Wednesday, 3 March 2021

AVES: LIVING DINOSAURS

Wherever you are in the world, it is likely that you know your local birds. True, you may call them des oiseaux, pássaros or uccelli — but you'll know their common names by heart. You'll also likely know their sounds. The tweets, chirps, hoots and caws of the species living in your backyard. 

Birds come in all shapes and sizes and their brethren blanket the globe. It is amazing to think that they all sprang from the same lineage given the sheer variety. 

If you picture them, we have such a variety on the planet — parrots, finches, wee hummingbirds, long-legged waterbirds, waddling penguins and showy toucans. 

But whether they are a gull, hawk, cuckoo, hornbill, potoo or albatross, they are all cousins in the warm-blooded vertebrate class Aves. The defining features of the Aves are feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweight skeleton. The best features, their ability to dance, bounce and sing, are not listed, but it how I see them in the world.

These modern dinosaurs live worldwide and range in size from the 5 cm (2 in) bee hummingbird to the 2.75 m (9 ft) ostrich. 

There are about ten thousand living species, more than half of which are passerine, or "perching" birds. Birds have wings whose development varies according to species; the only known groups without wings are the extinct moa and elephant birds.

Wings, which evolved from forelimbs, gave birds the ability to fly, although further evolution has led to the loss of flight in some birds, including ratites, penguins, and diverse endemic island species. The digestive and respiratory systems of birds are also uniquely adapted for flight. Some bird species of aquatic environments, particularly seabirds and some waterbirds, have further evolved for swimming.

Best of all, birds are feathered theropod dinosaurs and constitute the only living dinosaurs. Based on fossil and biological evidence, most scientists accept that birds are a specialized subgroup of theropod dinosaurs, and more specifically, they are members of Maniraptora, a group of theropods which includes dromaeosaurs and oviraptorids, amongst others. As palaeontologists discover more theropods closely related to birds, the previously clear distinction between non-birds and birds has become a bit muddy.

Recent discoveries in the Liaoning Province of northeast China, which include many small theropod feathered dinosaurs — and some excellent fakes — contribute to this ambiguity. Still, other fossil specimens found here shed a light on the evolution of Aves. Confuciusornis sanctus, an Early Cretaceous bird from the Yixian and Jiufotang Formations of China is the oldest known bird to have a beak.

Like modern birds, Confuciusornis had a toothless beak, but close relatives of modern birds such as Hesperornis and Ichthyornis were toothed, telling us that the loss of teeth occurred convergently in Confuciusornis and living birds.

Confuciusornis sanctus, Cretaceous Bird from China, 125 mya
The consensus view in contemporary palaeontology is that the flying theropods, or avialans, are the closest relatives of the deinonychosaurs, which include dromaeosaurids and troodontids.

Together, these form a group called Paraves. Some basal members of this group, such as Microraptor, have features which may have enabled them to glide or fly. The most basal deinonychosaurs were wee little things. This evidence raises the possibility that the ancestor of all paravians may have been arboreal, have been able to glide, or both. Unlike Archaeopteryx and the non-avialan feathered dinosaurs, who primarily ate meat, tummy contents from recent avialan studies suggest that the first avialans were omnivores. Even more intriguing...

Avialae or "bird wings" are a clade of flying dinosaurs containing the only living dinosaurs, the birds. It is usually defined as all theropod dinosaurs more closely related to modern birds — Aves — than to deinonychosaurs, though alternative definitions are occasionally bantered back and forth.

Archaeopteryx lithographica, from the late Jurassic Period Solnhofen Formation of Germany, is the earliest known avialan which may have had the capability of powered flight. However, several older avialans are known from the Late Jurassic Tiaojishan Formation of China, dating to about 160 million years ago.

The Late Jurassic Archaeopteryx is well-known as one of the first transitional fossils to be found, and it provided support for the theory of evolution in the late 19th century. Archaeopteryx was the first fossil to clearly display both traditional reptilian characteristics — teeth, clawed fingers, and a long, lizard-like tail—as well as wings with flight feathers similar to those of modern birds. It is not considered a direct ancestor of birds, though it is possibly closely related to the true ancestor.

Unlikely yet true, the closest living relatives of birds are the crocodilians. Birds are descendants of the primitive avialans — whose members include Archaeopteryx — which first appeared about 160 million years ago in China.

DNA evidence tells us that modern birds — Neornithes — evolved in the Middle to Late Cretaceous, and diversified dramatically around the time of the Cretaceous–Paleogene extinction event 66 mya, which killed off the pterosaurs and all non-avian dinosaurs.

In birds, the brain, especially the telencephalon, is remarkably developed, both in relative volume and complexity. Unlike most early‐branching sauropsids, the adults of birds and other archosaurs have a well‐ossified neurocranium. In contrast to most of their reptilian relatives, but similar to what we see in mammals, bird brains fit closely to the endocranial cavity so that major external features are reflected in the endocasts. What you see on the inside is what you see on the outside.

This makes birds an excellent group for palaeoneurological investigations. The first observation of the brain in a long‐extinct bird was made in the first quarter of the 19th century. However, it was not until the 2000s and the application of modern imaging technologies that avian palaeoneurology really took off.

Understanding how the mode of life is reflected in the external morphology of the brains of birds is but one of several future directions in which avian palaeoneurological research may extend.

Although the number of fossil specimens suitable for palaeoneurological explorations is considerably smaller in birds than in mammals and will very likely remain so, the coming years will certainly witness a momentous strengthening of this rapidly growing field of research at the overlap between ornithology, palaeontology, evolutionary biology and the neurosciences.

Reference: Cau, Andrea; Brougham, Tom; Naish, Darren (2015). "The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc (Dinosauria, Maniraptora): Dromaeosaurid or flightless bird?". PeerJ. 3: e1032. doi:10.7717/peerj.1032. PMC 4476167. PMID 26157616.

Reference: Ivanov, M., Hrdlickova, S. & Gregorova, R. (2001) The Complete Encyclopedia of Fossils. Rebo Publishers, Netherlands. p. 312

Photo: By Tommy from Arad - Confuciusornis; FunkMonk, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=24115307

Tuesday, 2 March 2021

ETHELDRED'S HOPLITES

Hoplites (Hoplites) bennettiana (Sowerby, 1826)
A beautiful example of the ammonite, Hoplites (Hoplites) bennettiana (Sowerby, 1826), from Early Albian localities in the Carrière de Courcelles Villemoyenne, Région de Troyes, near Champagne in northeastern France.

The species name is an homage to Etheldred Benett, an early English geologist often credited with being the first female geologist — a fossil collector par excellence.

She was also credited with being a man  —  the Natural History Society of Moscow awarding her membership as Master Etheldredus Benett in 1836. The confusion over her name — it did sound masculine — came again with the bestowing of a Doctorate of Civil Law from Tsar Nicholas I.

The Tsar had read Sowerby's Mineral Conchology, a major fossil reference work which contained the second-highest number of contributed fossils of the day, many the best quality available at the time. Forty-one of those specimens were credited to Benett. Between her name and this wonderous contribution to a growing science, the Russian Tsar awarded the Doctorate to what he believed was a young male scientist on the rise. He believed in education, founding Kiev University in 1834, just not for women. He was an autocratic military man frozen in time — the thought that this work could have been done by a female unthinkable. Doubly charming is that the honour from the University of St Petersburg was granted at a time when women were not allowed to attend St. Pete's or any higher institutions. That privilege arrived in 1878, twenty years after Nicholas I's death.

Benett took these honours (and social blunders) with grace. She devoted her life to collecting and studying fossils from the southwest of England, amassing an impressive personal collection she openly shared with geologist friends, colleagues and visitors to her home. Her speciality was fossils from the Middle Cretaceous, Upper Greensand in the Vale of Wardour — a valley in the county of Wiltshire near the River Nadder.

Etheldred Benett was born on 22 July 1775 at Pyt House, Tisbury, Wiltshire, the eldest daughter of the local squire Thomas Benett.

