish, and  ichthyosaurs.

Today, the Berlin–Ichthyosaur site is the richest concentration of large ichthyosaur fossils in North America. 

More than 37 articulated or semi-articulated skeletons have been excavated from the Luning Formation, a thick sequence of limestone and shaly carbonates that records the rise and fall of this ancient seaway. 

These rocks formed from fine carbonate mud and shell debris that settled on the sea floor, gradually entombing the bodies of these marine giants under quiet, low-oxygen conditions ideal for fossil preservation.

The site’s fossil beds preserve something even more scientifically tantalizing: multiple large individuals clustered together in a single stratigraphic horizon. 

Whether these accumulations represent mass strandings, predator trap dynamics, toxic algal events, or a natural death assemblage remains debated.

Photo Credit: The talented hand model supporting this magnificent beast is Betty Franklin. 

What you don’t see in the photo are the enormous grins we’re both wearing as we marvel over this beauty—hers because she gets to hold it, and mine because I get to capture the moment. 

Thank you, Berlin-Ichthyosaur!

Friday, 5 December 2025

SEMENOVITES OF THE CASPIAN RIM: CRETACEOUS AMMONITES OF KAZAKHSTAN

This tasty block of Semenovites (Anahoplites) cf. michalskii hails from Cretaceous, Albian deposits that outcrop on the Tupqaraghan — Mangyshlak Peninsula, a stark and beautiful finger of land jutting into the eastern Caspian Sea in western Kazakhstan. 

The ammonites you see here are housed in the collection of the deeply awesome Emil Black. 

Their ancient provenance lies in rocks laid down some 105–110 million years ago, a time when warm epeiric seas flooded much of Central Asia and the ancestors of these coiled cephalopods thrived in shelf environments rich in plankton and marine life.

Present-day Kazakhstan is itself a geological palimpsest, a place made from multiple micro-continental blocks that were rifted apart during the Cambrian, later sutured back together, then pressed against the southern margin of Siberia before drifting to where we find them today. 

The Mangyshlak block preserves a record of these shifting tectonic identities, its plateaus and scarps reading like the torn edges of continents long departed.

The Mangyshlak (Mangghyshlaq) Peninsula is a land of structure and emptiness—high, wind-planed plateaus abruptly broken by escarpments, dry valleys, and shallow basins bleached white with salt. 

To the west lies the Caspian Sea; to the northeast the marshy Buzachi Peninsula, its wet depressions feeding migratory birds and a surprising profusion of reeds. Just north, the Tyuleniy Archipelago—a scattering of low islands—hints at the shallow bathymetry and shifting sediment loads that dominate this coastline.

Field workers on Mangyshlak often describe the region by its broad horizontality. The sky feels enormous, unbroken, a pale arch stretching over the tawny plateaus. The ground underfoot is firm but dusty, composed of compacted sandy limestones and weathered marl that break into familiar, fossil-bearing blocks. The climate is dry, the winds persistent, and visibility often perfect—ideal for spotting promising outcrops from a great distance.

Kazakhstan as a whole is a nation shaped by contrasts. Lowlands form fully one-third of its landmass. Hilly plateaus and plains account for nearly half. Low mountainous regions rise across the eastern and southern margins, making up roughly one-fifth of the terrain.

This spacious geography culminates at Mount Khan-Tengri (22,949 ft / 6,995 m) in the Tien Shan range, a crystalline sentinel marking the border between Kazakhstan, Kyrgyzstan, and China. These far-off mountains are invisible from Mangyshlak, but their presence is felt in the broad regional tectonic architecture.

 
The Western Lowlands and the Caspian Depression

The Tupqaraghan Peninsula lies within the influence of the Caspian Depression, one of the lowest terrestrial points on Earth. At its deepest, the Depression reaches 95 feet below modern sea level, a phenomenon caused by both tectonic subsidence and the unusual hydrology of the endorheic Caspian Basin.

