Showing posts with label archea. Show all posts
Showing posts with label archea. Show all posts

Thursday 25 April 2024

JURASSIC SEA URCHIN: AM'DA'MA

This lovely little biscuit is a Holectypus sea urchin from 120 million-year-old deposits from the Lagniro Formation of Madagascar.

The specimen you see here is in the collections of my beautiful friend Ileana. She and I were blessed to meet in China many years ago and formed an unbreakable bond that happens so few times in one's life. 

Holectypus are a genus of extinct echinoids related to modern sea urchins and sand dollars. They were abundant from the Jurassic to the Cretaceous (between 200 million and 65.5 million years ago).

This specimen is typical of Holectypus with his delicate five-star pattern adorning a slightly rounded test and flattened bottom. The specimen has been polished and was harvested both for its scientific and aesthetic value. 

I have many wonderful memories of collecting their modern cousins that live on the north end of Vancouver Island and along the beaches of Balaklava Island. In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, sea urchins are known as a̱m'da̱'ma and it is this name that I hear in my head when I think of them.

In echinoids, the skeleton is almost always made up of tightly interlocking plates that form a rigid structure or test — in contrast with the more flexible skeletal arrangements of starfish, brittle stars, and sea cucumbers. Test shapes range from nearly globular, as in some sea urchins, to highly flattened, as in sand dollars. 

Sea Urchin Detail
Living echinoids are covered with spines, which are movable and anchored in sockets in the test. These spines may be long and prominent, as in typical sea urchins and most have lovely raised patterns on their surface. 

In sand dollars and heart urchins, however, the spines are very short and form an almost felt-like covering. The mouth of most echinoids is provided with five hard teeth arranged in a circle, forming an apparatus known as Aristotle’s lantern.

Echinoids are classified by the symmetry of the test, the number and arrangement of plate rows making up the test, and the number and arrangement of respiratory pore rows called petals. Echinoids are divided into two subgroups: regular echinoids, with nearly perfect pentameral (five-part) symmetry; and irregular echinoids with altered symmetry.

Because most echinoids have rigid tests, their ability to fossilize is greater than that of more delicate echinoderms such as starfish, and they are common fossils in many deposits. The oldest echinoids belong to an extinct regular taxon called the Echinocystitoidea. 

They first appeared in the fossil record in the Late Ordovician. Cidaroids or pencil urchins appear in the Mississippian (Early Carboniferous) and were the only echinoids to survive the mass extinction at the Permo-Triassic boundary. Echinoids did not become particularly diverse until well after the Permo-Triassic mass extinction event, evolving the diverse forms we find them in today. 

True sea urchins first appear in the Late Triassic, cassiduloids in the Jurassic, and spatangoids or heart urchins in the Cretaceous. Sand dollars, a common and diverse group today, do not make an appearance in the fossil record until the Paleocene. They remain one of my favourite echinoderms and stand tall amongst the most pleasing of the invertebrates.

Wednesday 24 April 2024

CHUCKANUT DRIVE: EOCENE TROPICAL PARADISE

A trip along Chuckanut Drive, in northwestern Washington is a chance to view incredible diversity from sea to sky.

An amazing array of plants and animals call this coastline home. 

For the fossil enthusiast, it is a chance to slip back in time and have a bird’s eye view of a tropical paradise preserved in the Eocene strata of various fossil sites. 

Snug up against the Pacific Ocean, this 6000m thick exposure yields a vast number of tropical and flowering plants that you might see in Mexico today. Easily accessible by car, this rich natural playground makes for an enjoyable daytrip just one hour south of the US Border.

Over vast expanses of time, powerful tectonic forces have massaged the western edge of the continent, smashing together a seemingly endless number of islands to produce what we now know as North America and the Pacific Northwest. Intuition tells us that the earth’s crust is a permanent, fixed outer shell – terra firma.

Aside from the rare event of an earthquake or the eruption of Mount St. Helen’s, our world seems unchanging, the landscape constant. In fact, it has been on the move for billions of years and continues to shift each day. As the earth’s core began cooling, some 4.5 billion years ago, plates, small bits of continental crust, have become larger and smaller as they are swept up in or swept under their neighboring plates. 

Large chunks of the ocean floor have been uplifted, shifted and now find themselves thousands of miles in the air, part of mountain chains far from the ocean today or carved by glacial ice into valleys and basins.

Two hundred million years ago, Washington was two large islands, bits of continent on the move westward, eventually bumping up against the North American continent and calling it home. Even with their new fixed address, the shifting continues; the more extreme movement has subsided laterally and continues vertically. 

The upthrusting of plates continues to move our mountain ranges skyward – the path of least resistance. This dynamic movement has created the landscape we see today and helped form the fossil record that tells much of Washington’s relatively recent history – the past 50 million years.

Chuckanut Drive is much younger than other parts of Washington. The fossils found there lived and died some 40-55 million years ago, very close to where they are now, but in a much warmer, swampy setting. The exposures of the Chuckanut Formation were once part of a vast river delta; imagine, if you will, the bayou country of the Lower Mississippi. The siltstones, sandstones, mudstones and conglomerates of the Chuckanut Formation were laid down about 40-54 million years ago during the Eocene epoch, a time of luxuriant plant growth in the subtropical flood plain that covered much of the Pacific Northwest.

This ancient wetland provided ideal conditions to preserve the many trees, shrubs & plants that thrived here. Plants are important in the fossil record because they are more abundant and can give us a lot of information about climate, temperature, the water cycle and humidity of the region. 

The Chuckanut flora is made up predominantly of plants whose modern relatives live in tropical areas such as Mexico and Central America. If you are interesting in viewing a tropical paradise in your own backyard, look no further than the Chuckanut. 

Images and tag lines: Glyptostrobus, the Chinese swamp cypress, is perhaps the most common plant found here. Also abundant are fossilized remains of the North American bald cypress, Taxodium; Metasequoia (dawn redwood), Lygodium (climbing fern), large Sabal (palm) and leaves from a variety of broad leaf angiosperm plants such as (witch hazel), Laurus (laurel), Ficus (fig) and Platanus (sycamore), and several other forms.

While less abundant, evidence of the animals that called this ancient swamp home are also found here. Rare bird, reptile, and mammal tracks have been immortalized in the outcrops of the Chuckanut Formation. Tracks of a type of archaic mammal of the Orders Pantodonta or Dinocerata (blunt foot herbivores), footprints from a small shorebird, and tracks from an early equid or webbed bird track give evidence to the vertebrates that inhabited the swamps, lakes and river ways of the Pacific Northwest 50 million years ago.

The movement of these celebrity vertebrates was captured in the soft mud on the banks of a river, one of the only depositional environments favorable for track preservation.

Saturday 20 April 2024

INKY BEAUTY: AMMONITE OF PONGO DE MANSERICHE

This inky beauty is Prolyelliceras ulrichi (Knechtel, 1947) a fast-moving nektonic carnivorous ammonite from Cretaceous lithified, black, carbonaceous limestone outcrops in the Pongo de Manseriche gorge in northwest Peru. 

If you look closely, you can see that this specimen shows a pathology, a slight deviation to the side of the siphonal of the ammonite. We see Prolyelliceras from the Albian to Middle Albian from five localities in Peru.

The canyons of the Amazon River system in the eastern ranges of the Andes of Peru are known by the Indian name pongo

The most famous of these is the Pongo de Manseriche, cut by the Marañon River through the eastern range of the Andes, where it emerges from the cordillera into the flat terrane of the Amazon Basin. The fossil exposures here are best explored by boat. The reality of the collecting is similar to the imagined. I was chatting with Betty Franklin, VIPS, about this. They float along and pick up amazing specimen after amazing specimen. When the water rises, the ammonites are aided in their erosion out of the cliffs.  