Etheldred's interest was cultivated by the botanist Aylmer Bourke Lambert (1761-1842), a founding member of the Linnean Society. Benett's brother had married Lucy Lambert, Aylmer's half-sister. Aylmer was a Fellow of the Royal Society and the Society of the Arts. He was also an avid fossil collector and member of the Geological Society of London. The two met and got on famously.

Aylmer kindled an interest in natural history in both of Benett's daughters. Etheldred had a great fondness in geology, stratigraphy and all things paleo, whilst her sister concentrated on botany. Etheldred had a distinct advantage over her near contemporary, the working-class Mary Anning (1799-1847), in that Benett was a woman of independent wealth who never married — and didn't need to — who could pursue the acquisition and study of fossils for her own interest.

While Anning was the marine reptile darling of the age, she was also greatly hindered by her finances. "She sells, seashells by the seashore..." while chanted in a playful spirit today, was not meant kindly at the time.

Aylmer's encouragement emboldened Etheldred to go into the field to collect for herself — and collect she did. Profusely.

Benett’s contribution to the early history of Wiltshire geology is significant. She corresponded extensively with the coterie of gentlemen scientists of the day —  Gideon Mantell, William Buckland, James Sowerby, George Bellas Greenough and, Samuel Woodward. She also consorted with the lay folk and had an ongoing correspondence with William Smith, whose stratigraphy work had made a favourable impression on her brother-in-law, Aylmer.

Her collections and collaboration with geologists of the day were instrumental in helping to form the field of geology as a science. One colleague and friend, Gideon Mantell, British physician, geologist and palaeontologist, who discovered four of the five genera of dinosaurs and Iguanadon, was so inspired by Benett's work he named this Cretaceous ammonite after her — Hoplites bennettiana.

Benett's fossil assemblage was a valuable resource for her contemporaries and remains so today. It contains thousands of Jurassic and Cretaceous fossil specimens from the Wiltshire area and the Dorset Coast, including a myriad of first recorded finds. The scientific name of every taxon is usually based on one particular specimen, or in some cases multiple specimens. Many of the specimens she collected serve as the Type Specimen for new species.

Fossil Sponge, Polypothecia quadriloba, Warminster, Wiltshire
Her particular interest was the collection and study of fossil sponges. Alcyonia caught her eye early on. She collected and recorded her findings with the hope that one of her colleagues might share her enthusiasm and publish her work as a contribution to their own. Alas, no one took up the helm — those interested were busy with other pursuits (or passed away) and others were less than enthusiastic or never seemed to get around to it.

To ensure the knowledge was shared in a timely fashion, she finally wrote them up and published them herself. You can read her findings in her publication, ‘A Catalogue of Organic Remains of the County of Wiltshire’ (1831), where she shares observations on the fossil sponge specimens and other invert goodies from the outcrops west of town.

She shared her ideas freely and donated many specimens to local museums. It was through her exchange of observations, new ideas and open sharing of fossils with Gideon Mantell and others that a clearer understanding of the Lower Cretaceous sedimentary rocks of Southern England was gained.

In many ways, Mantell was drawn to Benett as his ideas went against majority opinion. At a time when marine reptiles were dominating scientific discoveries and discussions, he pushed the view that dinosaurs were terrestrial, not amphibious, and sometimes bipedal. Mantell's life's work established the now-familiar idea that the Age of Reptiles preceded the Age of Mammals. Mantell kept a journal from 1819-1852, that remained unpublished until 1940 when E. Cecil Curwen published an abridged version. (Oxford University Press 1940). John A. Cooper, Royal Pavilion and Museums, Brighton and Hove, published the work in its entirety in 2010.

I was elated to get a copy, both to untangle the history of the time and to better learn about the relationship between Mantell and Benett. So much of our geologic past has been revealed since Mantell's first entry two hundred years ago. The first encounter we share with the two of them is a short note from March 8, 1819. "This morning I received a letter from Miss Bennett of Norton House near Warminster Wilts, informing me of her having sent a packet of fossils for me, to the Waggon Office..." The diary records his life, but also the social interactions of the day and the small connected community of the scientific social elite. It is a delight!

Though a woman in a newly evolving field, her work, dedication and ideas were recognized and appreciated by her colleagues. Gideon Mantell described her as, "a lady of great talent and indefatigable research," whilst the Sowerbys noted her, "labours in the pursuit of geological information have been as useful as they have been incessant."

Benett produced the first measured sections of the Upper Chicksgrove quarry near Tisbury in 1819, published and shared with local colleagues as, "the measure of different beds of stone in Chicksgrove Quarry in the Parish of Tisbury.” The stratigraphic section was later published by naturalist James Sowerby without her knowledge. Her research contradicted many of Sowerby’s conclusions.

She wrote and privately published a monograph in 1831, containing many of her drawings and sketches of molluscs and sponges. Her work included sketches of fossil Alcyonia (1816) from the Green Sand Formation at Warminster Common and the immediate vicinity of Warminster in Wiltshire.

Echinoids and Bivalves. Collection of Etheldred Benett (1775-1845)
The Society holds two copies, one was given to George Bellas Greenough, and another copy was given to her friend Gideon Mantell. This work established her as a true, pioneering biostratigrapher following but not always agreeing with the work of William Smith.

If you'd like to read a lovely tale on William's work, check out the Map that Changed the World: William Smith and the Birth of Modern Geology by Simon Winchester. It narrates the intellectual context of the time, the development of Smith's ideas and how they contributed to the theory of evolution and more generally to a dawning realization of the true age of the earth.

The book describes the social, economic or industrial context for Smith's insights and work, such as the importance of coal mining and the transport of coal by means of canals, both of which were a stimulus to the study of geology and the means whereby Smith supported his research. Benett debated many of the ideas Smith put forward. She was luckier than Smith financially, coming from a wealthy family, a financial perk that allowed her the freedom to add fossils to her curiosity cabinet at will.

Most of her impressive collection was assumed lost in the early 20th century. It was later found and purchased by an American, Thomas Bellerby Wilson, who donated it to the Academy of Natural Sciences of Philadelphia. Small parts of it made their way into British museums, including the Leeds City Museum, London, Bristol and to the University of St. Petersburg. These collections contain many type specimens and some of the very first fossils found — some with the soft tissues preserved. When Benett died in 1845, it was Mantell who penned her obituary for the London Geological Journal.

Etheldred Benett (1776-1845)
In 1989, almost a hundred and fifty years after her death, a review of her collection had Arthur Bogen and Hugh Torrens remark that her work has significantly impacted our modern understanding of Porifera, Coelenterata, Echinodermata, and the molluscan classes, Cephalopoda, Gastropoda, and Bivalvia. A worthy legacy, indeed.

Her renown lives on through her collections, her collaborations and through the beautiful 110 million-year-old ammonite you see here, Hoplites bennettiana. The lovely example you see here is in the collection of the deeply awesome Christophe Marot.

Spamer, Earle E.; Bogan, Arthur E.; Torrens, Hugh S. (1989). "Recovery of the Etheldred Benett Collection of fossils mostly from Jurassic-Cretaceous strata of Wiltshire, England, analysis of the taxonomic nomenclature of Benett (1831), and notes and figures of type specimens contained in the collection". Proceedings of the Academy of Natural Sciences of Philadelphia. 141. pp. 115–180. JSTOR 4064955.

Torrens, H. S.; Benamy, Elana; Daeschler, E.; Spamer, E.; Bogan, A. (2000). "Etheldred Benett of Wiltshire, England, the First Lady Geologist: Her Fossil Collection in the Academy of Natural Sciences of Philadelphia, and the Rediscovery of "Lost" Specimens of Jurassic Trigoniidae (Mollusca: Bivalvia) with Their Soft Anatomy Preserved.". Proceedings of the Academy of Natural Sciences of Philadelphia. 150. pp. 59–123. JSTOR 4064955.

