Showing posts with label archea. Show all posts
Showing posts with label archea. Show all posts

Monday, 19 May 2025

BRONZE BEAUTY: EIFELIAN PARALEJURUS

This bronzed beauty is the Middle Devonian, Eifelian (~395 mya) trilobite, Paralejurus rehamnanus (Alberti, 1970) from outcrops near Issoumour, Alnif, Morocco in North Africa. 

It was the colour of this amazing trilobite that captured the eye of David Appleton in whose collection it now resides. He is an avid collector and coming into his own as a macro photographer. I have shared three of his delightful photos for you here.

It initially thought that the gold we see here was added during prep, particularly considering the colouration of the matrix, but macro views of the surface show mineralization and the veins running right through the specimen into the matrix. There is certainly some repairs but that is common in the restoration of these specimens. Many of the trilobites I have seen from Morocco have bronze on black colouring but not usually this pronounced. Even so, there is a tremendous amount of fine anatomy to explore and enjoy in this wonderfully preserved specimen.  

Paralejurus is a genus of trilobite in the phylum Arthropoda from the Late Silurian to the Middle Devonian of Africa and Europe. These lovelies grew to be up to nine centimetres, though the fellow you see here is a wee bit over half that size at 5.3 cm. 

Paralejurus specimens are very pleasing to the eye with their long, oval outline and arched exoskeletons. 

Their cephalon or head is a domed half circle with a smooth surface.  The large facet eyes have very pleasing crescent-shaped lids. You can see this rather well in the first of the photos here. The detail is quite remarkable.

As you move down from his head towards the body, there is an almost inconspicuous occipital bone behind the glabella in the transition to his burnt bronze thorax.

The body or thorax has ten narrow segments with a clearly arched and broad axial lobe or rhachis. The pygidium is broad, smooth and strongly fused in contrast to the genus Scutellum in the family Styginidae, which has a pygidium with very attractive distinct furrows that I liken to the look of icing ridges on something sweet — though that may just be me and my sweet tooth talking. In Paralejurus, they look distinctly fused — or able to fuse — to add posterior protection against predators with both the look and function of Roman armour.

In Paralejurus, the axillary lobe is rounded off and arched upwards. It is here that twelve to fourteen fine furrows extend radially to complete the poetry of his body design. 

Trilobites were amongst the earliest fossils with hard skeletons and they come in many beautiful forms. While they are extinct today, they were the dominant life form at the beginning of the Cambrian. 

As a whole, they were amongst some of the most successful of all early animals — thriving and diversifying in our ancient oceans for almost 300 million years. The last of their brethren disappeared at the end of the Permian — 252 million years ago. Now, we enjoy their beauty and the scientific mysteries they reveal about our Earth's ancient history.

Photos and collection of the deeply awesome David Appleton. Specimen: 5.3 cm. 

Friday, 9 May 2025

FOSSILS OF HORNBY ISLAND

Diplomoceras sp.
This gorgeous cream and brown big beast of a heteromorph, Diplomoceras (Diplomoceras) sp., (Hyatt, 1900) was found within the 72 million-year-old sediments of the upper Nanaimo Group on the northern Gulf Island of Hornby in southwestern British Columbia, Canada. 

The site is known as Boulder Point to the locals and it has been a popular fossil destination for many years. It is the home of the K'ómoks First Nation, who called the island Ja-dai-aich.

Many of the fossils found at this locality are discovered in concretions rolled smooth by time and tide. The concretions you find on the beach are generally round or oval in shape and are made up of hard, compacted sedimentary rock. 

If you are lucky, when you split these nodules you are rewarded with a fossil hidden within. That is not always the case but the rewards are worth the effort. 

These past few years, many new and wonderful specimens have been unearthed — particularly by members of the Vancouver Island Palaeontological Society. 

And so it was in the first warm days of early summer last year. Three members of the Vancouver Palaeontological Society excavated this 100 cm long fossil specimen over two days in June of 2020. The specimen was not in concretion but rather embedded in the hard sintered shale matrix beneath their feet. It was angled slightly downward towards the shoreline and locked within the rolling shale beds of the island. 

Diplomoceratidae (Spath, 1926) are often referred to as the paperclip ammonites. They are in the family of ammonites included in the order Ammonitida in the Class Cephalopoda and are found within marine offshore to shallow subtidal Cretaceous — 99.7 to 66.043 million-year-old — sediments worldwide. 

I was reading with interest this morning about a new find published by Muramiya and Shigeta in December 2020 of a new heteromorph ammonoid Sormaites teshioensis gen. et sp. nov. (Diplomoceratidae) described from the upper Turonian (Upper Cretaceous) in the Nakagawa area, Hokkaido, northern Japan. 

This lovely has a shell surface ornamented with simple, straight, sharp-tipped ribs throughout ontogeny, but infrequent flared ribs and constrictions occur on later whorls. Excluding its earliest whorls, its coiling and ornamentation are very similar to Scalarites mihoensis and Sc. densicostatus from the Turonian to Coniacian in Hokkaido and Sakhalin, suggesting that So. teshioensis was probably derived from one of these taxa in the Northwest Pacific during middle to late Turonian.

Much like the long-lived geoducks living in Puget Sound today, studies of Diplomoceras suggest that members of this family could live to be over 200 years old — a good 40-years longer than a geoduck but not nearly as long-lived as the extant bivalve Arctica islandica that reach 405 to 410 years in age. 

Along with this jaw-dropper of a heteromorph, the same group found an Actinosepia, gladius — internal hard body part found in many cephalopods of a Vampyropod. Vampyropods are members of the proposed group Vampyropoda — equivalent to the superorder Octopodiformes — which includes vampire squid and octopus.

The upper Nanaimo Group is a mix of marine sandstone, conglomerate and shale. These are partially exposed in the Campanian to the lower Maastrichtian outcrops at Collishaw Point on the northwest side of Hornby Island.

Along with fossil crabs, shark teeth, bivalves and occasional rare and exquisite saurodontid fish, an ambush predator with very sharp serrated teeth and elongate, torpedo-like body — we also find three heteromorph ammonite families are represented within the massive, dark-grey mudstones interlaminated and interbedded with siltstone and fine-grained sandstone of the upper Campanian (Upper Cretaceous) strata of the Northumberland Formation exposed here: Baculitidae, Diplomoceratidae and Nostoceratidae. 

A variety of species are distinguished within these families, of which only three taxa – Baculites occidentalis (Meek, 1862), Diplomoceras (Diplomoceras) cylindraceum (Defrance, 1816) and Nostoceras (Nostoceras) hornbyense (Whiteaves, 1895), have been studied and reported previously. 

Over the last decade, large new collections by many members of the Vancouver Island Palaeontological Society and palaeontologists working at the Geologic Survey of Canada, along with a renewed look at previous collections have provided new taxonomic and morphometric data for the Hornby Island ammonite fauna. This renewed lens has helped shape our understanding and revamp descriptions of heteromorph taxa. Eleven taxa are recognized, including the new species Exiteloceras (Exiteloceras) densicostatum sp. nov., Nostoceras (Didymoceras?) adrotans sp. nov. and Solenoceras exornatus sp. nov. 

A great variety of shape and form exist within each group. Morphometric analyses by Sandy McLachlan and Jim Haggart of over 700 specimens unveiled the considerable phenotypic plasticity of these ammonites. They exhibit an extraordinarily broad spectrum of variability in their ornamentation and shell dimensions. 

The presence of a vibrant—and deeply awesome—palaeontological community on Vancouver Island made the extent of their work possible. 

Graham Beard, Doug Carrick, Betty Franklin, Raymond Graham, Joe Haegert, Bob Hunt, Stevi Kittleson, Kurt Morrison and Jean Sibbald are thanked for their correspondence and generosity in contributing many of the exquisite specimens featured in that study. 

These generous individuals, along with many other members of the Vancouver Island Palaeontological Society (VIPS), Vancouver Paleontological Society (VanPS), and British Columbia Paleontological Alliance (BCPA), have contributed a great deal to our knowledge of the West Coast of Canada and her geologic and palaeontological correlations to the rest of the world; notably, Dan Bowen, Rick Ross, John Fam and Pat and Mike Trask, Naomi & Terry Thomas. Their diligence in the collection, preparation and documentation of macrofossils is a reflection of the passion they have for palaeontology and their will to help shape the narrative of Earth history.

