Showing posts with label geology. Show all posts
Showing posts with label geology. Show all posts

Wednesday, 12 November 2025

THE LOST SEA BENEATH THE PYRAMIDS: THE TETHYS OCEAN

Tethys Ocean
Long before the first pharaohs ruled the Nile, Egypt lay beneath the warm, shallow waters of the Tethys Ocean—a vanished sea that once divided the ancient supercontinents of Gondwana and Laurasia. 

Stretching from what is now the Mediterranean to the Indian Ocean, the Tethys existed from the late Paleozoic through the early Cenozoic, roughly 250 to 50 million years ago.

The concept of this long-lost ocean was first proposed in 1893 by Austrian geologist Eduard Suess, one of the founders of modern geology. While studying the distribution of marine fossils in rocks found high in mountain ranges such as the Alps and Himalayas, Suess realized that these fossils—corals, ammonites, and foraminifera—must once have lived in a vast tropical sea. 

His revolutionary conclusion: the mountains had been uplifted from the floor of an ancient ocean that no longer existed. He named this vanished sea the Tethys, after the Greek sea goddess and wife of Oceanus.

Evidence for the Tethys Ocean comes from both geology and fossil assemblages. Layers of marine limestone rich in Nummulites, ammonites, and other marine fossils are found across Europe, North Africa, and southern Asia—often thousands of meters above current sea level. 

These rocks record an ocean teeming with life during the Mesozoic and early Cenozoic, later compressed and folded as the African, Indian, and Eurasian plates collided to form the Alps, the Himalayas, and the Zagros Mountains.

Its tropical lagoons once hosted coral reefs, sea urchins, mollusks, and the foraminifera that would later become Nummulites. As these tiny organisms lived, died, and settled onto the seafloor, their calcium carbonate shells accumulated in thick beds of lime mud. Over millions of years, these sediments hardened into the fossil-rich Eocene limestones that now form much of Egypt’s geology—including the very stone quarried for the pyramids of Giza.

Today, the remnants of the Tethys survive as the Mediterranean, Black, Caspian, and Aral Seas, but its story lives on in every fossil-bearing limestone block of the Great Pyramid—a geological time capsule of an ocean that vanished long before humankind emerged.

Sunday, 9 November 2025

LIMESTONE AND LIGHT: EGYPT BEFORE THE PHARAOHS

Much of Egypt’s history is carved in her rock. We think of Egypt as ancient—a land of pharaohs, pyramids, and hieroglyphs etched in stone—but the land itself tells a far older story. 

Long before kings rose and dynasties fell, before the Nile carved its fertile ribbon through desert sands, the foundations of Egypt were being forged deep within the Earth.

Egypt, officially the Arab Republic of Egypt, occupies the northeastern corner of Africa, with the Sinai Peninsula extending beyond the continental boundary into Asia. 

It is bordered by the Gaza Strip and Israel to the northeast, the Gulf of Aqaba and Red Sea to the east, Sudan to the south, and Libya to the west. To the north, the Mediterranean Sea opens toward Europe—Greece, Cyprus, and Turkey—while across the Red Sea lies Saudi Arabia and, beyond the Gulf of Aqaba, Jordan.

To understand Egypt’s true antiquity, one must look not to its monuments, but to its bedrock. 

Five hundred kilometres southwest of Cairo, the flat sabkha plains stretch toward the horizon, scattered with wind-polished pebbles and eerie limestone pillars—natural monuments of a different kind. 

This striking karst landscape, weathered by time and the desert’s relentless breath, tells of ancient seas, tectonic upheaval, and long-vanished ecosystems.

Once the breadbasket of the Pharaohs and now scarred by oil pipelines and rusted trucks, this land has seen empires rise and vanish. Beneath the sand and relics of human ambition lies a deeper record—a geological archive of oceans, volcanoes, and shifting continents.

The story begins deep in time, during the Archaean Eon, when the Earth’s crust was first beginning to cool, between 4 and 2.5 billion years ago. The rocks from this period, preserved as ancient inliers in Egypt’s Western Desert, are among the oldest on the African continent. Later, during the Proterozoic, when oxygen was only just beginning to fill the planet’s atmosphere, new rocks were laid down in the Eastern Desert—igneous and metamorphic foundations formed when bacteria and marine algae were the dominant life on Earth.

These ancient crystalline roots form the basement complex upon which Egypt’s later history—both geological and human—would unfold. 

Over this foundation lie younger Palaeozoic sedimentary rocks, followed by widespread Cretaceous outcrops that speak of warm inland seas and lush river deltas. 

Still younger Cenozoic sediments record the rhythmic rise and fall of global sea levels—cycles of transgression and regression that alternately drowned and exposed the land. 

Each layer marks a new chapter in the story of water, time, and transformation. It is from these Cenozoic limestones, formed some 50 million years ago in the shallow seas of the Eocene epoch, that the stones of the Great Pyramids were quarried. Composed largely of the fossilized remains of ancient marine organisms—especially the large, coin-like foraminifera known as Nummulites—these rocks are both geological and biological archives. 

Every pyramid block is built from the remains of an ancient ocean, each fossilized shell a fragment of life that once thrived beneath the waters of the long-vanished Tethys Sea.

The pyramids of Giza, with their luminous exteriors of fine-grained white limestone from the quarries of Tura, stand as enduring testaments to human ingenuity and Earth’s deep-time creativity. They are monuments raised from the bones of microscopic life, shaped by hands that would have been surprised to know they were building with the remnants of a vanished world.

From the glittering deserts of Giza to the fossil beds of the Fayum, Egypt’s landscapes tell stories written in stone—of ancient oceans, shifting continents, and the eternal dialogue between life, death, and time. The Great Pyramid may have been built for eternity, but its foundations were set in motion eons before humanity’s first spark.

Beneath the gaze of the Sphinx and the shadow of Khufu’s towering pyramid, the story of Egypt’s limestone deepens. Those pale, gleaming blocks that once caught the desert sun are more than architectural marvels—they are the fossilized remains of an ancient sea, built from the microscopic shells of creatures that lived and died millions of years before the first pharaoh dreamed of eternity.

It is here, in the very stone of the Great Pyramid, that Egypt’s human history meets Earth’s geological past.

Monday, 27 October 2025

WILD EQUINE BEAUTY: ICELANDIC HORSES

Icelandic Horses
These beauties are Icelandic horses who graced me with their energy and spirit for a series of feel-good photoshoots along the southern coast of Iceland earlier this month. 

The Icelandic horse is a living link to an ancient lineage—compact, sure-footed, and enduring as the land it calls home. 

Though today’s Icelandic horses are domesticated, their story begins millions of years earlier, deep in the fossil record of the horse family, Equidae.

Horses first evolved in North America around 55 million years ago during the Eocene epoch. The earliest known ancestor, Eohippus (also called Hyracotherium), was a small, forest-dwelling animal no larger than a fox. 

Over tens of millions of years, its descendants—Mesohippus, Merychippus, Pliohippus—grew larger and adapted to open grasslands, developing longer legs and single-toed hooves suited for running. 