The Pongo de Manseriche lies nearly 500 miles upstream from Iquitos, and consequently nearly 3,000 miles above the mouth of the Amazon River. It is situated in the heart of the montaña, in a vast region the ownership of which has long been in dispute between Peru and Ecuador, but over which neither country exercises any police or other governmental control. There is an ancient tradition of the indigenous people of the vicinity that one of their gods descended the Marañón and another ascended the Amazon to communicate with him. Together they opened the pass called the Pongo de Manseriche.

Reference: M. M. Knechtel. 1947. Cephalopoda. In: Mesozoic fossils of the Peruvian Andes, Johns Hopkins University Studies in Geology 15:81-139

W. J. Kennedy and H. C. Klinger. 2008. Cretaceous faunas from Zululand and Natal, South Africa. The ammonite subfamily Lyelliceratinae Spath, 1921. African Natural History 4:57-111. The beauty you see here is in the collection of the deeply awesome José Juárez Ruiz.

Friday 19 April 2024

EXPLORING WRANGELLIA: HAIDA GWAII

Misty shores, moss covered forests, a rich cultural history, dappled light, fossils and the smell of salt air—these are my memories of Haida Gwaii.

The archipelago of Haida Gwaii lays at the western edge of the continental shelf due west of the central coast of British Columbia.

They form part of Wrangellia, an exotic tectonostratigraphic terrane that includes Vancouver Island, parts western British Columbia and Alaska.

The Geological Survey of Canada sponsored many expeditions to these remote islands and has produced numerous reference papers on this magnificent terrain, exploring both the geology and palaeontology of the area.

Joseph Whiteaves, the GSC's chief palaeontologist in Ottawa, published a paper in 1876 describing the Jurassic and Cretaceous faunas of Skidegate Inlet, furthering his reputation globally as both a geologist, palaeontologist as well as a critical thinker in the area of science.

The praise was well-earned and foreshadowed his significant contributions to come. Sixteen years later, he wrote up and published his observations on a strange Mount Stephen fossil that resembled a kind of headless shrimp with poorly preserved appendages. 

Because of the unusual pointed shape of the supposed ventral appendages and the position of the spines near the posterior of the animal, Whiteaves named it Anomalocaris canadensis. The genus name "Anomalocaris" means "unlike other shrimp" and the species name "canadensis" refers to the country of origin.

Whiteaves work on the palaeontology of Haida Gwaii provided excellent reference tools, particularly his work on the Cretaceous exposures and fauna that can be found there.

One of our fossil field trips was to the ruggedly beautiful Cretaceous exposures of Lina Island. We had planned this expedition as part of our “trips of a lifetime.” 

Both John Fam, the Vice Chair of the Vancouver Paleontological Society and Dan Bowen, the Chair of both the British Columbia Paleontological Alliance and Vancouver Island Palaeontological Society, can be congratulated for their efforts in researching the area and ably coordinating a warm welcome by the First Nations community and organizing fossil field trips to some of the most amazing fossil localities in the Pacific Northwest.

With great sandstone beach exposures, the fossil-rich (Albian to Cenomanian) Haida formation provided ample specimens, some directly in the bedding planes and many in concretion. Many of the concretions contained multiple specimens of typical Haida Formation fauna, providing a window into this Cretaceous landscape.

It is always interesting to see who was making a living and co-existing in our ancient oceans at the time these fossils were laid down. We found multiple beautifully preserved specimens of the spiny ammonite, Douvelleiceras spiniferum along with Brewericeras hulenense, Cleoniceras perezianum and many cycads in concretion.
Douvelliceras spiniferum, Cretaceous Haida Formation

Missing from this trip log are tales of Rene Savenye, who passed away in the weeks just prior. While he wasn't there in body, he was with us in spirit. I thought of him often on the mist-shrouded days of collecting. 

Many of the folk on who joined me on those outcrops were friends of Rene's and would go on to receive the Rene Savenye Award for their contributions to palaeontology. There is a certain poetry in that. 

The genus Douvilleiceras range from Middle to Late Cretaceous and can be found in Asia, Africa, Europe and North and South America. 

We have beautiful examples in the early to mid-Albian from the archipelago of Haida Gwaii in British Columbia. Joseph F. Whiteaves was the first to recognize the genus from Haida Gwaii when he was looking over the early collections of James Richardson and George Dawson.

My collections from Haida Gwaii will all be lovingly prepped and donated to the Haida Gwaii Museum in Skidegate, British Columbia.

Thursday 18 April 2024

HUNTING NEUTRINOS AND DARK MATTER

Deep inside the largest and deepest gold mine in North America scientists are looking for dark matter particles and neutrinos instead of precious metals. It may not seem exciting on the surface — but it was far below!

The Homestake Gold Mine in Lawrence County, South Dakota was a going concern from about 1876 to 2001.

The mine produced more than forty million troy ounces of gold in its one hundred and twenty-five-year history, dating back to the beginnings of the Black Hills Gold Rush.

To give its humble beginnings a bit of context, Homestake was started in the days of miners hauling loads of ore via horse and mule and the battles of the Great Sioux War. Folk moved about via horse-drawn buggies and Alexander Graham Bell had just made his first successful telephone call.

Wyatt Earp was working in Dodge City, Kansas — he had yet to get the heck outta Dodge — and Mark Twain was in the throes of publishing The Adventures of Tom Sawyer.  — And our dear Thomas Edison had just opened his first industrial research lab in Menlo Park. The mine is part of the Homestake Formation, an Early Proterozoic layer of iron carbonate and iron silicate that produces auriferous greenschist gold. What does all that geeky goodness mean? If you were a gold miner it would be music to your ears. They ground down that schist to get the glorious good stuff and made a tiny wee sum doing so. But then gold prices levelled off — from 1997 ($287.05) to 2001 ($276.50) — and rumblings from the owners started to grow. They bailed in 2001, ironically just before gold prices started up again.

But back to 2001, that levelling saw the owners look to a new source of revenue in an unusual place. One they had explored way back in the 1960s in a purpose-built underground laboratory that sounds more like something out of a science fiction book. The brainchild of chemist and astrophysicists, John Bahcall and Raymond Davis Jr. from the Brookhaven National Laboratory in Upton, New York, the laboratory was used to observe solar neutrinos, electron neutrinos produced by the Sun as a product of nuclear fusion

Saturday 13 April 2024

FOSSIL BIRDS OF SOOKE'S FORESHORE

Stemec suntokum, Sooke Formation
The diving bird you see here is Stemec suntokum, a Fossil Plopterid from Sooke, British Columbia, Canada.

We all dream of finding new species, and new fossil species in particular. This happens more than you think. As impossible as it sounds, it has happened numerous times at many fossils sites in British Columbia including Sooke on Vancouver Island.

The upper Oligocene Sooke Formation outcrops at Muir Beach on southwestern Vancouver Island, British Columbia where it is flanked by the cool, clear waters of the Strait of Juan de Fuca.

While the site has been known since the 1890s, my first trip here was in the early 1990s as part of a Vancouver Paleontological Society (VanPS) fossil field trip. This easy, beach walk locality is a wonderful place to collect fossils and is especially good for families. If you are solar-powered, you will enjoy the sun playing off the surf from May through September. If you are built of hardier stuff, then the drizzle of Spring or Autumn is a lovely, un-people-y time to walk the beachfront.

As well as amazing west coast scenery, the beach site outcrop has a lovely soft matrix with well-preserved fossil molluscs, often with the shell material preserved (Clark and Arnold, 1923).

By the Oligocene ocean temperatures had cooled to near modern levels and the taxa preserved here as fossils bear a strong resemblance to those found living beneath the Strait of Juan de Fuca today. Gastropods, bivalves, echinoids, coral, chitin and limpets are common-ish — and on rare occasions, fossil marine mammals, cetacean and bird bones are discovered.

Fossil Bird Bones 

Back in 2013, Steve Suntok and his family found fossilized bones from a 25-million-year-old wing-propelled flightless diving bird while out strolling the shoreline near Sooke. Not knowing what they had found but recognizing it as significant, the bones were brought to the Royal British Columbia Museum to identify.

