
Saturday, 5 July 2025
FOSSIL HUNTRESS PODCAST: DEAD SEXY SCIENCE
Close your eyes & fly with me as we head out together to explore Earth's rich history written in her rock. Travel to extraordinary places, sacred sites & unearth mysteries millions of years old on the Fossil Huntress Podcast.
This stream is for those who share an enduring passion for our world's hidden treasures, its wild places & want to uncover her beauty stone by stone.
This is the story of the making of our Earth and the many wonderful creatures who have called it home.
Join in the exploration of the fascinating science of paleontology — that lens that examines ancient animals, plants & ecosystems from wee single-celled organisms to big & mighty dinosaurs. Save the stream to your favorites to listen while you drive, head out fossil collecting or snuggle in for the night!
To listen now, visit: https://open.spotify.com/show/1hH1wpDFFIlYC9ZW5uTYVL
Monday, 16 June 2025
FOSSIL HUNTRESS PODCAST
This stream is for those who share an enduring passion for our world's hidden treasures, its wild places & want to uncover her beauty stone by stone. This is the story of the making of our Earth and the many wonderful creatures who have called it home.
Join in the exploration of the fascinating science of palaeontology — that lens that examines ancient animals, plants & ecosystems from wee single-celled organisms to big & mighty dinosaurs.
Learn about the interwoven disciplines of natural history, ecology, geology, conservation & stewardship of our world. To listen to the stories of the Earth, visit: https://open.spotify.com/show/1hH1wpDFFIlYC9ZW5uTYVL
Tuesday, 1 April 2025
UNEARTHING FOSSIL BIRD BONES ON SOUTHERN VANCOUVER ISLAND
![]() |
Stemec suntokum, a Fossil Plopterid from Sooke, BC |
As romantic as it sounds, it happens more often than you think.
I can think of more than a dozen new fossil species from my home province of British Columbia on Canada’s far western shores that have been named after people I know who have collected those specimens or contributed to their collection over the past 20 years.
British Columbia, Canada, is a paleontological treasure trove, and one of its most rewarding spots is tucked away near the southwestern tip of Vancouver Island: the Sooke Formation along the rugged shores of Muir Beach.
A Beach Walk into Deep Time
Follow Highway 14 out of the town of Sooke, just west of Victoria, and you’ll soon find yourself staring at the cool, clear waters of the Strait of Juan de Fuca. Step onto the gravel parking area near Muir Creek, and from there, walk right (west) along the beach. The low yellow-brown cliffs up ahead mark the outcrop of the upper Oligocene Sooke Formation, part of the larger Carmanah Group.
For collectors, families, and curious wanderers alike, this spot is a dream. On a sunny summer day, the sandstone cliffs glow under the warm light, and if you’re lucky enough to visit in the quieter seasons, there’s a certain magic in the mist and drizzle—just you, the crashing surf, and the silent secrets of a world long gone.
Geological Canvas of the Oligocene
The Sooke Formation is around 25 to 30 million years old (upper Oligocene), when ocean temperatures had cooled to levels not unlike those of today. That ancient shoreline supported many of the marine organisms we’d recognize in modern Pacific waters—gastropods, bivalves, echinoids, coral, chitons, and limpets. Occasionally, larger remains turn up: bones from marine mammals, cetaceans, and, in extremely rare instances, birds.
Beyond Birds: Other Fossil Treasures
The deposits in this region yield abundant fossil molluscs. Look carefully for whitish shell material in the grey sandstone boulders along the beach. You may come across Mytilus (mussels), barnacles, surf clams (Spisula, Macoma), or globular moon snails. Remember, though, to stay clear of the cliffs—collecting directly from them is unsafe and discouraged.
These same rock units have produced fossilized remains of ancient marine mammals. Among them are parts of desmostylids—chunky, herbivorous marine mammals from the Oligocene—and the remains of Chonecetus sookensis, a primitive baleen whale ancestor. There are even rumors of jaw sections from Kolponomos, a bear-like coastal carnivore from the early Miocene, found in older or nearby formations.
Surprisingly, avian fossils at this site do exist, though they’re few and far between. Which brings us to one of the most exciting paleontological stories on the island: the discovery of a flightless diving bird.
The Suntok Family’s Fortuitous Find
In 2013, while strolling the shoreline near Sooke, Steve Suntok and his family picked up what they suspected were fossilized bones. Their instincts told them these were special, so they brought the specimens to the Royal British Columbia Museum (RBCM) in Victoria.
Enter Gary Kaiser: a biologist by profession who, after retirement, turned his focus to avian paleontology. As a research associate with the RBCM, Kaiser examined the Suntoks’ finds and realized these were no ordinary bones. They were the coracoid of a 25-million-year-old flightless diving bird—a rare example of the extinct Plotopteridae. In honor of the region’s First Nations and the intrepid citizen scientists who found it, he named the new genus and species Stemec suntokum.
Meet the Plotopterids
Plotopterids once lived around the North Pacific from the late Eocene to the early Miocene. They employed wing-propelled diving much like modern penguins, “flying” through the water using robust, flipper-like wings. Fossils of these extinct birds are known from outcrops in the United States and Japan, where some specimens reached up to two meters in length.
The Sooke fossil, on the other hand, likely belonged to a much smaller individual—somewhere in the neighborhood of 50–65 cm long and 1.7–2.2 kg, about the size and weight of a small Magellanic Penguin (Spheniscus magellanicus) chick. The key to identifying Stemec suntokum was its coracoid, a delicate shoulder bone that provides insight into how these birds powered their underwater movements.
From Penguin Waddle to Plotopterid Dive
If you’ve ever seen a penguin hopping near the ocean’s edge or porpoising through the water, you can imagine the locomotion of these ancient Plotopterids. The coracoid bone pivots as a bird flaps its wings, providing a hinge for the up-and-down stroke. Because avian bones are so delicate—often scavenged or destroyed by ocean currents before they can fossilize—finding such a beautifully preserved coracoid is a stroke of incredible luck.