Icelandic Horses
Fossils of these transitional species are found in abundance across the Great Plains of the United States and in the Miocene deposits of Nebraska and Wyoming.

By the late Pliocene, around three million years ago, horses crossed the Bering land bridge into Eurasia. The genus Equus—to which all modern horses, donkeys, and zebras belong—emerged and spread rapidly. 

Fossils of Equus ferus, the wild ancestor of the domestic horse, are found across Europe and Asia. Horses later vanished from North America during the Late Pleistocene extinctions about 10,000 years ago, only to return with humans during the Age of Exploration.

The Icelandic horse descends directly from the hardy Scandinavian ponies brought to Iceland by Norse settlers in the 9th and 10th centuries CE. Protected by the island’s isolation and a millennium of careful breeding, it retains many primitive features—thick coats, strong bones, and an extra gait known as the tölt. 

While the fossil record of Equus does not include fossils from Iceland itself—its geologic strata are too young for that—the genetic and morphological heritage of these small but mighty horses is a living testament to a 55-million-year evolutionary journey.

Saturday, 25 October 2025

ROADSIDE FOSSILS: TRIASSIC PAPER CLAMS FROM PINE PASS

Triassic Paper clams, Pardonet Formation
In the rugged foothills of Pine Pass, near the small northern British Columbia town of Chetwynd, the rocks tell a story from over 200 million years ago—a story written in shell just a short walk from the main road. 

Here, in outcrops of the Pardonet Formation, the remains of once-living bivalves called paper clams—or “flat clams”—paint a vivid picture of life in the Late Triassic seas.

During the Triassic, roughly 237–201 million years ago, these delicate-shelled bivalves of the genus Moinotis, specifically Moinotis subcircularis, thrived in shallow marine environments. 

Their thin, flattened shells resemble wafer-like sheets, earning them the common name “paper clams.” 

Despite their fragile appearance, they were ecologically tough, colonizing vast seafloor regions after the Permian-Triassic mass extinction—Earth’s most catastrophic biodiversity crisis. In the wake of devastation, paper clams became pioneers in new marine ecosystems, spreading widely across the Triassic world.

At Pine Pass, the Pardonet Formation captures this resilience in stone. The strata—composed mainly of silty shales and fine-grained sandstones—represent an ancient seabed deposited along the western margin of Pangea. These rocks are part of the larger Western Canada Sedimentary Basin and are well known for their rich fossil assemblages, including ammonoids, conodonts, and marine reptiles. Yet, among these Triassic relics, it’s the paper clams that often dominate.

A short scramble up the rocky slope near the highway reveals bedding planes glittering with thousands of tiny, overlapping shells. They lie perfectly preserved, their paper-thin forms cemented into the matrix as though frozen in a whisper of time. Each shell records a pulse of ancient life in a warm, shallow sea teeming with invertebrates.

Our field stop at Pine Pass was a spontaneous detour en route to a paleontological conference in nearby Tumbler Ridge—a region equally famed for its dinosaur tracks and marine fossils. What was meant to be a quick roadside break became a fossil feast. 

Within minutes, we were crouched among the rocks, gently tracing our fingers over Moinotis subcircularis—delicate, symmetrical, and as hauntingly beautiful as the day they settled on the Triassic seafloor.

Friday, 24 October 2025

THE FOSSIL CLIFFS OF JOGGINS, EASTERN CANADA

Hylonomus lyelli, Ancestor of all dinosaurs
The fossil cliffs at Joggins are one of Canada's gems, now a UNESCO World Heritage Site, you can visit to see our ancient world frozen in time. 

Preserved in situ is a snapshot of an entire food chain of a terrestrial Pennsylvanian Coal Age wetland.

The outcrop holds fossil plant life — including impressive standing lycopsid trees that formed the framework of these wetlands — decomposing detritivores in the invertebrates and tetrapods, the predatory carnivores of the day.

The Coal Age trees were fossilized where they stood 300-million-years ago with the remains of the earliest reptiles entombed within. The preservation is quite marvelous with the footprints of creatures who once lived in these wetlands are frozen where they once walked and the dens of amphibians are preserved with remnants of their last meal. 

Nowhere is a record of plant, invertebrate and vertebrate life within now fossilized forests rendered more evocatively. The fossil record at Joggins contains 195+ species of plants, invertebrates and vertebrates. The fossil plant life became the vast coal deposits for which this period of Earth's history is named. 

Recorded in the rock are vertebrate and invertebrate fauna both aquatic and terrestrial. This broad mix of specimens gives us a view into life back in the Pennsylvanian and sets us up to understand their ecological context.
Pennsylvanian Coal Age Ecosystem, 300-Million-Years-Old
The fossil record includes species first defined at Joggins, some of which are found nowhere else on Earth. 

It was here that Sir Charles Lyell, with Sir William Dawson, founder of modern geology, discovered tetrapods, amphibians and reptiles entombed in the upright fossil trees. 

Later work by Dawson would reveal the first true reptile, Hylonomus lyelli, ancestor of all dinosaurs that would rule the Earth 100 million years later. 

This tiny reptile serves as the reference point where animals finally broke free of the water to live on land. This evolutionary milestone recorded at Joggins remains pivotal to understanding the origins of all vertebrate life on land, including our own species. 

Sir Charles Lyell, author of Principles of Geology, first noted the exceptional natural heritage value of the Joggins Fossil Cliffs, calling them “...the finest example in the world of a natural exposure in a continuous section ten miles long, occurs in the sea cliffs bordering a branch of the Bay of Fundy in Nova Scotia.” Indeed, the world-famous Bay of Fundy with its impressive tides, the highest in the world, and stormy nature exposed much of this outcrop. 

Geological accounts of the celebrated coastal section at Joggins first appear in the published literature in 1828–1829, by Americans C.T. Jackson and F. Alger, and by R. Brown and R. Smith, managers for the General Mining Association in the Sydney and Pictou coal fields. Brown and Smith’s account is the first to document the standing fossil trees.

Joggins Fossil Cliffs Map (Click to Enlarge)
Plan Your Joggins Fossil Cliffs Staycation

Joggins Fossil Cliffs is a Canadian gem — and they welcome visitors. They offer hands-on learning and discovery microscope activities in their Fossil Lab.

You can explore interpretive displays in the Joggins Fossil Centre before heading out to the beach and cliffs with an interpreter.

Their guided tours of the fossil site include an educational component that tells you about the geology, ecology, palaeontology and conservation of this very special site. 

Joggins / Chegoggin / Mi'kmaq L'nu

We know this area as Joggins today. In Mi'kmaw, the language spoken in Mi'kma'ki, the territory of the Mi'kmaq L'nu, the area bears another name, Chegoggin, place of fishing weirs.

Booking Your Class Field Trip

If you are a teacher and would like to book a class field trip, contact the Director of Operations via the contact information listed below. They will walk you through Covid safety and discuss how to make your visit educational, memorable and fun.

Know Before You Go — Tides rule access, but a little rain does not...

The Bay of Fundy has the highest tides in the world. Beach walks are scheduled according to the tides and run regardless of the weather. Good low tides but raining, the beach walk goes on. Lovely and sunny but with a high tide, the beach walk must wait. 