Photo credit: Fossils from Wiltshire.  In the foreground are three examples of the echinoid, Cidaris crenularis, from Calne, a town in Wiltshire, southwestern England, with bivalves behind. Caroline Lam, Archivist at the Geological Society, London, UK. http://britgeodata.blogspot.com/2016/03/etheldred-benett-first-female-geologist_30.html

Photo credit: Fossil sponges Polypothecia quadriloba, from Warminster, Wiltshire. The genus labels are Benett’s, as is the handwriting indicating the species. The small number, 20812, is the Society’s original accession label from which we can tell that the specimen was received in April 1824. The tablet onto which the fossils were glued is from the Society’s old Museum.

https://www.strangescience.net/ebenett.htm

Monday, 1 March 2021

FERRISAURUS SUSTUTENSIS: A NEW NON-AVIAN DINOSAUR IN BC

Say hello to Ferrisaurus sustutensis —  “A new leptoceratopsid dinosaur from Maastrichtian-aged deposits of the Sustut Basin, northern British Columbia, Canada."

You may recall Dr. Victoria Arbour, curator of palaeontology at the Royal BC Museum from her work on ankylosaurs & that interesting specimen from Hornby Island thought to be a pterosaur but further study revealed to be a saurodontid fish, an ambush predator with very sharp serrated teeth and elongate, torpedo-like body. Not a pterosaur but still a massively exciting find. Arbour was very gracious about the new interpretation, taking it in stride. She has since gone on to name this partial ornithischian dinosaur from Sustut Basin, as well as the ankylosaurs Zuul, Zaraapelta, Crichtonpelta, and Ziapelta. She's been a busy bee.

For this latest find, she’s partnered up & published her findings with David Evans from the Royal Ontario Museum in the peer-reviewed scientific journal PeerJ - the Journal of Life and Environmental Sciences last year. Their paper describes this partial dinosaur skeleton found amongst the inhospitable boreal forests and folded rock of the Canadian Cordillera near the Sustut Basin of northern British Columbia, Canada.

The first bones were collected by geologist Kenny F. Larsen who was surveying for uranium along the then in-construction BC Rail line along the Sustut River. The bones were later donated to Dalhousie University in Halifax, Nova Scotia then accessioned by the Royal British Columbia Museum in Victoria, BC. The skeleton includes parts of the pectoral girdles, left forelimb, left hindlimb, and right pes. Their rationale for a new species distinguished from other named leptoceratopsids is based on the proportions of the ulna and pedal phalanges.

This specimen was previously described in 2008 as an indeterminate small-bodied, bipedal neornithischian, possibly representing either a pachycephalosaur or a basal ornithopod similar to Thescelosaurus. With more material to work with, Arbour and Evans reinterpreted the remains as a leptoceratopsid ceratopsian, Ferrisaurus sustutensis, gen. et. sp. nov.

Figure 2: Preserved elements of RBCM P900
The news deserves some fanfare. While Alberta, our sister province to the east is practically littered with dinosaur remains, they are relatively rare in BC. This is the first unique non-avian dinosaur species reported from British Columbia.

It has been placed, within a reasonably resolved phylogenetic context, with Ferrisaurus recovered as more closely related to Leptoceratops than Montanoceratops. At 68.2–67.2 Ma in age, Ferrisaurus falls between, and slightly overlaps with, both Montanoceratops and Leptoceratops, and represents a western range extension for Laramidian leptoceratopsids. Leptoceratopsidae is an extinct family of neoceratopsian dinosaurs from Asia, North America and Europe. They resembled and were closely related to, other neoceratopsians, such as Protoceratopsidae and Ceratopsidae, but they are more primitive and generally smaller.

Figure 3: Pectoral Elements of Laramidian leptoceratopsids
Back in 2017, Arbour led an expedition to the Sustut River in Northern British Columbia to relocate the site where Ferrisaurus was originally discovered forty-six years earlier in 1971 along the BC Rail line near the intersection of Birdflat Creek and the Sustut River. The expedition was a huge success as the team found the remains of this new species of dinosaur and also recovered several species of fossil plants.

The fossil plant finds may not seem that exciting in comparison to a dinosaur but Cretaceous plants in BC are also relatively rare. Most of our best fossil plant sites are Eocene, the ancient lakebed sites at McAbee and Princeton — so a good 15 million or so years earlier.

During that expedition, the team recovered a fragment of a large Cretaceous terrestrial trionychoid turtle Basilemys from the family Nanhsiungchelyidae near the confluence of Birdflat Creek and the Sustut River. This largely North American turtle along with the plants will allow us to make correlations with terrestrial finds from other sites including those from the Nanaimo group, the inland island construction sites and the Trent River on Vancouver Island and Horseshoe Canyon in southwestern Alberta. Jordan Mallon and Donald Brinkman have done some good work on the Basilemys morrinensis from the Upper Cretaceous Horseshoe Canyon Formation. The Sustut Basin turtle and plant remains have been accessioned into the Royal BC Museum’s collections in Victoria.

It wasn't until last summer that Arbour was able to extract more of this dinosaur and not all of it as their field season was shortened by a cold snap that brought snow and ice, freezing the ground they were working in the high alpine. Arbour plans to continue her work searching for dinosaur fossils in the high alpine plateaus of northern British Columbia. A fresh grant this year from the Natural Sciences and Engineering Research Council of Canada (NSERC) will help pave the way for both her and some summer students to continue their fieldwork.

Reference: Arbour VM, Evans DC. 2019. A new leptoceratopsid dinosaur from Maastrichtian-aged deposits of the Sustut Basin, northern British Columbia, Canada. PeerJ 7:e7926 https://doi.org/10.7717/peerj.7926. Here's a link to the paper: https://peerj.com/articles/7926/

Figure 1: RBCM P900, the holotype of Ferrisaurus sustutensis, was collected along the BC Rail line near the intersection of Birdflat Creek and the Sustut River in 1971, in the Sustut Basin of northern British Columbia, Canada. Map modified from Evenchick et al. (2003).

Figure 2: Preserved elements of RBCM P900, holotype of Ferrisaurus sustutensis, in white (gray represents missing parts of incomplete bones). RBCM P900 includes a partial right coracoid, partial left scapular blade, complete left radius, partial left ulna, partial left tibia, fibula, and coossified astragalus and ?calcaneum, partial left metatarsals I-IV, and digits III (phalanges 2–4) and IV (phalanges 2–5) of the right pes.

Figure 3: Pectoral elements of RBCM P900, holotype of Ferrisaurus sustutensis, compared to other Laramidian leptoceratopsids. (A) Fragmentary right coracoid of RBCM P900 in lateral view, compared to (B) complete right scapulocoracoid of CMN 8889, Leptoceratops gracilis, lateral view centered on coracoid with scapula in oblique view. Fragmentary left scapular blade of RBCM P900 in (C) lateral and (D) medial view, compared to (E) left scapula of MOR 300, Cerasinops hodgskissi in medial view, and (F) left scapula of TCM 2003.1.9, Prenoceratops pieganensis in lateral view. Abbreviations: sp, sternal process.

Sunday, 28 February 2021

HEROES, VILLAINS AND TYRANTS: HORNBY ISLAND HISTORY

Villains, tyrants and heroes alike are all immortalized in the scientific literature as researchers don each new species a unique scientific name. 

If you pick through the literature, it's a whose who of monied explorers literally making a name for themselves, sometimes at great cost to their rivals. This truth plays out on British Columbia's West Coast and gulf islands. And on Hornby Island, in particular.

Hornby is a mix of beach and meadow, forest and stream. While I often walk the lower beachfront, this island boasts a mixed forest that covers its higher ground. 

If you explore here, off the beaten path, you will see a lovely mix of large conifers, Western red cedar, western hemlock, grand fir and lodgepole pine on the island. You also see lovely examples of the smaller Pacific yew, Taxus brevifolia, a small evergreen that is used by First Nations carvers for bows and paddles for canoes.

