Showing posts with label HISTORY. Show all posts
Showing posts with label HISTORY. Show all posts

Sunday, 22 February 2026

LIMESTONE AND LIGHT: EGYPT BEFORE THE PHARAOHS

Much of Egypt’s history is carved in her rock. We think of Egypt as ancient—a land of pharaohs, pyramids, and hieroglyphs etched in stone—but the land itself tells a far older story. 

Long before kings rose and dynasties fell, before the Nile carved its fertile ribbon through desert sands, the foundations of Egypt were being forged deep within the Earth.

Egypt, officially the Arab Republic of Egypt, occupies the northeastern corner of Africa, with the Sinai Peninsula extending beyond the continental boundary into Asia. 

It is bordered by the Gaza Strip and Israel to the northeast, the Gulf of Aqaba and Red Sea to the east, Sudan to the south, and Libya to the west. To the north, the Mediterranean Sea opens toward Europe—Greece, Cyprus, and Turkey—while across the Red Sea lies Saudi Arabia and, beyond the Gulf of Aqaba, Jordan.

To understand Egypt’s true antiquity, one must look not to its monuments, but to its bedrock. 

Five hundred kilometres southwest of Cairo, the flat sabkha plains stretch toward the horizon, scattered with wind-polished pebbles and eerie limestone pillars—natural monuments of a different kind. 

This striking karst landscape, weathered by time and the desert’s relentless breath, tells of ancient seas, tectonic upheaval, and long-vanished ecosystems.

Once the breadbasket of the Pharaohs and now scarred by oil pipelines and rusted trucks, this land has seen empires rise and vanish. Beneath the sand and relics of human ambition lies a deeper record—a geological archive of oceans, volcanoes, and shifting continents.

The story begins deep in time, during the Archaean Eon, when the Earth’s crust was first beginning to cool, between 4 and 2.5 billion years ago. The rocks from this period, preserved as ancient inliers in Egypt’s Western Desert, are among the oldest on the African continent. Later, during the Proterozoic, when oxygen was only just beginning to fill the planet’s atmosphere, new rocks were laid down in the Eastern Desert—igneous and metamorphic foundations formed when bacteria and marine algae were the dominant life on Earth.

These ancient crystalline roots form the basement complex upon which Egypt’s later history—both geological and human—would unfold. 

Over this foundation lie younger Palaeozoic sedimentary rocks, followed by widespread Cretaceous outcrops that speak of warm inland seas and lush river deltas. 

Still younger Cenozoic sediments record the rhythmic rise and fall of global sea levels—cycles of transgression and regression that alternately drowned and exposed the land. 

Each layer marks a new chapter in the story of water, time, and transformation. It is from these Cenozoic limestones, formed some 50 million years ago in the shallow seas of the Eocene epoch, that the stones of the Great Pyramids were quarried. Composed largely of the fossilized remains of ancient marine organisms—especially the large, coin-like foraminifera known as Nummulites—these rocks are both geological and biological archives. 

Every pyramid block is built from the remains of an ancient ocean, each fossilized shell a fragment of life that once thrived beneath the waters of the long-vanished Tethys Sea.

The pyramids of Giza, with their luminous exteriors of fine-grained white limestone from the quarries of Tura, stand as enduring testaments to human ingenuity and Earth’s deep-time creativity. They are monuments raised from the bones of microscopic life, shaped by hands that would have been surprised to know they were building with the remnants of a vanished world.

From the glittering deserts of Giza to the fossil beds of the Fayum, Egypt’s landscapes tell stories written in stone—of ancient oceans, shifting continents, and the eternal dialogue between life, death, and time. The Great Pyramid may have been built for eternity, but its foundations were set in motion eons before humanity’s first spark.

Beneath the gaze of the Sphinx and the shadow of Khufu’s towering pyramid, the story of Egypt’s limestone deepens. Those pale, gleaming blocks that once caught the desert sun are more than architectural marvels—they are the fossilized remains of an ancient sea, built from the microscopic shells of creatures that lived and died millions of years before the first pharaoh dreamed of eternity.

It is here, in the very stone of the Great Pyramid, that Egypt’s human history meets Earth’s geological past.

Tuesday, 17 February 2026

FOSSILS, LIMESTONE AND SALT: HALLSTATT

Hallstatt Salt Mines, Austria / Permian Salt Diapir
The Hallstatt Limestone is the world's richest Triassic ammonite unit, yielding specimens of more than 500 ammonite species.

Along with diversified cephalopod fauna  — orthoceratids, nautiloids, ammonoids — we also see gastropods, bivalves, especially the late Triassic pteriid bivalve Halobia (the halobiids), brachiopods, crinoids and a few corals. We also see a lovely selection of microfauna represented. 

For microfauna, we see conodonts, foraminifera, sponge spicules, radiolaria, floating crinoids and holothurian sclerites —  polyp-like, soft-bodied invertebrate echinozoans often referred to as sea cucumbers because of their similarities in size, elongate shape, and tough skin over a soft interior. 

Franz von Hauer’s exhaustive 1846 tome describing Hallstatt ammonites inspired renowned Austrian geologist Eduard Suess’s detailed study of the area’s Mesozoic history. That work was instrumental in Suess being the first person to recognize the former existence of the Tethys Sea, which he named in 1893 after the sister of Oceanus, the Greek god of the ocean. As part of the Northern Limestone Alps, the Dachstein rock mass, or Hoher Dachstein, is one of the large karstic mountains of Austria and the second-highest mountain in the Northern Limestone Alps. It borders Upper Austria and Styria in central Austria and is the highest point in each of those states.

Parts of the massif also lie in the state of Salzburg, leading to the mountain being referred to as the Drei-Länder-Berg or three-state mountain. Seen from the north, the Dachstein massif is dominated by the glaciers with the rocky summits rising beyond them. By contrast, to the south, the mountain drops almost vertically to the valley floor. The karst limestones and dolomites were deposited in our Mesozoic seas. The geology of the Dachstein massif is dominated by the Dachstein-Kalk Formation — the Dachstein limestone — which dates back to the Triassic.

Hallstatt and the Hallstatt Sea, Austria
There were several phases of mountain building in this part of the world pushing the limestone deposits 3,000 metres above current sea level. The rock strata were originally deposited horizontally, then shifted, broken up and reshaped by the erosive forces of ice ages and erosion.

The Hallstatt mine exploits a Permian salt diapir that makes up some of this area’s oldest rock. 

The salt accumulated by evaporation in the newly opened, and hence shallow, Hallstatt-Meliata Ocean. This was one of several small ocean basins that formed in what is now Europe during the late Paleozoic and early Mesozoic when the world’s landmasses were welded together to form the supercontinent Pangea. 

Pangea was shaped like a crescent moon that cradled the famous Tethys Sea. Subduction of Tethyian oceanic crust caused several slivers of continental crust to separate from Pangea, forming new “back-arc basins” (small oceans formed by rifting that is associated with nearby subduction) between the supercontinent and the newly rifted ribbon continents.

The Hallstatt-Meliata Ocean was one such back-arc basin. As it continued to expand and deepen during the Triassic, evaporation ceased and reefs flourished; thick limestone deposits accumulated atop the salt. When the Hallstatt-Meliata Ocean closed in the Late Jurassic, the compression squeezed the low-density salt into a diapir that rose buoyantly, injecting itself into the Triassic limestones above.

The Hallstatt salt diapir and its overlying limestone cap came to rest in their present position in the northern Austrian Alps when they were shoved northward as nappes (thrust sheets) during two separate collision events, one in the Cretaceous and one in the Eocene, that created the modern Alps. It is from the Hallstatt salt diapir that Hallstatt, like so many cities and towns, gets its name.

