Showing posts with label archea. Show all posts
Showing posts with label archea. Show all posts

Saturday, 20 December 2025

DARWIN AND THE GREAT DEBATE: MEGALOSAURUS

Oxford University Museum of Natural History was established in 1860 to draw together scientific studies from across the University of Oxford.

On 30 June 1860, the Museum hosted a clash of ideologies that has become known as the Great Debate.

Even before the collections were fully installed, or the architectural decorations completed, the British Association for the Advancement of Science held its 30th annual meeting to mark the opening of the building, then known as the University Museum. 

It was at this event that Samuel Wilberforce, Bishop of Oxford, and Thomas Huxley, a biologist from London, went head-to-head in a debate about one of the most controversial ideas of the 19th century – Charles Darwin's theory of evolution by natural selection.

Notable collections include the world's first described dinosaur,  Megalosaurus bucklandii, and the world-famous Oxford Dodo, the only soft tissue remains of the extinct dodo. Although fossils from other areas have been assigned to the genus, the only certain remains of Megalosaurus come from Oxfordshire and date to the late Middle Jurassic. 

Megalosaurus
In 1824, Megalosaurus was the first genus of non-avian dinosaur to be validly named. The type species is Megalosaurus bucklandii, named in 1827.

In 1842, Megalosaurus was one of three genera on which Richard Owen based his Dinosauria. On Owen's direction, a model was made as one of the Crystal Palace Dinosaurs, which greatly increased the public interest for prehistoric reptiles. 

Subsequently, over fifty other species would be classified under the genus, originally because dinosaurs were not well known, but even during the 20th century after many dinosaurs had been discovered. 

Today it is understood these additional species were not directly related to M. bucklandii, which is the only true Megalosaurus species. Because a complete skeleton of it has never been found, much is still unclear about its build.

The Museum is as spectacular today as when it opened in 1860. As a striking example of Victorian neo-Gothic architecture, the building's style was strongly influenced by the ideas of 19th-century art critic John Ruskin. Ruskin believed that architecture should be shaped by the energies of the natural world, and thanks to his connections with a number of eminent Pre-Raphaelite artists, the Museum's design and decoration now stand as a prime example of the Pre-Raphaelite vision of science and art.

Sunday, 14 December 2025

ANCIENT ELEGANCE: UINTACRINUS SOCIALIS

There is a particular kind of quiet magic in the world, the sort that sends a small shiver of awe through you when all the elements of deep time align. 

Every so often, nature grants us a perfect moment: minerals seep gently into ancient flesh, sediments cradle a creature’s delicate form, and the slow choreography of preservation captures a life in astonishing detail. 

For me, nothing embodies that magic quite like crinoids. These elegant echinoderms—equal parts flower and animal—feel like whispers from an ancient sea, caught forever in stone.

The specimen before us is no exception. If you lean in close and let your eyes wander across its intricate geometry, you will find yourself face to face with a stunning representative of Uintacrinus socialis

This Upper Cretaceous beauty, hailing from the Santonian roughly 85 million years ago, was first named nearly a century and a half ago by O.C. Marsh in honour of the Uinta Mountains of Utah. 

This specimen hail from the soft chalky layers of the Smoky Hills Niobrara Formation in central Kansas—a region that once lay beneath the warm, shallow waters of the Western Interior Seaway. Here, entire colonies of Uintacrinus drifted like living chandeliers, their feathery arms extended into the sun-dappled currents.

Crinoids are the quiet dancers of the animal kingdom. Although they appear plant-like—an underwater blossom swaying gracefully in the tide—they are very much animals, part of the illustrious echinoderm clan that includes sea stars, brittle stars, and urchins. 

Imagine a lily turned sentient: a cup-shaped central body holding a mouth on its upper surface, surrounded by delicate, branching arms that sweep food particles from the water. 

And, in true echinoderm fashion, add an anus inconveniently positioned right beside the mouth. Evolution, it seems, has a sense of humour.

The anchored species, traditionally called sea lilies, rise from the seafloor on slender stalks composed of stacked calcite rings—columnals—that resemble beads fallen from some ancient necklace. In shallower waters, the stalks can be short and sturdy, but in deeper seas they may stretch a metre or more, holding the crinoid aloft like the mast of a living ship, swaying gently with each passing current.

Yet most crinoids in today’s oceans are not anchored at all. The feather stars, or comatulids, break free from their juvenile stalks and spend their adulthood drifting, crawling, or even swimming with slow, balletic strokes of their arms. 

They cling to rocks and coral with tiny curved structures called cirri—delicate as eyelashes yet strong enough to grip firmly in swirling water. These cirri also allowed many fossil crinoids to hold fast to the Cretaceous seafloor, weathering tides and storms in the vast expanse of the Western Interior Seaway.

Like all echinoderms, crinoids exhibit pentaradial symmetry: a five-fold architecture expressed in their plates, arms, and feeding grooves. The aboral, or underside, of the calyx is encased in a mosaic of calcium carbonate plates that form their internal skeleton—robust enough to fossilize beautifully. 

The top surface, the oral area, is mostly soft tissue in life, opening into five deep ambulacral grooves where tube feet once reached outward like tiny graceful fingers. Between these lie the interambulacral zones, together forming the elegant star-like pattern that both living and fossil crinoids display.

Their fossil record is ancient and abundant. Crinoids first appear in the Ordovician over 450 million years ago—unless one counts Echmatocrinus, that strange and controversial form from the Burgess Shale whose affinities still spark debate among paleontologists. 

Through the Paleozoic, crinoids flourished in such numbers that their disarticulated columnals often blanket limestone beds. In some places, these columnals form the very fabric of the rock itself, creating entire cliffs built from the remnants of ancient underwater meadows. To run your fingers along such a rock is to touch a community that lived hundreds of millions of years before humans ever drew breath.

And yet, crinoids endure. They survive today in tropical reefs, deep ocean slopes, and soft-bottomed basins, their lineage stretching unbroken from those early Paleozoic seas to the modern oceans. 

Some cling to the seafloor in twilight depths; others drift like feathered ghosts, arms unfurling in silent, rhythmic pulses. 

When a fossil like Uintacrinus socialis emerges from the chalk of Kansas or the limestone of Utah, we are granted a rare window into that vanished age. 

And for those of us who spend our days searching riverbeds, quarries, and sea cliffs for such wonders, as I am sure you do, it is for the thrill of having a satisfying split and letting the past shine through.

That, to me, is pure magic.

Sunday, 7 December 2025

MASSIVE ICHTHYOSAUR VERTEBRAE FROM NEVADA

The massive marine reptile vertebra you see here—broad, five-sided, drum-shaped, and heavy enough to require two hands to lift—once belonged to an ichthyosaur, one of the most impressive lineages of marine reptiles ever to patrol Earth’s oceans. 

This particular fossil hails from Berlin–Ichthyosaur State Park in central Nevada, a high desert landscape where sagebrush now whispers over ground that was once submerged beneath a warm, tropical Triassic sea.

During the Late Triassic, roughly 217 million years ago, this region lay along the western margin of the supercontinent Pangaea. 

Shallow, nutrient-rich waters supported a thriving marine ecosystem dominated by ammonites, early fish, and  ichthyosaurs.

Today, the Berlin–Ichthyosaur site is the richest concentration of large ichthyosaur fossils in North America. 

More than 37 articulated or semi-articulated skeletons have been excavated from the Luning Formation, a thick sequence of limestone and shaly carbonates that records the rise and fall of this ancient seaway. 

These rocks formed from fine carbonate mud and shell debris that settled on the sea floor, gradually entombing the bodies of these marine giants under quiet, low-oxygen conditions ideal for fossil preservation.

The site’s fossil beds preserve something even more scientifically tantalizing: multiple large individuals clustered together in a single stratigraphic horizon. 

Whether these accumulations represent mass strandings, predator trap dynamics, toxic algal events, or a natural death assemblage remains debated.