Many spectacular specimens of arbutus, Arbutus menziesii, grow along the water's edge. These lovely evergreens have a rich orange-red bark that peels away in thin sheets, leaving a greenish, silvery smooth appearance and a satiny sheen. Arbutus, the broadleaf evergreen species is the tree I most strongly associate with Hornby. Hornby has its fair share of broadleaf deciduous trees. Bigleaf maple, red alder, black cottonwood, Pacific flowering dogwood, cascara and several species of willow thrive here.

There are populations of Garry oak, Quercus garryana, with their deeply lobed leaves, on the southern end of the island and at Helliwell Provincial Park on a rocky headland at the northeast end of Hornby. Only about 260 acres (1.1 km2) of undisturbed stands of older forests have been identified on Hornby. They amount to roughly 3.5% of the island's area. There are roughly 1,330 acres (540 ha) of older second-growth stands on the island, which is roughly 19% of the island.

Most of the trees you see on the island are Douglas fir, Pseudotsuga menziesii, an evergreen conifer species in the pine family. The common name is a nod to the Scottish botanist, David Douglas, who collected and first reported on this large evergreen.

George Vancouver's Commission to Lieutenant
Sadly for Douglas, it is Archibald Menzies, a Scottish physician, botanist, naturalist — and David's arch-rival, whose name is commemorated for science. 

He's also credited with the scientific name for our lovely arbutus trees. Menzies was part of the Vancouver Expedition (1791–1795) a four-and-a-half-year voyage of exploration commanded by Captain George Vancouver of the British Royal Navy.

Their voyage built on the work of James Cook. Cook was arguably the first ship's captain to ensure his crew remained scurvy free by implementing a practice of nutritious meals — those containing ascorbic acid also known as Vitamin C — and meticulous standards for onboard hygiene. 

Though he did much to lower the mortality rate amongst his crew, he made some terrible decisions that led to his early demise. Cook was attacked and killed in 1779 during his third exploratory voyage in the Pacific while attempting to kidnap the Island of Hawaii's monarch, Kalaniʻōpuʻu. 

During the four and a half year Vancouver Expedition voyage, the crew and officers bickered amongst themselves, circumnavigated the globe, touching down on five continents. Little did they know, for many of them it would be the last voyage they would ever take. 

The expedition returned to a Britain more interested in its ongoing war than in Pacific explorations. Vancouver was attacked by the politically well-connected Menzies for various slights, then challenged to a duel by Thomas Pitt, the 2nd Baron of Camelford. The fellow for whom the fair city of Vancouver is named never did complete his massive cartographical work. With health failing and nerves eroded, he lost the dual and his life. It was Peter Puget, whose name adorns Puget Sound, who completed Vancouver's — and arguably Cook's work on the mapping of our world.

If you'd like to explore more of the history of eponymous naming from Linnaeus to Darwin, to Bowie himself, take a boo at a new book from Stephen B. Heard, "Charles Darwin's Barnacle and David Bowie's Spider. It's fresh off the press this month and chock full of historical and pop-culture icons.

References: The City of Vancouver Archives has three George Vancouver documents:
  • The Commission, dated July 10, 1783, appointing him fourth Lieutenant of the HMS Fame (this is the official document confirming a field commission given to him May 7, 1782)
  • A letter to James Sykes (a Navy Agent in London) written from the ship Discovery (not the same Discovery used by Cook) while in Nootka Sound near the end of Vancouver’s exploration of the West Coast, October 2, 1794. Vancouver states that they have determined that the Northwest Passage does not exist, which was one of the main goals of his voyage
  • A letter to James Sykes written from Vancouver’s home in Petersham, England, after his voyage, October 26, 1797
Napolean's Buttons, Penny Le Couteur & Jay Burreson. 

Saturday, 27 February 2021

GULF ISLANDS GREEN ISLE

Arbutus tree, Arbutus menziesii, reaching out to sea, Hornby Island
Hornby is a very green island, both in the practices of those who live here and in the mixed forest that covers the land. We see the large conifers, Western red cedar, western hemlock, grand fir and lodgepole pine on the island.

You also see lovely examples of the smaller Pacific yew, Taxus brevifolia, a small evergreen that is used by First Nations carvers for bows and paddles for canoes.

 Many spectacular specimens of arbutus, Arbutus menziesii, grow along the water's edge. These lovely evergreens have a rich orange-red bark that peels away in thin sheets, leaving a greenish, silvery smooth appearance and a satiny sheen. Arbutus, the broadleaf evergreen species is the tree I most strongly associate with Hornby. Hornby has its fair share of broadleaf deciduous trees. Bigleaf maple, red alder, black cottonwood, Pacific flowering dogwood, cascara and several species of willow thrive here.

There are populations of Garry oak, Quercus garryana, with their deeply lobed leaves, on the southern end of the island and at Helliwell Provincial Park on a rocky headland at the northeast end of Hornby. Only about 260 acres (1.1 km2) of undisturbed stands of older forests have been identified on Hornby. They amount to roughly 3.5% of the island's area. There are roughly 1,330 acres (540 ha) of older second-growth stands on the island, which is roughly 19% of the island.

Douglas fir, Pseudotsuga menziesii
Most of the trees you see on the island are Douglas fir, Pseudotsuga menziesii, an evergreen conifer species in the pine family. The common name is a nod to the Scottish botanist, David Douglas, who collected and first reported on this large evergreen.

Sadly for Douglas, it is Archibald Menzies, a Scottish physician, botanist, naturalist — and David's arch-rival, whose name is commemorated for science. He's also credited with the scientific name for our lovely arbutus trees.

Menzies was part of the Vancouver Expedition (1791–1795) a four-and-a-half-year voyage of exploration commanded by Captain George Vancouver of the British Royal Navy.

Their voyage built on the work of James Cook. Cook was arguably the first ship's captain to ensure his crew remained scurvy free by implementing a practice of nutritious meals (those containing ascorbic acid also known as Vitamin C) and meticulous standards for onboard hygiene. Though he did much to lower the mortality rate amongst his crew, he made some terrible decisions that led to his early demise. Cook was attacked and killed in 1779 during his third exploratory voyage in the Pacific while attempting to kidnap the Island of Hawaii's monarch, Kalaniʻōpuʻu.

During the four and a half year Vancouver Expedition voyage, the crew and officers bickered amongst themselves, circumnavigated the globe, touching down on five continents. Little did they know, for many of them it would be the last voyage they would ever take. The expedition returned to a Britain more interested in its ongoing war than in Pacific explorations. Vancouver was attacked by the politically well-connected Menzies for various slights, then challenged to a duel by Thomas Pitt, the 2nd Baron of Camelford.

The fellow for whom the fair city of Vancouver is named never did complete his massive cartographical work. With health failing and nerves eroded, he lost the dual and his life. It was Peter Puget, whose name adorns Puget Sound, who completed Vancouver's — and arguably Cook's work on the mapping of our world.

Friday, 26 February 2021

PTEROSAURS OF HORNBY ISLAND

If you were to fly our ancient skies, you would see massive pterosaurs — huge, winged flying reptiles of the extinct clade or order Pterosauria — cruising along with you. They soared our skies during most of the Mesozoic — from the late Triassic to the end of the Cretaceous (228 to 66 million years ago). 

By the end of the Cretaceous, they had grown to giants and one of their brethren, Quetzalcoatlus, a member of the family Azhdarchidae, boasts being the largest known flying animal that ever lived. They were the earliest vertebrates known to have evolved powered flight. Their wings were formed by a membrane of skin, muscle, and other tissues stretching from the ankles to a dramatically lengthened fourth finger.

We divide their lineage into two major types: basal pterosaurs and pterodactyloids. Basal pterosaurs (also called 'non-pterodactyloid pterosaurs' or ‘rhamphorhynchoids’) were smaller animals with fully toothed jaws and long tails. Their wide wing membranes connected to their hind legs. This would have allowed them some manoeuvrability on the ground, but with an awkward sprawling posture. They were better climbers with flexible joint anatomy and strong claws. Basal pterosaurs preferred to dine on insects and small vertebrates.