Deposits of rock salt or halite, the mineral name of sodium chloride with the chemical formula of NaCl, are found and mined around the globe. These deposits mark the dried remains of ancient oceans and seas. Names of rivers, towns and cities in Europe — Salzburg, Halle, Hallstatt, Hallein, La Salle, Moselle — all pay homage to their connection to halite and salt production. The Greek word for salt is hals and the Latin is sal. The Turkish name for salt is Tuz, which we see in the naming of Tuzla, a salt-producing region of northeastern Bosnia-Herzegovina and in the names of towns that dot the coast of Turkey where it meets the Black Sea. Hallstatt with its salt diapir is no exception.

The salt-named town of Hallstatt sits on the shores of the idyllic Hallstätter Sea at the base of the Dachstein massif. Visiting it today, you experience a quaint traditional fishing village built in the typical upper Austrian style. Tourism drives the economy as much as salt as this area of the world is picture-perfect from every angle.

Space is at a minimum in the town. For centuries, every ten years the local cemetery exhumes the bones of those buried there and moves them to an ossuary to make room for new burials. The Hallstatt Ossuary is called Karner, Charnel House, or simply Beinhaus (Bone House). Karners are places of secondary burials. They were once common in the Eastern Alps, but that custom has largely disappeared.

Hallstatt Beinhaus Ossuary, Hallstatt, Austria
A collection of over 700 elaborately decorated skulls rest inside the ossuary. They are lined up on rows of wooden shelves that grace the walls of the chapel. Another 500 undecorated skulls, bare and without any kind of adornment, are stacked in the corners.

Each is inscribed and attached to a record with the deceased's name, profession and date of death. The Bone House is located in a chapel in the basement of the Church of Saint Michael. The church dates from the 12th century CE. 

Decorating the skulls was traditionally the job of the local gravedigger and an honour granted to very few. At the family's request, garlands of flowers were painted on the skulls of deceased as decorative crowns if they were female. The skulls of men and boys were painted wreaths of oak or ivy.

Every building in Hallstatt looks out over the Hallstätter Sea. This beautiful mountain lake considered one of the finest of Austria's Salzkammergut region. It lies at the northern foot of the Dachstein mountain range, sitting eight-and-a-half kilometres long and two kilometres wide. The shoreline is dotted by the villages of  Obertraun, Steeg, and Hallstatt.

The region is habitat to a variety of diverse flora and fauna, including many rare species such as native orchids, in the wetlands and moors in the south and north.

Linked by road to the cities of Salzburg and Graz, Hallstatt and its lake were declared one of the World Heritage sites in Austria in 1997 and included in the Hallstatt-Dachstein Salzkammergut Alpine UNESCO World Heritage Site. The little market village of Hallstatt takes its name from the local salt mine.

Hallstatt, Salzkammergut region, Austria
The town is a popular tourist destination with its quaint shops and terraced cafes. In the centre of town, the 19th-century Evangelical Church of Hallstatt with its tall, slender spire is a lakeside landmark. You can see it here in the photo on the left.

Above the town are the Hallstatt Salt mines located within the 1,030-meter-tall Salzburg Salt Mountain. They are accessible by cable car or a three-minute journey aboard the funicular railway. There is also a wonderful Subterranean Salt Lake.

In 1734, there was a corpse found here preserved in salt. The fellow became known as the Man in Salt. Though no archaeological analysis was performed at the time — the mummy was respectfully reburied in the Hallstatt cemetery — based on descriptions in the mine records, archaeologists suspect the miner lived during the Iron Age. This Old Father, Senos ph₂tḗr, 'ɸatīr 'father' may have been a local farmer, metal-worker, or both and chatted with his friends and family in Celtic or Proto-Celtic.

Salt mining in the area dates back to the Neolithic period, from the 8th to 5th Centuries BC. This is around the time that Roman legions were withdrawing from Britain and the Goths sacked Rome. In Austria, agricultural settlements were dotting the landscape and the alpine regions were being explored and settled for their easy access to valuable salt, chert and other raw materials.

The salt-rich mountains of Salzkammergut and the upland valley above Hallstatt were attractive for this reason. The area was once home to the Hallstatt culture, an archaeological group linked to Proto-Celtic and early Celtic people of the Early Iron Age in Europe, c.800–450 BC.
Bronze Age vessel with cow and calf

In the 19th century, a burial site was discovered with 2,000 individuals, many of them buried with Bronze Age artefacts of amber and ivory.

It was this find that helped lend the name Hallstatt to this epoch of human history. The Late Iron Age, between around 800 and 400 BC, became known as the Hallstatt Period.

For its rich history, natural beauty and breathtaking mountainous geology, Hallstatt is a truly irresistible corner of the world.

Salzbergstraße 1, 4830 Hallstatt.  https://www.salzwelten.at/en/home/

Photo: Bronze vessel with cow and calf, Hallstatt by Alice Schumacher - Naturhistorisches Museum Wien - A. Kern – K. Kowarik – A. W. Rausch – H. Reschreiter, Salz-Reich. 7000 Jahre Hallstatt, VPA 2 (Wien, 2008) Seite 133 Abbildung 6. Hallstatt Village & Ossuary Photos: P. McClure Photography ca. 2015.

Bernoulli D, Jenkyns HC (1974) Alpine, Mediterranean, and Central Atlantic Mesozoic facies in relation to the early evolution of the Tethys. Soc Econ Paleont Mineral Spec Publ 19:129–160

Bernoulli D, Jenkyns H (2009) Ancient oceans and continental margins of the Alpine-Mediterranean Tethys: deciphering clues from Mesozoic pelagic sediments and ophiolites. Sedimentology 56:149–190

Monday, 16 February 2026

FOSSILS AND FIRST NATIONS HISTORY: NOOTKA

Nootka Fossil Field Trip. Photo: John Fam
The rugged west coast of Vancouver Island offers spectacular views of a wild British Columbia. Here the seas heave along the shores slowly eroding the magnificent deposits that often contain fossils. 

Just off the shores of Vancouver Island, east of Gold River and south of Tahsis is the picturesque and remote Nootka Island.

This is the land of the proud and thriving Nuu-chah-nulth First Nations who have lived here always

Always is a long time, but we know from oral history and archaeological evidence that the Mowachaht and Muchalaht peoples lived here, along with many others, for many thousands of years — a time span much like always

While we know this area as Nootka Sound and the land we explore for fossils as Nootka Island, these names stem from a wee misunderstanding. 

Just four years after the 1774 visit by Spanish explorer Juan Pérez — and only a year before the Spanish established a military and fur trading post on the site of Yuquot — the Nuu-chah-nulth met the Englishman, James Cook.  

Captain Cook sailed to the village of Yuquot just west of Vancouver Island to a very warm welcome. He and his crew stayed on for a month of storytelling, trading and ship repairs. Friendly, but not familiar with the local language, he misunderstood the name for both the people and land to be Nootka. In actual fact, Nootka means, go around, go around

Two hundred years later, in 1978, the Nuu-chah-nulth chose the collective term Nuu-chah-nulth — nuučaan̓uł, meaning all along the mountains and sea or along the outside (of Vancouver Island) — to describe themselves. 

It is a term now used to describe several First Nations people living along western Vancouver Island, British Columbia. 

It is similar in a way to the use of the United Kingdom to refer to the lands of England, Scotland and Wales — though using United Kingdom-ers would be odd. Bless the Nuu-chah-nulth for their grace in choosing this collective name.  

An older term for this group of peoples was Aht, which means people in their language and is a component in all the names of their subgroups, and of some locations — Yuquot, Mowachaht, Kyuquot, Opitsaht. While collectively, they are the Nuu-chah-nulth, be interested in their more regional name should you meet them. 

But why does it matter? If you have ever mistakenly referred to someone from New Zealand as an Aussie or someone from Scotland as English, you have likely been schooled by an immediate — sometimes forceful, sometimes gracious — correction of your ways. The best answer to why it matters is because it matters.