Photo Credit: The talented hand model supporting this magnificent beast is Betty Franklin. 

What you don’t see in the photo are the enormous grins we’re both wearing as we marvel over this beauty—hers because she gets to hold it, and mine because I get to capture the moment. 

Thank you, Berlin-Ichthyosaur!

Saturday, 6 December 2025

WHEN GORGONS REIGNED SUPREME

Step back into the deep Paleozoic—an era that began some 540 million years ago with oceans bustling with trilobites, early fish, and soft-bodied wonders, while the continents themselves hosted little more than humble mats of mosses and fungi. Life’s great drama was still mostly underwater.

Fast-forward 240 million years, and the evolutionary landscape had transformed dramatically. 

Vertebrates had conquered the land, ecosystems had diversified, and Earth’s surface teemed with reptilian innovators, amphibians the size of crocodiles, and the early ancestors of mammals. Among these emerging terrestrial titans strode the Gorgonopsians, or “Gorgons”—ferocious sabre-toothed therapsids that dominated the Middle to Late Permian, from about 265 to 252 million years ago.

These were no sluggish proto-reptiles. Gorgons were highly specialized predators, boasting elongated canine teeth worthy of any future saber-toothed cat, powerful jaws, and sleek, muscular bodies built for pursuit. Their anatomy blended the primitive and the prophetic: reptile-like postures paired with early mammalian traits such as differentiated teeth and strong jaw musculature. 

Their clawed limbs, keen forward-facing eyes, and cutting-edge predatory adaptations placed them firmly at the top of the Permian food chain. In a world long before dinosaurs, they were the undisputed apex hunters.

My own fascination with these remarkable creatures was ignited by Gorgons, Peter Ward’s wonderfully wry and insightful dive into the ancient landscapes of South Africa. Ward’s vivid tales of fieldwork in the blistering, bone-dry vastness of the Karoo Basin—ancestral home of the Gorgons—captured both the hardships and the sheer exhilaration of unearthing deep time. 

His descriptions of sunburn and scientific revelations in that arid world made me laugh more than once. It is a highly enjoyable read.

The Great Karoo itself is a geological and paleontological marvel. This enormous, semi-arid expanse formed within a vast inland basin roughly 320 million years ago, at a time when the part of Gondwana destined to become Africa lay draped across the South Pole. 

Layer upon layer of sedimentary rock accumulated as glaciers advanced and retreated, rivers meandered, lakes dried, and ecosystems rose and fell. Today, those layers read like a grand evolutionary chronicle, preserving a world populated by beaked herbivores, hulking amphibians, and the charismatic, toothy Gorgonopsians.

This was a pivotal chapter in Earth’s history—just before the catastrophic Permian-Triassic extinction swept away nearly 90% of life. Yet in the twilight of the Permian, before that great dying, the Karoo thrived with innovation and ecological complexity. It was a world where the early steps toward warm-bloodedness were being taken, where synapsids (our own deep ancestors) were experimenting with new forms, and where the Gorgons reigned supreme.

Friday, 5 December 2025

SEMENOVITES OF THE CASPIAN RIM: CRETACEOUS AMMONITES OF KAZAKHSTAN

This tasty block of Semenovites (Anahoplites) cf. michalskii hails from Cretaceous, Albian deposits that outcrop on the Tupqaraghan — Mangyshlak Peninsula, a stark and beautiful finger of land jutting into the eastern Caspian Sea in western Kazakhstan. 

The ammonites you see here are housed in the collection of the deeply awesome Emil Black. 

Their ancient provenance lies in rocks laid down some 105–110 million years ago, a time when warm epeiric seas flooded much of Central Asia and the ancestors of these coiled cephalopods thrived in shelf environments rich in plankton and marine life.

Present-day Kazakhstan is itself a geological palimpsest, a place made from multiple micro-continental blocks that were rifted apart during the Cambrian, later sutured back together, then pressed against the southern margin of Siberia before drifting to where we find them today. 

The Mangyshlak block preserves a record of these shifting tectonic identities, its plateaus and scarps reading like the torn edges of continents long departed.

The Mangyshlak (Mangghyshlaq) Peninsula is a land of structure and emptiness—high, wind-planed plateaus abruptly broken by escarpments, dry valleys, and shallow basins bleached white with salt. 

To the west lies the Caspian Sea; to the northeast the marshy Buzachi Peninsula, its wet depressions feeding migratory birds and a surprising profusion of reeds. Just north, the Tyuleniy Archipelago—a scattering of low islands—hints at the shallow bathymetry and shifting sediment loads that dominate this coastline.

Field workers on Mangyshlak often describe the region by its broad horizontality. The sky feels enormous, unbroken, a pale arch stretching over the tawny plateaus. The ground underfoot is firm but dusty, composed of compacted sandy limestones and weathered marl that break into familiar, fossil-bearing blocks. The climate is dry, the winds persistent, and visibility often perfect—ideal for spotting promising outcrops from a great distance.

Kazakhstan as a whole is a nation shaped by contrasts. Lowlands form fully one-third of its landmass. Hilly plateaus and plains account for nearly half. Low mountainous regions rise across the eastern and southern margins, making up roughly one-fifth of the terrain.

This spacious geography culminates at Mount Khan-Tengri (22,949 ft / 6,995 m) in the Tien Shan range, a crystalline sentinel marking the border between Kazakhstan, Kyrgyzstan, and China. These far-off mountains are invisible from Mangyshlak, but their presence is felt in the broad regional tectonic architecture.

 
The Western Lowlands and the Caspian Depression

The Tupqaraghan Peninsula lies within the influence of the Caspian Depression, one of the lowest terrestrial points on Earth. At its deepest, the Depression reaches 95 feet below modern sea level, a phenomenon caused by both tectonic subsidence and the unusual hydrology of the endorheic Caspian Basin.

To the south, the land rises gradually into the Ustyurt Plateau, an immense chalk and limestone table marked by wind-sculpted buttes and long, eroded escarpments. The Tupqaraghan Peninsula itself is cut from these same sedimentary sequences—Miocene, Paleogene, and Mesozoic strata cropping out in irregular terraces that lure geologists and paleontologists alike.

This is a region where erosional processes are laid bare. Minimal vegetation allows exposures to remain clean and highly visible; many slopes are studded with ammonites, inoceramid bivalves, belemnite rostra, and the fragmentary remains of marine reptiles and pterosaurs. Expeditions here frequently report layers rich in small, well-preserved invertebrate fossils, their delicate sutures and ornamentation astonishingly intact.

 
Deserts, Uplands, and Salt-Lake Basins

Much of Kazakhstan is dominated by arid and semi-arid environments, and the Mangyshlak Peninsula is no exception. To the east and southeast of the region lie the great sand deserts that define Central Asia:

  • Greater Barsuki Desert
  • Aral Karakum Desert
  • Betpaqdala Desert
  • Muyunkum and Kyzylkum Deserts
These swaths of wind-polished grains advance and retreat across broad flats and shallow depressions. The vegetation here—shrubs, saxaul, and salt-tolerant herbs—is sparse, drawing life from subterranean groundwater or ephemeral spring melt.

In central Kazakhstan, salt-lake depressions punctuate the uplands. These basins often shimmer under the sun, their surfaces coated in chalky halite crusts that record cycles of evaporation stretching back millennia.

To the north and east the land lifts again, rising into ridges and massifs: the Ulutau Mountains, the Chingiz-Tau Range, and the Altai complex, which sends three great ridges reaching into Kazakhstan. Farther south, the Tarbagatay Range and the Dzungarian Alatau introduce still more rugged topography before the landscape resolves again into plains around Lake Balkhash.
Paleontological Richness of the Region

Kazakhstan is famed for more than its ammonites. Dinosaurian bones, trackways, and scattered pterosaur remains punctuate Mesozoic and Paleogene localities across the nation. The Mangyshlak region in particular has yielded:
  • Albian ammonites
  • Cretaceous bivalves
  • Marine reptile fragments
  • Occasional vertebrate traces
These Semenovites come from a fossiliferous belt once submerged under a warm, shallow sea—a world unfurled in silt and light where these cephalopods thrived.