Dress for the weather, as the walking tours will not be cancelled in the event of rain. Should severe weather be a factor, bookings may need to be rescheduled at the discretion of the Joggins staff.

Any questions about booking your school field trip? Feel free to email:  operations@jogginsfossilcliffs.net or call: 1 (902) 251-2727 EXT 222.

References & further reading:

Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/

Image: Hylonomus lyelli, Una ricostruzione di ilonomo by Matteo De Stefano/MUSEThis file was uploaded by MUSE - Science Museum of Trento in cooperation with Wikimedia Italia., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=48143186

Image: Arthropleura: Par Tim Bertelink — Travail personnel, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=48915156

Joggins Map: Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/

Friday, 3 October 2025

HAWAI'I: ISLANDS BORN OF FIRE

Long, long ago—millions of years before you or me, before the canoes of the Polynesian voyagers, before the first birds ever touched these shores—there was only ocean. 

A vast blue desert stretching farther than the eye could see. But beneath that endless water, far below the waves, the Earth was stirring.

Deep inside our planet lies a restless heart, a molten engine. It churns and pulses, and sometimes, it leaks upward through the skin of the world. 

In one special place beneath the Pacific Plate, a hot spot—a plume of heat rising from the mantle—began to melt rock, making it buoyant and eager to break free.

Imagine molten stone, glowing red-orange, pushing upward for thousands of years until—at last—it broke through the ocean floor. The sea hissed and boiled as lava met saltwater. Bit by bit, eruption after eruption, a new land began to rise from the deep. That was the beginning of the Hawai'ian Islands.

But here’s the magic, Hawai'i is not a single island, but a story told in chapters, one after another, spread across millions of years. The Pacific Plate is always moving—slowly, but steadily, like a great raft drifting northwest. The hot spot itself doesn’t move. It’s fixed, like a candle’s flame. So as the plate slides across it, new islands are born in sequence, while the old ones drift away, cooling, eroding, and eventually sinking back beneath the waves.

Aerial View of Kaua'i
It’s as though the Earth is sewing a necklace of emeralds and sapphires across the ocean, each island a bead in the chain. 

Kaua‘i, the eldest, is weathered and softened, its sharp volcanic ridges worn into velvet valleys. I've shared an aerial view here of Kaua'i showing its lush covering of forests and dramatic slopes.

O‘ahu, Maui, Moloka‘i—all follow, each younger, each shaped by fire and rain. 

And finally, the youngest, Hawai‘i Island—often called the Big Island—still burns with creation. Its great volcanoes, Mauna Loa and Kīlauea, continue to pour molten rock into the sea, adding new land even as we speak.

If you were to trace this island chain beneath the waves, you’d find it stretching far, far beyond the horizon. More than 130 undersea volcanoes, some worn down to nothing but lonely seamounts, extend in a long arc that reaches all the way to the Aleutians near Alaska. Together, they form the Hawai'ian–Emperor Seamount Chain—a testament to 80 million years of volcanic storytelling.

But Hawai'i is not just fire—it is also shaped by water and wind. Once the lava cools, the islands begin a second life. Rain falls, carving valleys and canyons. Trade winds sculpt cliffs and carry seeds. Plants take root in the fresh, black soil, and birds bring new life in their feathers. Over time, forests rise where once there was only ash. Coral reefs grow along the shores, ringing the islands in color and light.

Imagine lying back now on a beach of fine sand, still warm from the day’s sun. Behind you, the green slopes of ancient volcanoes rise, and before you, the sea glitters in moonlight. 

The air smells of salt and flowers, plumeria drifting on the breeze. The very ground beneath you is alive with the heartbeat of the Earth, still creating, still dreaming.

And just like all stories, Hawai'i’s will continue to unfold. South of the Big Island, deep under the ocean, another volcano is already forming. Its name is Lō‘ihi. 

One day, perhaps tens of thousands of years from now, it will breach the surface, joining the island chain. Children not yet born will stand on its shores, and perhaps they will listen to stories of how their land came to be—just as you are imagining it now. I know that two of my dear nieces, M & M, are doing just that and I think of them and the beautiful shores they call home.

Friday, 18 July 2025

SPIRALING BEAUTY: AMMONITES AS INDEX FOSSILS

Argonauticeras besairei, Collection of José Juárez Ruiz.
An exceptional example of fractal building of an ammonite septum, in this clytoceratid Argonauticeras besairei from the awesome José Juárez Ruiz.

Ammonites were predatory, squid-like creatures that lived inside coil-shaped shells.

Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. They used these tentacles to snare prey, — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunt today.

Catching a fish with your hands is no easy feat, as I'm sure you know. But the Ammonites were skilled and successful hunters. They caught their prey while swimming and floating in the water column. Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. By pushing air in or out, they were able to control their buoyancy in the water column.

They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.

They were a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs, commonly referred to as ammonites, are more closely related to living coleoids — octopuses, squid, and cuttlefish) than they are to shelled nautiloids such as the living Nautilus species.

The Ammonoidea can be divided into six orders:
  • Agoniatitida, Lower Devonian - Middle Devonian
  • Clymeniida, Upper Devonian
  • Goniatitida, Middle Devonian - Upper Permian
  • Prolecanitida, Upper Devonian - Upper Triassic
  • Ceratitida, Upper Permian - Upper Triassic
  • Ammonitida, Lower Jurassic - Upper Cretaceous
Ammonites have intricate and complex patterns on their shells called sutures. The suture patterns differ across species and tell us what time period the ammonite is from. If they are geometric with numerous undivided lobes and saddles and eight lobes around the conch, we refer to their pattern as goniatitic, a characteristic of Paleozoic ammonites.

If they are ceratitic with lobes that have subdivided tips; giving them a saw-toothed appearance and rounded undivided saddles, they are likely Triassic. For some lovely Triassic ammonites, take a look at the specimens that come out of Hallstatt, Austria and from the outcrops in the Humboldt Mountains of Nevada.

Hoplites bennettiana (Sowby, 1826).
If they have lobes and saddles that are fluted, with rounded subdivisions instead of saw-toothed, they are likely Jurassic or Cretaceous. If you'd like to see a particularly beautiful Lower Jurassic ammonite, take a peek at Apodoceras. Wonderful ridging in that species.

One of my favourite Cretaceous ammonites is the ammonite, Hoplites bennettiana (Sowby, 1826). This beauty is from Albian deposits near Carrière de Courcelles, Villemoyenne, near la région de Troyes (Aube) Champagne in northeastern France.

At the time that this fellow was swimming in our oceans, ankylosaurs were strolling about Mongolia and stomping through the foliage in Utah, Kansas and Texas. Bony fish were swimming over what would become the strata making up Canada, the Czech Republic and Australia. Cartilaginous fish were prowling the western interior seaway of North America and a strange extinct herbivorous mammal, Eobaatar, was snuffling through Mongolia, Spain and England.