Each of the subgroups of the Nuu-chah-nulth viewed their lands and seasonal migration within them (though not outside of them) from a viewpoint of inside and outside. Kla'a or outside is the term for their coastal environment and hilstis for their inside or inland environment.

It is to their kla'a that I was most keen to explore. Here, the lovely Late Eocene and Early Miocene exposures offer up fossil crab, mostly the species Raninid, along with fossil gastropods, bivalves, pine cones and spectacularly — a singular seed pod. These wonderfully preserved specimens are found in concretion along the foreshore where time and tide erode them out each year.

Five years after Spanish explorer Juan Pérez's first visit, the Spanish built and maintained a military post at Yuquot where they tore down the local houses to build their own structures and set up what would become a significant fur trade port for the Northwest Coast — with the local Chief Maquinna's blessing and his warriors acting as middlemen to other First Nations. 

Following reports of Cook's exploration British traders began to use the harbour of Nootka (Friendly Cove) as a base for a promising trade with China in sea-otter pelts but became embroiled with the Spanish who claimed (albeit erroneously) sovereignty over the Pacific Ocean. 

Dan Bowen searching an outcrop. Photo: John Fam
The ensuing Nootka Incident of 1790 nearly led to war between Britain and Spain (over lands neither could actually claim) but talk of war settled and the dispute was settled diplomatically. 

George Vancouver on his subsequent exploration in 1792 circumnavigated the island and charted much of the coastline. His meeting with the Spanish captain Bodega y Quadra at Nootka was friendly but did not accomplish the expected formal ceding of land by the Spanish to the British. 

It resulted however in his vain naming the island "Vancouver and Quadra." The Spanish captain's name was later dropped and given to the island on the east side of Discovery Strait. Again, another vain and unearned title that persists to this day.

Early settlement of the island was carried out mainly under the sponsorship of the Hudson's Bay Company whose lease from the Crown amounted to 7 shillings per year — that's roughly equal to £100.00 or $174 CDN today. Victoria, the capital of British Columbia, was founded in 1843 as Fort Victoria on the southern end of Vancouver Island by the Hudson's Bay Company's Chief Factor, Sir James Douglas. 

With Douglas's help, the Hudson's Bay Company established Fort Rupert on the north end of Vancouver Island in 1849. Both became centres of fur trade and trade between First Nations and solidified the Hudson's Bay Company's trading monopoly in the Pacific Northwest.

The settlement of Fort Victoria on the southern tip of Vancouver Island — handily south of the 49th parallel — greatly aided British negotiators to retain all of the islands when a line was finally set to mark the northern boundary of the United States with the signing of the Oregon Boundary Treaty of 1846. Vancouver Island became a separate British colony in 1858. British Columbia, exclusive of the island, was made a colony in 1858 and in 1866 the two colonies were joined into one — becoming a province of Canada in 1871 with Victoria as the capital.

Dan Bowen, Chair of the Vancouver Island Palaeontological Society (VIPS) did a truly splendid talk on the Fossils of Nootka Sound. With his permission, I have uploaded the talk to the ARCHEA YouTube Channel for all to enjoy. Do take a boo, he is a great presenter. Dan also graciously provided the photos you see here. The last of the photos you see here is from the August 2021 Nootka Fossil Field Trip. Photo: John Fam, Vice-Chair, Vancouver Paleontological Society (VanPS).

Know Before You Go — Nootka Trail

The Nootka Trail passes through the traditional lands of the Mowachaht/Muchalat First Nations who have lived here since always. They share this area with humpback and Gray whales, orcas, seals, sea lions, black bears, wolves, cougars, eagles, ravens, sea birds, river otters, insects and the many colourful intertidal creatures that you'll want to photograph.

This is a remote West Coast wilderness experience. Getting to Nootka Island requires some planning as you'll need to take a seaplane or water taxi to reach the trailhead. The trail takes 4-8 days to cover the 37 km year-round hike. The peak season is July to September. Permits are not required for the hike. 

Access via: Air Nootka floatplane, water taxi, or MV Uchuck III

  • Dan Bowen, VIPS on the Fossils of Nootka: https://youtu.be/rsewBFztxSY
  • https://www.thecanadianencyclopedia.ca/en/article/sir-james-douglas
  • file:///C:/Users/tosca/Downloads/186162-Article%20Text-199217-1-10-20151106.pdf
  • Nootka Trip Planning: https://mbguiding.ca/nootka-trail-nootka-island/#overview


Saturday, 14 February 2026

PRETTY IN PINK: FLAMINGOS

At ungodly-o’clock in the morning, while the rest of us are still grumbling into our pillows, European flamingos are out there looking like someone spilled a sunrise into the Mediterranean. 

Pale peach, rose, and full-on “salmon mousse,” these birds glide across mirror-flat lagoons on legs that appear to have been stolen from a straw factory.

Their down-curved bills are evolutionary multi-tools — built not for glamour, but for vacuuming up brine shrimp and algae with the intensity of someone cleaning nacho dust out of a keyboard. It’s not chic, but it works, and in science points, it’s a 10/10.

But here’s the kicker: Phoenicopterus roseus isn’t just a pretty face in a wetland spa. It’s the last surviving branch of a lineage forged way back — we’re talking more than 30 million years, mid-Eocene hangover era, when Europe had giant lakes, strange mammals, and nobody worrying about the price of olive oil.

The flamingo story starts with Palaelodus — the awkward teen phase of flamingo evolution. Imagine a tall bird, very leggy, somewhat unsure of its angles, but tragically lacking the extreme bendy straw beak we now know and love. Fossils in France, Germany, and North America show it poking around ancient alkaline lakes like a bird who had not yet received the memo about being fabulous.

Then came the Miocene (aka the “Let’s Try Flamingos For Real” chapter). Suddenly, ancient Spain, Italy, Hungary, and Greece are full of lakebeds stuffed with flamingo bones and trackways. Flamingo highways! Flamingo stomping grounds! Flamingos everywhere! 

And honestly — they looked more or less like the modern ones, suggesting evolution took one glance and said: “Perfect. Don’t change a thing.”

For years, scientists tried to figure out who flamingos were related to. Were they storks? Herons? Ducks? Feathered mystery cryptids? At one point the evolutionary family tree was basically a messy group chat. 

Then genetics swooped in and declared flamingos and grebes — yes, the chunky diving birds — as siblings in a clade called Mirandornithes. 

One is a pink runway model, the other is a potato with scuba certification, but the ancestry checks out.

Modern flamingos have claimed the best real estate the Mediterranean can offer: the Camargue, Doñana, Sicily, Sardinia, Turkey’s salt pans, and the lagoons of North Africa. Their blushing pink comes from carotenoid pigments in their food, proving once and for all that you literally are what you eat — even if what you eat is tiny shrimp smoothies.

Their mud-tower nests are a direct callback to their Miocene ancestors, preserved not just in rock but in behaviour, which is basically evolution’s way of saying, “If it ain’t broke, don’t reinvent the flamingo.”

So the next time you see a flock drifting across a salt lagoon like pastel confetti on stilts, remember you’re looking at one of evolution’s longest-running success stories. Flamingos nailed their niche early, kept the receipts, and have been slaying the alkaline wetlands scene ever since.

Thirty million years. Zero design revisions. Pink forever. Epic and awesome. Bless them!

Monday, 9 February 2026

MAMMOTH AT THE MUSEUM

Mammoths are a personal favourite of mine and there is a particularly fetching specimen in the Natural History Museum, London. 

Amongst its Ice Age treasures stands the mighty woolly mammoth, Mammuthus primigenius — a shaggy titan of the Pleistocene whose kind roamed the frozen steppes of Europe, Asia, and North America until just 4,000 years ago.