The bones found their way into the hands of Gary Kaiser. Kaiser worked as a biologist for Environment Canada and the Nature Conservatory of Canada. After retirement, he turned his eye from our extant avian friends to their fossil lineage. The thing about passion is it never retires. Gary is now a research associate with the Royal British Columbia Museum, published author and continues his research on birds and their paleontological past.

Kaiser identified the well-preserved coracoid bones as the first example from Canada of a Plotopteridae, an extinct family that lived in the North Pacific from the late Eocene to the early Miocene. In honour of the First Nations who have lived in the area since time immemorial and Steve Suntok who found the fossil, Kaiser named the new genus and species Stemec suntokum.

Magellanic Penguin Chick, Spheniscus magellanicus
This is a very special find. Avian fossils from the Sooke Formation are rare. We are especially lucky that the bird bone was fossilized at all.  These are delicate bones and tasty. Scavengers often get to them well before they have a chance and the right conditions to fossilize.

Doubly lucky is that the find was of a coracoid, a bone from the shoulder that provides information on how this bird moved and dove through the water similar to a penguin. It's the wee bit that flexes as the bird moves his wing up and down.

Picture a penguin doing a little waddle and flapping their flipper-like wings getting ready to hop near and dive into the water. Now imagine them expertly porpoising —  gracefully jumping out of the sea and zigzagging through the ocean to avoid predators. It is likely that the Sooke find did some if not all of these activities.

When preservation conditions are kind and we are lucky enough to find the forelimbs of our plotopterid friends, their bones tell us that these water birds used wing-propelled propulsion to move through the water similar to penguins (Hasegawa et al., 1979; Olson and Hasegawa, 1979, 1996; Olson, 1980; Kimura et al., 1998; Mayr, 2005; Sakurai et al., 2008; Dyke et al., 2011).

Kaiser published on the find, along with Junya Watanabe, and Marji Johns. Their work: "A new member of the family Plotopteridae (Aves) from the late Oligocene of British Columbia, Canada," can be found in the November 2015 edition of Palaeontologia Electronica. If you fancy a read, I've included the link below.

The paper shares insights into what we have learned from the coracoid bone from the holotype Stemec suntokum specimen. It has an unusually narrow, conical shaft, much more gracile than the broad, flattened coracoids of other avian groups. This observation has led some to question if it is, in fact, a proto-cormorant of some kind. We'll need to find more of their fossilized lineage to make any additional comparisons.

Sooke, British Columbia and Juan de Fuca Strait
Today, fossils from these flightless birds have been found in outcrops in the United States and Japan (Olson and Hasegawa, 1996). They are bigger than the Sooke specimens, often growing up to two metres.

While we'll never know for sure, the wee fellow from the Sooke Formation was likely about 50-65 cm long and weighed in around 1.72-2.2 kg — so roughly the length of a duck and weight of a small Magellanic Penguin, Spheniscus magellanicus, chick. 

To give you a visual, I have included a photo of one of these cuties here showing off his full range of motion and calling common in so many young.

The first fossil described as a Plotopteridae was from a wee piece of the omal end of a coracoid from Oligocene outcrops of the Pyramid Hill Sand Member, Jewett Sand Formation of California (LACM 8927). Hildegarde Howard (1969) an American avian palaeontologist described it as Plotopterum joaquinensis. Hildegarde also did some fine work in the La Brea Tar Pits, particularly her work on the Rancho La Brea eagles.

In 1894, a portion of a pelagornithid tarsometatarsus, a lower leg bone from Cyphornis magnus (Cope, 1894) was found in Carmanah Group on southwestern Vancouver Island (Wetmore, 1928) and is now in the collections of the National Museum of Canada as P-189401/6323. This is the wee bone we find in the lower leg of birds and some dinosaurs. We also see this same bony feature in our Heterodontosauridae, a family of early and adorably tiny ornithischian dinosaurs — a lovely example of parallel evolution.


While rare, more bird bones have been found in the Sooke Formation over the past decade. In 2013, three avian bones were found in a single year. The first two were identified as possibly being from a cormorant and tentatively identified as Phalacrocoracidae tibiotarsi, the large bone between the femur and the tarsometatarsus in the leg of a bird.

They are now in the collections of the Royal BC Museum as (RBCM.EH2013.033.0001.001 and RBCM.EH2013.035.0001.001). These bones do have the look of our extant cormorant friends but the specimens themselves were not very well-preserved so a positive ID is tricky.

The third (and clearly not last) bone, is a well-preserved coracoid bone now in the collection at the RBCM as (RBCM.EH2014.032.0001.001).

The fossil bird find was the first significant find by the Suntok family but not their last. Just last year, they found part of a fish dental plate was studied by Russian researcher Evgeny Popov who named this new genus and species of prehistoric fish Canadodus suntoki, which translates to the "Tooth from Canada." Perhaps not quite as inspired as Kaiser, but a lovely homage to these Citizen Scientists.

Sooke Fossil Fauna

Along with these rare bird bones, the Paleogene sedimentary deposits of the Carmanah Group on southwestern Vancouver Island have a wonderful diversity of delicate fossil molluscs (Clark and Arnold, 1923). Walking along the beach, look for boulders with white shelly material in them. You'll want to collect from the large fossiliferous blocks and avoid the cliffs. The lines of fossils you see in those cliffs tell the story of deposition along a strandline. Collecting from them is both unsafe and poor form as it disturbs nearby neighbours and is discouraged.

Sooke Formation Gastropods, Photo: John Fam
We find nearshore and intertidal genera such as Mytilus (mussels) and barnacles, as well as more typically subtidal predatory globular moon snails (my personal favourite), surf clams (Spisula, Macoma), and thin, flattened Tellin clams.

The preservation here formed masses of shell coquinas that cemented together but are easily worked with a hammer and chisel. Remember your eye protection and I'd choose wellies or rubber boots over runners or hikers.

You may be especially lucky on your day out. Look for the larger fossil bones of marine mammals and whales that lived along the North American Pacific Coast in the Early Oligocene (Chattian).

Concretions and coquinas on the beach have yielded desmostylid, an extinct herbivorous marine mammal, Cornwallius sookensis (Cornwall, 1922) and 40 cm. skull of a cetacean Chonecetus sookensis (Russell, 1968), and a funnel whale, a primitive ancestor of our Baleen whales. 

A partial lower jaw and molar possibly from a large, bear-like beach-dwelling carnivore, Kolponomos, was also found here. A lovely skull from a specimen of Kolponomos clallamensis (Stirton, 1960) was found 60 km southwest across the Strait of Juan de Fuca in the early Miocene Clallam Formation and published by Lawrence Barnes and James Goedert. That specimen now calls the Natural History Museum of Los Angeles County home and is in their collections as #131148.

Directions to Muir Creek Fossil Site at Sooke: 

From the town of Sooke west of Victoria, follow Highway 14 for about 14 kilometres. Just past the spot where the highway crosses Muir Creek, you will see a gravel parking area on your left. Pull in and park here. 

From the barrier, walk out to the beach and turn right (west) and walk until you see the low yellow-brown sandstone cliffs about 400 metres ahead. 

Look at the grey sandstone boulders on the beach with bits of white flecks in them. The fossil material here will most often be a whitish cream colour. Check for low tide before heading out and choose rubber boots for this beach adventure.

References: 

L. S. Russell. 1968. A new cetacean from the Oligocene Sooke Formation of Vancouver Island, British Colombia. Canadian Journal of Earth Science 5:929-933
Barnes, Lawrence & Goedert, James. (1996). Marine vertebrate palaeontology on the Olympic Peninsula. Washington Geology, 24(3):17-25.

Fancy a read? Here's the link to Gary Kaiser's paper: https://palaeo-electronica.org/content/2015/1359-plotopterid-in-canada. If you'd like to head to the beach site, head to: 48.4°N 123.9°W, paleo-coordinates 48.0°N 115.0°W.