Later pterosaurs (pterodactyloids) evolved many sizes, shapes, and lifestyles. Pterodactlyoids had narrower wings with free hind limbs, highly reduced tails, and long necks with large heads. On the ground, pterodactyloids walked better than their earlier counterparts, manoeuvring all four limbs smoothly with an upright posture. They walked standing plantigrade on the hind feet and folding the wing finger upward to walk on the three-fingered "hand." These later pterosaurs were more nimble. They could take off from the ground, run and wade and swim. Their jaws had horny beaks and some of these later groups lacked the teeth of earlier lineages. Some groups developed elaborate head crests that were likely used to attract mates' sexy-pterosaur style.

So can we or have we found pterosaurs on Hornby Island? The short answer is maybe.

Collishaw Point, known locally as Boulder Point, Hornby Island
Hornby Island is a lovely lush, island in British Columbia's northern Gulf Islands. It was formed from sediments of the upper Nanaimo Group which are also widely exposed on adjacent Denman Island and the southern Gulf Islands.

Peter Mustard, a geologist from the Geologic Survey of Canada, did considerable work on the geology of the island. It has a total stratigraphic thickness of 1350 m of upper Nanaimo Group marine sandstone, conglomerate and shale. 

These are partially exposed in the Campanian to the lower Maastrichtian outcrops at Collishaw Point on the northwest side of Hornby Island. Four formations underlie the island from oldest to youngest, and from west to east: the Northumberland, Geoffrey, Spray and Gabriola.

During the upper Cretaceous, between ~90 to 65 Ma, sediments derived from the Coast Belt to the east and the Cascades to the southeast poured seaward to the west and northwest into what was the large ancestral Georgia Basin. This major forearc basin was situated between Vancouver Island and the mainland of British Columbia. The rocks you find here originated far to the south in Baja California and are the right age and type of sediment for a pterosaur find. But are we California dreaming?

Upper Cretaceous Nanaimo Group Fossil Concretion
Well, truth be told, we were with the initial potential pterosaur from Hornby. It wasn't just hopeful thinking that had the west coast in a paleo uproar many ago when Sharon Hubbard of the Vancouver Island Palaeontological Society found what looked very much like a pterosaur.

Victoria Arbour, a Canadian evolutionary biologist and palaeontologist working as a Natural Sciences and Engineering Research Council of Canada postdoctoral fellow at the University of Toronto and Royal Ontario Museum, certainly thought so. While Arbour is an expert on ankylosaurs, our lumbering armoured dinosaurs friends, she has studied pterosaurs and participated in the naming of Gwawinapterus from Hornby Island. But here's the thing — bony material encased in stone and let to cement for millions of years can be tricky.

While this fossil find was initially described as a very late-surviving member of the pterosaur group Istiodactylidae, further examination cast doubt on the identification. Once more detail was revealed the remains were published as being those of a saurodontid fish, an ambush predator with very sharp serrated teeth and elongate, torpedo-like bodies that grew up to two meters. Not a pterosaur but still a massively exciting find. Arbour was very gracious at the renaming, taking it in stride. She has since gone on to name a partial ornithischian dinosaur from Sustut Basin, as well as the ankylosaurs Zuul, Zaraapelta, Crichtonpelta, and Ziapelta. But she may have another shot at a pterosaur.

Dan Bowen, Chair, VIPS. Photo: Deanna Steptoe Graham
In 2019, Dan Bowen, Chair of the Vancouver Island Palaeontological Society and a truly awesome possum, found some very interesting bones in concretion on Hornby. The concretion was nestled amongst the 72 million-year-old grey shales of the Northumberland Formation, Campanian to the lower Maastrichtian, part of the upper Cretaceous, from Collishaw Point.

The site is known as Boulder Point to the locals and it has been a popular fossil destination for many years. It is the same site where Sharon made her find years earlier.

The concretion contains four articulated vertebrae that looked to be fish at first glance. Jay Hawley, a local fossil enthusiast was asked to prep the block to reveal more details. Once the matrix was largely removed the vertebrae inside were revealed to be bird bones, not fish and not another saurodontid as originally thought. Palaeontologist Victoria Arbour was called back in to put her keen lens on the discovery. 

You'll appreciate that she took a good long look at the specimen and confirmed it to be a bird or a pterosaur. We still do not have confirmation on which it is as yet. The delicate bony material is very flattened with a very shallow u-shape on the bottom but will need additional study to confirm if the skies above California were once home to a great pterosaur who died, was fossilized then rode our tectonic plates to now call Hornby home. It's a great story and one that I'm keen to follow.

Thursday, 25 February 2021

DORSOPLANITES: FROM RUSSIA WITH LOVE

Golden light shines on the ammonite, Dorsoplanites dorsoplanus (Vischniakoff, 1882), Upper Jurassic, Volgian Stage, Panderi Zone. If you wanted to visit this beauty today, she is in the collections of the deeply awesome Emil Black. 

If you wanted to travel to the outcrop where she was found, you would want to head to eastern Europe then search through the rock dumps along the new subway in the city of Moscow along the Moskva River in Central Russia.

Eight biohorizons, four of which were previously distinguished in Central Poland and four new ones have been identified as — contradictionis, pommerania, kuteki, and pilicensis, — were identified in the Dorsoplanites panderi zone of the Upper Jurassic Middle Volgian Substage of the European part of Russia on the basis of the succession of ammonites of the Zaraiskites genus. If that sounds like Greek to you, no worries. Just know that they are actively being studied and those geeking out on the finds are happy as clams.

The peculiarities of variations of the ammonite complexes in space and time testify to the stepwise warming during the Panderi Chron and the occurrence of the significant latitudinal temperature gradient in the Middle Russian Sea. Collection & photo of the awesome Emil Black. 

Wednesday, 24 February 2021

DELICATELY RIDGED PORPOCERAS

An exquisite specimen of the delicately ridged ammonite, Porpoceras verticosum, from Middle Toarcian outcrops adjacent the Rhône in southeastern France.

Porpoceras (Buchman, 1911) is a genus of ammonite that lived during the early and middle Toarcian stage of the Early Jurassic. We see members of this genus from the uppermost part of the Serpentinum Zone to Variabilis Subzone. These beauties are found in Europe, Asia, North America and South America.

Ammonites belonging to this genus have evolute shells, with compressed to depressed whorl section. The flanks are slightly convex and the venter has been low. The whorl section is sub-rectangular. 

The rib is pronounced and somewhat fibulate on the inner whorls — just wee nodes here — and tuberculate to spined on the ventrolateral shoulder. It differs from Peronoceras by not having a compressed whorl section and regular nodes or fibulation. Catacoeloceras is also similar, but it has regular ventrolateral tubercles and is missing the classic nodes or fibulation of his cousins.

This specimen hails from southern France near the Rhône, one of the major rivers of Europe. It has twice the average water level of the Loire and is fed by the Rhône Glacier in the Swiss Alps at the far eastern end of the Swiss canton of Valais then passes through Lake Geneva before running through southeastern France. This 10 cm specimen was prepared by the supremely talented José Juárez Ruiz

Tuesday, 23 February 2021

HOMARUS OF LEBANON

An artfully enhanced example of Homarus hakelensis, an extinct genus of fossil lobster belonging to the family Nephrophidae. Homarus is a genus of lobsters, which include the common and commercially significant species Homarus americanus (the American lobster) and Homarus gammarus (the European lobster).

The Cape lobster, which was formerly in this genus as H. capensis, was moved in 1995 to the new genus Homarinus.

Lobsters have long bodies with muscular tails and live in crevices or burrows on the seafloor. Three of their five pairs of legs have claws, including the first pair, which are usually much larger than the others.