Kaiser’s detailed observations on the coracoid of Stemec suntokum—notably its unusually narrow, conical shaft—sparked debate among avian paleontologists. You can read his paper, co-authoried with Junya Watanabe and Marji Johns, was published in Palaeontologia Electronica in November 2015. You can find the paper online at:
https://palaeo-electronica.org/content/2015/1359-plotopterid-in-canada
The Suntok Legacy
It turns out the Suntok family’s bird discovery wasn’t their last remarkable find. Last year, they unearthed part of a fish dental plate that caught the attention of Russian researcher Evgeny Popov. He named it Canadodus suntoki (meaning “Tooth from Canada”), another nod to the family’s dedication as citizen scientists.
While the name may not be as lyrical as Stemec suntokum, it underscores the continuing tradition of everyday fossil lovers making big contributions to science.
Planning Your Own Expedition
Location: From Sooke, drive along Highway 14 for about 14 km. Just after crossing Muir Creek, look for the gravel pull-out on the left. Park and walk down to the beach; turn right (west) and stroll about 400 meters toward the sandstone cliffs.
Tip: Check the tide tables and wear sturdy footwear or rubber boots. Fossils often appear as white flecks in the greyish rocks on the beach. A small hammer and chisel can help extract specimens from coquinas (shell-rich rock), but always use eye protection and respect the local environment.
Coordinates: 48.4°N, 123.9°W (modern), which corresponds to around 48.0°N, 115.0°W in Oligocene paleo-coordinates.
Why Head to Sooke? Pure Gorgeousness!
Whether you’re scanning the shoreline for ancient bird bones or simply soaking in the Pacific Northwest vistas, Muir Beach offers a blend of natural beauty and deep-time adventure. For many, the idea of unearthing a brand-new fossil species seems almost mythical.
Yet the Suntok family’s story proves it can—and does—happen. With an appreciative eye, a sense of curiosity, and a willingness to learn, any of us could stumble upon the next chapter of Earth’s distant past.
So pack your boots, bring a hammer and some enthusiasm, and you just might find yourself holding a piece of ancient avian history—like Stemec suntokum—in your hands.
References & Further Reading
Clark, B.L. and Arnold, R. (1923). Fauna of the Sooke Formation, Vancouver Island, B.C. University of California Publications in Geological Sciences 14(6).
Hasegawa et al. (1979); Olson and Hasegawa (1979, 1996); Olson (1980); Kimura et al. (1998); Mayr (2005); Sakurai et al. (2008); Dyke et al. (2011).
Russell, L.S. (1968). A new cetacean from the Oligocene Sooke Formation of Vancouver Island, British Columbia. Canadian Journal of Earth Sciences, 5, 929–933.
Barnes, L.G. & Goedert, J.L. (1996). Marine vertebrate palaeontology on the Olympic Peninsula. Washington Geology, 24(3), 17–25.
Kaiser, G., Watanabe, J. & Johns, M. (2015). A new member of the family Plotopteridae (Aves) from the late Oligocene of British Columbia, Canada. Palaeontologia Electronica.
Howard, H. (1969). A new avian fossil from the Oligocene of California. Described Plotopterum joaquinensis.
Wetmore, A. (1928). Avian fossils from the Miocene and Pliocene of California.
Monday, 31 March 2025
MASSIVE AMMONITE FROM MADAGASCAR
Ammonites were predatory, squidlike creatures that lived inside coil-shaped shells. Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. They used these tentacles to snare prey — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunt today.
Catching a fish with your hands is no easy feat, as I'm sure you know. Ammonites did the equivalent, catching prey in their tentacles. They were skilled and successful hunters. They caught their prey while swimming and floating in the water column.
Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. By pushing air in or out, they were able to control their buoyancy in the water column.
They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.
They were a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs, commonly referred to as ammonites, are more closely related to living coleoids — octopuses, squid, and cuttlefish) then they are to shelled nautiloids such as the living Nautilus species.
Ammonites have intricate and complex patterns on their shells called sutures. The suture patterns differ across species and tell us what time period the ammonite is from. If they are geometric with numerous undivided lobes and saddles and eight lobes around the conch, we refer to their pattern as goniatitic, a characteristic of Paleozoic ammonites.Ammonites first appeared about 240 million years ago, though they descended from straight-shelled cephalopods called bacrites that date back to the Devonian, about 415 million years ago, and the last species vanished in the Cretaceous–Paleogene extinction event.
They were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish. They were prolific back in the day, living (and sometimes dying) in schools in oceans around the globe. We find ammonite fossils (and plenty of them) in sedimentary rock from all over the world.
In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past.
For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. Generally, deeper is older, so we use the sedimentary layers rock to match up to specific geologic time periods, rather the way we use tree-rings to date trees. A handy way to compare fossils and date strata across the globe.
Monday, 24 March 2025
BURGESS SHALE FOSSILS: A DEEP TIME JOURNEY IN YOHO NATIONAL PARK
This UNESCO World Heritage site offers a rare and detailed look at life on Earth over half a billion years ago, during a time known as the Cambrian Explosion.
Whether you're a seasoned paleontology buff or a curious traveler, this ancient treasure trove belongs on your bucket list. Here’s everything you need to know about the fossils, the tours, how to get there, where to stay, eat, and explore.
Why Are the Burgess Shale Fossils Important?
The fossils of the Burgess Shale are a paleontological jackpot. Dating back 508 million years, they preserve not just the hard shells and bones, but also the soft tissues of ancient creatures — things like gills, eyes, and guts. These rare details offer a vivid snapshot of life in the ancient Cambrian seas.