Sunday 7 April 2024

ANCIENT OCTOPUS: KEUPPIA

A sweet as you please example of Keuppia levante (Fuchs, Bracchi & Weis, 2009), an extinct genus of octopus that swam our ancient seas back in the Cretaceous. 

This particular lovely adorns a special place in my heart and my office. His forever home will be within the collections of a local museum but we spend time together—me taking in the remarkable detail and preservation of this specimen and him enjoying a pretty good looking view and regular dustings. Win, win.

I say, he, but we cannot know for sure. 

The dark black and brown area you see here is his ink sac which has been preserved for a remarkable 95 million years.

This cutie is in the family Palaeoctopodidae, and one of the earliest representatives of the order Octopoda — and perhaps my favourite fossil. It was this perfect specimen that inspired the logo for the Fossil Huntress brand.  

These ancient marine beauties are in the class Cephalopoda making them relatives of our modern octopus, squid and cuttlefish.

There are two species of Keuppia, Keuppia hyperbolaris and Keuppia levante, both of which we find as fossils. We find their remains, along with those of the genus Styletoctopus, in Cretaceous-age Hâqel and Hjoula localities in Lebanon. 

For many years, Palaeoctopus newboldi (Woodward, 1896) from the Santonian limestones at Sâhel Aalma, Lebanon, was the only known pre‐Cenozoic coleoid cephalopod believed to have an unambiguous stem‐lineage representative of Octobrachia fioroni

With the unearthing of some extraordinary specimens with exquisite soft‐part preservation in the Lebanon limestones, our understanding of ancient octopus morphology has blossomed. The specimens are from the sub‐lithographical limestones of Hâqel and Hâdjoula, in northwestern Lebanon. The localities are about 15 km apart, 45 km away from Beirut and 15 km away from the coastal city of Jbail. Fuchs et al. put a nice little map in their 2009 paper that I have included and referenced here.

Palaeoctopus newboldi had a spherical mantle sac, a head‐mantle fusion, eight equal arms armed with suckers, an ink sac, a medially isolated shell vestige, and a pair of (sub‐) terminal fins. The bipartite shell vestige suggests that Palaeoctopus belongs to the octopod stem‐lineage, as the sister taxon of the Octopoda, the Cirroctopoda, is characterized by an unpaired clasp‐like shell vestige (Engeser 1988; Haas 2002; Bizikov 2004).

It is from the comparisons of Canadian fauna combined with those from Lebanon and Japan that things really started to get interesting with Octobrachia. Working with fossil specimens from the Campanian of Canada, Fuchs et al. (2007a ) published on the first record of an unpaired, saddle‐shaped shell vestige that might have belonged to a cirroctopod. 

Again from the Santonian–Campanian of Canada and Japan, Tanabe et al. (2008) reported on at least four different jaw morphotypes. Two of them — Paleocirroteuthis haggarti (Tanabe et al., 2008) and Paleocirroteuthis Pacifica  (Tanabe et al ., 2008) — have been interpreted as being of cirroctopod type, one of octopod type, and one of uncertain octobrachiate type. 

Interestingly Fuchs et al. have gone on to describe the second species of Palaeoctopus, the Turonian Palaeoctopus pelagicus from limestones at Vallecillo, Mexico. While more of this fauna will likely be recovered in time, their work is based solely on a medially isolated shell vestige.

Five new specimens have been found in the well-known Upper Cenomanian limestones at Hâqel and Hâdjoula in Lebanon that can be reliably placed within the Octopoda. Fuchs et al. described these exceptionally well‐preserved specimens and discuss their morphology in the context of phylogeny and evolution in their 2008 paper (2009 publishing) in the Palaeontology Association Journal, Volume 51, Issue 1.

The presence of a gladius vestige in this genus shows a transition from squid to octopus in which the inner shell has divided into two parts in early forms to eventually be reduced to lateralized stylets, as can be seen in Styletoctopus.

The adorable fellow you see here with his remarkable soft-bodied preservation and inks sack and beak clearly visible is Keuppia levante. He hails from Late Cretaceous (Upper Cenomanian) limestone deposits near Hâdjoula, northwestern Lebanon. The vampyropod coleoid, Glyphiteuthis abisaadiorum n. sp. is also found at this locality. This specimen is about 5 cm long.

Fuchs, D.; Bracchi, G.; Weis, R. (2009). "New octopods (Cephalopoda: Coleoidea) from the Late Cretaceous (Upper Cenomanian) of Hâkel and Hâdjoula, Lebanon". Palaeontology. 52: 65–81. doi:10.1111/j.1475-4983.2008.00828.x.

Photo one: Fossil Huntress. Figure Two: Topographic map of north‐western Lebanon with the outcrop area in the upper right-hand corner. Fuchs et al, 2009.  

Saturday 6 April 2024

DEEP TIME IN THE LANDS OF THE NUU-CHAH-NULTH

Nootka Fossil Field Trip. Photo: John Fam
The rugged west coast of Vancouver Island offers spectacular views of a wild British Columbia. Here the seas heave along the shores slowly eroding the magnificent deposits that often contain fossils. 

Just off the shores of Vancouver Island, east of Gold River and south of Tahsis is the picturesque and remote Nootka Island.

This is the land of the proud and thriving Nuu-chah-nulth First Nations who have lived here always

Always is a long time, but we know from oral history and archaeological evidence that the Mowachaht and Muchalaht peoples lived here, along with many others, for many thousands of years — a time span much like always

While we know this area as Nootka Sound and the land we explore for fossils as Nootka Island, these names stem from a wee misunderstanding. 

Just four years after the 1774 visit by Spanish explorer Juan Pérez — and only a year before the Spanish established a military and fur trading post on the site of Yuquot — the Nuu-chah-nulth met the Englishman, James Cook.  

Captain Cook sailed to the village of Yuquot just west of Vancouver Island to a very warm welcome. He and his crew stayed on for a month of storytelling, trading and ship repairs. Friendly, but not familiar with the local language, he misunderstood the name for both the people and land to be Nootka. In actual fact, Nootka means, go around, go around

Two hundred years later, in 1978, the Nuu-chah-nulth chose the collective term Nuu-chah-nulth — nuučaan̓uł, meaning all along the mountains and sea or along the outside (of Vancouver Island) — to describe themselves. 

It is a term now used to describe several First Nations people living along western Vancouver Island, British Columbia. 

It is similar in a way to the use of the United Kingdom to refer to the lands of England, Scotland and Wales — though using United Kingdom-ers would be odd. Bless the Nuu-chah-nulth for their grace in choosing this collective name.  

An older term for this group of peoples was Aht, which means people in their language and is a component in all the names of their subgroups, and of some locations — Yuquot, Mowachaht, Kyuquot, Opitsaht. While collectively, they are the Nuu-chah-nulth, be interested in their more regional name should you meet them. 

But why does it matter? If you have ever mistakenly referred to someone from New Zealand as an Aussie or someone from Scotland as English, you have likely been schooled by an immediate — sometimes forceful, sometimes gracious — correction of your ways. The best answer to why it matters is because it matters.

Each of the subgroups of the Nuu-chah-nulth viewed their lands and seasonal migration within them (though not outside of them) from a viewpoint of inside and outside. Kla'a or outside is the term for their coastal environment and hilstis for their inside or inland environment.

It is to their kla'a that I was most keen to explore. Here, the lovely Late Eocene and Early Miocene exposures offer up fossil crab, mostly the species Raninid, along with fossil gastropods, bivalves, pine cones and spectacularly — a singular seed pod. These wonderfully preserved specimens are found in concretion along the foreshore where time and tide erode them out each year.