In some classifications, these are left as suborders, included in only three orders: Goniatitida, Ceratitida, and Ammonitida. Once you get to know them, ammonites in their various shapes and suturing patterns make it much easier to date an ammonite and the rock formation where is was found at a glance.

Ammonites first appeared about 240 million years ago, though they descended from straight-shelled cephalopods called bacrites that date back to the Devonian, about 415 million years ago, and the last species vanished in the Cretaceous–Paleogene extinction event.

They were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish. They were prolific back in the day, living (and sometimes dying) in schools in oceans around the globe. We find ammonite fossils (and plenty of them) in sedimentary rock from all over the world.

In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past.

For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. Generally, deeper is older, so we use the sedimentary layers rock to match up to specific geologic time periods, rather the way we use tree-rings to date trees. A handy way to compare fossils and date strata across the globe.

References: Inoue, S., Kondo, S. Suture pattern formation in ammonites and the unknown rear mantle structure. Sci Rep 6, 33689 (2016). https://doi.org/10.1038/srep33689
https://www.nature.com/articles/srep33689?fbclid=IwAR1BhBrDqhv8LDjqF60EXdfLR7wPE4zDivwGORTUEgCd2GghD5W7KOfg6Co#citeas

Photo: Hoplites Bennettiana from near Troyes, France. Collection de Christophe Marot

Saturday, 26 April 2025

ETHELDRED BENETT OF WILTSHIRE: FIRST FEMALE GEOLOGIST

In the early days of paleontology, men were men, and women, quite frankly, were not paleontologists, geologists, members of the Royal Society nor welcome in a male dominated science community. 

Until they were. And sometimes quite by accident.

Meet Etheldred Benett, an early English geologist often credited with being the first female geologist — a fossil collector par excellence.

If you happened to join us for today's VIPS talk with Phil Hadland, Collections & Engagement Curator of Natural Sciences at the Hastings Museum & Art Gallery, UK, on 101 Fossils of Folkstone, you will have heard him mention her in his talk.

She was also credited with being a man  —  the Natural History Society of Moscow awarded her membership as Master Etheldredus Benett in 1836. The confusion over her name (it did sound masculine) came again with the bestowing of a Doctorate of Civil Law from Tsar Nicholas I.

The Tsar had read Sowerby's Mineral Conchology, a major fossil reference work which contained the second-highest number of contributed fossils of the day, many of the best quality available at the time. Forty-one of those specimens were credited to Benett. Between her name and this wonderous contribution to a growing science, the Russian Tsar awarded the Doctorate to what he believed was a young male scientist on the rise. 

He believed in education, founding Kyiv University in 1834, just not for women. He was an autocratic military man frozen in time — the thought that this work could have been done by a female was unthinkable. Doubly charming is that the honour from the University of St Petersburg was granted at a time when women were not allowed to attend St. Pete's or any higher institutions. That privilege arrived in 1878, twenty years after Nicholas I's death.

Benett took these honours (and social blunders) with grace. She devoted her life to collecting and studying fossils from the southwest of England, amassing an impressive personal collection she openly shared with geologist friends, colleagues and visitors to her home. Her specialty was fossils from the Middle Cretaceous, Upper Greensand in the Vale of Wardour — a valley in the county of Wiltshire near the River Nadder.

Etheldred was a local Wiltshire girl. Born Etheldred Benett on 22 July 1775 at Pyt House, Tisbury, Wiltshire, the eldest daughter of the local squire Thomas Benett. Etheldred's interest was cultivated by the botanist Aylmer Bourke Lambert (1761-1842), a founding member of the Linnean Society. 

Benett's brother had married Lucy Lambert, Aylmer's half-sister. Aylmer was a Fellow of the Royal Society and the Society of the Arts. He was also an avid fossil collector and member of the Geological Society of London. The two met and got on famously.

Aylmer kindled an interest in natural history in both of Benett's daughters. Etheldred had a great fondness in geology, stratigraphy and all things paleo, whilst her sister concentrated on botany. Etheldred had a distinct advantage over her near contemporary, the working-class Mary Anning (1799-1847), in that Benett was a woman of independent wealth who never married — and didn't need to — who could pursue the acquisition and study of fossils for her own interest.

While Anning was the marine reptile darling of the age, she was also greatly hindered by her finances. "She sells, seashells by the seashore..." while chanted in a playful spirit today, was not meant kindly at the time. Aylmer's encouragement emboldened Etheldred to go into the field to collect for herself — and collect she did. Profusely.

Benett’s contribution to the early history of Wiltshire geology is significant. She corresponded extensively with the coterie of gentlemen scientists of the day —  Gideon Mantell, William Buckland, James Sowerby, George Bellas Greenough and, Samuel Woodward. She also consorted with the lay folk and had an ongoing correspondence with William Smith, whose stratigraphy work had made a favourable impression on her brother-in-law, Aylmer.

Her collections and collaboration with geologists of the day were instrumental in helping to form the field of geology as a science. One colleague and friend, Gideon Mantell, British physician, geologist and palaeontologist, who discovered four of the five genera of dinosaurs and Iguanadon, was so inspired by Benett's work he named this Cretaceous ammonite after her — Hoplites bennettiana.

Benett's fossil assemblage was a valuable resource for her contemporaries and remains so today. It contains thousands of Jurassic and Cretaceous fossil specimens from the Wiltshire area and the Dorset Coast, including a myriad of first-recorded finds. The scientific name of every taxon is usually based on one particular specimen, or in some cases multiple specimens. Many of the specimens she collected serve as the Type Specimen for new species.

Fossil Sponge, Polypothecia quadriloba, Warminster, Wiltshire
Her particular interest was the collection and study of fossil sponges. Alcyonia caught her eye early on. She collected and recorded her findings with the hope that one of her colleagues might share her enthusiasm and publish her work as a contribution to their own.

Alas, no one took up the helm — those interested were busy with other pursuits (or passed away) and others were less than enthusiastic or never seemed to get around to it.

To ensure the knowledge was shared in a timely fashion, she finally wrote them up and published them herself. You can read her findings in her publication, ‘A Catalogue of Organic Remains of the County of Wiltshire’ (1831), where she shares observations on the fossil sponge specimens and other invert goodies from the outcrops west of town.

She shared her ideas freely and donated many specimens to local museums. It was through her exchange of observations, new ideas and open sharing of fossils with Gideon Mantell and others that a clearer understanding of the Lower Cretaceous sedimentary rocks of Southern England was gained.

In many ways, Mantell was drawn to Benett as his ideas went against the majority opinion. At a time when marine reptiles were dominating scientific discoveries and discussions, he pushed the view that dinosaurs were terrestrial, not amphibious, and sometimes bipedal. Mantell's life's work established the now-familiar idea that the Age of Reptiles preceded the Age of Mammals. Mantell kept a journal from 1819-1852, that remained unpublished until 1940 when E. Cecil Curwen published an abridged version. (Oxford University Press 1940). John A. Cooper, Royal Pavilion and Museums, Brighton and Hove, published the work in its entirety in 2010.