Paleo-coordinates: 44° 35′ 46″ N, 51° 52′ 53″ E.

Monday, 24 November 2025

HUNTING HISTORY: RETRACING THE STEPS OF JURA JELETZKY ON BC'S WILD WEST COAST

Retracing the Steps of Paleontologist Jura (George) Jeletzky on the Wild West Coast of Vancouver Island

We hiked in under the hush of coastal rainforest, the air thick with cedar and ocean mist, following a faint trail that wound toward the outer edge of Vancouver Island. 

Out here, the Pacific breathes against the cliffs with the same steady rhythm it has kept for millions of years. 

We were searching for a quiet relic tucked into this wild place—a weathered cabin where the palaeontologist Jurij Alexandrovich Jeletzky once worked, thought, and dreamed.

The cabin appeared like a ghost of scholarship between the salal and wind-twisted spruce. Its timbers sagged under decades of salt and rain, yet stepping inside felt like stepping into Jeletzky’s mind. 

On a rough-hewn shelf lay some of his original reading materials, their pages soft with age. Scattered across the floorboards, half-buried in the dust of time, were fragments of pottery, old jugs, and small utilitarian objects—humble reminders of the years he lived and laboured in this remote place. 

These remnants, quiet as tide pools, carried the unmistakable gravity of a life devoted to understanding deep time.

Exploring the cabin and the fossiliferous exposures he once studied felt like paying homage not only to a scientist, but to a way of seeing the Earth.

Jurij Alexandrovich Jeletzky—Jura to his family and Russian friends, George to the English-speaking world—was born June 18, 1915, in Pensa, Russia. 

His early fascination with Earth history began along the banks of the Volga River, where he encountered the spectacular oil-tinted ammonites of the Upper Jurassic: Quenstedtoceras, Peltoceras, Kosmoceras, Cadoceras, and many others whose forms read like the calligraphy of ancient seas. That early inspiration shaped the trajectory of an extraordinary scientific life.

He graduated with honours from the State University at Kyiv in 1938, pursued graduate studies in palaeontology and stratigraphy, and earned his Candidate of Geological Sciences degree in 1941 for his work on Boreal Upper Cretaceous belemnites. 

Amid global upheaval, he married Tamara Fedorovna on the day Germany invaded the USSR. War scattered institutions, families, and futures—but through those years, Jeletzky held his family together, carried his notebooks across borders, and preserved the spark of his scientific purpose.

In 1948, he arrived in Canada and found in its vast geologic provinces a lifetime of work waiting to be done. 

He became a research scientist with the Geological Survey of Canada—a position he held until 1982—and began producing geological maps and stratigraphic studies across Vancouver Island and southern British Columbia. 

Later, in the remote expanses of the Yukon, he undertook one of the most ambitious field projects of his career: to locate the most continuous open-marine Upper Jurassic–Lower Cretaceous section in northwestern Canada. 

Jeletzky's Cabin hidden in the forest
For two decades, often travelling by canoe and on foot with only an Indigenous guide and cook, he documented the sequence layer by layer, fossil by fossil, building a framework that would anchor Canadian Mesozoic geology for generations.

Jeletzky published nearly 150 papers, his work spanning Cretaceous stratigraphy, Buchia biostratigraphy, ammonoid systematics, and the evolutionary story of the Mesozoic coleoids—especially belemnites, the very fossils that launched his career. 

His meticulous approach and vast multilingual scholarship made him the world’s leading authority on fossil coleoids, entrusted with authoring the Coleoidea volume of the Treatise on Invertebrate Paleontology. From comparative morphology to biochronology, his insights shaped scientific thought across paleontology, tectonics, and palaeogeography.

His honours were many: Fellow of both the Geological Society of America and the Royal Society of Canada, recipient of the Willet G. Miller Medal and the Elkanah Billings Medal, and co-honoree—alongside Ralph Imlay—of a special symposium on Jurassic–Cretaceous palaeogeography at the 1982 North American Paleontological Convention.

Yet what colleagues remembered most was not the scale of his output, but the integrity of his science. Jeletzky challenged popular hypotheses when his data differed; he believed deeply that the paleontologist’s first loyalty is to evidence. 

He questioned prevailing views on Cordilleran geosynclines, criticised the overuse of quantification in palaeontology, evaluated the limits of eustasy, and defended the biostratigraphic power of molluscs even as new tools rose to prominence. 

His independence of mind—never pompous, always principled—became part of his legacy.

Even as illness overtook him in the 1980s, he continued to work with unwavering determination. His final weeks were spent editing proofs from a hospital bed, closing intellectual circles that began decades before along the Volga. 

He passed away on December 4, 1988, leaving manuscripts nearly complete, ideas still unfolding, and a scientific community deeply in his debt.

Those who knew him spoke of his kindness, his generosity to younger colleagues, and his unbroken love of life despite hardship. To them, Jeletzky embodied the principles that define a meaningful scientific life: freedom of thought, respect for evidence, and steadfast dedication to truth.

Standing in his small cabin on Vancouver Island, the rafters whispering with Pacific wind, we felt the presence of a mind that spent its life listening—listening to rocks, to ancient oceans, to the long and patient story of Earth. Every fossil we touched along the coastal cliffs seemed, in some way, to echo his work.

Jurij (George) Jeletzky will forever remain a guiding light to those who walk the shorelines, cliffs, and riverbanks of deep time—those who believe that the past is worth reading with care, curiosity, and courage.

Wednesday, 19 November 2025

THE GREAT CLALLAM BAY FOSSIL HEIST

Vertipecten fucanus (Dall, 1900)
Some water-worn samples of the bivalve Verdipectin fucanus, Clallam Formation, Clallam Bay, Washington State. Miocene.

It all began one gloriously sunny summer weekend when the planets aligned, the calendar gods smiled, and my mother and I were simultaneously free. 

Naturally, this meant one thing: we were going fossil hunting. I still get out collecting regularly but back in the day it was every weekend of the year with the bigger trips planned a few years in advance. 

Many of those were "reckie trips" scouting out new localities. The Olympic Peninsula was duly scouted and now it was back to the regular haunts. 

We rattled down through Port Angeles and set up camp at the Lyre River—mosquitoes, campfire smoke, and all the rustic feels

I took Mom on a grand tour of my favourite haunts: Majestic Beach (where we found some amazing fossil whale verts), a private-land site with ghost shrimp claws and urchins (with permission), and finally down to Clallam Bay and its dreamy beach exposures.

The Clallam Formation stretches along the north coast of the Olympic Peninsula, tracing the rugged edge of the Strait of Juan de Fuca from Slip Point at the eastern end of Clallam Bay to the headland of Pillar Point. Here, sandstone beds push the coastline outward in a subtle bulge, their weathered flanks dropping abruptly to a broad, wave-washed bedrock platform.

Pillar Point, Clallam Bay
Imagine standing on that foreshore: waves crash rhythmically against the stone, sending up bursts of cool spray. The surf’s deep, steady thunder pulses underfoot, while the sharper cries of gulls wheel above, carried on the wind. 

The air is rich with the briny scent of kelp and cold saltwater, a sharp, clean smell that settles in the back of the throat. Each retreating wave leaves a gleaming sheen on the rock, swirling with foam before sliding back to the sea.

Its cliffs and tidal benches have long drawn geologists—and especially paleontologists—who were captivated by the formation’s abundance of beautifully preserved fossils. 

William Healey Dall, a pioneering American geologist and paleontologist whose career spanned more than six decades. Dall loved to explore this rugged bit of coastline, studying and describing many of the mollusks now known from the Clallam Formation, adding his work to the early scientific tapestry woven from these windswept rocks.

He became one of the most prolific describers of North Pacific mollusks, naming hundreds of new species—from marine snails and clams to chitons—many of which still bear the names he assigned or honour him through genera such as Dallina and Dallididae. His work laid much of the early scientific foundation for the paleontology of the Pacific Coast.