Highly prized as seafood, lobsters are economically important and are often one of the most profitable commodities in coastal areas they populate. Commercially important species include two species of Homarus — which looks more like the stereotypical lobster — from the northern Atlantic Ocean, and scampi — which looks more like a shrimp — the Northern Hemisphere genus Nephrops and the Southern Hemisphere genus Metanephrops. Although several other groups of crustaceans have the word "lobster" in their names, the unqualified term lobster generally refers to the clawed lobsters of the family Nephropidae.

Clawed lobsters are not closely related to spiny lobsters or slipper lobsters, which have no claws or chelae, or to squat lobsters. The closest living relatives of clawed lobsters are the reef lobsters and the three families of freshwater crayfish. This cutie was found in Cretaceous outcrops at Hâdjoula. The sub‐lithographical limestones of Hâqel and Hâdjoula, in north‐west Lebanon, produce beautifully preserved shrimp, fish, and octopus. The localities are about 15 km apart, 45 km away from Beirut and 15 km away from the coastal city of Jbail. 

Monday, 22 February 2021

SHORT-BEAKED ECHIDNA

This chunky monkey is a Short-beaked Echidna, Tachyclossus aculeatus, which grows to about the size of an overweight cat. They are native to Australia and New Guinea. 

Echidnas are sometimes called spiny anteaters and belong in the family Tachyglossidae (Gill, 1872). They are monotremes, an order of egg-laying mammals. There are four species of echidnas living today. They, along with the platypus, are the only living mammals who lay eggs and the only surviving members of the order Monotremata. 

Superficially, they resemble the anteaters of South America and other spiny mammals like porcupines and adorable hedgehogs. They are usually a mix of brown, black and cream in colour. While rare, there have been several reported cases of albino echidnas, their eyes pink and their spines white. Echidnas have long, slender snouts that act as both nose and mouth for these cuties. The Giant Echidna we see in the fossil record had beaks more than double this size.  

Like the platypus, they are equipped with electro sensors, but while the platypus has 40,000 electroreceptors on its bill, the long-beaked echidna has only 2,000. The short-beaked echidna, which lives in a drier environment, has no more than 400 at the tip of its snout.

Echidnas evolved between 20 and 50 million years ago, descending from a platypus-like monotreme. Their ancestors were aquatic, but echidnas have adapted to life on land. Today, they weigh in at about 7 kg today but back in the Pleistocene, they were much larger. The Giant Echnida, Megalibwilia ramsayi was about 10% larger at 10 kg and Zaglossus hacketti was a whopping 30 kg. 

Fossil remains are relatively rare and sadly, incomplete, but they tell us potentially two other species of Echidna thriving in the Pleistocene. We also find Robust Echidna, Zaglossus robustus, in slightly older Miocene aged outcrops in a goldmine in Australia. The Giant Echnida's we find in the fossil record are relatives of the Long-Beaked Echidnas who live in New Guinea today.      

Sunday, 21 February 2021

PLAZA DE ESPANA, SEVILLE

The Plaza de España is a plaza in the Parque de María Luisa, in Seville, Spain. It was built in 1928 for the Ibero-American Exposition of 1929. 

It is a landmark example of Regionalism Architecture, mixing elements of the Baroque Revival, Renaissance Revival and Moorish Revival styles of Spanish architecture. You can stroll through the grounds and explore each of the buildings. There is amazing tile work.

The Plaza de España, designed by Aníbal González, was a principal building built on the Maria Luisa Park's edge to showcase Spain's industry and technology exhibits. González combined a mix of 1920s Art Deco and Spanish Renaissance Revival, Spanish Baroque Revival and Neo-Mudéjar styles. The Plaza de España complex is a huge half-circle; the buildings are accessible by four bridges over the moat, which represent the ancient kingdoms of Spain. In the centre is the Vicente Traver fountain.

Many tiled alcoves were built around the plaza, each representing a different province of Spain. Each alcove is flanked by a pair of covered bookshelves, now used by visitors in the manner of a "Little Free Library". Each bookshelf often contains works with information about each province. Visitors have also donated favourite novels and other books for others to read.

Today the buildings of the Plaza de España have been renovated and adapted for use as offices for government agencies. The central government departments, with a sensitive adaptive redesign, are located within it. Toward the end of the park, the grandest mansions from the fair have been adapted as museums. The most distant museum contains the city's archaeology collections. The main exhibits are Roman mosaics and artefacts from nearby Italica.

The Plaza de España has been used as a filming location, including scenes for Lawrence of Arabia (1962). The building was used as a location in the Star Wars movie series Star Wars: Episode II – Attack of the Clones (2002) — in which it featured in shots of the City of Theed on the Planet Naboo. It also featured in the 2012 film The Dictator.

Saturday, 20 February 2021

CERECINOS DE CAMPOS: DEINOTHERIUM

This partial specimen of Deinotherium giganteum hails from Middle-Upper Miocene, c. 15.97-5.33 Million Years outcrops near Cerecinos de Campos, Zamora Castile and León, northwestern Spain.

Deinotherium means "terrible beast," which feels a bit unkind to this vegetarian — though he was one of the largest elephants to walk this Earth. 

They are relatively recent in the evolutionary story of the Earth. They first appeared 17 million years ago, had a short run of it and became extinct relatively recently — just 1.6 million years ago. This fellow's cousin, Deinotherium bozasi would likely have interacted with some of our oldest relatives. 

One of the distinguishing features of Deinotherium is their curved tusks inserted only in the jaw. One of the tusks from this fellow, on display at the Museo Nacional De Ciencias Naturales in Madrid, Spain, while incomplete, was preserved rather nicely and shows the detail of where the tusk meets the jaw. Deinotherium could reach a height of over 3.5 meters. Its structure and size are similar to those of the present-day elephant. 

Friday, 19 February 2021

MEGATHERIUM: SLOTH

In 1788, this magnificent specimen of a Megatherium sloth was sent to the Royal Cabinet of Natural History from the Viceroyalty of Rio de la Plata.

The megaterios were large terrestrial sloths belonging to the group, Xenarthra. These herbivores inhabited large areas of land on the American continent. Their powerful skeleton enabled them to stand on their hind legs to reach leaves high in the trees, a huge advantage given the calories needed to be consumed each day to maintain their large size.

Avocados were one of the food preferences of our dear Giant ground sloths. They ate then pooped them out, spreading the pits far and wide. The next time you enjoy avocado toast, thank this large beastie. One of his ancestors may have had a hand (or butt) in your meal.

In 1788, Bru assembled the skeleton as you see it here. It is exhibited at the Museo Nacional De Ciencias Naturales in Madrid, Spain, in its original configuration for historic value. If you look closely, you'll see it is not anatomically correct. But all good palaeontology is teamwork. Based upon the drawings of Juan Bautista Bru, George Cuvier used this specimen to describe the species for the very first time.

Thursday, 18 February 2021

EL TORCAL DE ANTEQUERA

El Torcal de Antequera
El Torcal de Antequera is a nature reserve in the Sierra del Torcal mountain range south of the city of Antequera, in Andalusia, Spain. 

From the tops of the hillsides, you can see far into the fertile grazing lands of the province of Málaga. 

There are numerous hiking routes throughout the park, some for serious walkers and climbers, as well as for those who might prefer a more gentle meander. 

El Torcal is known for its unusual landforms and is regarded as one of the most impressive karst landscapes in Europe. Karst topography forms from the dissolution of soluble rocks like limestone, dolomite, and gypsum. It often has underground drainage systems with sinkholes and caves. 

Water loves to dissolve the softer rocks but it works its erosional magic on harder, more weathering-resistant quartzites given the right conditions. El Torcal has many wonderful caves and thousands of chasms for the small animals living in this area to call home. Some are quite small, while others are large enough to be explored. The rock we see at El Torcal formed over several hundred million years. 

About 200 million years ago, much of Europe and the Middle East were submerged under the Tethys Sea. 

This was a time of carbonate sedimentation as the skeletons, shells and shells of small marine animals lived and died, depositing their remains at the bottom of the sea. 