I was elated to get a copy, both to untangle the history of the time and to better learn about the relationship between Mantell and Benett. So much of our geologic past has been revealed since Mantell's first entry two hundred years ago. The first encounter we share with the two of them is a short note from March 8, 1819. "This morning I received a letter from Miss Bennett of Norton House near Warminster Wilts, informing me of her having sent a packet of fossils for me, to the Waggon Office..." The diary records his life, but also the social interactions of the day and the small connected community of the scientific social elite. It is a delight!

Though a woman in a newly evolving field, her work, dedication and ideas were recognized and appreciated by her colleagues. Gideon Mantell described her as, "a lady of great talent and indefatigable research," whilst the Sowerbys noted her, "labours in the pursuit of geological information have been as useful as they have been incessant."

Benett produced the first measured sections of the Upper Chicksgrove quarry near Tisbury in 1819, published and shared with local colleagues as, "the measure of different beds of stone in Chicksgrove Quarry in the Parish of Tisbury.” The stratigraphic section was later published by naturalist James Sowerby without her knowledge. Her research contradicted many of Sowerby’s conclusions.

She wrote and privately published a monograph in 1831, containing many of her drawings and sketches of molluscs and sponges. Her work included sketches of the fossil Alcyonia (1816) from the Green Sand Formation at Warminster Common and the immediate vicinity of Warminster in Wiltshire.

Echinoids and Bivalves. Collection of Etheldred Benett (1775-1845)
The Society holds two copies, one was given to George Bellas Greenough, and another copy was given to her friend Gideon Mantell. This work established her as a true, pioneering biostratigrapher following but not always agreeing with the work of William Smith.

If you'd like to read a lovely tale on William's work, check out the Map that Changed the World: William Smith and the Birth of Modern Geology by Simon Winchester. It narrates the intellectual context of the time, the development of Smith's ideas and how they contributed to the theory of evolution and more generally to a dawning realization of the true age of the earth.

The book describes the social, economic or industrial context for Smith's insights and work, such as the importance of coal mining and the transport of coal by means of canals, both of which were a stimulus to the study of geology and the means whereby Smith supported his research. Benett debated many of the ideas Smith put forward. She was luckier than Smith financially, coming from a wealthy family, a financial perk that allowed her the freedom to add fossils to her curiosity cabinet at will.

Most of her impressive collection was assumed lost in the early 20th century. It was later found and purchased by an American, Thomas Bellerby Wilson, who donated it to the Academy of Natural Sciences of Philadelphia. Small parts of it made their way into British museums, including the Leeds City Museum, London, Bristol and to the University of St. Petersburg. These collections contain many type specimens and some of the very first fossils found — some with the soft tissues preserved. When Benett died in 1845, it was Mantell who penned her obituary for the London Geological Journal.

In 1989, almost a hundred and fifty years after her death, a review of her collection had Arthur Bogen and Hugh Torrens remark that her work has significantly impacted our modern understanding of Porifera, Coelenterata, Echinodermata, and the molluscan classes, Cephalopoda, Gastropoda, and Bivalvia. A worthy legacy, indeed.

Her renown lives on through her collections, her collaborations and through the beautiful 110 million-year-old ammonite you see here, Hoplites bennettiana. The lovely example you see here is in the collection of the deeply awesome Christophe Marot.

Spamer, Earle E.; Bogan, Arthur E.; Torrens, Hugh S. (1989). "Recovery of the Etheldred Benett Collection of fossils mostly from Jurassic-Cretaceous strata of Wiltshire, England, analysis of the taxonomic nomenclature of Benett (1831), and notes and figures of type specimens contained in the collection". Proceedings of the Academy of Natural Sciences of Philadelphia. 141. pp. 115–180. JSTOR 4064955.

Torrens, H. S.; Benamy, Elana; Daeschler, E.; Spamer, E.; Bogan, A. (2000). "Etheldred Benett of Wiltshire, England, the First Lady Geologist: Her Fossil Collection in the Academy of Natural Sciences of Philadelphia, and the Rediscovery of "Lost" Specimens of Jurassic Trigoniidae (Mollusca: Bivalvia) with Their Soft Anatomy Preserved.". Proceedings of the Academy of Natural Sciences of Philadelphia. 150. pp. 59–123. JSTOR 4064955.

Photo credit: Fossils from Wiltshire.  In the foreground are three examples of the echinoid, Cidaris crenularis, from Calne, a town in Wiltshire, southwestern England, with bivalves behind. Caroline Lam, Archivist at the Geological Society, London, UK. http://britgeodata.blogspot.com/2016/03/etheldred-benett-first-female-geologist_30.html

Photo credit: Fossil sponges Polypothecia quadriloba, from Warminster, Wiltshire. The genus labels are Benett’s, as is the handwriting indicating the species. The small number, 20812, is the Society’s original accession label from which we can tell that the specimen was received in April 1824. The tablet onto which the fossils were glued is from the Society’s old Museum.

Wednesday, 9 April 2025

EXPLORING WRANGELLIA: HAIDA GWAII

Misty shores, moss covered forests, a rich cultural history, dappled light, fossils and the smell of salt air—these are my memories of Haida Gwaii.

The archipelago of Haida Gwaii lays at the western edge of the continental shelf due west of the central coast of British Columbia.

They form part of Wrangellia, an exotic tectonostratigraphic terrane that includes Vancouver Island, parts western British Columbia and Alaska.

The Geological Survey of Canada sponsored many expeditions to these remote islands and has produced numerous reference papers on this magnificent terrain, exploring both the geology and palaeontology of the area.

Joseph Whiteaves, the GSC's chief palaeontologist in Ottawa, published a paper in 1876 describing the Jurassic and Cretaceous faunas of Skidegate Inlet, furthering his reputation globally as both a geologist, palaeontologist as well as a critical thinker in the area of science.

The praise was well-earned and foreshadowed his significant contributions to come. Sixteen years later, he wrote up and published his observations on a strange Mount Stephen fossil that resembled a kind of headless shrimp with poorly preserved appendages. 

Because of the unusual pointed shape of the supposed ventral appendages and the position of the spines near the posterior of the animal, Whiteaves named it Anomalocaris canadensis. The genus name "Anomalocaris" means "unlike other shrimp" and the species name "canadensis" refers to the country of origin.

Whiteaves work on the palaeontology of Haida Gwaii provided excellent reference tools, particularly his work on the Cretaceous exposures and fauna that can be found there.

One of our fossil field trips was to the ruggedly beautiful Cretaceous exposures of Lina Island. We had planned this expedition as part of our “trips of a lifetime.” 

Both John Fam, the Vice Chair of the Vancouver Paleontological Society and Dan Bowen, the Chair of both the British Columbia Paleontological Alliance and Vancouver Island Palaeontological Society, can be congratulated for their efforts in researching the area and ably coordinating a warm welcome by the First Nations community and organizing fossil field trips to some of the most amazing fossil localities in the Pacific Northwest.

With great sandstone beach exposures, the fossil-rich (Albian to Cenomanian) Haida formation provided ample specimens, some directly in the bedding planes and many in concretion. Many of the concretions contained multiple specimens of typical Haida Formation fauna, providing a window into this Cretaceous landscape.