Retracing his footsteps and to catch the tides just right, we collected in the early afternoon, blissfully unaware that we were setting up the perfect comedy plot twist. 

After a full day of hauling home the ocean’s Miocene leftovers, we decided to stash some of our fossil booty under a log—just until morning. A little paleo treasure cache. Perfectly safe. Nothing could possibly go wrong.

The next morning, we strolled back down the beach, coffees in hand, ready to retrieve our hoard like triumphant pirates.

Enter: A very enthusiastic gaggle of high school students.

There they were, marching toward us, each clutching a fossil like they’d just won the geological lottery. “Look what we found!” they cried, beaming, displaying our carefully cached treasures.

Yes. Our stash. Our carefully curated, lovingly positioned, absolutely-not-meant-for-public-consumption stash.

But honestly? They were so thrilled, we couldn’t help but be charmed. Besides, most of what I collect ends up in museums or teaching collections anyway. These young fossil hunters had simply… expedited the process. Efficient, really.

We gathered the Verdipectin together for one glamorous group photo, wished the kids well, and sent them off with pockets full of deep time. 

And our grand prize for the weekend? Some very fetching water-worn whale vertebrae—one of which was briefly enscripted into service as the crown of the King of the Lemon People, while my mother created elaborate beach sculptures to our shared amusement.. All in all, a perfect weekend.

Image: Vertipecten fucanus (Dall, 1900) is the most characteristic mollusk in assemblages from the Clallam Formation.

Sunday, 26 October 2025

FOSSIL BIRD REMAINS FROM SOUTHERN VANCOUVER ISLAND

Stemec suntokum, a Fossil Plopterid from Sooke, BC
We all love the idea of discovering a new species—especially a fossil species lost to time. 

As romantic as it sounds, it happens more often than you think. 

I can think of more than a dozen new fossil species from my home province of British Columbia on Canada’s far western shores that have been named after people I know who have collected those specimens or contributed to their collection over the past 20 years. 

British Columbia, Canada, is a paleontological treasure trove, and one of its most rewarding spots is tucked away near the southwestern tip of Vancouver Island: the Sooke Formation along the rugged shores of Muir Beach.

A Beach Walk into Deep Time

Follow Highway 14 out of the town of Sooke, just west of Victoria, and you’ll soon find yourself staring at the cool, clear waters of the Strait of Juan de Fuca. Step onto the gravel parking area near Muir Creek, and from there, walk right (west) along the beach. The low yellow-brown cliffs up ahead mark the outcrop of the upper Oligocene Sooke Formation, part of the larger Carmanah Group.

For collectors, families, and curious wanderers alike, this spot is a dream. On a sunny summer day, the sandstone cliffs glow under the warm light, and if you’re lucky enough to visit in the quieter seasons, there’s a certain magic in the mist and drizzle—just you, the crashing surf, and the silent secrets of a world long gone.

Geological Canvas of the Oligocene

The Sooke Formation is around 25 to 30 million years old (upper Oligocene), when ocean temperatures had cooled to levels not unlike those of today. That ancient shoreline supported many of the marine organisms we’d recognize in modern Pacific waters—gastropods, bivalves, echinoids, coral, chitons, and limpets. Occasionally, larger remains turn up: bones from marine mammals, cetaceans, and, in extremely rare instances, birds.

Beyond Birds: Other Fossil Treasures

The deposits in this region yield abundant fossil molluscs. Look carefully for whitish shell material in the grey sandstone boulders along the beach. You may come across Mytilus (mussels), barnacles, surf clams (Spisula, Macoma), or globular moon snails. Remember, though, to stay clear of the cliffs—collecting directly from them is unsafe and discouraged.

These same rock units have produced fossilized remains of ancient marine mammals. Among them are parts of desmostylids—chunky, herbivorous marine mammals from the Oligocene—and the remains of Chonecetus sookensis, a primitive baleen whale ancestor. There are even rumors of jaw sections from Kolponomos, a bear-like coastal carnivore from the early Miocene, found in older or nearby formations.

Surprisingly, avian fossils at this site do exist, though they’re few and far between. Which brings us to one of the most exciting paleontological stories on the island: the discovery of a flightless diving bird.

The Suntok Family’s Fortuitous Find

In 2013, while strolling the shoreline near Sooke, Steve Suntok and his family picked up what they suspected were fossilized bones. Their instincts told them these were special, so they brought the specimens to the Royal British Columbia Museum (RBCM) in Victoria.

Enter Gary Kaiser: a biologist by profession who, after retirement, turned his focus to avian paleontology. As a research associate with the RBCM, Kaiser examined the Suntoks’ finds and realized these were no ordinary bones. They were the coracoid of a 25-million-year-old flightless diving bird—a rare example of the extinct Plotopteridae. In honor of the region’s First Nations and the intrepid citizen scientists who found it, he named the new genus and species Stemec suntokum.

Meet the Plotopterids

Plotopterids once lived around the North Pacific from the late Eocene to the early Miocene. They employed wing-propelled diving much like modern penguins, “flying” through the water using robust, flipper-like wings. Fossils of these extinct birds are known from outcrops in the United States and Japan, where some specimens reached up to two meters in length.

The Sooke fossil, on the other hand, likely belonged to a much smaller individual—somewhere in the neighborhood of 50–65 cm long and 1.7–2.2 kg, about the size and weight of a small Magellanic Penguin (Spheniscus magellanicus) chick. The key to identifying Stemec suntokum was its coracoid, a delicate shoulder bone that provides insight into how these birds powered their underwater movements.

From Penguin Waddle to Plotopterid Dive

If you’ve ever seen a penguin hopping near the ocean’s edge or porpoising through the water, you can imagine the locomotion of these ancient Plotopterids. The coracoid bone pivots as a bird flaps its wings, providing a hinge for the up-and-down stroke. Because avian bones are so delicate—often scavenged or destroyed by ocean currents before they can fossilize—finding such a beautifully preserved coracoid is a stroke of incredible luck.

Kaiser’s detailed observations on the coracoid of Stemec suntokum—notably its unusually narrow, conical shaft—sparked debate among avian paleontologists. You can read his paper, co-authoried with Junya Watanabe and Marji Johns, was published in Palaeontologia Electronica in November 2015. You can find the paper online at:

 https://palaeo-electronica.org/content/2015/1359-plotopterid-in-canada

The Suntok Legacy

It turns out the Suntok family’s bird discovery wasn’t their last remarkable find. Last year, they unearthed part of a fish dental plate that caught the attention of Russian researcher Evgeny Popov. He named it Canadodus suntoki (meaning “Tooth from Canada”), another nod to the family’s dedication as citizen scientists. 

While the name may not be as lyrical as Stemec suntokum, it underscores the continuing tradition of everyday fossil lovers making big contributions to science.

Planning Your Own Expedition

Location: From Sooke, drive along Highway 14 for about 14 km. Just after crossing Muir Creek, look for the gravel pull-out on the left. Park and walk down to the beach; turn right (west) and stroll about 400 meters toward the sandstone cliffs.

Tip: Check the tide tables and wear sturdy footwear or rubber boots. Fossils often appear as white flecks in the greyish rocks on the beach. A small hammer and chisel can help extract specimens from coquinas (shell-rich rock), but always use eye protection and respect the local environment.

Coordinates: 48.4°N, 123.9°W (modern), which corresponds to around 48.0°N, 115.0°W in Oligocene paleo-coordinates.

Why Head to Sooke? Pure Gorgeousness!

Whether you’re scanning the shoreline for ancient bird bones or simply soaking in the Pacific Northwest vistas, Muir Beach offers a blend of natural beauty and deep-time adventure. For many, the idea of unearthing a brand-new fossil species seems almost mythical. 

Yet the Suntok family’s story proves it can—and does—happen. With an appreciative eye, a sense of curiosity, and a willingness to learn, any of us could stumble upon the next chapter of Earth’s distant past.