Through their efforts, a large population sample of Nostoceras (Nostoceras) hornbyense was made available and provided an excellent case study of a member of the Nostoceratidae. It was through the well-documented collection and examination of a remarkable number of nearly complete, well-preserved specimens that a re-evaluation of diagnostic traits within the genus Nostoceras was made possible. 

The north-east Pacific Nostoceras (Nostoceras) hornbyense Zone and the global Nostoceras (Nostoceras) hyatti Assemblage Zone are regarded as correlative, reinforcing a late Campanian age for the Northumberland Formation. This builds on the earlier work of individuals like Alan McGugan and others. McGugan looked at the Upper Cretaceous (Campanian and Maastrichtian) Foraminifera from the Upper Lambert and Northumberland Formations, Gulf Islands, British Columbia, Canada.

The Maastrichtian Bolivina incrassata fauna (upper part of Upper Lambert Formation) of Hornby Island (northern Comox Basin) is now recognized in the southern Nanaimo Basin on Gabriola and Galiano Islands. The Maastrichtian planktonic index species Globotruncana contusa occurs in the Upper Northumberland Formation of Mayne Island and Globotruncana calcarata (uppermost Campanian) occurs| in the Upper Northumberland Formation of Mayne Island and also in the Upper Lambert Formation at Manning Point on the north shore of Hornby Island (Comox Basin).

Very abundant benthonic and planktonic foraminiferal assemblages from the Upper Campanian Lower Northumberland Formation of Mayne Island enable paleoecological interpretations to be made using the Fisher diversity index, triangular plots of Texturlariina/Rotaliina/Miliolina, calcareous/agglutinated ratios, planktonic/benthonic ratios, generic models, and associated microfossils and megafossils. 

Combined with local geology and stratigraphy a relatively shallow neritic depositional environment is proposed for the Northumberland Formation in agreement with Scott but not Sliter who proposed an Outer shelf/slope environment with depths of 300 m or more.

References & further reading: Sandy M. S. McLachlan & James W. Haggart (2018) Reassessment of the late Campanian (Late Cretaceous) heteromorph ammonite fauna from Hornby Island, British Columbia, with implications for the taxonomy of the Diplomoceratidae and Nostoceratidae, Journal of Systematic Palaeontology, 16:15, 1247-1299, DOI: 10.1080/14772019.2017.1381651

Crickmay, C. H., and Pocock, S. A. J. 1963. Cretaceous of Vancouver, British Columbia. American Association of Petroleum Geologists Bulletin, 47, pp. 1928-1942.

England, T.D.J. and R. N. Hiscott (1991): Upper Nanaimo Group and younger strata, outer Gulf Islands, southwestern British Columbia: in Current Research, Part E; Geological Survey of Canada, Paper 91-1E, p. 117-125.

McGugan, Alan. (2011). Upper Cretaceous (Campanian and Maestrichtian) Foraminifera from the Upper Lambert and Northumberland Formations, Gulf Islands, British Columbia, Canada. Canadian Journal of Earth Sciences. 16. 2263-2274. 10.1139/e79-211. 

Scott, James. (2021). Upper Cretaceous foraminifera of the Haslam, Qualicum, and Trent River formations, Vancouver Island, British Columbia /. 

Sliter, W. & Baker, RA. (1972). Cretaceous bathymetric distribution of benthic foraminifers. Journal of Foraminiferal Research - J FORAMIN RES. 2. 167-183. 10.2113/gsjfr.2.4.167. 

Spath L. F. 1926. A Monograph of the Ammonoidea of the Gault; Part VI. Palaeontographical Society London

Sullivan, Rory (4 November 2020). "Large squid-like creature that looked like a giant paperclip lived for 200 years — 68 million years ago". The Independent. Archived from the original on 4 November 2020.

Urquhart, N. & Williams, C.. (1966). Patterns in Balance of Nature. Biometrics. 22. 206. 10.2307/2528236. 

Yusuke Muramiya and Yasunari Shigeta "Sormaites, a New Heteromorph Ammonoid Genus from the Turonian (Upper Cretaceous) of Hokkaido, Japan," Paleontological Research 25(1), 11-18, (30 December 2020). https://doi.org/10.2517/2020PR016.

Photos: Vancouver Island Palaeontological Society, Courtenay, British Columbia, Naomi and Terry Thomas.

Wednesday, 30 April 2025

FOSSILS OF CANADA'S EASTERN SHORES

Hylonomus lyelli, Ancestor of all dinosaurs
The fossil cliffs at Joggins are one of Canada's gems, now a UNESCO World Heritage Site, you can visit to see our ancient world frozen in time. 

Preserved in situ is a snapshot of an entire food chain of a terrestrial Pennsylvanian Coal Age wetland.

The outcrop holds fossil plant life — including impressive standing lycopsid trees that formed the framework of these wetlands — decomposing detritivores in the invertebrates and tetrapods, the predatory carnivores of the day.

The Coal Age trees were fossilized where they stood 300-million-years ago with the remains of the earliest reptiles entombed within. The preservation is quite marvellous with the footprints of creatures who once lived in these wetlands are frozen where they once walked and the dens of amphibians are preserved with remnants of their last meal. 

Nowhere is a record of plant, invertebrate and vertebrate life within now fossilized forests rendered more evocatively. The fossil record at Joggins contains 195+ species of plants, invertebrates and vertebrates. The fossil plant life became the vast coal deposits for which this period of Earth's history is named. 

Recorded in the rock are vertebrate and invertebrate fauna both aquatic and terrestrial. This broad mix of specimens gives us a view into life back in the Pennsylvanian and sets us up to understand their ecological context.
Pennsylvanian Coal Age Ecosystem, 300-Million-Years-Old
The fossil record includes species first defined at Joggins, some of which are found nowhere else on Earth. 

It was here that Sir Charles Lyell, with Sir William Dawson, founder of modern geology, discovered tetrapods — amphibians and reptiles — entombed in the upright fossil trees. 

Later work by Dawson would reveal the first true reptile, Hylonomus lyelli, ancestor of all dinosaurs that would rule the Earth 100 million years later. 

This tiny reptile serves as the reference point where animals finally broke free of the water to live on land. This evolutionary milestone recorded at Joggins remains pivotal to understanding the origins of all vertebrate life on land, including our own species. 

Sir Charles Lyell, author of Principles of Geology, first noted the exceptional natural heritage value of the Joggins Fossil Cliffs, calling them “...the finest example in the world of a natural exposure in a continuous section ten miles long, occurs in the sea cliffs bordering a branch of the Bay of Fundy in Nova Scotia.” Indeed, the world-famous Bay of Fundy with its impressive tides, the highest in the world, and stormy nature exposed much of this outcrop. 

Geological accounts of the celebrated coastal section at Joggins first appear in the published literature in 1828–1829, by Americans C.T. Jackson and F. Alger, and by R. Brown and R. Smith, managers for the General Mining Association in the Sydney and Pictou coal fields. Brown and Smith’s account is the first to document the standing fossil trees.

Joggins Fossil Cliffs Map (Click to Enlarge)
Plan Your Joggins Fossil Cliffs Staycation

Joggins Fossil Cliffs is a Canadian gem — and they welcome visitors. They offer hands-on learning and discovery microscope activities in their Fossil Lab.

You can explore interpretive displays in the Joggins Fossil Centre before heading out to the beach and cliffs with an interpreter.

Their guided tours of the fossil site include an educational component that tells you about the geology, ecology, palaeontology and conservation of this very special site. 

Joggins / Chegoggin / Mi'kmaq L'nu

We know this area as Joggins today. In Mi'kmaw, the language spoken in Mi'kma'ki, the territory of the Mi'kmaq L'nu, the area bears another name, Chegoggin, place of fishing weirs.

Booking Your Class Field Trip

If you are a teacher and would like to book a class field trip, contact the Director of Operations via the contact information listed below. They will walk you through Covid safety and discuss how to make your visit educational, memorable and fun.

Know Before You Go

The Bay of Fundy has the highest tides in the world. Beach walks are scheduled according to the tides and run regardless of the weather. Good low tides but raining, the beach walk goes on. Lovely and sunny but with a high tide, the beach walk must wait. So, you will want to dress for it as they will not be cancelled in the event of rain. Should severe weather be a factor, bookings may need to be rescheduled at the discretion of the Joggins staff.