It is always interesting to see who was making a living and co-existing in our ancient oceans at the time these fossils were laid down. We found multiple beautifully preserved specimens of the spiny ammonite, Douvelleiceras spiniferum along with Brewericeras hulenense, Cleoniceras perezianum and many cycads in concretion.
Douvelliceras spiniferum, Cretaceous Haida Formation

Missing from this trip log are tales of Rene Savenye, who passed away in the weeks just prior. While he wasn't there in body, he was with us in spirit. I thought of him often on the mist-shrouded days of collecting. 

Many of the folk on who joined me on those outcrops were friends of Rene's and would go on to receive the Rene Savenye Award for their contributions to palaeontology. There is a certain poetry in that. 

The genus Douvilleiceras range from Middle to Late Cretaceous and can be found in Asia, Africa, Europe and North and South America. 

We have beautiful examples in the early to mid-Albian from the archipelago of Haida Gwaii in British Columbia. Joseph F. Whiteaves was the first to recognize the genus from Haida Gwaii when he was looking over the early collections of James Richardson and George Dawson.

My collections from Haida Gwaii will all be lovingly prepped and donated to the Haida Gwaii Museum in Skidegate, British Columbia.

Wednesday, 24 April 2024

CHUCKANUT DRIVE: EOCENE TROPICAL PARADISE

A trip along Chuckanut Drive, in northwestern Washington is a chance to view incredible diversity from sea to sky.

An amazing array of plants and animals call this coastline home. 

For the fossil enthusiast, it is a chance to slip back in time and have a bird’s eye view of a tropical paradise preserved in the Eocene strata of various fossil sites. 

Snug up against the Pacific Ocean, this 6000m thick exposure yields a vast number of tropical and flowering plants that you might see in Mexico today. Easily accessible by car, this rich natural playground makes for an enjoyable daytrip just one hour south of the US Border.

Over vast expanses of time, powerful tectonic forces have massaged the western edge of the continent, smashing together a seemingly endless number of islands to produce what we now know as North America and the Pacific Northwest. Intuition tells us that the earth’s crust is a permanent, fixed outer shell – terra firma.

Aside from the rare event of an earthquake or the eruption of Mount St. Helen’s, our world seems unchanging, the landscape constant. In fact, it has been on the move for billions of years and continues to shift each day. As the earth’s core began cooling, some 4.5 billion years ago, plates, small bits of continental crust, have become larger and smaller as they are swept up in or swept under their neighboring plates. 

Large chunks of the ocean floor have been uplifted, shifted and now find themselves thousands of miles in the air, part of mountain chains far from the ocean today or carved by glacial ice into valleys and basins.

Two hundred million years ago, Washington was two large islands, bits of continent on the move westward, eventually bumping up against the North American continent and calling it home. Even with their new fixed address, the shifting continues; the more extreme movement has subsided laterally and continues vertically. 

The upthrusting of plates continues to move our mountain ranges skyward – the path of least resistance. This dynamic movement has created the landscape we see today and helped form the fossil record that tells much of Washington’s relatively recent history – the past 50 million years.

Chuckanut Drive is much younger than other parts of Washington. The fossils found there lived and died some 40-55 million years ago, very close to where they are now, but in a much warmer, swampy setting. The exposures of the Chuckanut Formation were once part of a vast river delta; imagine, if you will, the bayou country of the Lower Mississippi. The siltstones, sandstones, mudstones and conglomerates of the Chuckanut Formation were laid down about 40-54 million years ago during the Eocene epoch, a time of luxuriant plant growth in the subtropical flood plain that covered much of the Pacific Northwest.

This ancient wetland provided ideal conditions to preserve the many trees, shrubs & plants that thrived here. Plants are important in the fossil record because they are more abundant and can give us a lot of information about climate, temperature, the water cycle and humidity of the region. 

The Chuckanut flora is made up predominantly of plants whose modern relatives live in tropical areas such as Mexico and Central America. If you are interesting in viewing a tropical paradise in your own backyard, look no further than the Chuckanut. 

Images and tag lines: Glyptostrobus, the Chinese swamp cypress, is perhaps the most common plant found here. Also abundant are fossilized remains of the North American bald cypress, Taxodium; Metasequoia (dawn redwood), Lygodium (climbing fern), large Sabal (palm) and leaves from a variety of broad leaf angiosperm plants such as (witch hazel), Laurus (laurel), Ficus (fig) and Platanus (sycamore), and several other forms.

While less abundant, evidence of the animals that called this ancient swamp home are also found here. Rare bird, reptile, and mammal tracks have been immortalized in the outcrops of the Chuckanut Formation. Tracks of a type of archaic mammal of the Orders Pantodonta or Dinocerata (blunt foot herbivores), footprints from a small shorebird, and tracks from an early equid or webbed bird track give evidence to the vertebrates that inhabited the swamps, lakes and river ways of the Pacific Northwest 50 million years ago.

The movement of these celebrity vertebrates was captured in the soft mud on the banks of a river, one of the only depositional environments favorable for track preservation.

Monday, 22 April 2024

FOSSIL FAUNA OF HAIDA GWAII

This lovely slate grey and beige ammonite with the fine ribbing is Brewericeras hulenense (Anderson 1938) — a fast-moving, nektonic (no idle floating here!) carnivorous ammonite from the Lower Cretaceous (Albian) of Haida Gwaii, British Columbia, Canada.

This specimen is just over 12cm in length, a little under the average of 13.4cm. There are several localities in the islands of Haida Gwaii where Brewericeras can be found — six that I know of and likely plenty more.

The islands of Haida Gwaii lay at the western edge of the continental shelf due west of the central coast of British Columbia. 

They form Wrangellia, an exotic tectonostratigraphic terrane that includes Vancouver Island, parts of western British Columbia and Alaska.

It is always interesting to see who was making a living and co-existing in our ancient oceans at the time these fossils were laid down. 

We find multiple beautifully preserved specimens of the spiny ammonite, Douvelleiceras spiniferum along with Brewericeras hulenense (shown here), Cleoniceras perezianum and many cycads in concretion.

The Lower Jurassic ammonite faunas found at Haida Gwaii are very similar to those found in the Eastern Pacific around South America and in the Mediterranean. 

The strata exposed at Maple Island, Haida Gwaii are stratigraphically higher than the majority of Albian localities in Skidegate Inlet. The macrofossil fauna belonged to the Upper part of the Sandstone Member of the Haida formation.

The western end of the island contains numerous well-preserved inoceramids such as Birostrina concentrica and a few rare ammonites of Desmoceras bearskinese

The eastern shores are home to unusual ammonite fauna in the finer-grained sandstones. Here we find the fossils as extremely hard concretions while others were loose in the shale. Species include Anagaudryceras sacya and Tetragonites subtimotheanus. A large whorl section of the rare Ammonoceratites crenucostatus has also been found here. 

Friday, 19 April 2024

EXPLORING WRANGELLIA: HAIDA GWAII

Misty shores, moss covered forests, a rich cultural history, dappled light, fossils and the smell of salt air—these are my memories of Haida Gwaii.