Five years after Spanish explorer Juan Pérez's first visit, the Spanish built and maintained a military post at Yuquot where they tore down the local houses to build their own structures and set up what would become a significant fur trade port for the Northwest Coast — with the local Chief Maquinna's blessing and his warriors acting as middlemen to other First Nations. 

Following reports of Cook's exploration British traders began to use the harbour of Nootka (Friendly Cove) as a base for a promising trade with China in sea-otter pelts but became embroiled with the Spanish who claimed (albeit erroneously) sovereignty over the Pacific Ocean. 

Dan Bowen searching an outcrop. Photo: John Fam
The ensuing Nootka Incident of 1790 nearly led to war between Britain and Spain (over lands neither could actually claim) but talk of war settled and the dispute was settled diplomatically. 

George Vancouver on his subsequent exploration in 1792 circumnavigated the island and charted much of the coastline. His meeting with the Spanish captain Bodega y Quadra at Nootka was friendly but did not accomplish the expected formal ceding of land by the Spanish to the British. 

It resulted however in his vain naming the island "Vancouver and Quadra." The Spanish captain's name was later dropped and given to the island on the east side of Discovery Strait. Again, another vain and unearned title that persists to this day.

Early settlement of the island was carried out mainly under the sponsorship of the Hudson's Bay Company whose lease from the Crown amounted to 7 shillings per year — that's roughly equal to £100.00 or $174 CDN today. Victoria, the capital of British Columbia, was founded in 1843 as Fort Victoria on the southern end of Vancouver Island by the Hudson's Bay Company's Chief Factor, Sir James Douglas. 

With Douglas's help, the Hudson's Bay Company established Fort Rupert on the north end of Vancouver Island in 1849. Both became centres of fur trade and trade between First Nations and solidified the Hudson's Bay Company's trading monopoly in the Pacific Northwest.

The settlement of Fort Victoria on the southern tip of Vancouver Island — handily south of the 49th parallel — greatly aided British negotiators to retain all of the islands when a line was finally set to mark the northern boundary of the United States with the signing of the Oregon Boundary Treaty of 1846. Vancouver Island became a separate British colony in 1858. British Columbia, exclusive of the island, was made a colony in 1858 and in 1866 the two colonies were joined into one — becoming a province of Canada in 1871 with Victoria as the capital.

Dan Bowen, Chair of the Vancouver Island Palaeontological Society (VIPS) did a truly splendid talk on the Fossils of Nootka Sound. With his permission, I have uploaded the talk to the ARCHEA YouTube Channel for all to enjoy. Do take a boo, he is a great presenter. Dan also graciously provided the photos you see here. The last of the photos you see here is from the August 2021 Nootka Fossil Field Trip. Photo: John Fam, Vice-Chair, Vancouver Paleontological Society (VanPS).

Know Before You Go — Nootka Trail

The Nootka Trail passes through the traditional lands of the Mowachaht/Muchalat First Nations who have lived here since always. They share this area with humpback and Gray whales, orcas, seals, sea lions, black bears, wolves, cougars, eagles, ravens, sea birds, river otters, insects and the many colourful intertidal creatures that you'll want to photograph.

This is a remote West Coast wilderness experience. Getting to Nootka Island requires some planning as you'll need to take a seaplane or water taxi to reach the trailhead. The trail takes 4-8 days to cover the 37 km year-round hike. The peak season is July to September. Permits are not required for the hike. 

Access via: Air Nootka floatplane, water taxi, or MV Uchuck III

  • Dan Bowen, VIPS on the Fossils of Nootka: https://youtu.be/rsewBFztxSY
  • https://www.thecanadianencyclopedia.ca/en/article/sir-james-douglas
  • file:///C:/Users/tosca/Downloads/186162-Article%20Text-199217-1-10-20151106.pdf
  • Nootka Trip Planning: https://mbguiding.ca/nootka-trail-nootka-island/#overview


Tuesday 2 April 2024

DOUVILLEICERAS MAMMILLATUM

Some lovely examples of Douvilleiceras mammillatum (Schlotheim, 1813), ammonites from the Lower Cretaceous (Middle-Lower Albian) Douvilliceras inequinodum zone of Ambarimaninga, Mahajanga Province, Madagascar.

The genus Douvilleiceras range from Middle to Late Cretaceous and can be found in Asia, Africa, Europe and North and South America. 

We have beautiful examples in the early to mid-Albian from the archipelago of Haida Gwaii in British Columbia. Joseph F. Whiteaves was the first to recognize the genus from Haida Gwaii when he was looking over the early collections of James Richardson and George Dawson. The beauties you see here measure 6cm to 10cm.

Friday 29 March 2024

AMYLASE: YOU ARE WHAT YOU EAT


The old adage, you are what you eat, might be best amended to you are what you can digest. 

For all the mammals, you and I included, we need the amylase gene (AMY). It codes for a starch-digesting enzyme needed to break down the vegetation we eat. 

Humans, dogs and mice have record numbers of the amylase gene. The AMY gene copy number increases in mammal populations where starch-based foods are more abundant. Think toast and jam versus raw chicken.

A good example of this is seen when we compare wolves living in the wild to dogs from agricultural societies. Dogs split off the lineage from wolves around 30,000–40,000 years ago. 

Domesticated dogs have extra copies of amylase and other genes involved in starch digestion that contribute to an increased ability to thrive on a starch-rich diet, allowing Fido to make the most of those table scraps. Similar to humans, some dog breeds produce amylase in their saliva, a clear marker of a high starch diet. So do mice, rats, and pigs, as expected as they live in concert with humans. Curiously, so do some New World monkeys, boars, deer mice, woodrats, and giant African pouched rats. 

More like cats and less like other omnivores, dogs can only produce bile acid with taurine and they cannot produce vitamin D, which they obtain from animal flesh. Also, more like cats, dogs require arginine to maintain their nitrogen balance. These nutritional requirements place dogs halfway between carnivores and omnivores.

The amount of AMY and starch in the diet varies among subspecies, and sometimes even amongst geographically distinct populations of the same species. I was at a talk recently given by Alaskan wolf researchers who shared that two individual packs of wolves separated by less than a kilometre ate vastly different diets. This had me thinking about what we eat and it is mostly driven by what is on offer. 

Diet impacts our genetics and this, in turn, allows the fittest to eat, digest and survive. While wolves win the carnivore contest, they will still eat opportunistically and that includes vegetation when other food is scarce. Would they evolve similar levels of AMY as humans, dogs and mice? Maybe if their diets evolved to be similar. Likely. The choice would be that or starvation.

The evolution of amylase in other domesticated or human commensal mammals remains an alluring area of inquiry.

Reference: 

Amylase in Dietary Food Preferences in Mammals: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516957/

Monday 25 March 2024

DESMOCERAS OF MAHAJANGA

This lovely dark rust chunky monkey is the ammonite Desmoceras (Pseudouhligella) latidorsatum from the Lower Cretaceous, Lower Albian, Douvilliceras inequinodum Zone, Ambarimaninga, Mahajanga Province, Madagascar.

Ammonites were predatory, squid-like creatures that lived inside coil-shaped shells. Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles. 

They used their tentacles to snare prey, — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunt today.

Saturday 16 March 2024

DRIFTWOOD CANYON FOSSIL BEDS / KUNGAX

Puffbird similar to Fossil Birds found at Driftwood Canyon 
Driftwood Canyon Provincial Park 

Driftwood Canyon Provincial Park covers 23 hectares of the Bulkley River Valley, on the east side of Driftwood Creek, a tributary of the Bulkley River, 10 km northeast of the town of Smithers in northern British Columbia. 

Wet'suwet'en First Nation

The parklands are part of the asserted traditional territory of the Wet'suwet'en First Nation which includes lands around the Bulkley River, Burns Lake, Broman Lake, and François Lake in the northwestern Central Interior of British Columbia. 

The Wetʼsuwetʼen are part of the Dakelh or Carrier First Nation, and in combination with the Babine First Nation are referred to as the Western Carrier. They speak Witsuwitʼen, a dialect of the Babine-Witsuwitʼen language which, like its sister language Carrier, is a member of the Athabaskan family.