So pack your boots, bring a hammer and some enthusiasm, and you just might find yourself holding a piece of ancient avian history—like Stemec suntokum—in your hands.

References & Further Reading

Clark, B.L. and Arnold, R. (1923). Fauna of the Sooke Formation, Vancouver Island, B.C. University of California Publications in Geological Sciences 14(6).

Hasegawa et al. (1979); Olson and Hasegawa (1979, 1996); Olson (1980); Kimura et al. (1998); Mayr (2005); Sakurai et al. (2008); Dyke et al. (2011).

Russell, L.S. (1968). A new cetacean from the Oligocene Sooke Formation of Vancouver Island, British Columbia. Canadian Journal of Earth Sciences, 5, 929–933.

Barnes, L.G. & Goedert, J.L. (1996). Marine vertebrate palaeontology on the Olympic Peninsula. Washington Geology, 24(3), 17–25.

Kaiser, G., Watanabe, J. & Johns, M. (2015). A new member of the family Plotopteridae (Aves) from the late Oligocene of British Columbia, Canada. Palaeontologia Electronica.

Howard, H. (1969). A new avian fossil from the Oligocene of California. Described Plotopterum joaquinensis.

Wetmore, A. (1928). Avian fossils from the Miocene and Pliocene of California.



Tuesday, 14 October 2025

KELP FORESTS AND CARBON SINKS

Walk along any rocky beach on the Pacific coast after a storm, and you’ll likely find a treasure trove of kelp washed ashore—long ribbons of glossy brown seaweed, glistening in the sunlight like strands of mermaid hair. 

Some pieces stretch for meters, still tangled with small shells and bits of driftwood, while others hold tight, bulbous floats that once kept them buoyant in the underwater forests just offshore. 

When the tide recedes, the air fills with the unmistakable scent of iodine and salt—an ancient perfume carried by the sea.

Kelp is a brown alga, part of the group Phaeophyceae, which evolved roughly 150 to 200 million years ago. 

While kelp itself doesn’t fossilize easily (it’s soft-bodied and decomposes quickly), its ancient lineage can be traced through molecular and microfossil evidence. The earliest relatives of kelp likely appeared in the Jurassic seas, when dinosaurs ruled the land and the oceans teemed with ammonites. 

Microscopic spores and chemical biomarkers in sedimentary rocks tell scientists that brown algae were already photosynthesizing in shallow coastal waters long before the first mammals appeared.

Giant kelp, Macrocystis pyrifera, holds the title for the fastest-growing marine organism on Earth—it can shoot up more than half a meter a day under ideal conditions! 

These towering underwater forests provide shelter and food for thousands of marine creatures, from tiny snails to sea otters, who wrap themselves in the fronds to sleep without drifting away.

Back when I used to scuba drive a lot around Vancouver Island, they were one of my favourite places to explore as those underwater forests were teeming with life.

If you’re beachcombing in British Columbia, Alaska, or California, you might find bull kelp, Nereocystis luetkeana, recognizable by its long, whip-like stipe and single round float. It’s edible and surprisingly tasty. The blades can be dried and used like seaweed chips, while the bulb can be sliced thin and pickled—an oceanic delicacy with a salty, citrusy crunch. 

Other edible seaweeds you might encounter include sugar kelp, Saccharina latissima, which has a slightly sweet flavor, and ribbon kelp, Alaria marginata, often used in soups and salads.

On the foreshore near where I live on Vancouver Island, we have loads of sea lettuce. Sea lettuce, Ulva spp., is one of the ocean’s most vibrant and inviting greens—a delicate, translucent seaweed that looks like bright green tissue paper fluttering in the tide. 

Sea Otter in a Kelp Bed
When you find it washed ashore or swaying just below the surface, it shines an almost neon hue, catching the sunlight in shimmering waves of jade. 

Its thin, ruffled fronds are only a few cells thick, soft to the touch, and often cling to rocks, shells, or docks in intertidal zones where saltwater and freshwater mingle.

Unlike the giant brown kelps that form towering underwater forests, sea lettuce is part of the green algae group (Chlorophyta), sharing pigments more closely related to land plants. 

It grows worldwide in temperate and tropical waters and thrives wherever nutrient-rich water flows—estuaries, tide pools, and shallow bays. When the tide goes out, you might see it draped over rocks like sheets of emerald silk, drying slightly in the sun and releasing a faint, oceanic scent.

Sea lettuce is entirely edible and a favourite among foragers and coastal chefs. Fresh from the sea, it has a mild, slightly salty flavour with a hint of sweetness—similar to spinach or nori. It can be eaten raw in salads, lightly fried until crisp, or dried into flakes and used as a natural salt substitute. 

In many coastal cultures, from Ireland to Japan, Ulva has long been part of traditional cuisine. It’s also rich in vitamins A, C, and B12, along with iron and calcium—proof that sea greens can be as nutritious as they are beautiful. When my little sister was living in County Cork, she shared pictures of folk bathing in tubs of icy sea water and seaweed as a briny health spa treatment.

From a scientific perspective, sea lettuce plays an important ecological role. It provides shelter for small marine creatures like snails, shrimp, and juvenile fish, and it helps absorb excess nutrients from the water, which can help reduce harmful algal blooms. 

However, when too many nutrients enter the ocean—often from agricultural runoff—sea lettuce can grow explosively, creating dense “green tides” that blanket shorelines.

Its lineage stretches deep into the fossil record as well. While soft-bodied algae like Ulva rarely fossilize, green algal relatives appear in rocks over 1.6 billion years old, making them some of Earth’s earliest photosynthesizers.

Beyond their culinary and ecological roles, kelp forests act as powerful carbon sinks, pulling CO₂ from the atmosphere and storing it in the deep ocean. They also buffer coastlines from storms and provide nurseries for fish populations that support global fisheries.

As you stroll the shoreline and your toes brush against that slippery tangle of golden-brown ribbons, remember—you’re touching the living descendant of an ancient lineage that’s been swaying in Earth’s oceans since the age of dinosaurs—beautiful, ancient and tasty!

Sunday, 12 October 2025

ANKYLOSAURS: ARMOURED, PLANT-EATING DINOSAURS

Ankylosaur — Armoured Plant-Eating Dinosaur
Ankylosaurs were armoured dinosaurs. We find their fossil remains in Cretaceous outcrops in western North America. They were amongst the last of the non-avian dinosaurs.

These sturdy fellows ambled along like little tanks all covered in spiky armour. They munched on foliage and were the original lawn mowers — 68 - 66 million years ago.

They reached about 1.7 m in height and weighed in at 4,800 – 8,000 kg. You can see the club at the end of their tail that they used to defend against predators. It would have packed quite the wallop.
The lovely illustration you see here is by the supremely talented Daniel Eskridge, shared with permission. You can see more of his work at www.fineartbydaniel.com.

Wednesday, 1 October 2025

GRACEFUL, GLIMMERING ACROBATS OF THE SKIES: DRAGONFLIES

Dragonflies are graceful, glimmering fliers we see as sparkling bits of colour darting over ponds and streams, but these agile insects have a history that stretches deep into Earth's prehistoric past—far earlier than the first dinosaurs ever walked the land.

These beauties are amongst the oldest groups of flying insects known to science. 

Their fossil record gives us an incredible glimpse into how flight evolved and how these remarkable predators have remained successful for over 300 million years.

From giant griffinflies soaring above Carboniferous swamps to the shimmering dragonflies zipping around your backyard pond, these insects have endured massive planetary changes and extinction events. 

I found my first dragonfly fossil up near Kamloops, British Columbia, Canada, at the McAbee Fossil Beds in the late 1990s. It was a thrilling moment that I remember well to this day.  

The origins of dragonflies date back to the Carboniferous, roughly 320 million years ago, when Earth was dominated by vast swampy forests filled with giant plants, amphibians, and weird yet wonderful arthropods.