Over vast amounts of time, these wee bits of marine matter built up until 175 million years later, the sediments have built up and compacted to form strat thousands of metres deep. 

Towards the Middle Miocene, the Iberian plates to the north of the Tethys Sea and the African plates to the south, compressed, deformed and fractured those sediments. This process is slow and continuous and still continues today. Water, wind and ice continue to shape the landscape and present the continually eroding karst landscape you can hike through today at El Torcal de Antequera.

El Torcal Natural Park is a UNESCO site. Hiking through the hills, you can see the large mushroom-shaped folds, with a very wide upper part and horizontal layers, and short and abrupt flanks. Karst acts as a large sponge, storing rainwater and releasing it within the rock to encourage the limestone to dissolve. 

Gravity pulls the water down and it trickles out again as streams along the edge of the cliffs. One of the sites that the water gathers is in the Nacimiento de La Villa spring on El Torcal's north side.

El Torcal, Karst Topography

Along with its distinct hoodoos, sprinkled amongst the limestones, you will find a wealth of interesting plants and wildlife. Look for lilies, red peonies, wild rose trees and thirty varieties of orchid.  

The many species of reptiles include the Montpellier snake and ocellated lizard, both endemic to El Torcal. 

Other wildlife to look for are the resident Griffon vultures and Spanish Ibex, Andalusian mountain goats, voles, fox and rabbits. If you are here in the evening, look for some of the nocturnal mammals who call these hills home — badgers and weasels.

The park has an excellent Visitor Centre which makes a natural starting point for your exploration of the reserve. There you will find details about the park, parking and walking routes. Guided walks are available, including the popular ‘Route of the 5 Senses’, a night-time ‘El Torcal Under Moonlight’ walk and a fossil-hunting walk, Route of the Ammonites. The visitor centre includes a very reasonably priced restaurant which offers a good selection of traditional food, all made with locally sourced ingredients.

For those who might enjoy some sightseeing in the heavens, this area of Spain has extremely favourable conditions for stargazing and astronomy. The Astronomical Observation of El Torcal (OAT) is located within the park. They host regular observation evenings that take advantage of the lack of light pollution in this region.  

Places to Stay: Finca Gran Cerros Rural Retreat: The epitome of tranquil, rural Spain, Finca Gran Cerros nestles into the Andalusian hillside just a few minutes drive from the traditional white villages’ of Álora and Valle de Abdalajis. Visit them: https://www.fincagrancerros.com. Fina Gran Cerros is about 30 km south of El Torcal de Antequera nature reserve in the Sierra del Torcal mountains.


Wednesday, 17 February 2021

OLD HABITS: DULCES AND SALMOREJO

A group of nuns stepping out in Córdoba, Spain. The nuns of the Convento de Santa Isabel make sweets and cookies from centuries-old recipes passed down from the Romans and Moors. 

It is a lost art as fewer and fewer nuns take their vows. living selling sweets and confections using recipes handed down from the Romans and Moors.  

Have a bit of a sweet tooth? You will appreciate their efforts. Head to the Calle Santa Isabel with Euros on you. Once you enter the convent you'll not see any of the nuns, but will find yourself quite alone in a smallish room with a lazy Susan installed on the wall. 

While I did see some nuns in the street, many do not leave the cloister or appear in public. You never see the nun with whom you do the transaction since these are cloistered nuns who do not look upon the outside world.

On the wall, you will see a price list. Once you have chosen your goodies, you ring the buzzer. A lovely voice will ask you what you would like to enjoy. Many of these egg yolk and sugary treats are sold by the box and offerings range from 11-88 Euros.

You place your verbal order, set the monies on the lazy Susan and give it a spin. And la voila, your sweets arrive. Beyond the tasty baking, you may want to try salmorejo. It is famous in the region and owes its origins to Moorish cuisine. The dish is a thick, cold, tomato-based soup made with garlic, sherry vinegar and sometimes topped with a hard-boiled egg or jamón. The tomatoes are a recent addition to the recipe, but this region grows some of the best so I can see the appeal. Think gazpacho only tastier. Simple and delicious.

Roman Bridge on Guadalquivir River, Córdoba
The entire city is walkable and a picture postcard from every view. It is also a lovely testament to Roman engineering and building structures that last. Most of the bridges in Spain and certainly those in Córdoba all hail from Roman times.

The Convento de Santa Cruz, a convent n the historic centre, barrio de San Pedro, Córdoba, Andalusia, Spain, is well worth a visit. It was founded in 1435, by Pedro de los Ríos y Gutiérrez de Aguayo and his wife, Teresa Zurita. 

The building has maintained close ties to the Ríos family who have worked to maintain it. They have added to the complex to interesting effect. It is notable for its originality, its architecture, and the artistic setting. These include the cloister, convent, church, house of the novices of the eighteenth century, and courtyard. In the main structure, there are architectural elements in Roman, Muslim, Moorish and Baroque styles, which witness the historic and artistic development of Córdoba. The retablos which decorate the church interior, tiling, and paintings are of note. It was declared a Bien de Interés Cultural site in 2011.

Photos: Nuns taking a stroll & the Roman Bridge on the Guadalquivir River and The Great Mosque — Mezquita Cathedral — at twilight in the city of Córdoba, Andalusia, Spain.

Foodie? You are welcome to drool over at https://spanishsabores.com/12-must-try-foods-in-cordoba-eat-like-a-local-in-cordoba/

Tuesday, 16 February 2021

NEOCOMITES: AMMONITE ESPANA

This lovely burnt-orange ammonite is Neocomites (Teschenites) found on a fossil field trip to Hauterivian, Early Cretaceous deposits in the Baetic Cordillera this past year. 

The Baetic Cordillera is one of the main systems of mountain ranges in Spain along the southern and eastern Iberian Peninsula. There are several productive outcrops here that yield lovely Cretaceous ammonites and other marine species.

Neocomites are flucticulus a fast-moving nektonic carnivorous ammonite (Thieuloy, 1977) known from about a dozen offshore marine deep subtidal Cretaceous deposits in France, Hungary, Italy, Romania, Slovakia and Ukraine.

The photo and specimen you see here sharing a large boulder with a delicate heteromorph straight-shelled ammonite Bochianites are the first Neocomites I have seen come out of fossil deposits in Spain. It was found and prepped by the talented Manuel Peña Nieto of Córdoba, Spain.

Monday, 15 February 2021

ANDALUSIA: ARCHITECTURE AND FOSSILS

Córdoba’s Mezquita Mosque-Cathedral
Andalusia is a gorgeous region of hills, creamy-beige rock, rivers and farmland bordering Spain’s southern coast. 

As you explore the region, you see the influence of Roman and Islamic conquest. It was under Moorish rule from the 8th-15th centuries, a legacy that shows in its architecture, particularly at sites like the Alcázar Castle in Seville and Córdoba’s Mezquita Mosque-Cathedral and Granada’s Alhambra palace in southern Spain. 

If you look closely, there is a lovely echinoderm fossil about the size of your hand embedded within the masonry stones of the Mezquita Mosque-Cathedral.  

Fossils are common in the ashlars and masonry in Córdoba. Despite having other limestone and granite quarries nearby, the calcarenites limestones with their embedded macrofossils were the most sought after because of the ease with which they could be worked and their relative lightness.

This is one of my favourite places to visit, both for the wonderful architecture, intense human history and the wonderful Hauterivian, Early Cretaceous fossil outcrops in the Baetic Cordillera. 

The Sierra Nevada range, which boasts Spain’s highest peak, Mulhacén (3479m), is 75 kilometres of snowcapped peaks sprinkled with quaint Alpujarras villages lost in time. 

Echinoid Fossil in the Mosque-Cathedral in Córdoba
Each of these shows the juxtaposition of Muslim and Christian architecture and none more so than the especially stunning, and oh so grand Mosque-Cathedral in Córdoba. 

It was originally a small temple of Christian Visigoth origin then expanded again and again to reach a grand scale which speaks to its unusual and collaborative history. 