Any questions about booking your school field trip? Feel free to email:  operations@jogginsfossilcliffs.net or call: 1 (902) 251-2727 EXT 222.

References & further reading:

Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/

Image: Hylonomus lyelli, Una ricostruzione di ilonomo by Matteo De Stefano/MUSEThis file was uploaded by MUSE - Science Museum of Trento in cooperation with Wikimedia Italia., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=48143186

Image: Arthropleura: Par Tim Bertelink — Travail personnel, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=48915156

Joggins Map: Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/

Tuesday, 29 April 2025

LOTUS FLOWER FRUIT

Lotus Flower Fruit, Nelumbo
This beauty is the fruit of the lotus, Nelumbo. This specimen was found by Green River Stone (GRS) in early Eocene outcrops of the Fossil Lake Member of the Green River Formation. 

The awesome possums from GRS are based out of North Logan, Utah, USA and have unearthed some world-class specimens. They've found Nelumbo leaves over the years but this is their first fossil specimen of the fruit.

And what a specimen it is! The spectacularly preserved fruit measures 6-1/2" round. Here you can see both the part and counterpart in fine detail. Doug Miller of Green River Stone sent copies to me this past summer and a copy to the deeply awesome Kirk Johnson, resident palaeontologist over at the Smithsonian Institute, to confirm the identification.

There is another spectacular specimen from Fossil Butte National Monument. They shared photos of a Nelumbo just yesterday. Nelumbo is a genus of aquatic plants in the order Proteales found living in freshwater ponds. You'll recognize them as the emblem of India, Vietnam and many wellness centres.

Nelumbo Fruit, Green River Formation
There is residual disagreement over which family the genus should be placed in. Traditional classification systems recognized Nelumbo as part of the Nymphaeaceae, but traditional taxonomists were likely misled by convergent evolution associated with an evolutionary shift from a terrestrial to an aquatic lifestyle. 

In the older classification systems, it was recognized under the biological order Nymphaeales or Nelumbonales. Nelumbo is currently recognized as the only living genus in Nelumbonaceae, one of several distinctive families in the eudicot order of the Proteales. Its closest living relatives, the (Proteaceae and Platanaceae), are shrubs or trees.

Interestingly, these lovelies can thermoregulate, producing heat. Nelumbo uses the alternative oxidase pathway (AOX) to exchange electrons. Instead of using the typical cytochrome complex pathway most plants use to power mitochondria, they instead use their cyanide-resistant alternative. 

This is perhaps to generate a wee bit more scent in their blooms and attract more pollinators. The use of this thermogenic feature would have also allowed thermo-sensitive pollinators to seek out the plants at night and possibly use the cover of darkness to linger and mate.

So they functioned a bit little like a romantic evening meeting spot for lovers and a wee bit like the scent diffuser in your home. This lovely has an old lineage with fossil species in Eurasia and North America going back to the Cretaceous and represented in the Paleogene and Neogene. Photo Two: Doug Miller of Green River Stone Company

Tuesday, 15 April 2025

15TH BCPA SYMPOSIUM, COURTENAY: AUG 22-25, 2025

You are cordially invited to the 15th BCPA Symposium, August 22-25, 2025 at the Florence Filberg Centre in Courtenay in the Comox Valley, Vancouver Island, British Columbia.

We have the honour of having Kirk Johnson, Sant Director of the Smithsonian's National Museum of Natural History where he oversees the world's largest natural history collection as our Keynote Speaker. His talk is sure to delight! 

KEYNOTE SPEAKER: KIRK JOHNSON

Kirk became the Sant Director of the Smithsonian National Museum of Natural History in 2012, hot on the heels of his stint as a paleontologist at the Denver Museum of Nature & Science. During his time there he led expeditions in eighteen US states and eleven countries — including Ellesmere Island in the Arctic to the far reaches of the Amur-Heilongjiang region of China on the Chinese-Russian border and back again to find some of the first fossil plants in the badlands near Drumheller.

Kirk is often asked why he studies plants and not something more spectacular. It is important that you know that plants are THE MOST SPECTACULAR fossils and his fossil plants would throw any theropod remains to the mat. He's found many exciting fossil finds (including some spectacular very un-plant-ish) Canadian fossils. 

BCPA SYMPOSIUM SOCIAL MEET & GREET
  • Friday, August 22nd at the Courtenay and District Museum and Paleontological Centre, 207 - 4th Street, Courtenay, British Columbia including a Museum Tour with Pat Trask
BCPA SYMPOSIUM PALEO-BANQUET
  • Saturday, August 23rd, 6 PM - 9:30 PM at the Florence Filberg Centre featuring Ray Troll as the Dinner Speaker
BCPA SYMPOSIUM PRESENTATIONS
  • Saturday, August 23rd, 9 AM - 4:30 PM
  • Sunday, August 24th, 9 AM to 12:30 PM
  • All presentations and poster sessions are at the Florence Filberg Centre at 411 Anderton Avenue in downtown Courtenay, Vancouver Island, British Columbia. The Florence Filberg Centre is 1/2 block from the Courtenay Museum, close to shops and restaurants
BCPA SYMPOSIUM FOSSIL FIELD TRIPS
  • Friday, August 22nd: Shelter Point
  • Sunday, August 24th: Trent River
  • Monday, August 25th: Hornby Island, Collishaw Point
FOSSIL PREPARATION WORKSHOP
  • Sunday, August 25, 2025, 1:30 PM - 4:00 PM: Fossil Preparation Workshop with James Wood, Jay Hawley and Dan Bowen
BCPA SYMPOSIUM REGISTRATION
Registration is open. To register, head to www.fossiltalksandfieldtrips.com. There is a registration link there for ease of access. Early Bird pricing ends May 30, 2025 so register early to save! 

Friday, 11 April 2025

ANCIENT ORNAMENTS OF THE SEA: FOSSIL PEARL

One of my favourite pairs of earrings are a simple set of pearls. I have worn them pretty much every day since 2016 when I received them as a gift. What is it about pearls that makes them so appealing? I am certainly not alone in this. 

A simple search will show you a vast array of pearls being used for their ornamental value in cultures from all over the world. I suppose the best answer to why they are appealing is just that they are

If you make your way to Paris, France and happen to visit the Louvre's Persian Gallery, do take a boo at one of the oldest pearl necklaces in existence — the Susa necklace. It hails from a 2,400-year-old tomb of long lost Syrian Queen. It is a showy piece with three rows of 72 pearls per strand strung upon a bronze wire. 

A queen who truly knew how to accessorize

I imagine her putting the final touches of her outfit together, donning the pearls and making an entrance to wow the elite of ancient Damascus. The workmanship is superb, intermixing pure gold to offset the lustre of the pearls. It is precious and ancient, crafted one to two hundred years before Christ. Perhaps a gift from an Egyptian Pharaoh or from one of the Sumerians, Eblaites, Akkadians, Assyrians, Hittites, Hurrians, Mitanni, Amorites or Babylonian dignitaries who sued for peace but brought war instead. 

Questions, good questions, but questions without answers. So, what can we say of pearls? We do know what they are and it is not glamorous. Pearls form in shelled molluscs when a wee bit of sand or some other irritant gets trapped inside the shell, injuring the flesh. As a defensive and self-healing tactic, the mollusc wraps it in layer upon layer of mother-of-pearl — that glorious shiny nacre that forms pearls. 

They come in all shapes and sizes from minute to a massive 32 kilograms or 70 pounds. While a wide variety of our mollusc friends respond to injury or irritation by coating the offending intruder with nacre, there are only a few who make the truly gem-y pearls. 

These are the marine pearl oysters, Pteriidae and a few freshwater mussels. Aside from Pteriidae and freshwater mussels, we sometimes find less gem-y pearls inside conchs, scallops, clams, abalone, giant clams and large marine gastropods.

Pearls are made up mostly of the carbonate mineral aragonite, a polymorphous mineral — the same chemical formula but different crystal structure — to calcite and vaterite, sometimes called mu-calcium carbonate. These polymorphous carbonates are a bit like Mexican food where it is the same ingredients mixed in different ways. Visually, they are easy to tell apart — vaterite has a hexagonal crystal system, calcite is trigonal and aragonite is orthorhombic.