The earliest known dragonfly relatives come from this time. But they weren’t quite like the dragonflies we know today. These ancient insects belonged to a now-extinct order called Protodonata, or "griffinflies," and some were true giants.

One of the most famous fossil dragonfly-like insects is Meganeura, a massive predator from around 300 million years ago. With a wingspan of up to 70 centimeters (28 inches), it’s often called the largest insect to have ever lived.

Meganeura looked and behaved much like modern dragonflies, with powerful wings, sharp mandibles, and excellent eyesight—perfect for catching prey mid-flight. But unlike modern dragonflies, Meganeura lacked some of the refined flight control structures and wing coupling mechanisms we see in living species.

One reason for their size likely comes down to oxygen levels. During the Carboniferous period, atmospheric oxygen was much higher than today—about 35%, compared to our current 21%. This allowed insects, which breathe through small tubes called tracheae, to grow much larger than they can now.

As oxygen levels decreased over time, the enormous sizes of insects like Meganeura became unsustainable, and dragonflies gradually evolved into smaller, more maneuverable forms.

By the Jurassic period (~200 million years ago), the ancestors of today’s dragonflies had begun to appear. These early representatives of the order Odonata had split into two main groups:
  • Anisoptera – what we now call true dragonflies
  • Zygoptera – damselflies, their more delicate cousins
These insects had developed more sophisticated wing structures and jointed flight muscles, giving them the remarkable agility we see today. Fossils from this time show dragonflies that look strikingly similar to modern species.

Dragonfly fossils have been found all over the world, preserved in ancient lake beds, fine-grained shales, and even amber. Some of the best specimens come from:
  • Germany’s Solnhofen Limestone (Late Jurassic) with its remarkable preservation
  • China’s Liaoning Province (Early Cretaceous)
  • Montana and Colorado, USA (Late Cretaceous to Paleogene)
These fossils often show remarkable detail, including wing veins and body segmentation, offering a rare glimpse into insect anatomy from millions of years ago.

They’re also key indicators of freshwater ecosystem health, which makes understanding their history even more relevant today.


Thursday, 25 September 2025

LIVING FOSSILS: METASEQUOIA

Autumn is a wonderful time to explore Vancouver. It is a riot of yellow, orange and green. The fallen debris you crunch through send up wafts of earthy smells that whisper of decomposition, the journey from leaf to soil.

It is a wonderful time to be out and about. I do love the mountain trails but must confess to loving our cultivated gardens for their colour and variety. 

We have some lovely native plants and trees and more than a few exotics at Vancouver's arboreal trifecta — Van Dusen, Queen E Park and UBC Botanical Gardens. One of those exotics, at least exotic to me, is the lovely conifer you see here is Metasequoia glyptostroboides — the dawn redwood. 

Of this long lineage, this is the sole surviving species in the genus Metasequoia and one of three species of conifers known as redwoods. Metasequoia are the smaller cousins of the mighty Giant Sequoia, the most massive trees on Earth. 

As a group, the redwoods are impressive trees and very long-lived. The President, an ancient Giant Sequoia, Sequoiadendron giganteum, and granddaddy to them all has lived for more than 3,200 years. While this tree is named The President, a worthy name, it doesn't really cover the magnitude of this giant by half.   

This tree was a wee seedling making its way in the soils of the Sierra Nevada mountains of California before we invented writing. It had reached full height before any of the Seven Wonders of the Ancient World, those remarkable constructions of classical antiquity, were even an inkling of our budding human achievements. And it has outlasted them all save the Great Pyramid of Giza, the oldest and last of those seven still standing, though the tree has faired better. Giza still stands but the majority of the limestone façade is long gone.

Aside from their good looks (which can really only get you so far), they are resistant to fire and insects through a combined effort of bark over a foot thick, a high tannin content and minimal resin, a genius of evolutionary design. 

While individual Metasequoia live a long time, as a genus they have lived far longer. 

Like Phoenix from the Ashes, the Cretaceous (K-Pg) extinction event that wiped out the dinosaurs, ammonites and more than seventy-five percent of all species on the planet was their curtain call. The void left by that devastation saw the birth of this genus — and they have not changed all that much in the 65 million years since. Modern Metasequoia glyptostroboides looks pretty much identical to their late Cretaceous brethren.

Dawn Redwood Cones with scales paired in opposite rows
They are remarkably similar to and sometimes mistaken for Sequoia at first glance but are easily distinguishable if you look at their size (an obvious visual in a mature tree) or to their needles and cones in younger specimens. 

Metasequoia has paired needles that attach opposite to each other on the compound stem. Sequoia needles are offset and attached alternately. Think of the pattern as jumping versus walking with your two feet moving forward parallel to one another. 

Metasequoia needles are paired as if you were jumping forward, one print beside the other, while Sequoia needles have the one-in-front-of-the-other pattern of walking.

The seed-bearing cones of Metasequoia have a stalk at their base and the scales are arranged in paired opposite rows which you can see quite well in the visual above. Coast redwood cone scales are arranged in a spiral and lack a stalk at their base.

Although the least tall of the redwoods, it grows to an impressive sixty meters (200 feet) in height. It is sometimes called Shui-sa, or water fir by those who live in the secluded mountainous region of China where it was rediscovered.

Fossil Metasequoia, McAbee Fossil Beds
Metasequoia fossils are known from many areas in the Northern Hemisphere and were one of my first fossil finds as a teenager. 

And folk love naming them. More than twenty fossil species have been named over time —  some even identified as the genus Sequoia in error — but for all their collective efforts to beef up this genus there are just three species: Metasequoia foxii, Metasequoia milleri, and Metasequoia occidentalis.

During the Paleocene and Eocene, extensive forests of Metasequoia thrived as far north as Strathcona Fiord on Ellesmere Island and sites on Axel Heiberg Island in Canada's far north around 80° N latitude.

We find lovely examples of Metasequoia occidentalis in the Eocene outcrops at McAbee near Cache Creek, British Columbia, Canada. I shared a photo here of one of those specimens. Once this piece dries out a bit, I will take a dental pick to it to reveal some of the teaser fossils peeking out.

The McAbee Fossil Beds are known for their incredible abundance, diversity and quality of fossils including lovely plant, insect and fish species that lived in an old lake bed setting. While the Metasequoia and other fossils found here are 52-53 million years old, the genus is much older. It is quite remarkable that both their fossil and extant lineage were discovered in just a few years of one another. 

Metasequoia was first described as a new genus from a fossil specimen found in 1939 and published by Japanese paleobotanist Shigeru Miki in 1941. Remarkably, the living version of this new genus was discovered later that same year. 

Professor Zhan Wang, an official from the Bureau of Forest Research was recovering from malaria at an old school chum's home in central China. His friend told him of a stand of trees discovered in the winter of 1941 by Chinese botanist Toh Gan (干铎). The trees were not far away from where they were staying and Gan's winter visit meant he did not collect any specimen as the trees had lost their leaves. 

The locals called the trees Shui-sa, or water fir. As trees go, they were reportedly quite impressive with some growing as much as sixty feet tall. Wang was excited by the possibility of finding a new species and asked his friend to describe the trees and their needles in detail. Emboldened by the tale, Wang set off through the remote mountains to search for his mysterious trees and found them deep in the heart of  Modaoxi (磨刀溪; now renamed Moudao (谋道), in Lichuan County, in the central China province of Hubei. He found the trees and was able to collect living specimens but initially thought they were from Glyptostrobus pensilis (水松). 

A few years later, Wang showed the trees to botanist Wan-Chun Cheng and learned that these were not the leaves of s Glyptostrobus pensilis (水松 ) but belonged to a new species. 

While the find was exciting, it was overshadowed by China's ongoing conflict with the Japanese that was continuing to escalate. With war at hand, Wang's research funding and science focus needed to be set aside for another two years as he fled the bombing of Beijing. 

When you live in a world without war on home soil it is easy to forget the realities for those who grew up in it. 