To the south, the land rises gradually into the Ustyurt Plateau, an immense chalk and limestone table marked by wind-sculpted buttes and long, eroded escarpments. The Tupqaraghan Peninsula itself is cut from these same sedimentary sequences—Miocene, Paleogene, and Mesozoic strata cropping out in irregular terraces that lure geologists and paleontologists alike.

This is a region where erosional processes are laid bare. Minimal vegetation allows exposures to remain clean and highly visible; many slopes are studded with ammonites, inoceramid bivalves, belemnite rostra, and the fragmentary remains of marine reptiles and pterosaurs. Expeditions here frequently report layers rich in small, well-preserved invertebrate fossils, their delicate sutures and ornamentation astonishingly intact.

 
Deserts, Uplands, and Salt-Lake Basins

Much of Kazakhstan is dominated by arid and semi-arid environments, and the Mangyshlak Peninsula is no exception. To the east and southeast of the region lie the great sand deserts that define Central Asia:

  • Greater Barsuki Desert
  • Aral Karakum Desert
  • Betpaqdala Desert
  • Muyunkum and Kyzylkum Deserts
These swaths of wind-polished grains advance and retreat across broad flats and shallow depressions. The vegetation here—shrubs, saxaul, and salt-tolerant herbs—is sparse, drawing life from subterranean groundwater or ephemeral spring melt.

In central Kazakhstan, salt-lake depressions punctuate the uplands. These basins often shimmer under the sun, their surfaces coated in chalky halite crusts that record cycles of evaporation stretching back millennia.

To the north and east the land lifts again, rising into ridges and massifs: the Ulutau Mountains, the Chingiz-Tau Range, and the Altai complex, which sends three great ridges reaching into Kazakhstan. Farther south, the Tarbagatay Range and the Dzungarian Alatau introduce still more rugged topography before the landscape resolves again into plains around Lake Balkhash.
Paleontological Richness of the Region

Kazakhstan is famed for more than its ammonites. Dinosaurian bones, trackways, and scattered pterosaur remains punctuate Mesozoic and Paleogene localities across the nation. The Mangyshlak region in particular has yielded:
  • Albian ammonites
  • Cretaceous bivalves
  • Marine reptile fragments
  • Occasional vertebrate traces
These Semenovites come from a fossiliferous belt once submerged under a warm, shallow sea—a world unfurled in silt and light where these cephalopods thrived.

Paleo-coordinates: 44° 35′ 46″ N, 51° 52′ 53″ E.

Saturday, 29 November 2025

FOSSILS, FISH AND FLAMING VOLCANOES: INTERIOR BC'S HISTORIC PAST

A Bird's Eye View of BC's Interior
Once upon a geologic time—about 52 million years ago—British Columbia wasn’t the mountain-studded landscape we know today. 

Instead, imagine a steaming chain of tropical islands floating in a warm inland sea, alive with crocodiles, palm trees, and enough volcanic activity to make any self-respecting geologist swoon.

Welcome to Eocene British Columbia—where the rocks are hot, the fossils are cool, and the story of our province’s ancient past stretches like a spine from north to south, stitched together by layers of lakebed shales and volcanic ash.

Let’s start at the McAbee Fossil Beds, just outside of Kamloops. This UNESCO-designated site is a world-class window into the Eocene Epoch. 

The rocks here formed at the bottom of an ancient lake, gently collecting the remains of leaves, insects, and fish that fluttered or flopped in at inconvenient moments. The preservation is exquisite—delicate leaf veins, dragonfly wings, even the odd fish fin are preserved in glorious, paper-thin shale. It’s like nature’s own scrapbook from the dawn of modern ecosystems.

McAbee Fossil Beds with Dr. Lawrence Yang's Crew
These fossils tell us that McAbee was once warm and lush, home to dawn redwoods, ginkgo trees, and the ancestors of modern maples. 

You can see the wonderfully distinct hoodoos up above the fossil site and in this photo, you can see Dr. Lawrence Yang and crew from a field trip we did there a few years ago.

But McAbee didn't look at all like this when the fossils were laid down. 

Picture tropical rainforests thriving where today you find sagebrush and rattlesnakes. 