The museum’s mammoth skeleton, with its great spiralled tusks curving forward like ivory crescents, is both imposing and oddly elegant. 

These animals were close cousins of modern elephants, adapted for cold with thick insulating fur, a layer of fat beneath the skin, and small ears to conserve heat. 

Their molars — massive, ridged grinding plates — were built for chewing tough Ice Age grasses across windswept tundra.

Britain itself once hosted mammoths during colder phases of the last Ice Age. As glaciers advanced and retreated, herds wandered across what is now the North Sea basin — then dry land known as Doggerland — and into southern England. 

Fossils dredged from gravel pits and offshore sediments remind us that mammoths were not exotic strangers but part of Britain’s own prehistoric fauna.

Standing beneath those sweeping tusks in the museum, you can almost feel the cold breath of the Ice Age. It is a wonderful place to spend the afternoon. If you go, wear comfortable shoes!

Friday, 30 January 2026

FOSSILS, TEXTILES AND URINE: YORKSHIRE HISTORY

Yorkshire Coast
You may recall the eight-metre Type Specimen of the ichthyosaur, Temnodontosaurus crassimanus, found in an alum quarry in Yorkshire, northern England.

The Yorkshire Museum was given this important ichthyosaur fossil back in 1857 when alum production was still a necessary staple of the textile industry. Without that industry, many wonderful specimens would likely never have been unearthed.

These quarries are an interesting bit of British history as they helped shape the Yorkshire Coast, created an entirely new industry and gave us more than a fixative for dyes. 

With them came the discovery of many remarkable fossil specimens and, oddly, local employment in the collection of urine.

In the 16th century, alum was essential in the textile industry as a fixative for dyes. 

By the first half of the 16th century, the clothing of the Low Countries, German states, and Scandinavia had developed in a different direction than that of England, France, and Italy, although all absorbed the sobering and formal influence of Spanish dress after the mid-1520s. Those fashions held true until the Inquisition when religious persecution, politics and fashion underwent a much-needed overhaul to something lighter.

Fashion in Medieval Livonia (1521): Albrecht Dürer
Elaborate slashing was popular, especially in Germany. In the depiction you see here, an artist pokes a bit of fun at Germanic fashion from the time. Bobbin lace arose from passementerie in the mid-16th century in Flanders, the Flemish Dutch-speaking northern portion of Belgium. Black was increasingly worn for the most formal occasions.

This century saw the rise of the ruff, which grew from a mere ruffle at the neckline to immense, slightly silly, cartwheel shapes. They adorned the necklines of the ultra-wealthy and uber-stylish men and women of the age.

At their most extravagant, ruffs required wire supports and were made of fine Italian reticella, a cutwork linen lace. You can imagine the many hours of skill and patience that would have gone into each piece to create the artful framework of these showy lace collars.

16th Century Fashion / Ruff Collars and Finery
In contrast to all that ruff, lace and cutwork linen, folk needed dyed fabrics. And to fix those dyes, they needed Alum. For a time, Italy was the source of that alum.

The Pope held a tidy monopoly on the industry, supplying both alum and the best dyes. He also did a nice trade in colourful and rare pigments for painting. And for a time, all was well with dandy's strutting their finery to the local fops in Britain.

All that changed during the Reformation. Great Britain, heathens as they were, were cut off from their Papal source and needed to fend for themselves.

The good Thomas Challoner took up the charge and set up Britain's first Alum works in Guisborough. Challoner looked to palaeontology for inspiration. Noticing that the fossils found on the Yorkshire coast were very similar to those found in the Alum quarries in Europe, he hatched a plan to set-up an alum industry on home soil. 

As the industry grew, sites along the coast were favoured as access to the shales and subsequent transportation was much easier.

Alum House, Photo: Joyce Dobson and Keith Bowers
Alum was extracted from quarried shales through a large scale and complicated process which took months to complete. 

The process involved extracting then burning huge piles of shale for 9 months, before transferring it to leaching pits to extract an aluminium sulphate liquor. This was sent along channels to the alum works where human urine was added.

At the peak of alum production, the industry required 200 tonnes of urine every year. That's the equivalent of all the potty visits of more than 1,000 people. Yes, strange but true.

The steady demand was hard to keep up with and urine became an imported resource from markets as far away as London and Newcastle upon Tyne in the northeast of England. Wooden buckets were left on street corners for folk to do their business then carted back to the south to complete the alum extraction process. The urine and alum would be mixed into a thick liquid. Once mixed, the aromatic slosh was left to settle and then the alum crystals were removed.

I'm not sure if this is a folktale or plain truth, but as the story goes, one knows when the optimum amount of alum had been extracted as you can pop an egg in the bucket and it floats on its own.

Alum House. Photo: Ann Wedgewood and Keith Bowers
The last Alum works on the Yorkshire Coast closed in 1871. This was due to the invention of manufacturing synthetic alum in 1855, then subsequently the creation of aniline dyes that contained their own fixative.

Many sites along the Yorkshire Coast bear evidence of the alum industry. These include Loftus Alum Quarries where the cliff profile is drastically changed by extraction and huge shale tips remain.

Further South are the Ravenscar Alum Works, which are well-preserved and enable visitors to visualize the processes which took place. The photos you see here are of Alum House at Hummersea. The first shows the ruin of Alum House printed on a postcard from 1906. The second (bottom) image shows the same ruin from on high with Cattersty Point in the background.

The good folk at the National Trust in Swindon are to thank for much of the background shared here. If you'd like to learn more about the Yorkshire area or donate to a very worthy charity, follow their link below.

Reference: https://www.nationaltrust.org.uk/yorkshire-coast/features/how-alum-shaped-the-yorkshire-coast

Saturday, 24 January 2026

MIDDLE TRIASSIC MIXOSAURUS: TAIWAN STYLE

Mixosaurus sp. from Middle Triassic Seas
If you ever wanted to meet an ichthyosaur halfway between “sleek dolphin missile” and “awkward crocodile-fish,” Mixosaurus delivers. 

This extinct marine reptile cruised the Middle Triassic seas around 242–235 million years ago, back when the world’s continents were still shuffling seats and experimenting with new ocean ecosystems.

The Taiwan specimen of Mixosaurus sp. on display at the Natural History Branch of the National Taiwan Museum captures that transitional vibe perfectly. It is a very, very purdy specimen!

With an elongated snout, well-developed fins, and a body still figuring out hydrodynamic fashion, Mixosaurus sits smack in the ichthyosaur family tree between early, lizard-shaped forms and the more streamlined torpedo models that would show up in the Jurassic. 

Think of it as the “adolescent ichthyosaur phase,” complete with growth spurts and evolving lifestyles.

Taxonomically, Mixosaurus belongs to the order Ichthyosauria and is commonly grouped within Mixosauridae. Its relatives include the earlier Utatsusaurus and Grippia (more on the reptilian side of things) and later speed demons like Temnodontosaurus and Stenopterygius

While all ichthyosaurs shared adaptations for marine life — big eyes, paddle limbs, and that delightful habit of birthing live young — Mixosaurus kept a few primitive traits, making it a favorite for paleontologists trying to reconstruct evolutionary pathways in Triassic oceans.

As for its museum home: the National Taiwan Museum has a long pedigree. Founded in 1908 during the Japanese era, it’s the oldest museum in Taiwan and houses natural history, anthropology, geology, and zoology collections spanning deep time to present day. 

The Natural History Branch, nestled in a dedicated exhibition space, is where geology, paleontology, and biology truly shine — a quiet refuge where extinct reptiles like Mixosaurus can enjoy their retirement in glass cases while humans politely stare, point, and whisper variants of “whoa.”