Zhan Wang and his family lived to witness the 1931 invasion of Manchuria, then the 1937 clash between Chinese and Japanese troops at the Marco Polo Bridge, just outside Beijing. 

That clash sparked an all-out war that would grow in ferocity to become World War II. 

Within a year, the Chinese military situation was dire. Most of eastern China lay in Japanese hands: Shanghai, Nanjing, Beijing, Wuhan. As the Japanese advanced, they left a devastated population in their path where atrocity after atrocity was the norm. Many outside observers assumed that China could not hold out, and the most likely scenario was a Japanese victory over China.

Yet the Chinese hung on, and after the horrors of Pearl Harbor, the war became genuinely global. The western Allies and China were now united in their war against Japan, a conflict that would finally end on September 2, 1945, after Allied naval forces blockaded Japan and subjected the island nation to intensive bombing, including the utter devastation that was the Enola Gay's atomic payload over Hiroshima. 

With World War II behind them, the Chinese researchers were able to re-focus their energies on the sciences. Sadly, Wang was not able to join them. Instead, two of his colleagues, Wan Chun Cheng and Hu Hsen Hsu, the director of Fan Memorial Institute of Biology would continue the work. Wan-Chun Cheng sent specimens to Hu Hsen Hsu and upon examination realised they were the living version of the trees Miki had published upon in 1941. 

Hu and Cheng published a paper describing a new living species of Metasequoia in May 1948 in the Bulletin of Fan Memorial Institute of Biology.

That same year, Arnold Arboretum of Harvard University sent an expedition to collect seeds and, soon after, seedling trees were distributed to various universities and arboreta worldwide. 

Today, Metasequoia grow around the globe. When I see them, I think of Wang and all he went through. He survived the conflict and went on to teach other bright, young minds about the bountiful flora in China. I think of Wan Chun Cheng collaborating with Hu Hsen Hsu in a time of war and of Hu keeping up to date on scientific research, even published works from colleagues from countries with whom his country was at war. Deep in my belly, I ache for the huge cost to science, research and all the species impacted on the planet from our human conflicts. Each year in April, I plant more Metasequoia to celebrate Earth Day and all that means for every living thing on this big blue orb.  

References: 

  • https://web.stanford.edu/group/humbioresearch/cgi-bin/wordpress/?p=297
  • https://humboldtredwoods.org/redwoods

Tuesday, 16 September 2025

SHAGGY TITANS OF THE GRASSLANDS: BISON

Bison move across the prairie like living storms, vast and steady, with the weight of centuries in their stride. 

Their dark eyes hold a quiet, unwavering depth—as if they’ve looked into the heart of time itself and carry its secrets in silence. Look into the eyes of this fellow and tell me you do not see his deep intelligence as he gives the camera a knowing look.

Shaggy fur ripples in the wind, rich and earthy, brushed by sun and shadow, a cloak woven from wilderness. When they breathe, clouds rise in the cold air, soft and ephemeral, like whispered promises that vanish but leave warmth behind.

There is something profoundly romantic in their presence: strength wrapped in gentleness, endurance softened by grace.  To watch them is to feel the wild itself lean closer, reminding us of a love as vast as the horizon, as eternal as the ground beneath our feet.

When we think of bison today, images of great herds roaming the North American plains come to mind—dark, shaggy shapes against sweeping prairies. But the story of bison goes back far deeper in time. 

These massive grazers are part of a lineage that stretches millions of years into the past, their fossil record preserving the tale of their rise, spread, and survival.

Bison belong to the genus Bison, within the cattle family (Bovidae). Their story begins in Eurasia during the late Pliocene, around 2.6 million years ago, when the first true bison evolved from earlier wild cattle (Bos-like ancestors). 

Fossils suggest they descended from large bovids that roamed open grasslands of Eurasia as forests retreated and cooler, drier climates expanded.

The earliest known species, Bison priscus, or the Steppe Bison, was a giant compared to modern bison, sporting long horns that could span over six feet tip to tip. These animals thrived across Europe, Asia, and eventually crossed into North America via the Bering Land Bridge during the Pleistocene Ice Age.

The fossil record of bison stretches back about 2 million years in Eurasia and at least 200,000 years in North America, where they became one of the most successful large herbivores of the Ice Age. Fossil evidence shows that at least seven different species of bison once lived in North America, including the iconic Bison latifrons with its massive horns, and Bison antiquus, which is considered the direct ancestor of the modern American bison (Bison bison).

Some of the richest fossil bison deposits come from Siberia and Eastern Europe – home to abundant Bison priscus fossils, often preserved in permafrost with soft tissues intact. They are also found in Alaska, USA and in Canada's Yukon region – where Ice Age bison fossils are found alongside mammoth, horse, and muskox remains.

The Great Plains of the United States and Canada are rich in Bison antiquus and later species, often in mass bone beds where entire herds perished. We also find their remains in California and the American Southwest at sites like the La Brea Tar Pits. La Brea preserves bison remains from the Late Pleistocene and their museum of the same name has a truly wonderful display of Pleistocene wolves. Definitely worthy of a trip!

One particularly famous fossil site is the Hudson-Meng Bison Kill Site in Nebraska, where remains of over 600 Bison antiquus dating to about 10,000 years ago provide a window into Ice Age hunting practices and herd behavior.

By the end of the Ice Age, many megafauna species disappeared, but bison endured. Bison antiquus gradually gave rise to the modern American bison (Bison bison), which still carries echoes of its Ice Age ancestors. Though smaller than their Pleistocene relatives, today’s bison remain the largest land mammals in North America.

Thursday, 28 August 2025

FOSSILS WHALES FROM SOUTHERN VANCOUVER ISLAND

Modern Whale Vertebrae
The air is heavy with salt spray at Muir Creek, just west of Sooke on southern Vancouver Island. Waves tumble over barnacle-crusted boulders, and eagles wheel overhead. 

Thick layers of sandstone and conglomerate preserve a rich assemblage of marine fossils. Local collectors have long explored these beaches, spotting fossilized ribs and vertebrae protruding from the cliffs. 

My first trip here was back in the mid 1990s with the Vancouver Paleontological Society. It is a regular haunt for the Victoria Paleontological Society and other regional fossil collecting groups.

It’s a place where the modern Pacific feels timeless—but buried in the cliffs are the remains of creatures that swam here more than 25 million years ago. 

They are whales, yes, but not quite the whales we know today. Their bones tell the story of an ocean in transition and of whales caught mid-evolution—halfway between toothed predators and the filter-feeders that now dominate the seas.

Southern Vancouver Island’s fossil-bearing rocks belong largely to the Sooke Formation, a marine deposit dating to the late Oligocene (around 25–23 million years ago). At that time, much of the region lay beneath shallow coastal waters. Sediments settled over the remains of sea creatures, entombing shells, bird bones, shark teeth, and occasionally the massive bones of early whales.

These are not fossils of the gigantic blue whales or humpbacks we know today, but their ancestors—smaller, stranger, and crucial to the story of whale evolution.

One of the most remarkable finds from Vancouver Island is Aetiocetus, a small whale that lived during the late Oligocene. Aetiocetus is a classic “transitional fossil”—a whale that still had teeth, yet also shows evidence of developing baleen. This makes it a key player in understanding how modern filter-feeding whales (like gray whales and blue whales) evolved from their toothed ancestors.

Imagine a creature about 3–4 meters long, sleek like a dolphin but with a skull showing both sharp teeth and grooves that hint at primitive baleen plates. It likely hunted fish and squid but may have supplemented its diet by gulping in small prey from the water column. 

Fossils of Aetiocetus have been found in Oregon and Japan, but southern Vancouver Island provides some of the northernmost evidence of this important lineage.

Alongside these early baleen whales, researchers have also found evidence of primitive odontocetes—the group that includes dolphins, porpoises, and sperm whales. These small, agile predators were experimenting with echolocation, the same sonar-like ability modern toothed whales use to hunt in dark or murky waters.