Discovered by Charles Doolittle Walcott in 1909, the Burgess Shale holds some of the earliest and weirdest animals to ever live on Earth — including:
- Anomalocaris – a top predator with grasping arms and a ring of teeth
- Opabinia – a creature with five eyes and a long, tube-like nose
- Hallucigenia – a spiny worm that once puzzled scientists with its upside-down anatomy
- Pikaia – one of the first known animals with a notochord, an early precursor to the backbone
These fossils help us understand the roots of animal evolution — including our own.
Guided Fossil Tours: Hike Through Deep Time
Yes — you can actually visit these ancient fossil beds! Parks Canada offers guided day hikes to several Burgess Shale sites during the summer months (late June to early September). All tours must be booked in advance and are mandatory to access these protected areas. You can take photos galore but cannot collect or keep any of the fossils. They are protected and their removal is illegal.
Book Your Guided Burgess Shale Hike
Here are the main hikes you can choose from:
1. Walcott Quarry Hike
- Difficulty: Challenging (22 km round trip, ~11 hrs)
- Highlights: Iconic fossil site, stunning mountain scenery, classic fossils
- Departs from: Takakkaw Falls parking lot, Yoho National Park
2. Mount Stephen Trilobite Beds
- Difficulty: Moderate (8 km round trip, ~6 hrs)
- Highlights: Ground covered in trilobites, panoramic views
- Departs from: Field Visitor Centre
3. Stanley Glacier Hike (Kootenay National Park)
- Difficulty: Moderate (10 km round trip, ~7 hrs)
- Highlights: Newer fossil site, unique specimens, stunning glaciers
- Departs from: Stanley Glacier Trailhead
Note: You’ll need good hiking shoes, layers for changing weather, plenty of water, and a spirit of adventure.
Where to Stay Near the Burgess Shale
Field, BC is the perfect home base for your fossil adventure. It’s quaint, quiet, and surrounded by jaw-dropping mountain beauty.
Top Places to Stay:
- Cathedral Mountain Lodge – Rustic luxury cabins, great food, stunning setting.
- Emerald Lake Lodge – A short drive away, this lakeside lodge is a slice of paradise.
- Guesthouses & B&Bs in Field – Charming, cozy options like The Great Divide Lodge and Fireweed Hostel.
Where to Eat in and Around Field
While Field is small, it packs a punch with local, hearty eats:
- Truffle Pigs Bistro – Field’s culinary gem. Comfort food with a gourmet twist.
- The Siding Café – Great for coffee, sandwiches, and baked goods. Cozy and casual.
- Cathedral Mountain Lodge Dining Room – Upscale Rocky Mountain dining if you’re staying at the lodge.
Tip: There’s no gas station in Field. Fill up in Lake Louise (30 minutes away).
How to Get to Field, British Columbia
Field is nestled in Yoho National Park, just off the Trans-Canada Highway. Here's how long it'll take you from major cities:
Driving Times to Field, BC
- From Vancouver: ~8.5 hours (850 km via Hwy 1 through Kamloops and Golden)
- From Calgary: ~2.5 hours (215 km via Hwy 1 through Banff and Lake Louise)
You’ll pass through some of the most scenic mountain corridors in North America. Be sure to keep your eyes peeled for wildlife — mountain goats, bears, and elk often make an appearance.
A Lasting Legacy in Stone
Standing among the Burgess Shale beds, surrounded by towering peaks and the whispers of deep time, it’s hard not to feel humbled. These fossils tell the story of life’s earliest steps into complexity — a reminder of how strange, beautiful, and interconnected our world truly is.
Whether you're chasing trilobites or just soaking in the grandeur of Yoho’s landscapes, the Burgess Shale offers something extraordinary: a chance to walk with the ghosts of Earth’s earliest animals.
Learn More: (pop these in Google for more information)
- Parks Canada – Burgess Shale Official Site
- Royal Ontario Museum – Burgess Shale Project
- UNESCO World Heritage Info
Friday, 21 March 2025
ANCIENT SEA MONSTERS: ICHTHYOSAURS AND MOSASAURS
Among these marine reptiles, two groups stand out: ichthyosaurs and mosasaurs. Though they never coexisted, both ruled the oceans in their own time and in their own terrifying ways.
Ichthyosaurs: Dolphin-Like Reptiles of the Jurassic
Ichthyosaurs (meaning "fish lizards") were sleek, fast swimmers that first appeared around 250 million years ago during the Triassic.
Their streamlined bodies, long snouts, and large eyes gave them an appearance eerily similar to modern dolphins—though they weren’t mammals. This resemblance is a perfect example of convergent evolution, where unrelated animals develop similar traits to adapt to similar environments.
Some ichthyosaurs grew as long as a school bus, and their enormous eyes (some as large as dinner plates) suggest they were capable of deep-sea hunting. They fed on fish, squid, and other marine life, and some species likely gave birth to live young—a rare trait among reptiles.
They thrived for millions of years but began to decline in the mid-Cretaceous, eventually going extinct before the rise of mosasaurs.
Mosasaurs: Apex Predators of the Cretaceous Seas
Enter the mosasaurs, who rose to dominance after the ichthyosaurs were gone. Mosasaurs appeared around 98 million years ago and ruled the oceans until the mass extinction event 66 million years ago that also wiped out the dinosaurs.
These were true marine lizards, closely related to today’s monitor lizards and snakes. Picture a massive, crocodile-headed Komodo dragon with flippers and a shark-like tail—and you’ll have a good image of a mosasaur. Some species grew over 50 feet long, and their jaws were packed with conical, backward-curving teeth perfect for gripping slippery prey.
Mosasaurs were apex predators, eating anything they could catch—fish, turtles, birds, and even other mosasaurs. Their double-jointed jaws could open wide, allowing them to swallow large prey whole.