As pearls fossilize, the aragonite usually gets replaced by calcite, though sometimes by vaterite or another mineral. When we are very lucky, that aragonite is preserved with its nacreous lustre — that shimmery mother-of-pearl we know and love.  

Molluscs have likely been making pearls since they first evolved 530 million years ago. The oldest known fossil pearls found to date, however, are 230-210 million years old. 

This was the time when our world's landmass was concentrated into the C-shaped supercontinent of Pangaea and the first dinosaurs were calling it home. In the giant ancient ocean of Panthalassa, ecosystems were recovering from the high carbon dioxide levels that fueled the Permian extinction. Death begets life. With 95% of marine life wiped out, new species evolved to fill each niche.  

While this is where we found the oldest pearl on record, I suspect we will one day find one much older and hopefully with its lovely great-great grandmother-of-pearl intact. 

Tuesday, 8 April 2025

DANGEROUS BEDFELLOWS: ANGLERFISH

The festive lassie you see here is an Anglerfish. They always look to be celebrating a birthday of some kind, albeit solo. This party is happening deep in our oceans and for those that join in, I hope they like it rough.

The wee candle you see on her forehead is a photophore, a tiny bit of luminous dorsal spine. Many of our sea dwellers have these candle-like bits illuminating the depths. You may have noticed them glowing around the eyes of many of our cephalopod friends. 

These light organs can be a simple grouping of photogenic cells or more complex with light reflectors, lenses, colour filters able to adjust the intensity or angular distribution of the light they produce. Some species have adapted their photophores to avoid being eaten, in others, it's an invitation to lunch.

In anglerfish' world, this swaying light is dead sexy. It's an adaptation used to attract prey and mates alike.

Deep in the murky depths of the Atlantic and Antarctic oceans, hopeful female anglerfish light up their sexy lures. When a male latches onto this tasty bit of flesh, he fuses himself totally. He might be one of several potential mates. She's not picky, just hungry. Lure. Feed. Mate. Repeat.

A friend asked if anglerfish mate for life. Well, yes.... yes, indeed they do.

Mating is a tough business down in the depths. Her body absorbs all the yummy nutrients of his body over time until all that's left are his testes. While unusual, it is only one of many weird and whacky ways our fishy friends communicate, entice, hunt and creatively survive and thrive. The deepest, darkest part of the ocean isn't empty — its hungry.

The evolution of fish began about 530 million years ago with the first fish lineages belonging to the Agnatha, a superclass of jawless fish. We still see them in our waters as cyclostomes but have lost the conodonts and ostracoderms to the annals of time. Like all vertebrates, fish have bilateral symmetry; when divided down the middle or central axis, each half is the same. Organisms with bilateral symmetry are generally more agile, making finding a mate, hunting or avoiding being hunted a whole lot easier.

When we envision fish, we generally picture large eyes, gills, a well-developed mouth. The earliest animals that we classify as fish appeared as soft-bodied chordates who lacked a true spine. While they were spineless, they did have notochords, a cartilaginous skeletal rod that gave them more dexterity than the cold-blooded invertebrates who shared those ancient seas and evolved without a backbone. 

Fish would continue to evolve throughout the Paleozoic, diversifying into a wide range of forms. Several forms of Paleozoic fish developed external armour that protected them from predators. The first fish with jaws appeared in the Silurian period, after which many species, including sharks, became formidable marine predators rather than just the prey of arthropods.

Fish in general respire using gills, are most often covered with bony scales and propel themselves using fins. There are two main types of fins, median fins and paired fins. The median fins include the caudal fin or tail fin, the dorsal fin, and the anal fin. Now there may be more than one dorsal, and one anal fin in some fishes.

The paired fins include the pectoral fins and the pelvic fins. And these paired fins are connected to, and supported by, pectoral and pelvic girdles, at the shoulder and hip; in the same way, our arms and legs are connected to and supported by, pectoral and pelvic girdles. This arrangement is something we inherited from the ancestors we share with fish. They are homologous structures.

When we speak of early vertebrates, we are often talking about fish. Fish is a term we use a lot in our everyday lives but taxonomically it is not all that useful. When we say, fish we generally mean an ectothermic, aquatic vertebrate with gills and fins.

Fortunately, many of our fishy friends have ended up in the fossil record. We may see some of the soft bits from time to time, as in the lovely fossil fish found in concretion in Brazil, but we often see fish skeletons. Vertebrates with hard skeletons had a much better chance of being preserved. 

Eohiodon Fish, McAbee Fossil Beds
In British Columbia, we have lovely two-dimensional Eocene fossil fish well-represented from the Allenby of Princeton and the McAbee Fossil Beds. 

We have the Tiktaalik roseae, a large freshwater fish, from 375 million-year-old Devonian deposits on Ellesmere Island in Canada's Arctic. Tiktaalik is a wonderfully bizarre creature with a flat, almost reptilian head but also fins, scales and gills. We have other wonders from this time. 

Canada also boasts spectacular antiarch placoderms, Bothriolepsis, found in the Upper Devonian shales of Miguasha in Quebec.

There are fragments of bone-like tissues from as early as the Late Cambrian with the oldest fossils that are truly recognizable as fishes come from the Middle Ordovician from North America, South America and Australia. At the time, South America and Australia were part of a supercontinent called Gondwana. North America was part of another supercontinent called Laurentia and the two were separated by deep oceans.

These two supercontinents and others that were also present were partially covered by shallow equatorial seas and the continents themselves were barren and rocky. Land plants didn't evolve until later in the Silurian Period. In these shallow equatorial seas, a large diverse and widespread group of armoured, jawless fishes evolved: the Pteraspidomorphi. The first of our three groups of ostracoderms. The Pteraspidomorphi are divided into three major groups: the Astraspida, Arandaspida and the Heterostraci.

The oldest and most primitive pteraspidomorphs were the Astraspida and the Arandaspida. You'll notice that all three of these taxon names contain 'aspid', which means shield. This is because these early fishes — and many of the Pteraspidomorphi — possessed large plates of dermal bone at the anterior end of their bodies. This dermal armour was very common in early vertebrates, but it was lost in their descendants. 

Arandaspida is represented by two well-known genera: Sacabampaspis, from South America and Arandaspis from Australia. Arandaspis have large, simple, dorsal and ventral head shields. Their bodies were fusiform, which means they were shaped sort of like a spindle, fat in the middle and tapering at both ends. Picture a sausage that is a bit wider near the centre with a crisp outer shell.

If you're a keen bean to see an anglerfish that recently washed up on the shores of Newport Beach this past May, hit this link: https://www.theguardian.com/us-news/2021/may/11/deep-sea-anglerfish-california-beach-finding-nemo. Kudos for my colleague, Giovanni, bringing this gloriously horrific lovely to my attention. 

Monday, 7 April 2025

FOSSIL FISHAPODS OF CANADA'S FAR NORTH

Qikiqtania wakei, a fishapod & relative to tetrapods
You will likely recall the amazing tetrapodomorpha fossil found on Ellesmere Island in the Canadian Arctic in 2004, Tiktaalik roseae

These were advanced forms transitional between fish and the early labyrinthodonts playfully referred to as fishapods — half-fish, half-tetrapod in appearance and limb morphology. 

Up to that point, the relationship of limbed vertebrates (tetrapods) to lobe-finned fish (sarcopterygians) was well known, but the origin of significant tetrapod features remained obscure for the lack of fossils that document the sequence of evolutionary changes — until Tiktaalik

While Tiktaalik is technically a fish, this fellow is as far from fish-like as you can be and still be a card-carrying member of the group. 

Interestingly, while Neil Shubin and crew were combing the icy tundra for Tiktaalik, another group was trying their luck just a few kilometres away. 

A week before the eureka moment of Tiktaalik's discovery, Tom Stewart and Justin Lemberg unearthed material that we now know to be a relative of Tiktaalik's. 

Meet Qikiqtania wakei, a fishapod and close relative to our dear tetrapods — and cousin to Tiktaalik — who shares features in the flattened triangular skull, shoulders and elbows in the fin. 

Qikiqtania (pronounced kick-kick-TAN-ee-ya)
But, and here’s the amazing part, its upper arm bone (humerus) is specialised for open water swimming, not walking. 