Their oral history or kungax recounts a time when their ancestral village, Dizkle or Dzilke, once stood upstream from the Bulkley Canyon. This cluster of cedar houses on both sides of the river was said to be abandoned because of an omen of impending disaster. The exact location of the village has been lost but their stories live on. 

The neighbouring Gitxsan, collectively the People of Smooth Waters—the Gilseyhu Big Frog Clan, the Laksilyu Small Frog Clan, the Tsayu Beaver Clan, the Gitdumden Wolf and Bear Clan and the Laksamshu Fireweed and Owl Clan—each phratry or kinship group calling the Lax Yip home—33,000 km2 of land and water in northwestern ​British Columbia along the waters of the Skeena River and its tributaries—have a similar tale—though the village in their versions is referred to as Dimlahamid or Temlahan depending on which house group or wilp is sharing the tale—as well as where they are located as dialects differ. 

Gitksan speak Sim'algaxthe real or true language. Within the Gitxsan communities there are two slightly different dialects. The Gyeets (Downriver) dialect spoken in Gijigyukwhla (Gitsegukla), Gitwangax, and Gitanyow—and the Gigeenix (Upriver) dialect is spoken in Ansbayaxw (Kispiox), Sik-E-Dakh and Gitanmaax.

Driftwood Canyon Fossil Beds

Driftwood Canyon's Fossil Beds record life in the earlier portion of the Eocene when British Columbia — and indeed our world — was much warmer than it is today. This site was discovered in the beginning of the 20th century and is now recognized as containing significant fossil material. 

The fossils found here—and their superb preservation—provide a fascinating opportunity to understand the area’s evolutionary processes of both geology and biology over the past fifty million years or so. The fossils themselves are 51.7 million years old and look remarkably like many of the species we recognize today. 

The park that contains these beautiful fossils is fifty-seven years old. It was created in 1967 by the generosity of the late Gordon Harvey (1913–1976). He donated the land to protect fossil resources that he truly loved and wanted to see preserved. The fossil beds are on the east side of Driftwood Creek. 

Metasequoia, the Dawn Redwood
Exploring the region today, we see a landscape dominated by conifers blanketing the area. 

Forests teem with the aromatic Western Red Cedar, Pacific Silver Fir with its many medicinal properties, the tall and lanky Subalpine Fir with its soft, brittle and quickly decaying wood, the slender scaly Lodgepole Pine, the graceful and slightly forlorn looking Western Hemlock. Across the landscape you see several species of Spruce, including the impressive Sitka. 

Some of the tallest on view would have been mere seedlings, colonizing the glacial moraines centuries ago when the glaciers retreated. Collectively, these conifers tell the tale of the region's cool climate today. 

The Gitsan territory boasts seven of the 14 biogeoclimatic zones of the province—the Alpine Tundra, Spruce-Willow-Birch, Boreal White and Black Spruce, Sub-Boreal Pine-Spruce, Sub-Boreal Spruce, Engelmann Spruce-Subalpine Fir and Interior Cedar-Hemlock. 

The fossil material we find here speaks to a warmer climate in this region's past. We find fossil plants, fish—including specimens of salmon, suckerfish and bowfin, a type of air breathing fish—and insect fossil here—wasps and water striders—fossil plants including Metasequoia, the Dawn Redwood, alder—and interesting vertebrate material. Bird feathers are infrequently collected from the shales; however, two bird body fossils have been found here.

In 1968, a bird body fossil was collected in the Eocene shales of the Ootsa Lake Group in Driftwood Canyon Provincial Park by Pat Petley of Kamloops. 

Pat donated the specimen in 2000 to the Thompson Rivers University (TRU) palaeontology collections. This fossil bird specimen is tentatively identified as the puffbird, Piciformes bucconidae, of the genus Primobucco.

Primobucco is an extinct genus of bird placed in its own family, Primobucconidae. The type species, Primobucco mcgrewi, lived during the Lower Eocene of North America. It was initially described by American paleo-ornithologist Pierce Brodkorb in 1970, from a fossil right-wing, and thought to be an early puffbird. However, the discovery of a further 12 fossils in 2010 indicate that it is instead an early type of roller.

Related fossils from the European Messel deposits have been assigned to the two species P. perneri and P. frugilegus. Two specimens of P. frugilegus have been found with seeds in the area of their digestive tract, which suggests that these birds were more omnivorous than the exclusively predaceous modern rollers. The Driftwood specimen has never been thoroughly studied. If there is a grad student out there looking for a worthy thesis, head on down to the Thompson Rivers University where you'll find the specimen on display.

Another fossil bird, complete with feathers, was collected at Driftwood Canyon in 1970, This one was found by Margret and Albrecht Klöckner who were travelling from Germany. Theirs is a well-travelled specimen, having visited many sites in BC as they toured around, then to Germany and finally back to British Columbia when it was repatriated and donated to the Royal British Columbia Museum in Victoria. 

I am not sure if it is still on display or back in collections, but it was lovingly displayed back in 2008. There is a new grad student, Alexis, looking at Eocene bird feathers down at the RBCM, so perhaps it is once again doing the rounds. 

This second bird fossil is of a long-legged water bird and has been tentatively identified by Dr. Gareth Dyke of the University of Southampton as possibly from the order Charadriiformes, a diverse order of small to medium-ish water birds that include 350 species of gulls, plovers, sandpipers, terns, snipes, and waders. Hopefully, we'll hear more on this find in the future.

A Tapir showing off his prehensile nose trunk
Tapirs and Tiny Hedgehogs

The outcrops at Driftwood Canyon are also special because they record a record of some of the first fossil mammals ever to be found in British Columbia at this pivotal point in time. 

Wee proto-hedgehogs smaller than your thumb lived in the undergrowth of that fossil flora. They shared the forest floor with an extinct tapir-like herbivore in the genus Heptodon that looked remarkably similar to his modern, extant cousins (there is a rather cheeky fellow shown here so you get the idea) but lacked their pronounced snout (proboscis). I am guessing that omission made him the more fetching of his lineage.

In both cases, it was a fossilized jaw bone that was recovered from the mud, silt and volcanic ash outcrops in this ancient lakebed site. And these two cuties are significant— they are the very first fossil mammals we've ever found from the early Eocene south of the Arctic.

How can we be sure of the timing? The fossil outcrops here are found within an ancient lakebed. Volcanic eruptions 51 million years ago put loads of fine dust into the air that settled then sank to the bottom of the lake, preserving the specimens that found their way here — leaves, insects, birds, mammals.

 As well as turning the lake into a fossil making machine—water, ash, loads of steady sediment to cover specimens and stave off predation—the volcanic ash contains the very chemically inert—resistant to mechanical weathering—mineral zircon which we can date with uranium/lead (U/Pb). 

The U/Pb isotopic dating technique is wonderfully accurate and mighty helpful in dating geologic events from volcanic eruptions, continental movements to mass extinctions. This means we know exactly when these lovelies were fossilized and, in turn, their significance.

Know Before You Go

If you fancy a visit to Driftwood Canyon Park, the park is accessible from Driftwood Road from Provincial Highway 16. You are welcome to view and photograph the fossils found here but collecting is strictly forbidden. 

Driftwood Canyon is recognized as one of the world’s most significant fossil beds. It provides park users with a fascinating opportunity to understand the area’s evolutionary processes of both geology and biology. The day-use area is open from May 15 to September 2. There is a short, wheelchair-accessible interpretative trail that leads from the parking are to the fossil beds. Pets are welcome on leash. Signs along the trail provide information on fossils and local history. 

Below a cliff face at the end of the trail is a viewing area that has interpretive information and viewing area overlooking Driftwood Creek.