Who Would Win in a Fight?
While it’s fun to imagine a battle between an ichthyosaur and a mosasaur, it never could have happened—ichthyosaurs were long extinct by the time mosasaurs evolved. That said, mosasaurs were more heavily built and had powerful jaws, making them formidable hunters. Ichthyosaurs were faster and more agile, more suited to quick chases than brute force.
Legacy Beneath the Waves
Both ichthyosaurs and mosasaurs left behind rich fossil records, giving scientists insight into how reptiles adapted to life in the oceans. Their bones have been found on every continent, including Antarctica, reminding us that the ancient oceans were just as dynamic and dangerous as today’s wildest habitats.
Next time you watch a documentary about dinosaurs or visit a natural history museum, take a moment to appreciate the marine reptiles that once ruled the seas. After all, the land wasn't the only place where prehistoric giants thrived.
Monday, 27 May 2024
DINOFLAGELLATES: TEENSY OCEAN STARS
![]() |
This showy Christmas Cracker is a Dinoflagellate |
The showy royal blue Christmas cracker looking fellow you see here is a dinoflagellate.
Bioluminescent dinoflagellates are a type of plankton — teensy marine organisms that make the seaways shimmer as you swim through them or the tide crashes them against the shore.
The first modern dinoflagellate was described by Baker in 1753, the first species was formally named by Muller in 1773.
The first fossil forms were described by Ehrenberg in the 1830s from Cretaceous outcrops. More dinoflagellates have lived, died and gone extinct than there are living today. We know them mainly from fossil dinocysts dating back to the Triassic. They are one of the most primitive of the eukaryotic group with a fossil record that may extend into the Precambrian. They combine primitive characteristics of prokaryotes and advanced eukaryotic features.
The luciferase found in dinoflagellates is related to the green chemical chlorophyll found in plants. Their twinkling lights are brief, each containing about 100 million photons that shine for only a tenth of a second. While each individual flicker is here and gone in the wink of an eye, en masse they are breathtaking. I have spent several wondrous evenings scuba diving amongst these glittering denizens off our shores. What you know about light above the surface does not hold true for the light you see as bioluminescence. Its energy and luminosity come from a chemical reaction.
In a luminescent reaction, two types of chemicals — luciferin and luciferase — combine together. Together, they produce cold light — light that generates less than 20% thermal radiation or heat.The light you see is produced by a compound called Luciferin. It is the shiny, showy bit in this chemical show. Luciferase acts as an enzyme, the substance that acts as a catalyst controlling the rate of chemical reactions, allowing the luciferin to release energy as it is oxidized.
The colour of the light depends on the chemical structures of the chemicals. There are more than a dozen known chemical luminescent systems, indicating that bioluminescence evolved independently in different groups of organisms.
Coelenterazine is the type of luciferin we find in shrimp, fish and jellyfish. Dinoflagellates and krill share another class of unique luciferins, while ostracods or firefleas and some fish have a completely different luciferin — but all produce lights of various colours to great effect.
Friday, 19 April 2024
EXPLORING WRANGELLIA: HAIDA GWAII
They form part of Wrangellia, an exotic tectonostratigraphic terrane that includes Vancouver Island, parts western British Columbia and Alaska.
The Geological Survey of Canada sponsored many expeditions to these remote islands and has produced numerous reference papers on this magnificent terrain, exploring both the geology and palaeontology of the area.
The praise was well-earned and foreshadowed his significant contributions to come. Sixteen years later, he wrote up and published his observations on a strange Mount Stephen fossil that resembled a kind of headless shrimp with poorly preserved appendages.
Whiteaves work on the palaeontology of Haida Gwaii provided excellent reference tools, particularly his work on the Cretaceous exposures and fauna that can be found there.
One of our fossil field trips was to the ruggedly beautiful Cretaceous exposures of Lina Island. We had planned this expedition as part of our “trips of a lifetime.”
With great sandstone beach exposures, the fossil-rich (Albian to Cenomanian) Haida formation provided ample specimens, some directly in the bedding planes and many in concretion. Many of the concretions contained multiple specimens of typical Haida Formation fauna, providing a window into this Cretaceous landscape.
It is always interesting to see who was making a living and co-existing in our ancient oceans at the time these fossils were laid down. We found multiple beautifully preserved specimens of the spiny ammonite, Douvelleiceras spiniferum along with Brewericeras hulenense, Cleoniceras perezianum and many cycads in concretion.
![]() |
Douvelliceras spiniferum, Cretaceous Haida Formation |
Missing from this trip log are tales of Rene Savenye, who passed away in the weeks just prior. While he wasn't there in body, he was with us in spirit. I thought of him often on the mist-shrouded days of collecting.
The genus Douvilleiceras range from Middle to Late Cretaceous and can be found in Asia, Africa, Europe and North and South America.
Thursday, 18 April 2024
HUNTING NEUTRINOS AND DARK MATTER
The Homestake Gold Mine in Lawrence County, South Dakota was a going concern from about 1876 to 2001.
The mine produced more than forty million troy ounces of gold in its one hundred and twenty-five-year history, dating back to the beginnings of the Black Hills Gold Rush.
To give its humble beginnings a bit of context, Homestake was started in the days of miners hauling loads of ore via horse and mule and the battles of the Great Sioux War. Folk moved about via horse-drawn buggies and Alexander Graham Bell had just made his first successful telephone call.
Wyatt Earp was working in Dodge City, Kansas — he had yet to get the heck outta Dodge — and Mark Twain was in the throes of publishing The Adventures of Tom Sawyer. — And our dear Thomas Edison had just opened his first industrial research lab in Menlo Park. The mine is part of the Homestake Formation, an Early Proterozoic layer of iron carbonate and iron silicate that produces auriferous greenschist gold. What does all that geeky goodness mean? If you were a gold miner it would be music to your ears. They ground down that schist to get the glorious good stuff and made a tiny wee sum doing so. But then gold prices levelled off — from 1997 ($287.05) to 2001 ($276.50) — and rumblings from the owners started to grow. They bailed in 2001, ironically just before gold prices started up again.