The story gets wilder when we look at Qikiqtania’s position on the evolutionary tree— all the features for this type of swimming are newly evolved, not primitive. 

This means that Qikiqtania secondarily reentered open water habitats from ancestors that had already had some aspect of walking behaviour. 

And, this whole story was playing out 365 million years ago — the transition from water to land was going both ways in the Devonian.

Why is this exciting? You and I descend from those early tetrapods. We share the legacy of their water-to-land transition and the wee bony bits in their wrists and paddles that evolved to become our hands. I know, mindblowing!

Thomas Stewart and Justin Lemberg put in thousands of hours bringing Qikiqtania to life. 

The analysis consisted of a long path of wild events— from a haphazard moment when it was first spotted, a random collection of a block that ended up containing an articulated fin, to a serendipitous discovery three days before Covid lockdowns in March 2020.

Both teams acknowledge the profound debt owed to the individuals, organizations and indigenous communities where they had the privilege to work — Grise Fiord and Resolute Bay— Ellesmere Island in Nunavut, the largest and northernmost territory of Canada. 

Part of that debt is honoured in the name chosen for this new miraculous species. 

Aerial View of Ellesmere Island
The generic name, Qikiqtania (pronounced kick-kick-TAN-ee-ya), is derived from the Inuktitut words Qikiqtaaluk and Qikiqtani which are the traditional place name of the region where the fossil was discovered. 

The specific name, wakei, is in memory of the evolutionary biologist David Wake — colleague, mentor and friend. 

He was a professor of integrative biology and Director and curator of herpetology at the Museum of Vertebrate Zoology at the University of California, Berkeley who passed away in April 2021. 

Wake is known for his work on the biology and evolution of salamanders and vertebrate evolutionary biology. 

If you look at the photo on the left you can imagine visiting these fossil localities in Canada's far north.

Qikiqtania was found on Inuit land and belongs to the community. Thomas Stewart and his colleagues were able to conduct this research because of the generosity and support of individuals in the hamlets of Resolute Bay and Grise Fiord, the Iviq Hunters and Trappers of Grise Fiord, and the Department of Heritage and Culture, Nunavut.

To them, on behalf of the larger scientific community — Nakurmiik. Thank you! 

Here is the link to Tom Stewart's article in The Conversation & paper in Nature:

Stewart, Thomas A.; Lemberg, Justin B.; Daly, Ailis; Daeschler, Edward B.; Shubin, Neil H. (2022-07-20). "A new elpistostegalian from the Late Devonian of the Canadian Arctic". Nature. doi:10.1038/s41586-022-04990-w. ISSN 0028-0836.
Stewart, Thomas. "Meet Qikiqtania, a fossil fish with the good sense to stay in the water while others ventured onto land" The Conversation. Retrieved 2022-07-20.

Image One: An artist’s vision of Qikiqtania enjoying its fully aquatic, free-swimming lifestyle. Alex Boersma, CC BY-ND

Image Two: A new elpistostegalian from the Late Devonian of the Canadian Arctic, T. A. Stewart, J. B. Lemberg, A. Daly, E. B. Daeschler, & N. H. Shubin.

A huge shout out to the deeply awesome Neil Shubin who shared that the paper had been published and offered his insights on what played out behind the scenes!

Saturday, 29 March 2025

BUMBLEBEES, FOSSILS AND FIRST NATIONS

This fuzzy yellow and black striped fellow is a bumblebee in the genus Bombus sp., family Apidae. We know him from our gardens where we see them busily lapping up nectar and pollen from flowers with their long hairy tongues.

My Norwegian cousins on my mother's side call them humle. Norway is a wonderful place to be something wild as the wild places have not been disturbed by our hands. 

There are an impressive thirty-five species of bumblebee species that call Norway hjem (home), and one, Bombus consobrinus, boasts the longest tongue that they use to feast solely on Monkshood, genus Aconitum, you may know by the name Wolf's-bane.

In the Kwak̓wala language of the Kwakwaka'wakw, speakers of Kwak'wala, and my family in the Pacific Northwest, bumblebees are known as ha̱mdzalat̕si — though I wonder if this is actually the word for a honey bee, Apis mellifera, as ha̱mdzat̕si is the word for a beehive.

I have a special fondness for all bees and look for them both in the garden and in First Nation art.

Bumblebees' habit of rolling around in flowers gives us a sense that these industrious insects are also playful. In First Nation art they provide levity — comic relief along with their cousins the mosquitoes and wasps — as First Nation dancers wear masks made to mimic their round faces, big round eyes and pointy stingers. A bit of artistic license is taken with their forms as each mask may have up to six stingers. The dancers weave amongst the watchful audience and swoop down to playfully give many of the guests a good, albeit gentle, poke. 

Honey bees actually do a little dance when they get back to the nest with news of an exciting new place to forage — truly they do. Bumblebees do not do a wee bee dance when they come home pleased with themselves from a successful foraging mission, but they do rush around excitedly, running to and fro to share their excitement. They are social learners, so this behaviour can signal those heading out to join them as they return to the perfect patch of wildflowers. 

Bumblebees are quite passive and usually sting in defence of their nest or if they feel threatened. Female bumblebees can sting several times and live on afterwards — unlike honeybees who hold back on their single sting as its barbs hook in once used and their exit shears it off, marking their demise.

They are important buzz pollinators both for our food crops and our wildflowers. Their wings beat at 130 times or more per second, literally shaking the pollen off the flowers with their vibration. 

And they truly are busy bees, spending their days fully focused on their work. Bumblebees collect and carry pollen and nectar back to the nest which may be as much as 25% to 75% of their body weight. 

And they are courteous — as they harvest each flower, they mark them with a particular scent to help others in their group know that the nectar is gone. 

The food they bring back to the nest is eaten to keep the hive healthy but is not used to make honey as each new season's queen bees hibernate over the winter and emerge reinvigorated to seek a new hive each Spring. She will choose a new site, primarily underground depending on the bumblebee species, and then set to work building wax cells for each of her fertilised eggs. 

Bumblebees are quite hardy. The plentiful hairs on their bodies are coated in oils that provide them with natural waterproofing. They can also generate more heat than their smaller, slender honey bee cousins, so they remain productive workers in cooler weather.    

We see the first bumblebees arise in the fossil record 100 million years ago and diversify alongside the earliest flowering plants. Their evolution is an entangled dance with the pollen and varied array of flowers that colour our world. 

We have found many wonderful examples within the fossil record, including a rather famous Eocene fossil bee found by a dear friend and naturalist who has left this Earth, Rene Savenye.

His namesake, H. Savenyei, is a lovely fossil halictine bee from Early Eocene deposits near Quilchena, British Columbia — and the first bee body-fossil known from the Okanagan Highlands — and indeed from Canada. 

It is a fitting homage, as bees symbolize honesty, playfulness and willingness to serve the community in our local First Nation lore and around the world — something Rene did his whole life.

Tuesday, 25 March 2025

KING OF THE TRILOBITES: UNEARTHING ISOTELUS REX

Isotelus rex, the King of Trilobites
In the remote limestone flats of northern Manitoba, a remarkable fossil lay undisturbed for nearly half a billion years. Sunken in gray stone, its broad armored body preserved in exquisite detail, it waited silently—until a team of Canadian paleontologists happened upon it during a summer field expedition in 1999.

What they uncovered would change the story of trilobites forever.

Meet Isotelus rex, the largest complete trilobite ever discovered—a 70-centimetre-long prehistoric titan from the Ordovician seas. It's more than just a big trilobite. It’s a window into an ancient world and a landmark find in Canadian paleontology.

A Fossil Giant in a Forgotten Sea

Trilobites, extinct marine arthropods, are among the most iconic fossils in the world. Their hard, segmented exoskeletons and alien-like eyes make them favorites among collectors and scientists alike. They first appeared more than 520 million years ago and thrived in Earth’s oceans for over 270 million years before vanishing in the Permian extinction.

Many trilobites are palm-sized or smaller. But Isotelus rex was something else entirely.

Discovered near William Lake in the Hudson Bay Lowlands of Manitoba, Isotelus rex was preserved in limestone laid down when central Canada was submerged beneath a warm, shallow sea. That sea teemed with life—brachiopods, nautiloids, sea lilies, and trilobites like Isotelus, which would have cruised the muddy bottom looking for food.