If you’re lucky enough to visit, you’ll find Mixosaurus presented not as some dusty relic of a bygone sea, but as a charismatic stepping-stone in reptile evolution — a reminder that even in the Triassic, life was busy experimenting. 

And occasionally, those experiments worked so well they became crowd-pleasers 240 million years later.

The National Taiwan Museum is in Taipei, Taiwan, right in the city’s historic downtown. The main building sits along Xiànběi Road (Xiànběi Rd., Zhongzheng District) facing 228 Peace Memorial Park, making it easy to combine extinct reptiles with a lovely urban stroll.

The Natural History Branch — where the Mixosaurus hangs out — is part of the same museum system and also located in central Taipei. It focuses on geology, biology, and deep time, so it’s very fossil-friendly territory.

If you’re ever in Taipei (or plotting a paleontology-tour itinerary — which, honestly, is something you should do), it’s a fun stop: compact, historic, and just nerdy enough to make Triassic ichthyosaurs feel right at home.


Friday, 23 January 2026

NESSIE: THE OPALIZED PLIOSAUR OF THE EARLY CRETACEOUS

Nessie the Opalized Marine Reptile
At the Opal Museum in Queensland glitters one of the more improbable fossils ever pulled from the ancient seabed — an opalized pliosaur affectionately nicknamed “Nessie.” 

Beneath its shimmering surface lies the story of a powerful marine reptile that ruled the Early Cretaceous oceans roughly 110 million years ago, at a time when much of inland Australia was drowned beneath a warm, shallow epicontinental sea.

The lovely remains you see here are from one of those amazing marine reptiles, a pliosaur, who swam in those ancient seas. So what exactly is a pliosaur?

Pliosaurs are a subgroup within the Plesiosauria, the great marine reptiles (not dinosaurs!) of the Mesozoic. 

While long-necked plesiosaurs favored dainty heads and elongated cervical vertebrae for sweeping, panoramic strikes at small fish and cephalopods, pliosaurs evolved in the opposite direction:

  • Skulls short and massive
  • Necks abbreviated
  • Jaws deep and muscular
  • Teeth robust and conical

These were the ambush predators, built less like swans and more like crocodilian torpedoes, with four powerful flippers and a muscular body plan that let them sprint through the water column to surprise prey.

Though not an ichthyosaur — those fast, fish-shaped reptiles that converged spectacularly toward the form of modern dolphins — pliosaurs shared the same ecosystems. 

Ichthyosaurs hunted squid and fish in speed-based chases, while pliosaurs handled bigger, tougher fare: other marine reptiles, ammonites, and the occasional large fish unlucky enough to cross their path.

The Early Cretaceous seas hosted a diverse guild of reptiles:

  • Ichthyosaurs (fish-shaped pursuit predators)
  • Long-necked plesiosaurs (precision feeders)
  • Pliosaurs (apex ambush predators)
  • Crocodyliforms (semi-aquatic opportunists)
  • Ammonites & belemnites (cephalopods forming the backbone of the food web)

Nessie sits among a lineage that includes broad-skulled bruisers like Kronosaurus queenslandicus, a fellow Australian celebrity whose skull approached 3 meters in length and whose bite force was probably among the strongest of any Mesozoic reptile.

Pliosaurs didn’t so much swim as fly underwater. Their four hydrofoil flippers generated lift in alternating strokes, allowing bursts of speed followed by graceful pursuit. Streamlined bodies meant low drag, essential for surprise attacks in open water.

Dentition tells the tale:

  • Deep-rooted conical teeth resist torsional stress
  • Interlocking jaws grip slippery prey
  • Short snout adds leverage for skull-crushing force

Ammonites — including opalized forms from the same Australian basins — bear puncture marks suggestive of pliosaur predation. Large fish and other marine reptiles likely rounded out the menu.

Like ichthyosaurs and most plesiosaurs studied from articulated skeletons, pliosaurs were viviparous — they gave birth to live young at sea. No nests, no frantic beach crawls, and no hatchling gauntlet. Babies were miniature versions of adults, already hydrodynamic and hungry.

How do we know this? Well, a few ways. We have fossilized pregnant plesiosaur specimens with embryos and there is always the biomechanical absurdity of hauling such a creature onto land to lay eggs. So, wee ones at sea it is!

Why Opal? Why Here?

Opalization is an Australian specialty, the result of silica-rich groundwater percolating through Cretaceous sediments and replacing bone over geologic time. Fossils from Lightning Ridge and Coober Pedy preserve everything from ammonites to plesiosaurs as shockingly colourful silica pseudomorphs — Earth chemistry as jeweler.

Nessie’s preservation is thus a double marvel for its biological rarity (pliosaur skeletons are uncommon) and mineralogical rarity (precious opal replacement is even rarer)

Pliosaurs survived well into the Late Cretaceous before vanishing in a wave of marine turnover alongside ichthyosaurs, mosasaurs, and ammonites. Their departure marks a reshuffling of oceanic power dynamics — a story of climate, sea levels, and evolutionary competition.

Wednesday, 14 January 2026

THE GREAT FINGER FIASCO: HERMANN AND CUVIER

Johann Hermann's Pterodactylus, 1800
In the grand annals of science, few discoveries have flapped into history with quite as much confusion as the poor Pterodactylus

It began, as many great scientific mix-ups do, with an enthusiastic man, a misplaced fossil, and a few patriotic misunderstandings.

Back in March of 1800, Johann Hermann — a German-slash-French scientist (depending on which invading army was in town that week) — became convinced that an odd fossil described by Collini held the key to something extraordinary. 

Without actually seeing the specimen, Hermann took a bold scientific leap: he announced that the animal used its absurdly long fourth finger to support a wing membrane.

This, in hindsight, was rather brilliant — and also rather lucky. Hermann mailed off a letter (and a sketch) to the great French naturalist Georges Cuvier, suggesting that the fossil might even have been war booty, plundered by Napoleon’s scientifically curious troops and whisked off to Paris. After all, France’s armies were busily collecting everything from priceless art to interesting bones at the time — science’s version of a clearance sale.

In his letter, Hermann proposed that this mysterious creature was a mammal. Yes, a furry, bat-like, possibly adorable flying thing. He imagined it with soft pelage, wings stretching elegantly from its fourth finger to its ankle, and a fashionable membrane connecting neck to wrist — the very portrait of prehistoric glamour.

Cuvier, intrigued and perhaps unwilling to admit he didn’t have the fossil in question, agreed with the wing idea but drew the line at “fuzzy mammal.” In December 1800, he published a short note, adopting Hermann’s winged interpretation but firmly declaring, “Non, monsieur — this thing is definitely a reptile.

Meanwhile, the fossil — allegedly stolen, possibly missing, and definitely not in Paris — turned up safe and sound in Munich. It had been spared confiscation thanks to one Baron von Moll, who managed to secure an “exemption from French enthusiasm.”

By 1809, Cuvier revisited the mystery, producing a longer and more confident description. He called it Petro-Dactyle (a typo he later fixed to Ptéro-Dactyle), thereby cementing both his reputation and a new spelling headache for future generations of palaeontologists.

He also took the time to dunk on his colleague Johann Friedrich Blumenbach, who had suggested the fossil might belong to a shore bird. Cuvier’s rebuttal was deliciously dry:

“It is not possible to doubt that the long finger served to support a membrane that, by lengthening the anterior extremity of this animal, formed a good wing.”

And with that, science had its first flying reptile — a creature born not only from stone but from a glorious mix of imagination, rivalry, and a few well-placed postal misunderstandings.

If you ever feel unqualified to make a bold scientific claim, remember Johann Hermann — who identified a whole new order of life without even seeing the fossil. Sometimes, a good guess (and a long finger) can take you far as history shows here in the The Great Finger Fiasco: How Johann Hermann and Georges Cuvier Accidentally Invented the Flying Reptile. 