But back to 2001, that levelling saw the owners look to a new source of revenue in an unusual place. One they had explored way back in the 1960s in a purpose-built underground laboratory that sounds more like something out of a science fiction book. The brainchild of chemist and astrophysicists, John Bahcall and Raymond Davis Jr. from the Brookhaven National Laboratory in Upton, New York, the laboratory was used to observe solar neutrinos, electron neutrinos produced by the Sun as a product of nuclear fusion
Tuesday, 2 April 2024
DOUVILLEICERAS MAMMILLATUM
The genus Douvilleiceras range from Middle to Late Cretaceous and can be found in Asia, Africa, Europe and North and South America.
We have beautiful examples in the early to mid-Albian from the archipelago of Haida Gwaii in British Columbia. Joseph F. Whiteaves was the first to recognize the genus from Haida Gwaii when he was looking over the early collections of James Richardson and George Dawson. The beauties you see here measure 6cm to 10cm.
Tuesday, 13 February 2024
JUVENILE HAMITES SUBROTUNDUS
While H. subrotundus is generally a Middle Albian species, this specimen was found in the lower part of Upper Albian in the Cristatum zone by José Juárez Ruiz. José had to piece this lovely together from seven fragments. His labour of love was worth the effort. The final piece is sheer perfection and a beautiful specimen approximately 2.5 cm long.
Mallorca and the other Balearic Islands are geologically an extension of the Baetic Cordillera mountain chain of western Andalusia that extends to Murcia and Valencia.
Exploring the islands, you can collect from deposits from the Triassic, Cretaceous, Jurassic, and Neogene periods.
We also see lovely examples of Hamites (Hamites) subrotundus in the Euhoplites loricatus zone; Euhoplites meandrinus subzone from the Middle Albian (Lower Gault) of Folkestone, Kent, UK.
Saturday, 10 February 2024
YORKSHIRE HISTORY: FOSSILS TEXTILES AND URINE
![]() |
Yorkshire Coast |
The Yorkshire Museum was given this important ichthyosaur fossil back in 1857 when alum production was still a necessary staple of the textile industry. Without that industry, many wonderful specimens would likely never have been unearthed.
These quarries are an interesting bit of British history as they helped shape the Yorkshire Coast, created an entirely new industry and gave us more than a fixative for dyes. With them came the discovery of many remarkable fossil specimens and, oddly, local employment in the collection of urine.
In the 16th century, alum was essential in the textile industry as a fixative for dyes.
![]() |
Fashion in Medieval Livonia (1521): Albrecht Dürer |
This century saw the rise of the ruff, which grew from a mere ruffle at the neckline to immense, slightly silly, cartwheel shapes. They adorned the necklines of the ultra-wealthy and uber-stylish men and women of the age.
At their most extravagant, ruffs required wire supports and were made of fine Italian reticella, a cutwork linen lace. You can imagine the many hours of skill and patience that would have gone into each piece to create the artful framework of these showy lace collars.
![]() |
16th Century Fashion / Ruff Collars and Finery |
The Pope held a tidy monopoly on the industry, supplying both alum and the best dyes. He also did a nice trade in colourful and rare pigments for painting. And for a time, all was well with dandy's strutting their finery to the local fops in Britain.
All that changed during the Reformation. Great Britain, heathens as they were, were cut off from their Papal source and needed to fend for themselves.
The good Thomas Challoner took up the charge and set up Britain's first Alum works in Guisborough. Challoner looked to palaeontology for inspiration. Noticing that the fossils found on the Yorkshire coast were very similar to those found in the Alum quarries in Europe, he hatched a plan to set-up an alum industry on home soil.
![]() |
Alum House, Photo: Joyce Dobson and Keith Bowers |
At the peak of alum production, the industry required 200 tonnes of urine every year. That's the equivalent of all the potty visits of more than 1,000 people. Yes, strange but true.
The steady demand was hard to keep up with and urine became an imported resource from markets as far away as London and Newcastle upon Tyne in the northeast of England. Wooden buckets were left on street corners for folk to do their business then carted back to the south to complete the alum extraction process. The urine and alum would be mixed into a thick liquid. Once mixed, the aromatic slosh was left to settle and then the alum crystals were removed.
I'm not sure if this is a folktale or plain truth, but as the story goes, one knows when the optimum amount of alum had been extracted as you can pop an egg in the bucket and it floats on its own.
![]() |
Alum House. Photo: Ann Wedgewood and Keith Bowers |
Many sites along the Yorkshire Coast bear evidence of the alum industry. These include Loftus Alum Quarries where the cliff profile is drastically changed by extraction and huge shale tips remain.
Further South are the Ravenscar Alum Works, which are well-preserved and enable visitors to visualize the processes which took place. The photos you see here are of Alum House at Hummersea. The first shows the ruin of Alum House printed on a postcard from 1906. The second (bottom) image shows the same ruin from on high with Cattersty Point in the background.
The good folk at the National Trust in Swindon are to thank for much of the background shared here. If you'd like to learn more about the Yorkshire area or donate to a very worthy charity, follow their link below.
Reference: https://www.nationaltrust.org.uk/yorkshire-coast/features/how-alum-shaped-the-yorkshire-coast
Friday, 9 February 2024
ANAHOPLITES PLANUS OF FRANCE
Anahoplites is now included in the subfamily Anahoplitinae and separated from the Hoplitinae where it was placed in the older in the 1957 edition of the Treatise on Invertebrate Paleontology, Part L (Ammonoidea). Genera of the Hoplitinae tend to be more robust, with broader whorls and stronger ribs.
