Sunday, 15 March 2020

CONFOUNDING CONFUCIUSORNIS

Confuciusornis was about the size of a modern pigeon, with a total length of 50 centimetres (1.6 feet) and a wingspan of up to 70 cm (2.3 ft). Its body weight has been estimated to have been as much as 1.5 kilograms (3.3 lb), or less than 0.2 kg (0.44 lb). Confuciusornis feducciai was about a third longer than average specimens of Confuciusornis sanctus.

Confuciusornis is an interesting species as it shows a mix of basal and derived traits. It was more advanced or derived than Archaeopteryx in possessing a short tail with a pygostyle — a bone formed from a series of short, fused tail vertebrae — and a bony sternum or breastbone, but more basal or "primitive" than modern birds in retaining large claws on the forelimbs, having a primitive skull with a closed eye-socket, and a relatively small breastbone.

At first, the number of basal characteristics was exaggerated: Hou assumed in 1995 that a long tail was present and mistook grooves in the jaw bones for small degenerated teeth. I suppose we see what we want to see and our expectations colour our vision.

Confuciusornis sanctus, Cincinnati Museum of Natural History and Science
The skull morphology of Confuciusornis has been difficult to determine. Many of the specimens are crushed and deformed but we can piece some of it together.

Their skulls were near triangular in side view, and the toothless beak was robust and pointed. The front of the jaws had deep neurovascular foramina and grooves, associated with the keratinous rhamphotheca — horn-covered beak.

The skull was rather robust, with deep jaws, especially the mandible. The tomial crest of the upper jaw — bony support for the jaw's cutting edge — was straight for its entire length. The premaxillae —front bones of the upper jaw — were fused together for most of the front half of the snout, but were separated at the tip by a V-shaped notch. The frontal processes that projected hindwards from the premaxillae were thin and extended above the orbits (eye openings) like in modern birds, but unlike Archaeopteryx and other primitive birds without pygostyles, where these processes end in front of the orbits. The maxilla (the second large bone of the upper jaw) and premaxilla articulated by an oblique suture, and the maxilla had an extensive palatal shelf. The nasal bone was smaller than in most birds and had a slender process that directed down towards the maxilla.

The orbit was large, round, and contained sclerotic plates — the bony support inside the eye. A crescent-shaped element that formed the front wall of the orbit may be an ethmoidolacrimal complex similar to that of pigeons, but the identity of these bones is unclear due to bad preservation, and the fact that this region is very variable in modern birds. The external nares, bony nostrils, were near triangular and positioned far from the tip of the snout. The borders of the nostrils were formed by the premaxillae above, the maxilla below, and the nasal wall at the back.

Birds: Living Dinosaurs
Few specimens preserve the sutures of the braincase, but one specimen shows that the frontoparietal suture crossed the skull just behind the postorbital process and the hindmost wall of the orbit.

This was similar to Archaeopteryx and Enaliornis, whereas it curves back and crosses the skull roof much farther behind in modern birds, making the frontal bone of Confuciusornis small compared to those of modern birds.

A prominent supraorbital flange formed the upper border of the orbit and continued as the postorbital process, which had prominent crests that projected outwards to the sides, forming an expansion of the orbit's rim.

The squamosal bone was fully incorporated into the braincase wall, making its exact borders impossible to determine, which is also true for adult modern birds.

Various interpretations have been proposed of the morphology and identity of the bones in the temporal region behind the orbits, but it may not be resolvable with the available fossils. Confuciusornis was considered the first known bird with an ancestral diapsid skull — with two temporal fenestrae on each side of the skull — in the late 1990s, but in 2018, Elzanowski and colleagues concluded that the configuration seen in the temporal region of confuciusornithids was autapomorphic — a unique trait that evolved secondarily rather than having been retained from a primitive condition — for their group.

Victoria Crowned Pidgeon, Goura victoria
The quadrate bone and the back end of the jugal bar were bound in a complex scaffolding that connected the squamosal bone with the lower end of the postorbital process. This scaffolding consisted of two bony bridges, the temporal bar and the orbitozygomatic junction, which gave the appearance of the temporal opening being divided similarly to diapsid skulls, though this structure is comparable to bridges over the temporary fossa in modern birds.

The mandible, lower jaw, is one of the best-preserved parts of the skull. It was robust, especially at the front third of its length. The tomial crest was straight for its entire length, and a notch indented the sharp tip of the mandible.

The mandible was spear-shaped when viewed from the side due to its lower margin slanting downwards and back from its tip for the front third of its length — the jaw was also deepest at a point one third from the tip.

The symphyseal part — where the two halves of the lower jaw connected — of the dentary was very robust. The lower margin formed an angle at the level of the front margin of the nasal foramen, which indicates how far back the rhamphotheca of the beak extended.

The dentary had three processes that extended backwards into other bones placed further back in the mandible. The articular bone at the back of the mandible was completely fused with the surangular and prearticular bones. The mandible extended hindwards beyond the cotyla — which connected with the condyle of the upper jaw — and this part was therefore similar to a retroarticular process as seen in other taxa. The surangular enclosed two mandibular fenestrae. The hindmost part of the surangular had a small foramen placed in the same position as similar openings in the mandibles of non-bird theropods and modern birds. The splenial bone was three-pronged — as in some modern birds, but unlike the simple splenial of Archaeopteryx — and its lower margin followed the lower margin of the mandible. There were large rostral mandibular fenestra and a small, rounded caudal fenestra behind it.

Though only two specimens preserve parts of the beak's keratinous covering, these show that there would have been differences between species not seen in the skeleton. The holotype of C. dui preserves the outline of an upwards curving beak which sharply tapers towards its tip, while a C. sanctus specimen has an upper margin that is almost straight and a tip that appears to be slightly hooked downwards.

Photo One: Zhiheng Li, Zhonghe Zhou, Julia A. Clarke - http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198078, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=78911418

Photo Two: James St. John, Ohio State University, Newark - https://www.flickr.com/photos/jsjgeology/15236217920/, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=36907383