Yes—Kamloops was once the Kamloops Rainforest. Try putting that on a postcard.

And McAbee isn’t alone. It’s just one stop on an ancient island arc that spanned the province. 

Head north to Driftwood Canyon near Smithers, where paper-thin fossils of fish and insects record a similar story of subtropical serenity. 

A Tasty Selection of Eocene Fossils from BC
Go south to Quilchena, where you’ll find the same lacustrine (lake-formed) layers yielding fossilized leaves and fish that look like they could still dart away if you poked them. The preservation is outstanding. 

Keep going across the border to Republic, Washington, and you’re still following the same Eocene lake chain—like geological breadcrumbs leading back to a time when the west coast was a simmering stew of volcanoes and freshwater basins.

Two of my favourite Eocene fish fossils from the region are Eohiodon, a genus related to the modern mooneye, found at McAbee and Princeton. And Amyzon aggregatum, a type of sucker fish found in the varved lake sediments near Horsefly.

British Columbia has never been shy about rearranging itself. Back in the Eocene, the region was being pulled, pushed, and smushed by tectonic forces. Volcanic eruptions blanketed lakes with fine ash—excellent for fossil-making but less great for anyone hoping for a sunny day at the beach. 

Over time, these lakes filled with sediment, entombing plants, fish, and insects beneath fine-grained layers that later hardened into shale.

The result: a geological photo album spanning millions of years, now tilted and lifted into the dry hills around Kamloops.

I have only visited once since the Bonaparte First Nation took over management of the McAbee Fossil Beds. I brought them some fossils, scientific papers and shared stories of the history of the site from a paleo perspective. I shared about the folks who first leased the land and worked to expand the site, Dave Langevin and John Leahy. The many field trips there by members of the Vancouver Paleontological Society and other groups. The site has a rich fossil history deep in time but also in the last 30 years.  

Eocene Fossil Fish from McAbee
They graciously allowed me to bring some folk up to explore and shared their desire to create a visitor and research center, enhancing public programming with Indigenous cultural activities. 

The Nation aims to highlight the scientific and cultural significance of the area, with a long-term goal of making it a premier Indigenous destination. 

Kneeling in that parched, golden landscape, it’s hard to imagine it once echoed with the croaks of ancient frogs and the buzz of tropical insects. 

But each fossil leaf, precious fossilized feather, March Fly and dragonfly wing at McAbee whispers the same improbable truth: British Columbia was once a lush archipelago of volcanic islands in a balmy world, a far cry from today’s ski slopes and spruce forests.

These sites hold a special place in my heart as they are some of the few that I visited as a teen with my mother and sister. I made repeated trips over the years as the Chair of the Vancouver Paleontological Society, but those early memories are especially dear to me.

As I drive through the Thompson Plateau and see those striped outcrops of shale, I give them a thoughtful nod. They’re the leftovers of a long-vanished paradise that remains a fossil treasure trove today. 

Friday, 28 November 2025

A DELIGHTFUL VISIT AND UNEXPECTED METASEQUOIA

Metasequoia sp., collection of Judy Hill
There is something deeply comforting about encountering a familiar fossil in the company of wonderfully engaging friends.

Yesterday delivered both gifts at once. I wandered into the Judy Hill Gallery on Vancouver Island—a place I enjoy visiting to soak in its stunning collection of Pacific Northwest Coast art and to chat with the gallery’s warm, knowledgeable team.

As we talked, Judy Hill brought out a remarkable treasure: a beautifully preserved Metasequoia fossil.

Its story is as intriguing as the specimen itself. Originally collected under the assumption it might be a petroglyph—its true origins a mystery—it was entrusted to Judy for safekeeping.

Of course it was. Judy is the heart and soul of the Judy Hill Gallery in Duncan, British Columbia, a family-run haven that has championed Indigenous art for more than 30 years. She is as lovely as she is learned, known not only for her expertise but for the kindness, generosity, and deep respect she brings to every relationship.