Anahoplites is found in Cretaceous (Middle to the Late Albian) deposits from England, through Europe, all the way to the Transcaspian Oblast region in Russia to the east of the Caspian Sea. The Aube department, named after the local river, is the type locality of the Albian stage (d'ORBIGNY, 1842).
![]() |
A. planus from the French Coast |
This involute (113 mm) specimen shows evidence of cohabitation by some of his marine peers.
We see two different bryozoa, an oyster and some serpulids making a living and leaving trace fossils on her flat sides. The top specimen was prepared with potase by José Juárez Ruiz of Spain.
The lovely Anahoplites planus you see here to the lower right was found by Bertus op den Dries on the French coast in Albian deposits near Wissant, P5 and measures in at 8 cm. This on edge view gives you a very good sense of the keel.
Saturday, 3 February 2024
OPHTHALMOPLAX BRASILIANA
![]() |
Ophthalmoplax brasiliana / Photo: José F. Ventura |
This marine species was originally thought to have been found only in the upper Member (Owl Creek Formation) Late/Upper Maastrichtian deposits of Tippah County in Mississippi, USA.
Tuesday, 30 January 2024
BUMBLEBEES: FOSSILS AND FIRST NATIONS
My Norwegian cousins on my mother's side call them humle. Norway is a wonderful place to be something wild as the wild places have not been disturbed by our hands.
There are an impressive thirty-five species of bumblebee species that call Norway hjem (home), and one, Bombus consobrinus, boasts the longest tongue that they use to feast solely on Monkshood, genus Aconitum, you may know by the name Wolf's-bane.
In the Kwak̓wala language of the Kwakwaka'wakw, speakers of Kwak'wala, and my family in the Pacific Northwest, bumblebees are known as ha̱mdzalat̕si — though I wonder if this is actually the word for a honey bee, Apis mellifera, as ha̱mdzat̕si is the word for a beehive.
I have a special fondness for all bees and look for them both in the garden and in First Nation art.
Bumblebees' habit of rolling around in flowers gives us a sense that these industrious insects are also playful. In First Nation art they provide levity — comic relief along with their cousins the mosquitoes and wasps — as First Nation dancers wear masks made to mimic their round faces, big round eyes and pointy stingers. A bit of artistic license is taken with their forms as each mask may have up to six stingers. The dancers weave amongst the watchful audience and swoop down to playfully give many of the guests a good, albeit gentle, poke.
Honey bees actually do a little dance when they get back to the nest with news of an exciting new place to forage — truly they do. Bumblebees do not do a wee bee dance when they come home pleased with themselves from a successful foraging mission, but they do rush around excitedly, running to and fro to share their excitement. They are social learners, so this behaviour can signal those heading out to join them as they return to the perfect patch of wildflowers.
Bumblebees are quite passive and usually sting in defence of their nest or if they feel threatened. Female bumblebees can sting several times and live on afterwards — unlike honeybees who hold back on their single sting as its barbs hook in once used and their exit shears it off, marking their demise.They are important buzz pollinators both for our food crops and our wildflowers. Their wings beat at 130 times or more per second, literally shaking the pollen off the flowers with their vibration.
And they truly are busy bees, spending their days fully focused on their work. Bumblebees collect and carry pollen and nectar back to the nest which may be as much as 25% to 75% of their body weight.
And they are courteous — as they harvest each flower, they mark them with a particular scent to help others in their group know that the nectar is gone.
The food they bring back to the nest is eaten to keep the hive healthy but is not used to make honey as each new season's queen bees hibernate over the winter and emerge reinvigorated to seek a new hive each Spring. She will choose a new site, primarily underground depending on the bumblebee species, and then set to work building wax cells for each of her fertilised eggs.
Bumblebees are quite hardy. The plentiful hairs on their bodies are coated in oils that provide them with natural waterproofing. They can also generate more heat than their smaller, slender honey bee cousins, so they remain productive workers in cooler weather.
We see the first bumblebees arise in the fossil record 100 million years ago and diversify alongside the earliest flowering plants. Their evolution is an entangled dance with the pollen and varied array of flowers that colour our world.We have found many wonderful examples within the fossil record, including a rather famous Eocene fossil bee found by a dear friend and naturalist who has left this Earth, Rene Savenye.
His namesake, H. Savenyei, is a lovely fossil halictine bee from Early Eocene deposits near Quilchena, British Columbia — and the first bee body-fossil known from the Okanagan Highlands — and indeed from Canada.
It is a fitting homage, as bees symbolize honesty, playfulness and willingness to serve the community in our local First Nation lore and around the world — something Rene did his whole life.
Monday, 29 January 2024
FOSSILS AND FAUNA OF MADAGASGAR
![]() |
Aioloceras besairiei (Collingnon, 1949) |
Madagascar has some of the most spectacular of all the fossil specimens I have ever seen. This beauty is no exception. The shell has a generally small umbilicus, arched to acute venter, and typically at some growth stage, falcoid ribs that spring in pairs from umbilical tubercles, usually disappearing on the outer whorls. I had originally had this specimen marked as a Cleoniceras besairiei, except Cleoniceras and Grycia are not present in Madagascar.
The beauty you see here measures in at a whopping 22 cm, so quite a handful. This specimen is from the youngest or uppermost subdivision of the Lower Cretaceous. I'd originally thought this locality was older, but dating reveals it to be from the Lower Albian, so approximately 113.0 ± 1.0 Ma to 100.5 ± 0.9 Ma.
Aioloceras are found in the Cretaceous of Madagascar at geo coordinates 16.5° S, 45.9° E: paleo-coordinates 40.5° S, 29.3° E.; and in four localities in South Africa: at locality 36, near the Mzinene River at 28.0° S, 32.3° E: paleo-coordinates 48.6° S, 7.6° E.