Wednesday, 7 January 2026

BRITISH MUSEUM LONDON

Hope Whale
Stepping into the Natural History Museum, I was immediately greeted by Hope, the enormous blue whale skeleton gliding above Hintze Hall. 

It’s an impressive welcome—one that sets the tone for the rest of the visit. I wandered first into the Fossil Marine Reptile Gallery, where ichthyosaurs and plesiosaurs stretched out in long, elegant arcs along the walls. 

There’s something grounding about standing beside creatures that ruled the seas millions of years before humans took their first steps.

From there, I couldn’t resist the Dinosaur Gallery. Stegosaurus—one of the most complete specimens of its kind—is a standout, and I paused for a while to take in the armour plates and that iconic spiked tail. 

Nearby, familiar favourites like Triceratops and Corythosaurus anchor the room, drawing steady streams of families and wide-eyed kids.

The Earth Galleries offered a completely different kind of magic. 

Gemstones glittered under soft lights, meteorites sat quietly in their cases, and huge crystals seemed almost unreal in their clarity. Each display felt like a reminder of how beautiful and varied our planet really is.

I ended my visit in the Darwin Centre, where rows of preserved specimens and interactive exhibits gave a glimpse into the research happening behind the scenes. 

It’s easy to forget that the museum isn’t just a place to display the natural world—it’s an active hub for studying it.

By the time I left, I’d only scratched the surface, but that’s the best part. The museum is the kind of place you can return to again and again, always finding something new tucked into its halls.

I returned at three different times in a week to catch the galleries at various times of day to see the natural light hitting the displays, especially in the marine reptile gallery, so I could take in all the wonderful details. 

Monday, 5 January 2026

WHEN CROCODILES WENT ROGUE: VOAY ROBUSTUS

Voay robustus
Let’s begin in Madagascar—a place so rich in oddities that it makes Australia look like it’s playing it safe. 

Here, until a few thousand years ago, lived Voay robustus, the so-called “horned crocodile.” 

Imagine your average Nile crocodile, Crocodylus niloticus, then give it a set of knobby horns just above the eyes, a chunkier skull, and a personality that can best be described as “aggressively misunderstood.”

Voay robustus was no dainty island reptile. This was a serious piece of croc engineering—up to 5 metres long and built like it had something to prove. Its very name says it all: “Voay” (from the Malagasy word for crocodile) and “robustus,” because apparently scientists looked at it and thought, “yes, that’s the robust one.”

The first thing to know about Voay is that it was one of the last survivors of Madagascar’s lost megafauna. While lemurs were still the size of gorillas and elephant birds stomped through the underbrush like feathered tanks, Voay robustus lurked in rivers and swamps, waiting patiently for something—anything—to make a poor life choice near the water’s edge.

For decades, Voay was a bit of a taxonomic mystery. When first described in the 19th century, some thought it might be a close cousin of the Nile crocodile, others insisted it was something entirely different. Scientists bickered, skulls were compared, and Latin names were flung around like darts at a pub quiz.

Then, in 2021, the DNA finally weighed in. Using ancient genetic material from subfossil skulls, researchers revealed that Voay robustus wasn’t a Nile crocodile at all—it was actually the closest known relative of the modern Crocodylus lineage, having split off around 25 million years ago. That makes it something like the evolutionary cousin who shows up at family reunions wearing leather, talking about their motorcycle, and asking everyone if they’ve “still gone soft.”

The Horned Enigma — The most distinctive feature of Voay robustus was its skull—particularly those raised, bony “horns” above its eyes. They weren’t true horns, of course, but enlarged ridges of bone, possibly used for species recognition, intimidation, or just looking fabulous. If you’ve ever seen a crocodile and thought, “You know what that needs? More attitude,” Voay had you covered.

Palaeontologists still debate whether those horns meant Voay was more territorial, more aggressive, or simply had a flair for drama. In any case, it must have been a striking sight. 

Picture it: the sun setting over a Malagasy river, the water rippling slightly as a pair of horned eyes rise from below. Birds go silent. A lemur freezes. Somewhere, a herpetologist gets very, very excited.

Madagascar is known for being a biological experiment that got out of hand. Cut off from Africa for around 160 million years, the island evolved its own cast of peculiar creatures: giant lemurs, pygmy hippos, and flightless birds the size of small Volkswagens. Into this mix slithered and splashed Voay robustus, likely arriving during a period of low sea levels that made crossings from the mainland possible.

Once there, Voay probably established itself at the top of the food chain—and stayed there. Anything coming down to drink was fair game. Lemur, bird, hippo, or careless human ancestor—Voay didn’t discriminate. It’s hard to imagine anything else on the island telling a 5-metre crocodile what it could or couldn’t eat.

And yet, despite being a literal apex predator, Voay robustus didn’t make it to the present day. The species vanished roughly 1,200 years ago, right around the time humans arrived in Madagascar. Coincidence? Probably not.

When Humans Moved In — The timeline tells a familiar story. People reach the island about 2,000 years ago. Within a millennium, the megafauna are gone. The giant lemurs disappear, the elephant birds vanish, and the horned crocodile—perhaps hunted, perhaps losing habitat—slips into extinction.

You might imagine that Voay robustus was at least a little resentful about this turn of events. After all, it had survived millions of years of climate swings, sea-level changes, and evolutionary curveballs. And then along came humans, with their spears, boats, and general knack for ecological chaos.

It’s even been suggested that early Malagasy legends of giant crocodiles or river spirits might echo distant memories of encounters with Voay. Which, frankly, would make sense. If a horned, five-metre reptile lunged at your canoe one evening, you’d probably tell stories about it for generations, too.

Genetically, Voay robustus offers a fascinating window into crocodile evolution. While modern Crocodylus species are found across Africa, Asia, the Americas, and Australia, Voay sat just outside that global radiation. In other words, it was part of the evolutionary stem group that gave rise to today’s true crocodiles—but it stayed put while its cousins spread out and diversified.

That makes Voay something of a living fossil that outstayed its welcome—Madagascar’s own reminder of an older, meaner age. Its extinction left the island without any native crocodiles, though Nile crocodiles have since colonised parts of the west coast, re-establishing the ancient reptilian grin on Malagasy soil.

Today, Voay robustus lives on in subfossil bones, DNA samples, and the collective imagination of herpetologists who still dream of rediscovering one lurking somewhere in a forgotten swamp. (They won’t, of course—but it’s nice to dream.)

If anything, Voay reminds us that evolution loves a good experiment, especially on islands. Give a crocodile a few million years in isolation, and it might just decide it wants horns.

And if there’s a moral here—besides “don’t go swimming in prehistoric Madagascar”—it’s that even the fiercest, most robust of creatures can vanish when the world around them changes. So here’s to Voay robustus: horned, hulking, and gone too soon.

Image credit: By LiterallyMiguel - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=163874814

Saturday, 3 January 2026

BANFF NATIONAL PARK, CANADA

Banff National Park is breathtaking from any angle, but from the air it feels otherworldly—an alpine tapestry of turquoise lakes, braided rivers, and peaks stitched with glacier-light. 

Flying above it, you see the Rockies as the early surveyors must have: raw, immense, and defiantly ancient.

The town of Banff itself began humbly in the 1880s, growing from a railway stop on the new transcontinental line into Canada’s first national park. Railroad workers stumbled upon the Cave and Basin hot springs, sparking a cascade of interest in the area’s geology, wildlife, and deep-time history.

That same geology would soon draw paleontologists into the region’s wild backcountry. Just west of Banff, high on a ridge in Yoho National Park, lies the legendary Burgess Shale—one of the most important fossil sites on Earth. 

Discovered in 1909 by Charles Doolittle Walcott of the Smithsonian, the Burgess Shale preserves exquisitely detailed soft-bodied creatures from over 500 million years ago, offering a rare window into early animal evolution. 