The archipelago of Haida Gwaii lays at the western edge of the continental shelf due west of the central coast of British Columbia.

They form part of Wrangellia, an exotic tectonostratigraphic terrane that includes Vancouver Island, parts western British Columbia and Alaska.

The Geological Survey of Canada sponsored many expeditions to these remote islands and has produced numerous reference papers on this magnificent terrain, exploring both the geology and palaeontology of the area.

Joseph Whiteaves, the GSC's chief palaeontologist in Ottawa, published a paper in 1876 describing the Jurassic and Cretaceous faunas of Skidegate Inlet, furthering his reputation globally as both a geologist, palaeontologist as well as a critical thinker in the area of science.

The praise was well-earned and foreshadowed his significant contributions to come. Sixteen years later, he wrote up and published his observations on a strange Mount Stephen fossil that resembled a kind of headless shrimp with poorly preserved appendages. 

Because of the unusual pointed shape of the supposed ventral appendages and the position of the spines near the posterior of the animal, Whiteaves named it Anomalocaris canadensis. The genus name "Anomalocaris" means "unlike other shrimp" and the species name "canadensis" refers to the country of origin.

Whiteaves work on the palaeontology of Haida Gwaii provided excellent reference tools, particularly his work on the Cretaceous exposures and fauna that can be found there.

One of our fossil field trips was to the ruggedly beautiful Cretaceous exposures of Lina Island. We had planned this expedition as part of our “trips of a lifetime.” 

Both John Fam, the Vice Chair of the Vancouver Paleontological Society and Dan Bowen, the Chair of both the British Columbia Paleontological Alliance and Vancouver Island Palaeontological Society, can be congratulated for their efforts in researching the area and ably coordinating a warm welcome by the First Nations community and organizing fossil field trips to some of the most amazing fossil localities in the Pacific Northwest.

With great sandstone beach exposures, the fossil-rich (Albian to Cenomanian) Haida formation provided ample specimens, some directly in the bedding planes and many in concretion. Many of the concretions contained multiple specimens of typical Haida Formation fauna, providing a window into this Cretaceous landscape.

It is always interesting to see who was making a living and co-existing in our ancient oceans at the time these fossils were laid down. We found multiple beautifully preserved specimens of the spiny ammonite, Douvelleiceras spiniferum along with Brewericeras hulenense, Cleoniceras perezianum and many cycads in concretion.
Douvelliceras spiniferum, Cretaceous Haida Formation

Missing from this trip log are tales of Rene Savenye, who passed away in the weeks just prior. While he wasn't there in body, he was with us in spirit. I thought of him often on the mist-shrouded days of collecting. 

Many of the folk on who joined me on those outcrops were friends of Rene's and would go on to receive the Rene Savenye Award for their contributions to palaeontology. There is a certain poetry in that. 

The genus Douvilleiceras range from Middle to Late Cretaceous and can be found in Asia, Africa, Europe and North and South America. 

We have beautiful examples in the early to mid-Albian from the archipelago of Haida Gwaii in British Columbia. Joseph F. Whiteaves was the first to recognize the genus from Haida Gwaii when he was looking over the early collections of James Richardson and George Dawson.

My collections from Haida Gwaii will all be lovingly prepped and donated to the Haida Gwaii Museum in Skidegate, British Columbia.

Monday, 18 March 2024

JAPANESE CORKSCREW AMMONITE: HYPHANTOCERAS ORIENTALE

A stunning example of the heteromorph ammonite, Hyphantoceras orientale macroconch. This beauty corresponds to 'Morphotype C' from Aiba (2017). 

The specimen is a handful at 136 mm and was lovingly prepared by the hand holding it, that of the talented José Juárez Ruiz.

This an adult specimen (not the juvenile stage) from Upper Santonian outcrops near Ashibetsu, Hokkaido, Japan.

Aiba published on a possible phylogenetic relationship of two species of Hyphantoceras (Ammonoidea, Nostoceratidae) earlier this year, proposing that a phylogenetic relationship may exist based on newly found specimens with precise stratigraphic occurrences in the Kotanbetsu and Obira areas, northwestern Hokkaido.

Two closely related species, Hyphantoceras transitorium and H. orientale, were recognized in the examined specimens from the Kotanbetsu and Obira areas. Specimens of H. transitorium show wide intraspecific variation in the whorl shape. The stratigraphic occurrences of the two species indicate that they occur successively in the Santonian–lowermost Campanian, without stratigraphic overlapping. 

The similarity of their shell surface ornamentations and the stratigraphic relationships possibly suggest that H.orientale was derived from H. transitorium. The presumed lineage is likely indigenous to the northwestern Pacific realm in the Santonian–earliest Campanian. Hyphantoceras venustum and H. heteromorphum might stand outside a H. transitorium–H. orientale lineage, judging from differences of their shell surface ornamentation.

Aiba, Daisuke. (2019). A Possible Phylogenetic Relationship of Two Species of Hyphantoceras (Ammonoidea, Nostoceratidae) in the Cretaceous Yezo Group, Northern Japan. Paleontological Research. 23. 65-80. 10.2517/2018PR010.

Friday, 16 February 2024

UPTHRUSTING PLATES: WASHINGTON GEOLOGY

Two hundred million years ago, Washington was two large islands, bits of the continent on the move westward, eventually bumping up against the North American continent and calling it home. The shifting continues, subtly changing the landscape like a breath. We only notice when pockets of resistance manifest as earthquakes, some newsworthy, some all but unnoticed. For now, the more extreme movement has subsided laterally and continues vertically, pushing California towards the North Pole. Hello Baja-BC.

The upthrusting of plates move our mountain ranges skyward – the path of least resistance. And it is this dynamic movement that's created the landscape we see today.

The 3,000 meters of the stratigraphic section of the Chuckanut Formation along Chuckanut Drive span an age range of just a few million years. The lower part is late Paleocene with a radiometric age of around 56 million years. The upper part of the section is early Eocene. The fossils found here lived and died very close to where they are now but in a much warmer, wetter, swampy setting. The exposures of the Chuckanut Formation were once part of a vast river delta; imagine, if you will, the bayou country of the Lower Mississippi. The siltstones, sandstones, mudstones and conglomerates of this formation were laid down during a time of luxuriant plant growth in the subtropical flood plain that covered much of the Pacific Northwest.

This ancient wetland provided ideal conditions to preserve the many trees, shrubs and plants that thrived here giving us a lot of information about climate, temperature, the water cycle and humidity of the region. The Chuckanut flora is made up predominantly of plants whose modern relatives live in tropical areas such as Mexico and Central America. While less abundant, evidence of the animals that called this ancient swamp home are also found here. Rare bird, reptile, and mammal tracks have been immortalized in the outcrops of the Chuckanut Formation.

Sumas Eocene Shorebird Trackway
Tracks of a type of archaic mammal of the Orders Pantodonta or Dinocerata (blunt foot herbivores), footprints from a small shorebird, and tracks from an early equid or webbed bird track give evidence to the vertebrates that inhabited the swamps, lakes and riverways of the Pacific Northwest 50 million years ago.