Perhaps because of this, people bring their curiosities, their heirlooms, and their unusual finds to her, knowing they will be honoured and protected.

And so, in the quiet magic of an impromptu morning visit, this Metasequoia sp. fossil came into view—another beautiful piece of natural history finding its way, as so many treasures do, to Judy’s caring hands. 

Metasequoia, McAbee Fossil Beds
The fossil is an ancient cousin to one of the many native trees on Vancouver Island and BC's mainland, the lovely conifer Metasequoia glyptostroboides — the dawn redwood. 

Of this long lineage, the sole surviving species in the genus Metasequoia and one of three species of conifers known as redwoods, is Metasequoia glyptostroboides

Metasequoia are the smaller cousins of the mighty Giant Sequoia, the most massive trees on Earth. 

As a group, the redwoods are impressive trees and very long-lived. The President, an ancient Giant Sequoia, Sequoiadendron giganteum, and granddaddy to them all has lived for more than 3,200 years. While this tree is named The President, a worthy name, it doesn't really cover the magnitude of this giant by half.   

This tree was a wee seedling making its way in the soils of the Sierra Nevada mountains of California before we invented writing. It had reached full height before any of the Seven Wonders of the Ancient World, those remarkable constructions of classical antiquity, were even an inkling of our budding human achievements. 

It has outlasted them all save the Great Pyramid of Giza, the oldest and last of those seven still standing, though the tree has faired better. Giza still stands but the majority of the limestone façade is long gone.

Aside from their good looks (which can really only get you so far), they are resistant to fire and insects through a combined effort of bark over a foot thick, a high tannin content and minimal resin, a genius of evolutionary design. 

While individual Metasequoia live a long time, as a genus they have lived far longer. 

Like Phoenix from the Ashes, the Cretaceous (K-Pg) extinction event that wiped out the dinosaurs, ammonites and more than seventy-five percent of all species on the planet was their curtain call. The void left by that devastation saw the birth of this genus — and they have not changed all that much in the 65 million years since. Modern Metasequoia glyptostroboides looks pretty much identical to their late Cretaceous brethren.

Dawn Redwood Cones
They are remarkably similar to and sometimes mistaken for Sequoia at first glance but are easily distinguishable if you look at their size (an obvious visual in a mature tree) or to their needles and cones in younger specimens. 

Metasequoia has paired needles that attach opposite to each other on the compound stem. 

Sequoia needles are offset and attached alternately. Think of the pattern as jumping versus walking with your two feet moving forward parallel to one another. 

Metasequoia needles are paired as if you were jumping forward, one print beside the other, while Sequoia needles have the one-in-front-of-the-other pattern of walking.

The seed-bearing cones of Metasequoia have a stalk at their base and the scales are arranged in paired opposite rows which you can see quite well in the visual above. Coast redwood cone scales are arranged in a spiral and lack a stalk at their base.

Although the least tall of the redwoods, it grows to an impressive sixty meters (200 feet) in height. It is sometimes called Shui-sa, or water fir by those who live in the secluded mountainous region of China where it was rediscovered.

Fossil Metasequoia, McAbee Fossil Beds
Metasequoia fossils are known from many areas in the Northern Hemisphere and were one of my first fossil finds as a teenager. 

And folk love naming them. More than twenty fossil species have been named over time —  some even identified as the genus Sequoia in error — but for all their collective efforts to beef up this genus there are just three species: Metasequoia foxii, Metasequoia milleri, and Metasequoia occidentalis.

During the Paleocene and Eocene, extensive forests of Metasequoia thrived as far north as Strathcona Fiord on Ellesmere Island and sites on Axel Heiberg Island in Canada's far north around 80° N latitude.

We find lovely examples of Metasequoia occidentalis in the Eocene outcrops at McAbee near Cache Creek, British Columbia, Canada. I shared a photo here of one of those specimens. 

Once this piece dries out a bit, I will take a dental pick to it to reveal more of the teaser fossils peeking out.

The McAbee Fossil Beds are known for their incredible abundance, diversity and quality of fossils including lovely plant, insect and fish species that lived in an old lake bed setting. 