Banff became the nearest hub—its hotels, trails, and later its research community supporting generations of scientists, students, and fossil-hungry adventurers heading into the high passes.

Seen from the sky today, Banff is a quiet modern town nestled among mountains that have been sculpted for hundreds of millions of years. Its story—of hot springs, railways, and extraordinary fossils—is always a delight to explore nestled in Canada's glorious Rockies.

Sunday, 28 December 2025

FOSSIL FELINES: MOZART

Mister Mozart
Cats—those purring enigmas who act like they invented gravity and disdain—have been perfecting their aloof charm for tens of millions of years. 

Long before domestic life on the couch, they prowled prehistoric forests and savannas, already masters of stealth.

The feline family tree begins about 25 million years ago with the Proailurus, whose name literally means “first cat.” 

This Miocene-era predator lived in Europe and Asia and probably looked like your housecat—if your housecat could take down small deer. 

Proailurus gave rise to the Pseudaelurus, the cat that would eventually split into two great evolutionary lineages: the big cats (Pantherinae, including lions, tigers, and leopards) and the small cats (Felinae, which include your couch companion, Felis catus), and snuggle bunnies like Mister Mozart you see here.

By the Pleistocene, cats had diversified spectacularly—from the legendary Smilodon, the sabre-toothed showstopper of Ice Age fame, to the lithe wildcats that would one day move into our granaries, charm our ancestors, and domesticate us. 

Yes, evidence suggests that around 10,000 years ago, humans didn’t so much tame cats as cats decided that humans were helpful enough to tolerate. A trend that continues to this day. 

Their fossils—sleek jaws, retractable claws, and the occasional pawprint—tell a story of evolutionary precision. Cats didn’t just evolve; they optimised. Every leap, pounce, and inscrutable stare has been honed by millions of years of predatory perfection.

So when your cat knocks your favourite mug off the counter and looks smug about it, remember: you’re gazing into the eyes of a finely tuned Miocene hunter. Evolution, it seems, has a sense of humour—and a soft spot for whiskers.

Kane & Mozart divving up the best bed spots
Despite centuries of cartoon propaganda suggesting otherwise, cats and dogs can form some of the most endearing interspecies friendships in the animal kingdom. 

While their social codes differ—dogs being pack-oriented and demonstrative, cats favouring solitary stealth and subtlety—mutual respect (and occasionally a shared sunny spot or prime position on your bed) often bridges the divide. 

Studies in animal behaviour show that early socialisation, body language recognition, and individual temperament play key roles in fostering harmony between felines and canines. 

A confident cat and a calm, well-socialised dog are a recipe for peaceful coexistence—and sometimes, genuine affection. Watching a cat gently groom a dog’s ears or a Ridgeback stoically endure a kitten’s playful ambush brings a smile to us all. Evolution may have set them on different paths, but friendship, it seems, is a universal instinct.

Saturday, 27 December 2025

PARIS MUSEUM D'HISTOIRE NATURELLE

Step through the Jardin des Plantes on a misty Paris morning and you can almost hear the echo of centuries: the whisper of early botanists brushing past medicinal herbs, the tap-tap of fossil preparators chiselling bone from matrix, the distant murmur of scholars arguing over geology, zoology, and the new—dangerous—idea of evolution. 

This is the Muséum national d’Histoire naturelle, an institution whose roots stretch back over three and a half centuries, and whose halls contain the very heartbeat of French natural science. It is one of my favourite museums, both for its collections, its history and my personal histoire with this gorgeous institution and curators over the years. 

From Royal Garden to Scientific Powerhouse

The Museum began humbly in 1635 as the Jardin du Roi, a royal medicinal garden established by King Louis XIII. Initially devoted to growing plants for healing, it soon attracted scholars hungry for classification, exploration, and discovery. By 1793, during the fervour of the French Revolution, the garden transformed into the Muséum national d’Histoire naturelle, formally dedicated to the full study of nature—its rocks, its creatures, its ancient past.

The new Museum wasn’t just a repository of curiosities. It became an intellectual engine, a place where comparative anatomy, paleontology, and evolutionary science were tested, debated, and sometimes fought over with near-religious intensity. Naturalists trained here went on to explore every corner of the globe, collecting specimens that would build one of the world’s greatest scientific archives.

Galleries That Feel Like Time Machines

Grande Galerie de l’Évolution

Entering this gallery feels like walking into a cathedral built for life itself. Under its towering iron-and-glass nave, rebuilt in 1994, enormous whales hang suspended above schools of preserved fish, birds, mammals, and invertebrates. These iconic displays are storytelling machines, showing how organisms diversify, adapt, flourish, and sometimes vanish.

Galerie de Paléontologie et d’Anatomie Comparée

This is where your pulse quickens. Completed in 1898, the paleontology hall is a long gallery glowing with raw scientific drama. Grinning skulls and articulated skeletons stride along the central walkway: Iguanodon, Allosaurus, Diplodocus, and early horses like Anchitherium. The fossil collection here is one of Europe’s richest, built from centuries of field expeditions and intense scientific rivalry.

I had the very great pleasure of exploring this gallery to photograph it using natural light early in the mornings before the crowds were let in to explore. It is the picture perfect museum in terms of how they choose to display the specimens and the rich history they tell. 

As I peered at each fossil, I was thrilled to think of its moment of discovery and deeply honoured to view it unhurried in the quiet hush of my early morning visits. Looking closer, my eyes were delighted by so many treasures:

The holotype of Anoplotherium commune, studied by Georges Cuvier as he developed his revolutionary ideas on extinction.

A beautifully preserved Mammuthus primigenius skull hauled from Siberian permafrost.

Jurassic marine invertebrates—ammonites, belemnites, and ichthyosaur remains—collected from classic French sites such as Normandy, the Causses, and the Paris Basin.

The upstairs gallery houses comparative anatomy, where countless skeletons and organs are preserved in glass jars—a dizzying testament to centuries of study.

Galerie de Minéralogie et de Géologie

A quieter but equally dazzling space. Massive amethyst geodes glow violet in dim light, meteorites sit in solemn rows, and cabinets showcase minerals collected during Napoleonic-era expeditions. The Museum’s mineral collection is legendary, containing more than 600,000 specimens.

The Paleontologists Who Shaped the Museum—and Science

Georges Cuvier (1769–1832)

Often called the father of vertebrate paleontology, Cuvier worked in the galleries that predate the Museum and helped build the foundations of its collections. His meticulous anatomical studies of fossil vertebrates established extinction as a scientific fact—a radical idea at the time. Many specimens he worked on still sit in climate-controlled cabinets within meters of where he once lectured.

Étienne Geoffroy Saint-Hilaire (1772–1844)

Cuvier’s intellectual rival—famous for his battles over anatomical homology. Their debates filled lecture halls and contributed to the Museum’s reputation as a crucible of scientific progress.

Albert Gaudry (1827–1908)

A pioneering paleontologist whose work on Miocene mammals from Pikermi, Greece, helped advance early evolutionary theory. Many of his comparative specimens form the backbone of the Museum’s rich mammalian fossil collection.

Marcellin Boule (1861–1942)

Director of the Museum and one of the most influential paleontologists of the early 20th century. Boule described the famous La Chapelle-aux-Saints Neanderthal, shaping early views of human evolution—sometimes incorrectly, sometimes brilliantly. His office overlooked the very galleries where those fossils are still displayed.

The Museum weathered both world wars—sometimes narrowly.

World War I — Many staff members were conscripted, and scientific expeditions halted. Parts of the collections were quietly relocated away from potential bombing sites. Yet the Museum remained open, a place of solace for Parisians seeking continuity amid chaos.