With its broad, paddle-shaped tail, deeply segmented body, and large compound eyes, Isotelus rex was a slow-moving but imposing presence on the seafloor.

The Paleontologists Behind the Discovery

The discovery was made by a team of seasoned Canadian researchers: Dr. David Rudkin of the Royal Ontario Museum, Dr. Graham Young and Edward Dobrzanske of the Manitoba Museum, and Dr. Robert Elias from the University of Manitoba. 

All were participating in a joint field expedition to study the fossil-rich limestone of the Churchill River Group, near Churchill in northern Manitoba.

Dr. Rudkin is one of Canada’s leading experts on Paleozoic arthropods, with a particular passion for trilobites and other ancient sea creatures. 

His work at the Royal Ontario Museum has helped bring the stories of long-extinct animals to life through detailed study and public exhibition.

Dr. Young, curator of geology and paleontology at the Manitoba Museum, specializes in ancient marine ecosystems—piecing together how life functioned and interacted in prehistoric oceans. 

Dr. Elias, a geologist and paleontologist at the University of Manitoba, focuses on Paleozoic reefs and ancient sedimentary environments. Dobrzanske, a collections technician and field expert, brought deep practical knowledge to the fieldwork.

It was the perfect blend of expertise and passion.

One overcast morning, while surveying outcrops of Ordovician limestone, the team spotted a familiar ripple in the rock—a faint curve suggesting a trilobite’s cephalon, or head shield. As they slowly and carefully uncovered more of the fossil, its remarkable size and completeness became apparent.

The mostly complete holotype specimen of Isotelus rex, from the Churchill River Group, measures a staggering 720 millimetres (28 inches) in length, 400 millimetres (16 inches) in maximum width across the cephalon, and 70 millimetres (3 inches) in height at the posterior midpoint of the head. It remains the largest complete trilobite ever found.

“We thought it might be a fluke,” Rudkin later recalled. “A fragment from a large individual. But as we kept going—it just kept going. That was when we realized we were looking at something truly extraordinary.”

Perfect Conditions for Preservation

Unlike many trilobite fossils, which are found in fragments or disarticulated pieces, Isotelus rex was remarkably well-preserved—fully articulated, lying in life position.

Paleontologists believe it was buried rapidly by fine carbonate mud, likely during a sudden underwater event like a storm or sediment slump. The seafloor at the time was likely anoxic—lacking oxygen—which would have prevented decay and scavenging, allowing the trilobite’s body to remain intact as minerals slowly fossilized it over millions of years.

“It’s one of the most complete large trilobites ever found anywhere in the world,” said Young. “It offers a rare look at what these creatures really looked like, in full form.”

While its size is headline-grabbing, Isotelus rex offers deeper scientific insights. It shows that trilobites—already known for their diversity—could grow far larger than previously thought. Its presence in northern Manitoba also highlights how much of Canada’s paleontological richness remains underexplored.

The fossil was later transported to Winnipeg, where it became a highlight of the Manitoba Museum’s paleontology collection. A custom case was built to display it—regular trilobite mounts just wouldn’t do for a specimen of this scale.

The name Isotelus rex—Latin for “equal end king”—reflects both its classification and its grandeur.

Today, Isotelus rex is more than just a museum centerpiece. It’s a reminder of the power of curiosity, collaboration, and exploration. It represents a frozen moment from 450 million years ago, when trilobites were the dominant animals of Earth’s seas.

And thanks to the eyes, hands, and minds of Rudkin, Elias, Young, and Dobrzanske, we now know what the king of trilobites looked like and he is an impressive specimen, indeed!

Image credit: Isotelus rex TMP 2009.003.0003 (cast). 445 million years old, late Ordovician, Churchill River Group, Churchill, Manitoba. At the Royal Tyrrell Museum of Palaeontology. Bloopityboop

Monday, 24 March 2025

BURGESS SHALE FOSSILS: A DEEP TIME JOURNEY IN YOHO NATIONAL PARK

Tucked high in the Canadian Rockies above the tiny hamlet of Field, British Columbia, lies one of the most extraordinary fossil sites on Earth — the Burgess Shale. 

This UNESCO World Heritage site offers a rare and detailed look at life on Earth over half a billion years ago, during a time known as the Cambrian Explosion.

Whether you're a seasoned paleontology buff or a curious traveler, this ancient treasure trove belongs on your bucket list. Here’s everything you need to know about the fossils, the tours, how to get there, where to stay, eat, and explore.

Why Are the Burgess Shale Fossils Important?

The fossils of the Burgess Shale are a paleontological jackpot. Dating back 508 million years, they preserve not just the hard shells and bones, but also the soft tissues of ancient creatures — things like gills, eyes, and guts. These rare details offer a vivid snapshot of life in the ancient Cambrian seas.

Discovered by Charles Doolittle Walcott in 1909, the Burgess Shale holds some of the earliest and weirdest animals to ever live on Earth — including:

  • Anomalocaris – a top predator with grasping arms and a ring of teeth
  • Opabinia – a creature with five eyes and a long, tube-like nose
  • Hallucigenia – a spiny worm that once puzzled scientists with its upside-down anatomy
  • Pikaia – one of the first known animals with a notochord, an early precursor to the backbone

These fossils help us understand the roots of animal evolution — including our own.

Guided Fossil Tours: Hike Through Deep Time

Yes — you can actually visit these ancient fossil beds! Parks Canada offers guided day hikes to several Burgess Shale sites during the summer months (late June to early September). All tours must be booked in advance and are mandatory to access these protected areas. You can take photos galore but cannot collect or keep any of the fossils. They are protected and their removal is illegal.

Book Your Guided Burgess Shale Hike

Here are the main hikes you can choose from:

1. Walcott Quarry Hike

  • Difficulty: Challenging (22 km round trip, ~11 hrs)
  • Highlights: Iconic fossil site, stunning mountain scenery, classic fossils
  • Departs from: Takakkaw Falls parking lot, Yoho National Park

2. Mount Stephen Trilobite Beds

  • Difficulty: Moderate (8 km round trip, ~6 hrs)
  • Highlights: Ground covered in trilobites, panoramic views
  • Departs from: Field Visitor Centre

3. Stanley Glacier Hike (Kootenay National Park)

  • Difficulty: Moderate (10 km round trip, ~7 hrs)
  • Highlights: Newer fossil site, unique specimens, stunning glaciers
  • Departs from: Stanley Glacier Trailhead

Note: You’ll need good hiking shoes, layers for changing weather, plenty of water, and a spirit of adventure.

Where to Stay Near the Burgess Shale

Field, BC is the perfect home base for your fossil adventure. It’s quaint, quiet, and surrounded by jaw-dropping mountain beauty.

Top Places to Stay:

  • Cathedral Mountain Lodge – Rustic luxury cabins, great food, stunning setting.
  • Emerald Lake Lodge – A short drive away, this lakeside lodge is a slice of paradise.
  • Guesthouses & B&Bs in Field – Charming, cozy options like The Great Divide Lodge and Fireweed Hostel.

Where to Eat in and Around Field

While Field is small, it packs a punch with local, hearty eats:

  • Truffle Pigs Bistro – Field’s culinary gem. Comfort food with a gourmet twist.
  • The Siding Café – Great for coffee, sandwiches, and baked goods. Cozy and casual.
  • Cathedral Mountain Lodge Dining Room – Upscale Rocky Mountain dining if you’re staying at the lodge.

Tip: There’s no gas station in Field. Fill up in Lake Louise (30 minutes away).

How to Get to Field, British Columbia

Field is nestled in Yoho National Park, just off the Trans-Canada Highway. Here's how long it'll take you from major cities:

Driving Times to Field, BC

  • From Vancouver: ~8.5 hours (850 km via Hwy 1 through Kamloops and Golden)
  • From Calgary: ~2.5 hours (215 km via Hwy 1 through Banff and Lake Louise)

You’ll pass through some of the most scenic mountain corridors in North America. Be sure to keep your eyes peeled for wildlife — mountain goats, bears, and elk often make an appearance.

A Lasting Legacy in Stone

Standing among the Burgess Shale beds, surrounded by towering peaks and the whispers of deep time, it’s hard not to feel humbled. These fossils tell the story of life’s earliest steps into complexity — a reminder of how strange, beautiful, and interconnected our world truly is.