Fossil mammals and bird trackways from Washington State have caused great excitement over the past few years. Many new trackways have been discovered since the 2009 slides near Sumas. George Mustoe and team collected these important finds, bringing them to the Burke Museum in Washington State to study and make available for display.

The movement of these vertebrates was captured in the soft mud on the banks of an ancient river, one of the only depositional environments favourable for track preservation. The terrestrial paleontological record of Washington State at sites like Chuckanut and Racehorse Creek (U-Pb 53 Ma.) is primarily made up of plant material with some wonderfully enticing mammal, shorebird (seen here) and large Diatryma bird tracks on rare occasions.

Thursday, 11 January 2024

PALAEONTOLOGY OF CANADA'S KOOTENAY REGION

The East Kootenay region on the south-eastern edge of British Columbia is a land of colossal mountains against a clear blue sky. 

That is not strictly true, of course, as this area does see its fair share of rain and temperature extremes — but visiting in the summer every view is a postcard of mountainous terrain.

Rocks from deep within the Earth's crust underlie the entire East Kootenay region and are commonly exposed in the areas majestic mountain peaks, craggy rocky cliffs, glaciated river canyons, and rock cuts along the highways. Younger Ice Age sediments blanket much of the underlying rock.

I've been heading to the Cranbrook and Fernie area since the early 1990s. My interest is the local geology and fossil history that these rocks have to tell. I'm also drawn to the warm and welcoming locals who share a love for the land and palaeontological treasures that open a window to our ancient past.  

Cranbrook is the largest community in the region and is steeped in mining history and the opening of the west by the railway. It is also a stone's throw away from Fort Steele and the Lower Cambrian exposures of the Eager Formation. These fossil beds rival the slightly younger Burgess Shale fauna and while less varied, produce wonderful examples of olenellid trilobites and weird and wonderful arthropods nearly half a billion years old. 

Labiostria westriopi, McKay Group
The Lower Cambrian Eager Formation outcrops at a few localities close to Fort Steele, many known since the early 1920s, and up near Mount Grainger near the highway. 

Further east, the Upper Cambrian McKay Group near Tanglefoot Mountain is a palaeontological delight with fifteen known outcrops that have produced some of the best-preserved and varied trilobites in the province — many of them new species. 

The McKay Formation also includes Ordovician outcrops sprinkled in for good measure.

Other cities in the area and the routes to and from them produce other fossil fauna from Kimberley to Fernie and the district municipality of Invermere and Sparwood. This is an arid country with native grasslands and forests of semi-open fir and pine. Throughout there are a host of fossiliferous exposures from Lower Cretaceous plants to brachiopods. 

The area around Whiteswan Lake has wonderful large and showy Ordovician graptolites including Cardiograptus morsus and Pseudoclimacograptus angustifolius elongates — some of our oldest relatives. A drive down to Flathead will bring you to ammonite outcrops and you can even find Eocene fresh-water snails in the region. 

The drive from Cranbrook to Fernie is about an hour and change through the Cambrian into the Devonian which flip-flops and folds over revealing Jurassic exposures. 

Fernie Ichthyosaur Excavation, 1916
The Crowsnest Highway into Fernie follows Mutz Creek. From the highway, you can see the Fernie Group and the site along the Elk River where an ichthyosaur was excavated in 1916. 

The Fernie Formation is Jurassic. It is present in the western part of the Western Canada Sedimentary Basin in western Alberta and northeastern British Columbia. 

It takes its name from the town of Fernie, British Columbia, and was first defined by W.W. Leach in 1914. The town of Fernie is rimmed by rugged mountains tipped with Devonian marine outcrops. In essence, all these mountains are upside down with the oldest layers flipped to the top and a good 180 million years older than those they sit upon. 

Before they were mountains, these sedimentary rocks were formed as sediment collected in a shallow sea or inland basin. About 360 million years ago, the rocks that you see in Fernie today were down near the equator. They road tectonic plates, pushing northeast smashing into the coastline of what would become British Columbia. A little push here, shove there — compression and thrust faulting — and the rock was rolled over on its head — repeatedly. But that is how mountains are often formed, though not usually pushed so hard that they flip over. But still, it is a slow, relentless business. 

Cretaceous Plant Material, Fernie, BC
Within Fernie, there are small exposures of Triassic and Jurassic marine outcrops. East of the town there are Cretaceous plant sites, and of course, the Jurassic 1.4-metre Titanites occidentalis ammonite up on Coal Mountain.

The regional district's dominant landform is the Rocky Mountain Trench, which is flanked by the Purcell Mountains and the Rocky Mountains on the east and west, and includes the Columbia Valley region. The southern half of which is in the regional district — its northern half is in the Columbia-Shuswap Regional District. 

The regional district of Elk Valley in the southern Rockies is the entryway to the Crowsnest Pass and an important coal-mining area. 

Other than the Columbia and Kootenay Rivers, whose valleys shape the bottomlands of the Rocky Mountain Trench, the regional districts form the northernmost parts of the basins of the Flathead, Moyie and Yahk Rivers. 

The Moyie and Yahk are tributaries of the Kootenay, entering it in the United States, and the Flathead is a tributary of the Clark Fork into Montana.

Photo One: Tyaughton Mountain, Mckay Group; Photo Two: Labiostria westriopi, Upper Cambrian McKay Group, Site ML (1998); John Fam Collection; Photo Three: Ichthyosaur Excavation, Fernie, British Columbia, 1916; Photo Four: Cretaceous Plant Fossils, east of Fernie towards Coal Mountain. The deeply awesome Guy Santucci as hand-model for scale. 

Thursday, 17 November 2022

FOSSIL AMPHIBIANS OF NOVA SCOTIA

Dendrerpeton acadianum, an extinct amphibian
One of the best Canadian fossil finds stems from a random boulder picked up on the beach near the town of Joggins, Nova Scotia. Inside were the bones of a fully articulated skeleton of Dendrerpeton acadianum, a Temnospondyli from the Lower Pennsylvanian. 

These little cuties belong to an extinct genus of amphibians who loved wet, swampy wetlands similar to those we find in the bayous of Mississippi today.   

Dendrerpeton is the primitive sister-group to a clade of Temnospondyls that includes Trimerorhachoids, the Eryopoids — Ervops, Parioxys, & Sclerocephalus — Zatracheids & Dissorophoids. 

This little guy along with finding the first true reptile, Hylonomus lyelli, ancestor of all dinosaurs that would rule the Earth 100 million years later serve as the reference point where animals finally broke free of the water to live on land. This evolutionary milestone recorded at Joggins remains pivotal to understanding the origins of all vertebrate life on land, including our own species. 

Joggins records life in a once a wet, swampy wetland
Sir Charles Lyell, the author of Principles of Geology, first noted the exceptional natural heritage value of the Joggins Fossil Cliffs. He described them as: 

“...the finest example in the world of a natural exposure in a continuous section ten miles long, occurs in the sea cliffs bordering a branch of the Bay of Fundy in Nova Scotia.” 

Indeed, the world-famous Bay of Fundy with its impressive tides, the highest in the world, and stormy nature exposed much of this outcrop.