This park proudly operated by Mark and Anais Drydyk
Email: kermodeparks@gmail.com / Tel: 1 250 877-1482 or 1 250 877-1782

Palaeo Coordinates: Latitude: 50° 51' 59" N / Longitude: 116° 27' 37" W
Lat/Long (dec): 50.86665,-116.46042 / GUID: d3a6bd3e-68d6-42cf-9b2c-d20a30576988

Driftwood Canyon Provincial Park Brochure: 
https://bcparks.ca/explore/parkpgs/driftwood_cyn/driftwood-canyon-brochure.pdf?v=1638723136455


Sunday 3 March 2024

LATE HETTANGIAN FOSSIL FAUNA FROM THE TASEKO LAKES: BRITISH COLUMBIA

The late Hettangian ammonite fauna from Taseko Lakes is diverse and relatively well‐preserved. Over three field seasons, thirty-five taxa from the Mineralense and Rursicostatum zones were studied and three new species discovered and named: Fergusonites hendersonae, Eolytoceras constrictum and Pseudaetomoceras victoriense

This material is very important as it greatly expands our understanding of the fauna and ranges of ammonites currently included in the North American regional ammonite zonation. 

I had the very great honour of having the fellow below, Fergusonites hendersonae, a new species of nektonic carnivorous ammonite, named after me by palaeontologist Louse Longridge from the University of British Columbia. 

I'd met Louise as an undergrad and was pleased as punch to hear that she would be continuing the research by Dr. Howard Tipper, the authority on this area of the Chilcotins and Haida Gwaii — which he dearly loved. 

"Tip" was a renowned Jurassic ammonite palaeontologist and an excellent regional mapper who mapped large areas of the Cordillera. He made significant contributions to Jurassic paleobiogeography and taxonomy in collaboration with Dr. Paul Smith, Head of Earth and Ocean Science at the University of British Columbia. 

Tip’s regional mapping within BC has withstood the test of time and for many areas became the regions' base maps for future studies. The scope of Tip’s understanding of Cordilleran geology and Jurassic palaeontology will likely never be matched. He passed away on April 21, 2005. His humour, knowledge and leadership will be sorely missed. 

Fergusonites hendersonae
Before he left us, he shared that knowledge with many of whom who would help to secure his legacy for future generations. We did several trips over the years up to the Taseko Lake area of the Rockies joined by many wonderful researchers from Vancouver Island Palaeontological Society and Vancouver Paleontological Society, as well as the University of British Columbia. 

Both Dan Bowen and John Fam were instrumental in planning those expeditions and each of them benefited greatly from the knowledge of Dr. Howard Tipper. 

If not for Tipper's early work in the region, our shared understanding and much of what was accomplished in his last years and after his passing would not have been possible. 

Over the course of three field seasons, we endured elevation sickness, rain, snow, grizzly bears and very chilly nights  — we were sleeping right next to a glacier at one point — but were rewarded by the enthusiastic crew, helicopter rides — which really cut down the hiking time — excellent specimens including three new species of ammonites, along with a high-spired gastropod and lobster claw that have yet to be written up. This area of the world is wonderful to hike and explore — stunningly beautiful country. We were also blessed with access as the area is closed to all fossil collecting except with a permit.

This fauna understanding helps us to understand the correlations between different areas: (1) the Mineralense and Rursicostatum zones are present in Taseko Lakes and can be readily correlated with contemporaneous strata elsewhere in North America; (2) the Mineralense and Rursicostatum zones of North America are broadly equivalent to the Canadensis Zone and probably the Arcuatum horizon of the South American succession; (3) broad correlations are possible with middle–late Hettangian and earliest Sinemurian taxa in New Zealand; (4) the Mineralense and Rursicostatum zones are broadly equivalent to the circum‐Mediterranean Marmoreum Zone; (5) the Mineralense Zone and the lower to middle portion of the Rursicostatum Zone are probably equivalent to the Complanata Subzone whereas the upper portion of the Rursicostatum Zone may equate to the Depressa Subzone of the north‐west European succession.

Taseko Lake Area, BC
The Taseko Lakes area has yielded the best preserved and most diverse collection of late Hettangian ammonites yet discovered in British Columbia (BC). Early studies of the fauna were undertaken by Frebold (1951, 1967). At that time, eastern Pacific ammonite faunas were poorly understood and species were frequently shoehorned into established north‐west European taxa. 

Since then, knowledge of eastern Pacific Hettangian ammonite faunas has improved considerably. 

Detailed systematic studies have been completed on faunas from localities in other areas of BC, Alberta, Alaska, Oregon, Nevada, Mexico and South America (e.g. Guex 1980, 1995; Imlay 1981; Hillebrandt 1981, 1988, 1990, 1994, 2000a–d; Smith and Tipper 1986; Riccardi et al. 1991; Jakobs and Pálfy 1994; Pálfy et al. 1994, 1999; Taylor 1998; Hall et al. 2000; Taylor and Guex 2002; Hall and Pitaru 2004). 

These studies have demonstrated that Early Jurassic eastern Pacific ammonites had strong Tethyan affinities as well as a high degree of endemism (Guex 1980, 1995; Taylor et al. 1984; Smith et al. 1988; Jakobs et al. 1994; Pálfy et al. 1994). Frebold’s early studies were also hampered because they were based on small collections, which limited understanding of the diversity of the fauna and variation within populations. However, recent mapping has greatly improved our understanding of the geology of Taseko Lakes (Schiarizza et al. 1997; Smith et al. 1998; Umhoefer and Tipper 1998) and encouraged further collecting that has dramatically increased the size of the sample.

A study of the ammonite fauna from Taseko Lakes is of interest for several reasons. The data are important for increasing the precision of the late Hettangian portion of the North American Zonation. 

Owing to the principally Tethyan or endemic nature of Early Jurassic ammonites in the eastern Pacific, a separate zonation for the Hettangian and Sinemurian of the Western Cordillera of North America has been established by Taylor et al. (2001). Except for information available from the early studies by Frebold (1951, 1967), the only Taseko Lakes taxa included in the North American Zonation of Taylor et al. (2001) were species of Angulaticeras studied by Smith and Tipper (2000). 

Since then, Longridge et al. (2006) made significant changes to the zonation of the late Hettangian and early Sinemurian based on a detailed study of the Badouxia fauna from Taseko Lakes (Text‐fig. 2). An additional taxonomic study was recently completed on the late Hettangian ammonite Sunrisites (Longridge et al. 2008) and this information has not yet been included within the zonation. 

Hettangian Zonation
The systematics of the remaining ammonite fauna from Taseko Lakes are presented here. A comprehensive study of this material is important because the exceptional quality and diversity of the fauna provide important data for updating the North American Zonation, making it more comprehensive and more widely applicable, especially in Canada.

The Taseko Lakes fauna can improve Hettangian correlations within North America as well as between North America and the rest of the world. 

North‐west European ammonite successions (e.g. Dean et al. 1961; Mouterde and Corna 1997; Page 2003) are considered the primary standard for Early Jurassic biochronology (Callomon 1984). 

In north‐west Europe, the turnover from schlotheimiid dominated faunas in the late Hettangian to arietitid dominated faunas in the early Sinemurian was sharp (e.g. Dean et al. 1961; Bloos 1994; Bloos and Page 2002). In other areas, by contrast, these faunas were not so mutually exclusive and the transition was much more gradual. 

This makes correlations between north‐west Europe and other areas difficult (e.g. Bloos 1994; Bloos and Page 2000, 2002). Correlations are further impeded by endemism and provincialism. 

The Taseko Lakes fauna addresses these problems because it contains many taxa that are common throughout the eastern Pacific as well as several cosmopolitan taxa that make intercontinental correlation possible. Correlation between North America and other areas is of particular significance in that the interbedded volcanic and fossiliferous marine rocks in North America permit the calibration of geochronological and biochronological time scales (Pálfy et al. 1999, 2000). 