Whether you're chasing trilobites or just soaking in the grandeur of Yoho’s landscapes, the Burgess Shale offers something extraordinary: a chance to walk with the ghosts of Earth’s earliest animals.

Learn More: (pop these in Google for more information)

  • Parks Canada – Burgess Shale Official Site
  • Royal Ontario Museum – Burgess Shale Project
  • UNESCO World Heritage Info

I highly recommend all of these hikes. If you have the time and fitness, they are amazing and each of them offers some epic views!

Friday, 21 March 2025

ANCIENT SEA MONSTERS: ICHTHYOSAURS AND MOSASAURS

When we think of prehistoric creatures, dinosaurs usually steal the spotlight. But beneath the ancient waves swam giants just as awe-inspiring—and sometimes even more terrifying. 

Among these marine reptiles, two groups stand out: ichthyosaurs and mosasaurs. Though they never coexisted, both ruled the oceans in their own time and in their own terrifying ways.

Ichthyosaurs: Dolphin-Like Reptiles of the Jurassic

Ichthyosaurs (meaning "fish lizards") were sleek, fast swimmers that first appeared around 250 million years ago during the Triassic. 

Their streamlined bodies, long snouts, and large eyes gave them an appearance eerily similar to modern dolphins—though they weren’t mammals. This resemblance is a perfect example of convergent evolution, where unrelated animals develop similar traits to adapt to similar environments.

Some ichthyosaurs grew as long as a school bus, and their enormous eyes (some as large as dinner plates) suggest they were capable of deep-sea hunting. They fed on fish, squid, and other marine life, and some species likely gave birth to live young—a rare trait among reptiles.

They thrived for millions of years but began to decline in the mid-Cretaceous, eventually going extinct before the rise of mosasaurs.

Mosasaurs: Apex Predators of the Cretaceous Seas

Enter the mosasaurs, who rose to dominance after the ichthyosaurs were gone. Mosasaurs appeared around 98 million years ago and ruled the oceans until the mass extinction event 66 million years ago that also wiped out the dinosaurs.

These were true marine lizards, closely related to today’s monitor lizards and snakes. Picture a massive, crocodile-headed Komodo dragon with flippers and a shark-like tail—and you’ll have a good image of a mosasaur. Some species grew over 50 feet long, and their jaws were packed with conical, backward-curving teeth perfect for gripping slippery prey.

Mosasaurs were apex predators, eating anything they could catch—fish, turtles, birds, and even other mosasaurs. Their double-jointed jaws could open wide, allowing them to swallow large prey whole.

Who Would Win in a Fight?

While it’s fun to imagine a battle between an ichthyosaur and a mosasaur, it never could have happened—ichthyosaurs were long extinct by the time mosasaurs evolved. That said, mosasaurs were more heavily built and had powerful jaws, making them formidable hunters. Ichthyosaurs were faster and more agile, more suited to quick chases than brute force.

Legacy Beneath the Waves

Both ichthyosaurs and mosasaurs left behind rich fossil records, giving scientists insight into how reptiles adapted to life in the oceans. Their bones have been found on every continent, including Antarctica, reminding us that the ancient oceans were just as dynamic and dangerous as today’s wildest habitats.

Next time you watch a documentary about dinosaurs or visit a natural history museum, take a moment to appreciate the marine reptiles that once ruled the seas. After all, the land wasn't the only place where prehistoric giants thrived.

Monday, 17 March 2025

UNEARTHING A JUVENILE ELASMOSAUR ON THE TRENT RIVER

Pat Trask with a Fossil Rib Bone. Photo: Rebecca Miller
In August of 2020, an incredible elasmosaur fossil—a mighty marine reptile—was unearthed high up on the cliffs of the Trent River near Courtenay, on the east coast of Vancouver Island, British Columbia. 

This thrilling find marks the culmination of a three-year palaeontological puzzle that began with mere fragments and ended with a daring cliffside excavation!

Elasmosaurs were long-necked marine reptiles roaming Earth's oceans from the Late Triassic to the Late Cretaceous (roughly 215 to 80 million years ago). 

Our Trent River specimen clocks in at about 85 million years old. The rock layers in this area were originally laid down as tropical islands far to the south of the equator. Over tens of millions of years, plate tectonics slowly carried these ancient seabeds north and slightly east to the site we know today on Vancouver Island.

For years, tantalizing fragments of this juvenile elasmosaur washed out of the riverbanks—bones that fired the imagination of fossil enthusiasts but stubbornly refused to reveal their precise origin. The first clue surfaced back in 2017 during a Courtenay Museum fossil tour led by Pat Trask. 

One lucky participant picked up a small finger bone from the river. Pat recognized it immediately as belonging to a marine reptile, possibly an elasmosaur. Although it was an exciting discovery, its source on the cliffs remained a frustrating mystery.

Fast forward to 2018. Another fossil tour, another chance encounter: a wrist bone—again, possibly elasmosaur—turning up in the Trent River. Pat looked down in that very moment and spotted a vertebra right at his feet! Now with multiple bones in hand, Pat collected them in the museum’s lab, increasingly determined to find their point of origin.

Throughout 2019, Pat and volunteers from the Vancouver Island Palaeontological Society (VIPS) combed the area for clues. They rappelled down cliff faces, deployed a drone to scour every crack and crevice, but found nothing definitive. 

Then, in August 2020, everything changed. While leading another fossil tour, Pat stumbled across a newly revealed bone in the river—one that absolutely had not been there the day before. Looking up, he spotted a promising section of cliff and, with help from his wife, Deb, and a trusty telescope, he finally spied a bone jutting from the rock.

The excavation that followed was a marvel of planning and perseverance. Scaffolding had to be built, climbing gear prepared, and countless safety measures put into place. 

Over several weeks, the team carefully pried fossil after fossil from the cliff—loose rib bones, gastroliths (stones swallowed for digestion), wrist bones, finger bones, and parts of the back and pelvis. 

The bigger prize, wrapped safely in plaster and lowered ever-so-gently to the riverbank below, contained an array of bones that could include the skull.

Pat Trask Wrapping the plaster casing
This discovery is part of the Trent River’s ongoing reputation for yielding stunning fossils. 

The Courtenay Museum regularly hosts tours here, offering members of the public a chance to walk the same banks and maybe—just maybe—spot the next big find. 

Past discoveries include other marine reptiles and invertebrate fossils, painting a picture of Vancouver Island’s prehistoric marine ecosystems.

For Pat Trask and his family, the discovery is deeply personal. Pat’s brother, Mike Trask, famously found another elasmosaur on the nearby Puntledge River back in 1988. 

There’s even talk that if this particular find proves to be a new species, it could bear the Trask family name in the scientific literature—a fitting tribute to their passion, grit, and history-making finds in the Comox Valley.

 So far, the bones point clearly to an elasmosaur. At roughly four meters in length, this juvenile is smaller than its adult kin, but it’s no less impressive. Every retrieved vertebra, humerus, and pelvis bone draws us deeper into the ancient ocean world of 85 million years ago. James Wood of the VIPS has taken on the painstaking task of preparing the specimen, aided by a new air abrasive generously provided by the Courtenay Museum.

With the fossil safely in the museum’s care, and research well underway, the Trent River elasmosaur story is poised to shine a spotlight on Vancouver Island’s extraordinary prehistoric past. From the moment that first finger bone surfaced in 2017 to the triumphant lowering of the plaster-wrapped jacket in 2020, this has been an adventure for the ages—and a spectacular reminder that our island still has secrets waiting to be discovered!

I hope to see it published with the Trask family name. Their paleontological history is forever tied to the Comox Valley and the honour would be fitting.  

Photo One: Rebecca Miller, Little Prints Photography — she is awesome!

Photo Two: James Wood prepped the material and Pat Trask labelled and oriented the bones.

Photo Three: Pat Trask perched atop scaffolding along the Trent River. And yes, he's attached to a safety line to secure him in case of fall. 

Photo Four: A diagram of the juvenile elasmosaur. See the Excavation Moment via Video Link: https://youtu.be/r82EcEF7Pfc

Sunday, 9 March 2025

BLUE LIAS ICHTHYOSAUR

This well-preserved partial ichthyosaur was found in the Blue Lias shales by Lewis Winchester-Ellis. The vertebrae you see here are from the tail section of this marine reptile.