In 711, Muslims invaded and conquered Spain over the course of seven years. History is a tricky business to sort fact from fancy. One tale about the origins of the Muslim invasion mentions an oppressed Christian Chief, Julian, who wanted to get out from under the thumb of the tyrannical Visigoth rule. 

While powerful, the Visigoths made up only 1-2% of the population and had ruled for more than 300 years. |Their grip over the country and its growing rebellious population was already starting to crack. Julian resented King Roderic, the ruler of Spain and sought the aid of Musa ibn Nusair, the governor of North Africa to help him wage war. Musa was happy to oblige and sent the young general Tariq bin Ziyad with an army of 7,000 troops. 

Alhambra Palace, Granada, Spain
The Rock of Gibraltar — the massive monolithic limestone formed from Early Jurassic limestones and dolomites that grace the southwestern tip of Europe on the Iberian Peninsula — owes its name to Jabal At-Tariq — Arabic for 'Rock of Tariq' — the place where those first Muslim troops landed. 

Tariq did invade Spain but was driven as much by greed and conquest as by Julian's alleged appeal for help. The seasoned Muslim army defeated the Visigoths handily and King Roderic lost his life in the process at the Battle of Guadalete. I visited King Roderic's home city of Toledo, on the banks of the Tagus River. 

The city was the seat of a powerful archdiocese for much of its history and has some of my favourite feats of architecture — the Gothic Cathedral, the Catedral Primada de España ("The Primate Cathedral of Spain"), and a long history in the production of bladed weapons and lovely pottery dishes.

The Muslims — or Moorish — went on to conquer most of Spain and Portugal with ease. They washed across the land and by 720 Spain was largely under Muslim control. The combined Arab-Berber forces crossed the Pyrenees into Septimania and occupied territory in Gaul until 759. Their ultimate intension was the conquest of Constantinople, but their chosen path was through Spain.

Margocalizas del Jurásico Inferior
The churches and palaces you visit today are a visual memory of that piece of history lost in time. The mosque-cathedral was divided into Muslim and Christian halves. This sharing arrangement lasted until 784, when the Christian half was purchased by the Emir 'Abd al-Rahman I, who then demolished the original structure to build the grand mosque of Córdoba on its ground.

Córdoba returned to Christian rule in 1236 during the Reconquista, and the building was converted to a Roman Catholic church, culminating in the inclusion of a Renaissance cathedral nave in the 16th century. 

If you are visiting Andalusia, it is well worth a trip. Bring your camera and comfortable shoes. 

There is a converted convent that is now a boutique hotel with a rooftop terrace — the Balcon de Córdoba — that I highly recommend. It is on Calle Encarnacion 8, 14003. If you are planning a stay, give them a jingle and enjoy their Old World style. Tel: +34 957 49 84 78.

Photo: The specimen you see here of the Lower Jurassic ammonite Margocalizas sp. is in the collections of the deeply awesome Manuel Peña Nieto of Córdoba, Spain.

Photo: Echinoid in the masonry of Córdoba’s Mezquita Mosque-Cathedral: Miguel López Pulido


Sunday, 14 February 2021

HASLAM FORMATION NEAR BRANNEN LAKE

Steller's Jay, Cyanocitta stelleri
One of the classic Vancouver Island fossil localities is the Santonian-Maastrichtian, Upper Cretaceous Haslam Formation Motocross Pit near Brannen Lake, Nanaimo, British Columbia, Canada.

The quarry is no longer active as such though there is a busy little gravel quarry a little way down the road closer to Ammonite falls near Benson Creek Falls.

Today it is an active motocross site and remains one of the classic localities of the Nanaimo Group. We find well-preserved nautiloids and ammonites — Canadoceras, Pseudoschloenbachia, Epigoniceras — the bivalves — Inoceramus, Sphenoceramus— gastropods, and classic Nanaimo Group decapods — Hoploparia, Linuparus. We also find fossil fruit and seeds which tell the story of the terrestrial history of Vancouver Island.

Upper Cretaceous Haslam Formation Motocross Pit near Brannen Lake
It was John Fam, Vice-Chair, Vancouver Island Paleontological Society (VanPS), who originally told me about the locality. John is one of the most delightful and knowledgeable people you'd be well-blessed to meet.

While he lived on Vancouver Island, he was an active member of the VanPS back when I was Chair. Several of the best joint VIPS/VanPS paleontological expeditions were planned with or instigated by his passion for fossils. I tip my hat to him for his passion and shared love of all things paleo.

John grew up 15 minutes from the motocross locality and used to collect there a few times a week with his father. John has wonderful parents and since marrying his childhood sweetheart, the amazing Grace, those excellent genetics, curiosity and love of fossils are now being passed to a new generation. It's lovely to see John and Grace continuing tradition with two boys of their own.

I met John way back then and did an overnight at his parent's house the Friday before a weekend field trip to Jurassic Point. It was a joy to have him walk me through his collections and tell his stories from earlier years. After learning about the site from John, I headed up to the Motocross Pit with my Uncle Doug. He was a delightful man who grew up on the coast and had explored much of it but not the fossil site just 10-minutes from his home. It was wonderful to walk through time with him so many years ago and then again solo this past year with sadness in my belly that one of the best I've ever known has left this Earth.

Upper Cretaceous Haslam Formation Motocross Pit near Brannen Lake
There were some no trespassing signs up but no people around, so I walked the periphery looking for the bedrock of the Haslam.

The rocks we find here were laid down south of the equator as small, tropical islands. They rode across the Pacific heading north and slightly east over the past 80 million years to where we find them today.

Jim Haggart and Peter Ward have done much to increase our understanding of the molluscan fauna of the Nanaimo Group. Personally, both personify the charming Indiana Jones school of rugged manly palaeontologists you picture in popular film. Professionally, their singular contributions and collaborative efforts have helped shape our understanding of the correlation of Nanaimo Group fauna to those we find in the Gulf Islands of British Columbia and down in the San Juan Islands of Washington State.

Their work builds on the work of Usher (1952), Matsumoto (1959a, 1959b) and Mallory (1977). A healthy nod goes out to the work of Muller and Jeletzky (1970) for untangling the lithostratigraphic and biostratigraphic foundation for our knowledge of the Nanaimo Group.

Candoceras yokoyama, Photo: John Fam, VanPS
As I walked along the bedrock of the Haslam, a Steller's Jay, Cyanocitta stelleri, followed me from tree to tree making his guttural shook, shook, shook call. Instructive, he seemed to be encouraging me, timing his hoots to the beat of my hammer. Vancouver Island truly has glorious flora and fauna.

Fancy some additional reading? Check out a paper published in the Journal of Paleontology back in 1989 by Haggard and Ward on new Nanaimo Group Ammonites from British Columbia and Washington State.

In it, they look at the ammonite species Puzosia (Mesopuzosia) densicostata Matsumoto, Kitchinites (Neopuzosia) japonicus Spath, Anapachydiscus cf. A. nelchinensis Jones, Menuites cf. M. menu (Forbes), Submortoniceras chicoense (Trask), and Baculites cf. B. boulei Collignon are described from Santonian--Campanian strata of western Canada and northwestern United States.

Stratigraphic occurrences and ranges of the species are summarized and those taxa important for correlation with other areas in the north Pacific region and Late Cretaceous ammonite fauna of the Indo-Pacific region. Here's the link: https://www.jstor.org/stable/1305358?seq=1

Peter Ward is a prolific author, both of scientific papers and more popularized works. I highly recommend his book Gorgon: Paleontology, Obsession, and the Greatest Catastrophe in Earth's History. It is an engaging romp through a decade's research in South Africa's Karoo Desert.

Photo: Candoceras yokoyamai from Upper Cretaceous Haslam formation (Lower Campanian) near Nanaimo, British Columbia. One of the earliest fossils collected by John Fam (1993). Prepared using only a cold chisel and hammer. Photo & collection of John Fam, VIPS.