The whales preserved on southern Vancouver Island belong to a lineage with an extraordinary backstory. Around 50 million years ago, in what is now Pakistan and India, the ancestors of whales were land-dwelling, hoofed mammals (related to early hippos). Over millions of years, these animals waded into rivers and seas, evolving into the fully aquatic forms we recognize as whales.

By the time the Sooke Formation was laid down, whales had already colonized oceans worldwide. But the fossils here capture them in the middle of another transformation—the split between toothed whales (odontocetes) and baleen whales (mysticetes). Vancouver Island’s cliffs are, in a sense, a library shelf containing one of evolution’s most important chapters.

Fossil Gastropods, Photo: John Fam

Standing at Muir Creek today, it’s hard not to draw parallels between past and present. Offshore, humpback whales spout on their summer migration. Orcas patrol the Strait of Juan de Fuca, hunting salmon with precision. Gray whales feed along kelp beds in shallow waters. These are the direct descendants of the fossil whales entombed in the cliffs.

That continuity of life—millions of years stretching unbroken from fossil Aetiocetus to the humpback breaching offshore—gives southern Vancouver Island a special place in the story of the Pacific.

The cliffs of Muir Creek and other fossil sites are constantly eroding, revealing new fossils—but also destroying them. Without careful collection and preservation, many specimens are lost to the sea. 

It is for this reason that we encourage citizen scientists to report significant finds rather than attempt to remove them — and in the case of the Muir Creek fossil site, to avoid collecting from the cliffs. 

Fossils are protected under British Columbia’s Heritage Conservation Act, meaning they belong to the province and its people.

Next time you stand on those windswept cliffs, watching an orca’s dorsal fin slice through the surf, remember: you are standing on an ancient whale highway. Beneath your feet, locked in stone, are the bones of their ancestors—whales that swam here long before the Salish Sea had a name.

Sunday, 17 August 2025

AVES: LIVING DINOSAURS

Cassowary, Casuariiformes
Wherever you are in the world, it is likely that you know your local birds. True, you may call them des Oiseaux, pássaros or uccelli — but you'll know their common names by heart.

You will also likely know their sounds. The tweets, chirps, hoots and caws of the species living in your backyard.

Birds come in all shapes and sizes and their brethren blanket the globe. It is amazing to think that they all sprang from the same lineage given the sheer variety. 

If you picture them, we have such a variety on the planet — parrots, finches, wee hummingbirds, long-legged waterbirds, waddling penguins and showy toucans. 

But whether they are a gull, hawk, cuckoo, hornbill, potoo or albatross, they are all cousins in the warm-blooded vertebrate class Aves. 

The defining features of the Aves are feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweight skeleton. The best features, their ability to dance, bounce and sing, are not listed, but it is how I see them in the world.

These modern dinosaurs live worldwide and range in size from the 5 cm (2 in) bee hummingbird to the 2.75 m (9 ft) ostrich. 

There are about ten thousand living species, more than half of which are passerine, or "perching" birds. Birds have wings whose development varies according to species; the only known groups without wings are the extinct moa and elephant birds.

Wings evolved from forelimbs giving birds the ability to fly
Wings, which evolved from forelimbs, gave birds the ability to fly, although further evolution has led to the loss of flight in some birds, including ratites, penguins, and diverse endemic island species. 

The digestive and respiratory systems of birds are also uniquely adapted for flight. Some bird species of aquatic environments, particularly seabirds and some waterbirds, have further evolved for swimming.

Wee Feathered Theropod Dinosaurs

We now know from fossil and biological evidence that birds are a specialized subgroup of theropod dinosaurs, and more specifically, they are members of Maniraptora, a group of theropods that includes dromaeosaurs and oviraptorids, amongst others. As palaeontologists discover more theropods closely related to birds, the previously clear distinction between non-birds and birds has become a bit muddy.

Recent discoveries in the Liaoning Province of northeast China, which include many small theropod feathered dinosaurs — and some excellent arty reproductions — contribute to this ambiguity. 

Still, other fossil specimens found here shed a light on the evolution of Aves. Confuciusornis sanctus, an Early Cretaceous bird from the Yixian and Jiufotang Formations of China is the oldest known bird to have a beak.

Like modern birds, Confuciusornis had a toothless beak, but close relatives of modern birds such as Hesperornis and Ichthyornis were toothed, telling us that the loss of teeth occurred convergently in Confuciusornis and living birds.

The consensus view in contemporary palaeontology is that the flying theropods, or avialans, are the closest relatives of the deinonychosaurs, which include dromaeosaurids and troodontids.

Together, these form a group called Paraves. Some basal members of this group, such as Microraptor, have features that may have enabled them to glide or fly. 

The most basal deinonychosaurs were wee little things. This raises the possibility that the ancestor of all paravians may have been arboreal, have been able to glide, or both. Unlike Archaeopteryx and the non-avialan feathered dinosaurs, who primarily ate meat, tummy contents from recent avialan studies suggest that the first avialans were omnivores. Even more intriguing...

Avialae, which translates to bird wings, are a clade of flying dinosaurs containing the only living dinosaurs, the birds. It is usually defined as all theropod dinosaurs more closely related to modern birds — Aves — than to deinonychosaurs, though alternative definitions are occasionally bantered back and forth.

The Earliest Avialan: Archaeopteryx lithographica

Archaeopteryx, bird-like dinosaur from the Late Jurassic
Archaeopteryx lithographica, from the late Jurassic Period Solnhofen Formation of Germany, is the earliest known avialan that may have had the capability of powered flight. 

However, several older avialans are known from the Late Jurassic Tiaojishan Formation of China, dating to about 160 million years ago.

The Late Jurassic Archaeopteryx is well-known as one of the first transitional fossils to be found, and it provided support for the theory of evolution in the late 19th century. 

Archaeopteryx was the first fossil to clearly display both traditional reptilian characteristics — teeth, clawed fingers, and a long, lizard-like tail—as well as wings with flight feathers similar to those of modern birds. It is not considered a direct ancestor of birds, though it is possibly closely related to the true ancestor.

Unlikely yet true, the closest living relatives of birds are the crocodilians. Birds are descendants of the primitive avialans — whose members include Archaeopteryx — which first appeared about 160 million years ago in China.

DNA evidence tells us that modern birds — Neornithes — evolved in the Middle to Late Cretaceous, and diversified dramatically around the time of the Cretaceous–Paleogene extinction event 66 mya, which killed off the pterosaurs and all non-avian dinosaurs.

In birds, the brain, especially the telencephalon, is remarkably developed, both in relative volume and complexity. Unlike most early‐branching sauropsids, the adults of birds and other archosaurs have a well‐ossified neurocranium. In contrast to most of their reptilian relatives, but similar to what we see in mammals, bird brains fit closely to the endocranial cavity so that major external features are reflected in the endocasts. What you see on the inside is what you see on the outside.

This makes birds an excellent group for palaeoneurological investigations. The first observation of the brain in a long‐extinct bird was made in the first quarter of the 19th century. However, it was not until the 2000s and the application of modern imaging technologies that avian palaeoneurology really took off.

Understanding how the mode of life is reflected in the external morphology of the brains of birds is but one of several future directions in which avian palaeoneurological research may extend.

Although the number of fossil specimens suitable for palaeoneurological explorations is considerably smaller in birds than in mammals and will very likely remain so, the coming years will certainly witness a momentous strengthening of this rapidly growing field of research at the overlap between ornithology, palaeontology, evolutionary biology and the neurosciences.

Reference: Cau, Andrea; Brougham, Tom; Naish, Darren (2015). "The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc (Dinosauria, Maniraptora): Dromaeosaurid or flightless bird?". PeerJ. 3: e1032. doi:10.7717/peerj.1032. PMC 4476167. PMID 26157616.

Reference: Ivanov, M., Hrdlickova, S. & Gregorova, R. (2001) The Complete Encyclopedia of Fossils. Rebo Publishers, Netherlands. p. 312