The find includes stomach contents which tell us a little about how this particular fellow liked to dine.

As with most of his brethren, he enjoyed fish and cephalopods. Lewis found fishbone and squid tentacle hooklets in his belly. 

Oh yes, these ancient cephies had grasping hooklets on their tentacles. I'm picturing them wiggling all ominously. The hooklets were the only hard parts of the animal preserved in this case as the softer parts of this ancient calamari were fully or partially digested before this ichthyosaur met his end.

Ichthyosaurus was an extinct marine reptile first described from fossil fragments found in 1699 in Wales. Shortly thereafter, fossil vertebrae were published in 1708 from the Lower Jurassic and the first member of the order Ichthyosauria to be discovered.

To give that a bit of historical significance, this was the age of James Stuart, Jacobite hopeful to the British throne. While scientific journals of the day were publishing the first vertebrae ichthyosaur finds, he was avoiding the French fleet in the Firth of Forth off Scotland. This wasn’t Bonnie Prince Charlie, this was his Dad. Yes, that far back.

The first complete skeleton was discovered in the early 19th century by Mary Anning and her brother Joseph along the Dorset Jurassic Coast. Joseph had mistakenly, but quite reasonably, taken the find for an ancient crocodile. Mary excavated the specimen a year later and it was this and others that she found that would supply the research base others would soon publish on.

Mary's find was described by a British surgeon, Sir Everard Home, an elected Fellow of the Royal Society, in 1814. The specimen is now on display at the Natural History Museum in London bearing the name Temnodontosaurus platyodon, or “cutting-tooth lizard.”

Ichthyosaurus communis
In 1821, William Conybeare and Henry De La Beche, a friend of Mary's, published a paper describing three new species of unknown marine reptiles based on the Anning's finds.

Rev. William Buckland would go on to describe two small ichthyosaurs from the Lias of Lyme Regis, Ichthyosaurus communis and Ichthyosaurus intermedius, in 1837.

Remarkable, you'll recall that he was a theologian, geologist, palaeontologist AND Dean of Westminster. It was Buckland who published the first full account of a dinosaur in 1824, coining the name, "Megalosaurus."

The Age of Dinosaurs and Era of the Mighty Marine Reptile had begun.

Ichthyosaurs have been collected in the Blue Lias near Lyme Regis and the Black Ven Marls. More recently, specimens have been collected from the higher succession near Seatown. Paddy Howe, Lyme Regis Museum geologist, found a rather nice Ichthyosaurus breviceps skull a few years back. A landslip in 2008 unveiled some ribs poking out of the Church cliffs and a bit of digging revealed the ninth fossil skull ever found of a breviceps, with teeth and paddles to boot.

Specimens have since been found in Europe in Belgium, England, Germany, Switzerland and in Indonesia. Many tremendously well-preserved specimens come from the limestone quarries in Holzmaden, southern Germany.

Ichthyosaurs ranged from quite small, just a foot or two, to well over twenty-six metres in length and resembled both modern fish and dolphins.

Dean Lomax and Sven Sachs, both active (and delightful) vertebrate paleontologists, have described a colossal beast, Shonisaurus sikanniensis from the Upper Triassic (Norian) Pardonet Formation of northeastern British Columbia, Canada, measuring 3-3.5 meters in length. The specimen is now on display in the Royal Tyrrell Museum of Palaeontology in Alberta, Canada. It was this discovery that tipped the balance in the vote, making it British Columbia's Official Fossil. Ichthyosaurs have been found at other sites in British Columbia, on Vancouver Island and the Queen Charlotte Islands (Haida Gwaii) but Shoni tipped the ballot.

The first specimens of Shonisaurus were found in the 1990s by Peter Langham at Doniford Bay on the Somerset coast of England.

Dr. Betsy Nicholls, Rolex Laureate Vertebrate Palaeontologist from the Royal Tyrrell Museum, excavated the type specimen of Shonisaurus sikanniensis over three field sessions in one of the most ambitious fossil excavations ever ventured. Her efforts from 1999 through 2001, both in the field and lobbying back at home, paid off. Betsy published on this new species in 2004, the culmination of her life’s work and her last paper as we lost her to cancer in autumn of that year.

Roy Chapman Andrews, AMNH 1928 Expedition to the Gobi Desert
Charmingly, Betsy had a mail correspondence with Roy Chapman Andrews, former director of the American Museum of Natural History, going back to the late 1950s as she explored her potential career in palaeontology. Do you recall the AMNH’s sexy paleo photos of expeditions to the Gobi Desert in southern Mongolia in China in the early 20th century? I've posted a picture here to jog your memory. Roy Chapman Andrews was the lead on that trip. The man was dead sexy. His photos are what fueled the flames of my own interest in paleo.

We've found at least 37 specimens of Shonisaurus in Triassic outcrops of the Luning Formation in the Shoshone Mountains of Nevada, USA. The finds go back to the 1920s. The specimens that may it to publication were collected by M. Wheat and C. L. Camp in the 1950s.  The aptly named Shonisaurus popularis became the Nevada State Fossil in 1984. Our Shoni got around. Isolated remains have been found in a section of sandstone in Belluno, in the Eastern Dolomites, Veneto region of northeastern Italy. The specimens were published by Vecchia et al. in 2002.

For a time, Shonisaurus was the largest ichthyosaurus known.

Move over, Shoni, as a new marine reptile find competes with the Green Anaconda (Eunectes murinus) and the Blue Whale (Balaenoptera musculus) for size at a whopping twenty-six (26) metres.

The find is the prize of fossil collector turned co-author, Paul de la Salle, who (you guessed it) found it in the lower part of the intertidal area that outcrops strata from the latest Triassic Westbury Mudstone Formation of Lilstock on the Somerset coast. He contacted Dean Lomax and Judy Massare who became co-authors on the paper.

The find and conclusions from their paper put "dinosaur" bones from the historic Westbury Mudstone Formation of Aust Cliff, Gloucestershire, UK site into full reinterpretation.

And remember that ichthyosaur the good Reverend Buckland described back in 1837, the Ichthyosaurus communis? Dean Lomax was the first to describe a wee baby. A wee baby ichthyosaur! Awe. I know, right? He and paleontologist Nigel Larkin published this adorable first in the journal of Historical Biology in 2017.

They had teamed up previously on another first back in 2014 when they completed the reconstruction of an entire large marine reptile skull and mandible in 3-D, then graciously making it available to fellow researchers and the public. The skull and braincase in question were from an Early Jurassic, and relatively rare, Protoichthyosaurus prostaxalis. The specimen had been unearthed in Warwickshire back in the 1950s. Unlike most ichthyosaur finds of this age, it was not compressed and allowed the team to look at a 3-D specimen through the lens of computerized tomography (CT) scanning.

Another superb 3-D ichthyosaur skull was found near Lyme Regis by fossil hunter-turned-entrepreneur-local David Sole and prepped by the late David Costain. I'm rather hoping it went into a museum collection as it would be wonderful to see the specimen studied, imaged, scanned and 3-D printed for all to share. Here's hoping.


Ichthyosaurus somersetensis Credit: Dean R Lomax
Lomax and Sven Sachs also published on an embryo from one of the largest ichthyosaurs known, a new species named Ichthyosaurus somersetensis.

Their paper in the ACTA Palaeontologica Polonica from 2017, describes the third embryo known for Ichthyosaurus and the first to be positively identified to species level. The specimen was collected from Lower Jurassic strata (lower Hettangian, Blue Lias Formation) of Doniford Bay, Somerset, UK and is housed in the collection of the Niedersächsisches Landesmuseum (Lower Saxony State Museum) in Hannover, Germany.

We have learned a lot about them in the time we've been studying them. We now have thousands of specimens, some whole, some as bits and pieces. Many specimens that have been collected are only just now being studied and the tools we are using to study them are getting better and better.

Link to Lomax Paper: https://journals.plos.org/plosone/article…

Link to Nathan's Paper: https://www.tandfonline.com/…/10.1080/03115518.2018.1523462…

Nicholls Paper: E. L. Nicholls and M. Manabe. 2004. Giant ichthyosaurs of the Triassic - a new species of Shonisaurus from the Pardonet Formation (Norian: Late Triassic) of British Columbia. Journal of Vertebrate Paleontology 24(4):838-849 [M. Carrano/H. Street]