While the Metasequoia and other fossils found here are 52-53 million years old, the genus is much older. It is quite remarkable that both their fossil and extant lineage were discovered in just a few years of one another. 

Metasequoia was first described as a new genus from a fossil specimen found in 1939 and published by Japanese paleobotanist Shigeru Miki in 1941. Remarkably, the living version of this new genus was discovered later that same year. 

Professor Zhan Wang, an official from the Bureau of Forest Research was recovering from malaria at an old school chum's home in central China. His friend told him of a stand of trees discovered in the winter of 1941 by Chinese botanist Toh Gan (干铎). The trees were not far away from where they were staying and Gan's winter visit meant he did not collect any specimen as the trees had lost their leaves. 

The locals called the trees Shui-sa, or water fir. As trees go, they were reportedly quite impressive with some growing as much as sixty feet tall. Wang was excited by the possibility of finding a new species and asked his friend to describe the trees and their needles in detail. 

Emboldened by the tale, Wang set off through the remote mountains to search for his mysterious trees and found them deep in the heart of  Modaoxi (磨刀溪; now renamed Moudao (谋道), in Lichuan County, in the central China province of Hubei. He found the trees and was able to collect living specimens but initially thought they were from Glyptostrobus pensilis (水松). 

A few years later, Wang showed the trees to botanist Wan-Chun Cheng and learned that these were not the leaves of s Glyptostrobus pensilis (水松 ) but belonged to a new species. 

While the find was exciting, it was overshadowed by China's ongoing conflict with the Japanese that was continuing to escalate. With war at hand, Wang's research funding and science focus needed to be set aside for another two years as he fled the bombing of Beijing. 

When you live in a world without war on home soil it is easy to forget the realities for those who grew up in it. 

Zhan Wang and his family lived to witness the 1931 invasion of Manchuria, then the 1937 clash between Chinese and Japanese troops at the Marco Polo Bridge, just outside Beijing. 

That clash sparked an all-out war that would grow in ferocity to become World War II. 

Within a year, the Chinese military situation was dire. Most of eastern China lay in Japanese hands: Shanghai, Nanjing, Beijing, Wuhan. As the Japanese advanced, they left a devastated population in their path where atrocity after atrocity was the norm. Many outside observers assumed that China could not hold out, and the most likely scenario was a Japanese victory over China.

Yet the Chinese hung on, and after the horrors of Pearl Harbor, the war became genuinely global. The western Allies and China were now united in their war against Japan, a conflict that would finally end on September 2, 1945, after Allied naval forces blockaded Japan and subjected the island nation to intensive bombing, including the utter devastation that was the Enola Gay's atomic payload over Hiroshima. 

With World War II behind them, the Chinese researchers were able to re-focus their energies on the sciences. Sadly, Wang was not able to join them. Instead, two of his colleagues, Wan Chun Cheng and Hu Hsen Hsu, the director of Fan Memorial Institute of Biology would continue the work. Wan-Chun Cheng sent specimens to Hu Hsen Hsu and upon examination realised they were the living version of the trees Miki had published upon in 1941. 

Hu and Cheng published a paper describing a new living species of Metasequoia in May 1948 in the Bulletin of Fan Memorial Institute of Biology.

That same year, Arnold Arboretum of Harvard University sent an expedition to collect seeds and, soon after, seedling trees were distributed to various universities and arboreta worldwide. 

Today, Metasequoia grow around the globe. When I see them, I think of Wang and all he went through. He survived the conflict and went on to teach other bright, young minds about the bountiful flora in China. I think of Wan Chun Cheng collaborating with Hu Hsen Hsu in a time of war and of Hu keeping up to date on scientific research, even published works from colleagues from countries with whom his country was at war. 

Deep in my belly, I ache for the huge cost to science, research and all the species impacted on the planet from our human conflicts. Each year in April, I plant more Metasequoia to celebrate Earth Day and all that means for every living thing on this big blue orb.  