This correlation between the late Hettangian fauna in the Taseko Lakes area and contemporaneous faunas in other areas of North America, South America, New Zealand, western and eastern Tethys, and north‐west Europe is of particular interest to me — especially the correlation of the faunal sequences of Nevada, USA. 

Reference: PaleoDB 157367 M. Clapham GSC C-208992, Section A 09, Castle Pass Angulata - Jurassic 1 - Canada, Longridge et al. (2008)

L. M. Longridge, P. L. Smith, and H. W. Tipper. 2008. Late Hettangian (Early Jurassic) ammonites from Taseko Lakes, British Columbia, Canada. Palaeontology 51:367-404

PaleoDB taxon number: 297415; Cephalopoda - Ammonoidea - Juraphyllitidae; Fergusonites hendersonae Longridge et al. 2008 (ammonite); Average measurements (in mm): shell width 9.88, shell diameter 28.2; Age range: 201.6 to 196.5 Ma. Locality info: British Columbia, Canada (51.1° N, 123.0° W: paleo coordinates 22.1° N, 66.1° W)

Photo One: Hettangian Ammonites and Gastropods, Taseko Lakes. Photo Two: Fergusonites hendersonae, a Late Hettangian (Early Jurassic) ammonite from the Taseko Lakes area of British Columbia, Canadian Rockies, named by Dr. Louise Longridge after Heidi Henderson, Chair, Vancouver Paleontological Society who collected and subsequently donated many Hettangian specimens from Taseko Lakes to the GSC collections. Holotype. GSC 127423 from the Rursicostatum Zone, Castle Pass section A, level 06, Taseko Lakes.

Map: Localities of sections and isolated outcrops bearing late Hettangian ammonites in the Taseko Lakes map area. Figure Two: Zonation for the Hettangian showing correlation of North American zones with South America, north‐west Europe, western Tethys (circum‐Mediterranean), eastern Tethys and New Zealand. Only approximate correlations are implied. 

Saturday 2 March 2024

LOVE CAN TRAVEL ANYWHERE IN AN INSTANT

Nunatsiarmiut Mother and Child, Baffin Island, Nunavut
Warm light bathes this lovely Nunatsiarmiut mother and child from Baffin Island, Nunavut. 

They speak Inuktitut, the mother tongue of the majority of the Nunatsiarmiut who call Baffin Island home. 

Baffin is the largest island in the Arctic Archipelago in the territory of Nunavut in Canada's far north—the chilliest region of Turtle Island. 

As part of the Qikiqtaaluk Region of Nunavut, Baffin Island is home to a constellation of remote Inuit communities each with a deep cultural connection to the land—Iqaluit, Pond Inlet, Pangnirtung, Clyde River, Arctic Bay, Kimmirut and Nanisivik. 

The ratio of Inuit to non-Inuit here is roughly three to one and perhaps the reason why the Inuktitut language has remained intact and serves as the mother tongue for more than 36,000 residents. Inuktitut has several subdialects—these, along with a myriad of other languages—are spoken across the north.  

If you look at the helpful visual below you begin to get a feel for the diversity of these many tongues. The languages vary by region. There is the Iñupiaq of the Inupiatun/Inupiat; Inuvialuktun of the Inuinnaqtun, Natsilingmiutut, Kivallirmiutut, Aivilingmiutut, Qikiqtaaluk Uannanganii and Siglitun. Kalaallisut is spoken by many Greenlandic peoples though, in northwest Greenland, Inuktun is the language of the Inughuit.

We use the word Inuktitut when referring to a specific dialect and inuktut when referring to all the dialects of Inuktitut and Inuinnaqtun.

Northern Language Map (Click to Enlarge)
Should you travel to the serene glacier-capped wilds and rolling tundra of our far north, you will want to dress for the weather and learn a few of the basics to put your best mukluk shod feet forward. 

The word for hello or welcome in Inuktitut is Atelihai—pronounced ahh-tee-lee-hi. And thank you is nakurmiik, pronounced na-kur-MIIK.  

Perhaps my favourite Inuktitut expression is Naglingniq qaikautigijunnaqtuq maannakautigi, pronounced NAG-ling-niq QAI-kau-ti-gi-jun-naqtuq MAAN-na-KAU-ti-gi. This tongue-twister is well worth the linguistic challenge as it translates to love can travel anywhere in an instant. Indeed it can. 

So much of our Indigenous culture is passed through stories, so language takes on special meaning in that context. It is true for all societies but especially true for the Inuit. Stories help connect the past to the present and future. They teach how to behave in society, engage with the world and how to survive in the environment. They also help to create a sense of belonging. 

You have likely seen or heard the word Eskimo used in older books to refer to the Inuit, Iñupiat, Kalaallit or Yupik. This misnomer is a colonial term derived from the Montagnais or Innu word ayas̆kimewnetter of snowshoes

It is a bit like meeting a whole new group of people who happen to wear shoes and referring to them all as cobblers—not as a nickname, but as a legal term to describe populations from diverse communities disregarding the way each self-refer. 

Inukshuk / Inuksuk Marker Cairn
For those who identify as Inupiaq or Yupik, the preferred term is Inuit meaning people—though some lingering use of the term Eskimo lives on. The Inuit as a group are made up of many smaller groups. 

The Inuit of Greenland self-refer as Kalaallit or Greenlanders when speaking Kalaallisut

The Tunumiit of Tunu (east Greenland), speak Tunumiit oraasiat ("East Greenlandic"); and the Inughuit of north Greenland, speak Inuktun "Polar Eskimo."

The Inupiat of Alaska, or real people, use Yupik as the singular for real person and yuk to simply mean person.

When taken all together, Inuit is used to mean all the peoples in reference to the Inuit, Iñupiat, Kalaallit and Yupik. Inuit is the plural of inuk or person

You likely recognize this word from inuksuk or inukshuk, pronounced ih-nook-suuk — the human-shaped stone cairns built by the Inuit, Iñupiat, Kalaallit, Yupik, and other peoples of the Arctic regions of northern Canada, Greenland, and Alaska—as helpful reference markers for hunters and navigation. 

The word inuksuk means that which acts in the capacity of a human, combining inuk or person and suk, as a human substitute

A World of Confusion

You may be disappointed to learn that our northern friends do not live in igloos. I remember answering the phone as a child and the fellow calling was hoping to speak to my parents about some wonderful new invention perfect for use in an igloo. 

The call came while I was in the kitchen of our family home in Port Hardy. He was disappointed to hear that I was standing in a wooden house with the standard four walls to a room and a handy roof topping it off. 

I also had my own room with Scooby-Doo wallpaper, but he was having nothing of it.

"Well, what about your neighbours? Surely, a few of them live in igloos..." 

It seems that some atlases in circulation at the time, and certainly the one he was looking at, simply blanketed everything north of the 49th parallel in a snowy white. His clearly showed an igloo sitting proudly in the centre of the province.

My cousin Shawn brought one such simplified book back from his elementary school in California. British Columbia had a nice image of a grizzly bear and a wee bit further up, a polar bear grinned smugly. 

British Columbia's beaver population would be sad to know that they did not inhabit the province though there were two chipper beavers with big bright smiles—one in Ontario and another gracing the province of Quebec. Further north, where folk do build igloos, their icy domes were curiously lacking. 

Igloos are used for winter hunting trips much the same way we use tents for camping. The Inuit do not have fifty words for snow—you can thank the ethnographer Franz Boas for that wee fabrication—but within the collective languages of the frozen north there are more than fifty words to describe it. And kisses are not nose-to-nose. To give a tender kiss or kunik to a loved one, you press your nose and upper lip to their forehead or cheek and rub gently. 

Fancy trying a wee bit of Inuktitut yourself? This link will bring you to a great place to start: https://inhabitmedia.com/inuitnipingit/

Inuit Language Map:  By Noahedits - Own work, CC BY-SA 4.0. If you want to the image full size, head to this link: https://commons.wikimedia.org/w/index.php?curid=85587388