World War II — This was the more dangerous period for the museum. As German occupation tightened, curators scrambled to protect vulnerable collections:

Rare manuscripts and irreplaceable type fossils were packed into crates and hidden in cellars beneath the galleries. Some specimens were quietly transferred to rural estates outside Paris.

The Museum’s botanical greenhouses were kept running despite shortages, symbolically maintaining the “living” portion of the institution when much around it seemed precarious.

A lesser-known fact: Allied bombing raids damaged parts of the Jardin des Plantes, shattering glasshouses and breaking roof sections in several galleries. Miraculously, no major fossil collections were destroyed, largely thanks to the foresight of curators who had reinforced windows with sandbags and internal bracing.

Perhaps most intriguingly, German officers with interests in natural science reportedly toured the galleries—but staff resisted all pressure to surrender key specimens, sometimes hiding them within other displays or tucking them out of view.

Today, the Muséum national d’Histoire naturelle remains one of the world’s most active centers for research in biodiversity, paleontology, anthropology, and geoscience. Its galleries invite millions of visitors to wander through deep time, marvel at natural wonders, and walk the same floors once trod by Cuvier, Saint-Hilaire, Boule, and generations of explorers whose stories are embedded in every fossil case and herbarium drawer.

I highly recommend you take the time to visit the Museum and stroll through its many galleries, enjoying the history of life on Earth and the many individuals who have dedicated their lives to understanding it.

Tuesday, 23 December 2025

OWLS: MASTERS OF THE HUNT

They move through the night as if stitched into it, seamless and soundless. You don’t hear an owl arrive. 

You feel it—the brief shift in the air above your head, a whisper of movement. It always feels me with a sense of awe. 

The silence is part of the hunt. Each feather, soft-edged and velvet-fringed, pulls the air apart without letting it stitch back into a sound. It is the most refined stealth technology evolution ever produced.

Out of the dusk they come, low and spectral. A heart-shaped face turns like a satellite dish, searching, mapping the world not with sight but with sound—every rustle of vole or beetle sketched in invisible lines. 

In Kwak’wala, the language of the Kwakwaka’wakw peoples of northern Vancouver Island, both an owl and a carved owl mask are called, Da̱xda̱xa̱luła̱mł, (though I have also heard them called Gwax̱w̱a̱lawadi, names that carries deep layers of meaning within their sounds. 

Snowy Owl

Amongst the Kwagu’ł and cousin Kwakwaka’wakw First Nations (those who speak Kwak'wala), the owl is often regarded as a messenger between worlds—a being that moves freely between the realm of the living and the spirit world. 

Its nocturnal calls are heard as sounds of the forest but also messages from ancestors, guiding, cautioning, or reminding listeners of their connection to those who came before. 

The owl’s ability to see in darkness and to travel silently through the night makes it a symbol of perception, transformation, and spiritual awareness, woven into the ceremonial stories and teachings that link human life to the greater cycles of nature and the unseen.

The Barn Owl, Tyto alba, pale as old linen and light as breath, drifts over stubble fields and meadows on a night wind. Its back is mottled with gold and grey, a shimmer of faded ochre dusted with starlight, while its underparts are moon-pale, unmarked. To see one cross a field in darkness is to glimpse a ghost that has learned to eat.

Barn Owls wear the night differently from their kin. Where they are gold and ivory, the Great Grey Owl, Strix nebulosa, is a storm of silver mist and charcoal, all rings and ripples of smoke. The Snowy Owl, Bubo scandiacus, gleams white as an Arctic sunbeam, each feather edged in ink like frost-shadow on snow. 

The Tawny Owl, Strix aluco, one of my favourite woodland companions, takes the colour of leaf litter and bark, warm brown and russet, perfectly disguised against a tree trunk’s skin. 

The diversity of owl plumage tells the story of their worlds—the open field, the frozen tundra, the dense woodland—and of their mastery of concealment. 

Every pattern is a negotiation with light and habitat, a balance between being unseen and seeing everything.

The eyes, of course, are what we remember. They are not round but tubes, locked in place by bone, forcing the head to turn instead. Two great wells of amber, gold, or black glass, evolved to harvest every drop of night. Behind them, the facial disc funnels sound to asymmetrical ears—one higher than the other, tuned to triangulate the faintest scurry in the dark. 

An owl hears in three dimensions; it knows precisely not just where a mouse is, but how far beneath the snow or under the leaf mould it crouches. 

The result is a predator with seemingly supernatural powers. The flight is the confirmation.

Yet for all their modern perfection, owls are ancient creatures. Their lineage stretches far back into the Oligocene and beyond. 

The earliest fossils we can confidently call owls—members of the order Strigiformes—appear around 60 million years ago, just after the age of dinosaurs gave way to the age of mammals. 

One of the oldest known is Ogygoptynx wetmorei, found in the Paleocene deposits of Colorado, a time when tropical forests spread across what is now the Rocky Mountain region. 

Slightly later, in the early Eocene, we meet Berruornis from France and Primoptynx from Wyoming—owls large and powerful, already showing the curved talons and forward-facing eyes that mark their descendants.

The fossil record reveals that the ancestors of modern owls were even larger and, in some cases, more diurnal than today’s secretive forms. 

The Miocene produced giants like Ornimegalonyx oteroi of Cuba—standing nearly a metre tall, possibly flightless, stalking prey through forest shadows. Europe once hosted Strix intermedia, and North America its share of extinct Tyto species, some with wingspans rivaling modern eagles. 

By the Pleistocene, many of the owl forms we know today had already arrived: Snowy Owls gliding over Ice Age steppes, Barn Owls haunting caves where mammoth bones lay.

Those caves, in fact, preserve some of our best records of owl life. Owls, being generous regurgitators, leave behind pellets—compressed bundles of fur and bone that fossilize beautifully in dry shelters. 

Through these, we reconstruct vanished ecosystems: field mice of species long extinct, voles that once roamed British lowlands before the sea cut us from the continent. Each pellet is a time capsule, the residue of a meal but also of a habitat. These little truth revealing pellets are a delight to find (don't be squeamish!) and pull apart as they tell us as much today as they do from the past. 

There’s something wonderfully contradictory about owls in prehistory: creatures so adapted to darkness, yet so enduring in stone. The silent of their wings does not fossilize, but echoes persist in bone and pellet and in the gouge marks of their claws on ancient prey. 

In the fossil layers of Rancho La Brea in California, the tar pits have trapped the remains of owls that hunted across the Late Pleistocene grasslands—Barn Owls and Great Horned Owls (Bubo virginianus) caught in the sticky legacy of bitumen. 

In Europe, the famous Messel Pit of Germany has yielded exquisite Eocene specimens, complete with impressions of feathers and talons—evidence that the essential owl form has changed little in 50 million years. Once you are perfect, evolution tends to leave you alone.

Their success lies in specialisation: asymmetrical hearing, silent flight, low metabolic rate, unmatched night vision. Yet their story is also one of vulnerability. The very silence that serves them in the wild renders them invisible to us until they are gone. Barn Owl numbers have fallen in much of Europe as hedgerows vanish and grasslands are ploughed. 

In contrast, urban owls like the adaptable Great Horned Owl have expanded their ranges, turning city parks into hunting grounds. Some species are reclaiming ancient territories; others fade into absence, leaving only their echoes and fossils behind. Where I live on Vancouver Island, I can hear their call in the night and early morning as they send out their plaintive calls for a mate.

So much of what makes an owl remarkable—the hush of its wings, the glimmer of its eyes, the shape of its face—seems almost designed for myth. We have read them as omens, messengers, symbols of wisdom or death. But the truth, as the fossil record reminds us, is simpler and deeper. 

Owls are survivors, engineers of silence that have watched the world change for sixty million years. When one glides over a moonlit field, I stand in humility watching its perfect design and adaptation to this world and its connection to realms I can only dream of.