If you happen to be trekking to Madagascar, know that it's big. It’s 592,800 square kilometres (or 226,917 square miles), making it the fourth-largest island on the planet — bigger than Spain, Thailand, Sweden and Germany. The island has an interesting geologic history.
Plate tectonic theory had its beginnings in 1915 when Alfred Wegener proposed his theory of "continental drift."
There have been few attempts apart from McKinley’s (1960) comparison of the Karoo succession of southwestern Tanzania with that of Madagascar to follow the famous geological precept of “going to sea.” One critical reason is that although there may be a bibliography of several thousand items dealing with Madagascan geology as Besairie (1971) claims, they are items not generally available to the general public. The vital information gained of the geology of the offshore area by post-World War II petroleum exploration has remained largely proprietary.
We do know that Madagascar was carved off from the African-South American landmass early on. The prehistoric breakup of the supercontinent Gondwana separated the Madagascar–Antarctica–India landmass from the Africa–South America landmass around 135 million years ago. Madagascar later split from India about 88 million years ago, during the Late Cretaceous, so the native plants and animals on the island evolved in relative isolation.
![]() |
Red-Tailed Lemurs, Waiwai & Hedgehog |
Today, beautiful outcrops of wonderfully preserved fossil marine fauna hold appeal for me. The material you see from Madagascar is distinctive — and prolific.
Culturally, you'll see a French influence permeating the language, architecture and legal process. There is a part of me that pictures these lovely Lemurs chatting away in French. "Ah, la vache! Regarde le beau fossile, Hérissonne!"
We see the French influence because good 'ol France invaded sleepy Madagascar back in 1883, during the first Franco-Hova War. Malagasy (the local Madagascarian residents) were enlisted as troops, fighting for France in World War I. During the Second World War, the island was the site of the Battle of Madagascar between the Vichy government and the British. By then, the Malagasy had had quite enough of colonization and after many hiccuping attempts, reached full independence in 1960. Colonization had ended but the tourist barrage had just begun. You can't stop progress.
If you're interested in learning more about this species, check out the Treatise on Invertebrate Paleontology, Part L (Ammonoidea). R.C. Moore (ed). Geological Soc of America and Univ. Kansas Press (1957), p L394. Or head over to look at the 2002 paper from Riccardi and Medina. 2002. Riccardi, A., C. & Medina, F., A. The Beudanticeratinae and Cleoniceratinae (Ammonitina) from the Lower Albian of Patagonia in Revue de Paléobiologie - 21(1) - Muséum d’Histoire Naturelle de la ville de Genève, p 313-314 (=Aioloceras besairiei (COLLIGNON, 1949). You have Bertrand Matrion to thank for the naming correction. Good to have friends in geeky places!
Collignon, M., 1933, Fossiles cenomaniens d’Antmahavelona (Province d’ Analalave, Madagascar), Ann. Geol. Serv. Min. Madagascar, III, 1934 Les Cephalopods du Trias inferieur de Madagascar, Ann. Paleont. XXII 3 and 4, XXII 1.
Besairie, H., 1971, Geologie de Madagascar, 1. Les terrains sedimentaires, Ann. Geol. Madagascar, 35, p. 463.
J. Boast A. and E. M. Nairn collaborated on a chapter in An Outline of the Geology of Madagascar, that is very readable and cites most of the available geologic research papers. It is an excellent place to begin a paleo exploration of the island.
If you happen to parle français, check out: Madagascar ammonites: http://www.ammonites.fr/Geo/Madagascar.htm
Saturday, 20 January 2024
ATURIA: MIOCENE NAUTILOID
![]() |
Aturia angustata, Lower Miocene, WA |
There are seven living nautiloid species in two genera: Nautilus pompilius, N. macromphalus, N. stenomphalus, N. belauensis, and the three new species being described from Samoa, Fiji, and Vanuatu (Ward et al.). We have specimens of fossil nautiloids dating to the Turonian of California, and possibly the Cenomanian of Australia. There has also been a discovery of what might be the only known fossil of Allonautilus (Ward and Saunders, 1997), from the Nanaimo Group of British Columbia, Canada.
![]() |
Aturia in the Collection of Rick Ross, VIPS |
Aturia lived in cooler water in the Cenozoic, preferring it over the warmer waters chosen by their cousins. Aturia, are commonly found as fossils from Eocene and Miocene outcrops. That record ends with their extinction in the late Miocene. This was a fierce little beast with jaws packed with piranha-like teeth. They grew at least twice that of the largest known Nautilus living today.
Aturia is characterized by a smooth, highly involute, discoidal shell with a complex suture and subdorsal siphuncle. The shell of Aturia is rounded ventrally and flattened laterally; the dorsum is deeply impressed. The suture is one of the most complex within the subclass Nautiloidea. Of all the nautiloids, he may have been able to go deeper than his brethren.
Nautiloids are known for their simple suturing in comparison to their ammonite cousins. This simplicity of design limited their abilities in terms of withstanding the water pressure experienced when several atmospheres below the sea. Nautiloids were not able to compete with their ammonite cousins in this regard.
Instead of elaborate and complex sutures capable of withstanding the pressures of the deep, nautiloids have simpler sutures that would have them enfold on themselves and crush at depth.
![]() |
Aturia angustata; Rick Ross Collection |
The siphuncle is moderate in size and located subdorsally in the adapical dorsal flexure of the septum. Based on the feeding and hunting behaviours of living nautiluses, Aturia most likely preyed upon small fish and crustaceans.