References: 

  • https://web.stanford.edu/group/humbioresearch/cgi-bin/wordpress/?p=297
  • https://humboldtredwoods.org/redwoods
Lead Photo Credit: This lovely Metasequoia sp. is in the collections of Judy Hill—gallery owner, connector, and a steadfast advocate for Indigenous artistry. To visit the gallery virtually, head to: https://www.judyhillgallery.net. Or stop by her Duncan, BC., location. It is a visual feast!

Thursday, 27 November 2025

THE BULL CANYON TRACKSITE OF EASTERN UTAH

Darrin Mottler's Human to Theropod Comparison
The wind always arrives first.

It sweeps across the red cliffs of eastern Utah, brushing your shoulders like a quiet invitation as you step out onto the stone. 

The La Sal Mountains rise blue and snow-dusted on the horizon—silent, ancient witnesses. 

At your feet, the sandstone is warm, sun-baked, and patterned with bowls and dimples that look, at first, like the aftermath of a rainstorm.

But then you kneel.

You place your hand inside one of the indentations—fingers spreading to follow the outline—and suddenly time collapses. 

Your palm disappears into a footprint three times the size of your own, pressed into this rock nearly 190 million years ago by a three-toed dinosaur striding across a muddy lakeshore. 

The warmth of the desert stone meets your fingers and presses against the cool, deep sensation of time.

This is Bull Canyon Tracksite, one of Utah’s most awe-inspiring windows into the Jurassic.

Bull Canyon lies on the western flank of the La Sal Mountains, within a rugged plateau of red Wingate and Navajo sandstone. The site preserves an astonishing spread of footprints left by Early Jurassic theropods—light, agile, meat-eating dinosaurs with talons and hollow bones, the forerunners of modern birds.

Dinosaur Track, Bull Canyon, Utah
The tracks rest within the Glen Canyon Group formations, sediments laid down along the shifting margins of a prehistoric playa lake system. 

Here, mudflats dried and cracked under the sun, then were wetted again by brief storms—an ideal condition for holding tracks long enough to be buried by the next layer of sand.

Among the most distinctive ichnotaxa present are:

  • Grallator – small, delicate three-toed prints often linked to slender theropods.
  • Eubrontes – larger, deeper, more robust prints associated with big-bodied carnivores like Dilophosaurus.
  • Occasional ornithischian tracks, including possible Anomoepus prints, representing small herbivorous dinosaurs moving across the same shoreline.

Dinosaur Track, Bull Canyon, Utah
Standing before them, the sandstone seems alive with movement. Each footprint shows a frozen splash of action: the slip of a claw, the twist of a heel, the moment a predator shifted its weight.

Every print reveals insights. Some trackways show animals striding with long, confident steps—suggesting a loping, ground-covering gait. Others are tight and compact, indicating slower or more cautious movement.

Parallel trackways record two or more animals moving in the same direction at the same time—possible group travel, or predators trailing prey.

A few prints deform the underlying sediment, proof that the ground was saturated with water. Others preserve delicate claw tips, showing firmer, drying mud. These shifts map out rapid climate cycles in Early Jurassic Utah.

It’s a moment-by-moment account of life—written in the most ephemeral of materials. 

So why does eastern Utah have so many dinosaur tracks? The region around Moab and the La Sal foothills is a world-class dinosaur track corridor with many elements at play.

  • Jurassic climate: alternating wet and dry periods created perfect track-preservation conditions.
  • Basins & playas: low-lying flats captured footprints from multiple dinosaur species.
  • Rapid burial: shifting dunes and lake sediments quickly sealed impressions.
  • Erosion today: modern uplift and weathering have brought these ancient surfaces back to light.

Bull Canyon is one of the most accessible of the sites, offering broad paleosurface exposures ideal for study and public viewing. If you visit at sunrise, the low light throws shadows into the footprints. The tracks seem to deepen, their edges turning crisp like the outline of a freshly pressed print. 

Photo Credit: All photos shown here are by the deeply awesome Darrin Mottler, who generously shared them with me and introduced me to the site. Appreciate you, Darrin!