I've found a few of these specimens along the beaches of Clallam Bay and nearby in a local clay quarry. I've also seen calcified and chalcedony — microcrystalline quartz — agatized beauties of this species collected from river sites within the Olympic Peninsula range. In the bottom photos, you can see Aturia from Washington state and one (on the stand on the left) from Oregon, USA. These beauties are in the collections of the deeply awesome Rick Ross, Vancouver Island Palaeontological Society.
References: Ward, P; Haggart, J; Ross, R; Trask, P; Beard, G; Nautilus and Allonautilus in the Nanaimo Group, and in the modern oceans; 12th British Columbia Paleontological Symposium, 2018, Courtenay, abstracts; 2018 p. 10-11
Thursday, 18 January 2024
WEST COAST OYSTERS: T'LOXT'LOX
![]() |
While rare today, these are British Columbia’s only native oyster.
Had you been dining on their brethren in the 1800s or earlier, it would have been this species you were consuming. Middens from Port Hardy to California are built from Ostrea lurida.
These wonderful invertebrates bare their souls with every bite. Have they lived in cold water, deep beneath the sea, protected from the sun's rays and heat? Are they the rough and tumble beach denizens whose thick shells tell us of a life spent withstanding the relentless pounding of the sea? Is the oyster in your mouth thin and slimy having just done the nasty—spurred by the warming waters of Spring?
Is this oyster a local or was it shipped to your current local and, if asked, would greet you with "Kon'nichiwa?" Not if the beauty on your plate is indeed Ostrea lurida.
![]() |
Oyster in Kwak'wala is t̕łox̱t̕łox̱ |
The area is home to the Nuu-chah-nulth First Nations who have consumed this species boiled or steamed for thousands of years. Here these ancient oysters not only survive but thrive — building reefs and providing habitat for crab, anemones and small marine animals.
Oysters are in the family Ostreidae — the true oysters. Their lineage evolved in the Early Triassic — 251 - 247 million years ago.
In the Kwak̓wala language of the Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest and my family, an oyster is known as t̕łox̱t̕łox̱.
I am curious to learn if any of the Nuu-chah-nulth have a different word for an oyster. If you happen to know, I would be grateful to learn.
Wednesday, 17 January 2024
COAHUILACERATOPS MAGNACUERNA
The Sierra Madre Oriental mountain range runs northwest to southwest forming a spine through the centre of the State. East of the range, the arid landscape slopes gently through the desert terrain down to the Rio Grande. It is home to wonderful common, rare and endangered cacti, beautiful (and one of my favourite) raptors, Aquila chrysaetos and the evolutionarily unlikely pronghorn, Antilocapra americana (if a monkey/owl/ antelope had a baby...)
The world was a much wetter warmer place when these big beauties roamed. Picture them ambling through lush vegetation and rearing young next to freshwater rivers, brackish swamps and salty ancient seas. Many of the dinosaur remains from the area bear the marks or remains of fossilized snails and clams. Perhaps predation vs a symbiotic relationship as proximity isn't always intimacy. Coahuilaceratops magnacuerna is known from holotype CPC 276, a partial skeleton of an adult along with bits and pieces of skull, a section of horn, pretty complete lower jaw, a smidge of the upper jaw and part of the frill.
Another specimen, CPS 277, has been touted as a possible juvenile Coahuilaceratops. All the specimens from Coahuilaceratops come from a single Upper Cretaceous (Campanian) locality of the Cerro del Pueblo Formation, northern Mexico.
This particular species of Coahuilaceratops was formally named C. magnacuerna by Mark A. Loewen, Scott D. Sampson, Eric K. Lund, Andrew A. Farke, Martha C. Aguillón-Martínez, C.A. de Leon, R.A. Rodríguez-de la Rosa, Michael A. Getty and David A. Eberth in 2010. Though the name was in circulation informally by those working in the study of ceratopsian dinosaurs as early as 2008.
Though challenged by examining and interpreting mere bits and pieces, the team posed estimates on the overall size of this new rather largish, 6.7 m / 22 ft, chasmosaurine. Coahuilaceratops' horns are also impressively large, estimated at 1.2 m / 4 feet. Rather long for a ceratopsian (consider that a Triceratops distinctive horn generally comes in under 115 cm / 45 inches and interesting in terms of evolutionary design. The holotypes are available for viewing at the Museo del Desierto in Saltillo, Coahuila. Photo credit: José F. Ventura
Monday, 15 January 2024
JELLYFISH: DANCERS OF THE DEEP
Her brethren are playing in the waters of the deep all over the world, from surface waters to our deepest seas — and they are old. They are some of the oldest animals in the fossil record.
Jellyfish, or sea jellies, are the informal common names given to the medusa-phase or adult phase of certain gelatinous members of the subphylum Medusozoa, a major part of the phylum Cnidaria — closely related to anemones and corals.
While the name is embedded, Jellyfish are not fish at all. They evolved millions of years before true fish. The oldest conulariid scyphozoans appeared between 635 and 577 million years ago in the Neoproterozoic of the Lantian Formation, a 150-meter-thick sequence of rocks deposited in southern China.
Others are found in the youngest Ediacaran rocks of the Tamengo Formation of Brazil, c. 505 mya, through to the Triassic. Cubozoans and hydrozoans appeared in the Cambrian of the Marjum Formation in Utah, USA, c. 540 million years ago.
I have seen all sorts of their brethren growing up on the west coast of Canada. I have seen them in tide pools, washed up on the beach and swam amongst thousands of Moon Jellyfish while scuba diving in the Salish Sea. Their movement in the water is marvelous.
In the Kwak̓wala language of the Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, jellyfish are known as ǥaǥisama—enjoyed as a tasty snack or used as bait to entice larger marine animals.
The watercolour ǥaǥisama you see here in dreamy pink and white is but one colour variation. They come in blue, purple, orange, yellow and clear — and are often luminescent. They produce light by the oxidation of a substrate molecule, luciferin, in a reaction catalyzed by a protein, luciferase.