Monday 31 October 2022

VISITING BERLIN-ICHTHYOSAUR STATE PARK

At least 37 incomplete fossil specimens of the marine reptile have been found in hard limestone deposits of the Luning Formation, in far northwestern Nye County of Nevada. 

This formation dates to the late Carnian age of the late Triassic period when present-day Nevada and parts of the west were covered by an ancient ocean.

The first researcher to recognize the Nevada fossil specimens as ichthyosaurs was Siemon W. Muller of Stanford University. 

Muller had the work of Sir Richard Owen to build upon from Owen's 1840 publications. That being said, there are very few contenders for a species that boasts vertebrae over a foot wide and weighing in at almost 10 kg or 21 lbs. 

Muller contacted the University of California Museum of Paleontology at Berkeley. Surface collecting by locals continued at the site but no major excavation was planned.

Almost a quarter of a century after Muller's initial correspondence to the UCMP, Dr. Charles L. Camp received correspondence further detailing the finds from a lovely Mrs. Margaret Wheat of Fallon. She wrote to Camp in September of 1928 to say that she'd been giving the quarry section a bit of a sweep, as you do, and had uncovered a nice aligned section of vertebrae with her broom. The following year, Dr. Charles L. Camp went out to survey the finds and began working on the specimens, his first field season of many, in 1954.

Back in the 1950s, these large marine reptiles were rumoured to be "marine monsters," as the concept of an ichthyosaur was not well understood by the local townsfolk. Excitement soon hit West Union Canyon as the quarry began to reveal the sheer size of these mighty beasts. In the end, the ichthyosaur bones were left in situ to better understand how they were laid down over 200 million years ago.

Camp continued to work with Wheat at the site and brought on Sam Welles to help with excavations. The team understood the need for protection at the site. They canvassed the Nevada Legislature to establish the Ichthyosaur Paleontological State Monument. You can one of the Park Rangers above giving a tour within the lovely building they built on the site to protect the fossils.

In 1957, the site was incorporated into the State Park System and Berlin-Ichthyosaur State Park was born. The park Twenty years later, in 1977, the population of Nevada weighed in and the Legislature designated Shonisaurus popularis as the State Fossil of Nevada.

Know Before You Go — Berlin-Ichthyosaur State Park

This is a wonderful place to explore for a very reasonable sum of $5.00 US. Open year-round (though check regarding accessibility during Covid). They have accessible outcrops just outside the park boundary where you can collect ammonoid fossils. 

Contact information: Tel: 775-964-2440 / Email: bisp@parks.nv.gov. 

Address: State Route 844, Austin, NV 89310, United States. Area: 4.58 km². Elevation: 6,975 ft (2,126 m); Tel: +1 775-964-2440; http://parks.nv.gov/parks/berlin-ichthyosaur

Sunday 30 October 2022

NOOTKA FOSSILS & FIRST NATIONS HISTORY

Nootka Fossil Field Trip. Photo: John Fam
The rugged west coast of Vancouver Island offers spectacular views of a wild British Columbia. Here the seas heave along the shores slowly eroding the magnificent deposits that often contain fossils. 

Just off the shores of Vancouver Island, east of Gold River and south of Tahsis is the picturesque and remote Nootka Island.

This is the land of the proud and thriving Nuu-chah-nulth First Nations who have lived here always

Always is a long time, but we know from oral history and archaeological evidence that the Mowachaht and Muchalaht peoples lived here, along with many others, for many thousands of years — a time span much like always

While we know this area as Nootka Sound and the land we explore for fossils as Nootka Island, these names stem from a wee misunderstanding. 

Just four years after the 1774 visit by Spanish explorer Juan Pérez — and only a year before the Spanish established a military and fur trading post on the site of Yuquot — the Nuu-chah-nulth met the Englishman, James Cook.  

Captain Cook sailed to the village of Yuquot just west of Vancouver Island to a very warm welcome. He and his crew stayed on for a month of storytelling, trading and ship repairs. Friendly, but not familiar with the local language, he misunderstood the name for both the people and land to be Nootka. In actual fact, Nootka means, go around, go around

Two hundred years later, in 1978, the Nuu-chah-nulth chose the collective term Nuu-chah-nulth — nuučaan̓uł, meaning all along the mountains and sea or along the outside (of Vancouver Island) — to describe themselves. 

It is a term now used to describe several First Nations people living along western Vancouver Island, British Columbia. 

It is similar in a way to the use of the United Kingdom to refer to the lands of England, Scotland and Wales — though using United Kingdom-ers would be odd. Bless the Nuu-chah-nulth for their grace in choosing this collective name.  

An older term for this group of peoples was Aht, which means people in their language and is a component in all the names of their subgroups, and of beautiful locations in this region  — Yuquot, Mowachaht, Kyuquot, Opitsaht. While collectively, they are the Nuu-chah-nulth, be interested in their more regional name should you meet them. 

But why does it matter? If you have ever mistakenly referred to someone from New Zealand as an Aussie or someone from Scotland as English, you have likely been schooled by an immediate — sometimes forceful, sometimes gracious — correction of your ways. The best answer to why it matters is because it matters.

Each of the subgroups of the Nuu-chah-nulth viewed their lands and seasonal migration within them (though not outside of them) from a viewpoint of inside and outside. Kla'a or outside is the term for their coastal environment and hilstis for their inside or inland environment.

It is to their kla'a that I was most keen to explore. Here, the lovely Late Eocene and Early Miocene exposures offer up fossil crab, mostly the species Raninid, along with fossil gastropods, bivalves, pine cones and spectacularly — a singular seed pod. These wonderfully preserved specimens are found in concretion along the foreshore where time and tide erode them out each year.

Five years after Spanish explorer Juan Pérez's first visit, the Spanish built and maintained a military post at Yuquot where they tore down the local houses to build their own structures and set up what would become a significant fur trade port for the Northwest Coast — with the local Chief Maquinna's blessing and his warriors acting as middlemen to other First Nations. 

Following reports of Cook's exploration British traders began to use the harbour of Nootka (Friendly Cove) as a base for a promising trade with China in sea-otter pelts but became embroiled with the Spanish who claimed (albeit erroneously) sovereignty over the Pacific Ocean. 

Dan Bowen searching an outcrop. Photo: John Fam
The ensuing Nootka Incident of 1790 nearly led to war between Britain and Spain (over lands neither could actually claim) but talk of war settled and the dispute was settled diplomatically. 

George Vancouver on his subsequent exploration in 1792 circumnavigated the island and charted much of the coastline. His meeting with the Spanish captain Bodega y Quadra at Nootka was friendly but did not accomplish the expected formal ceding of land by the Spanish to the British. 

It resulted however in his vain naming the island "Vancouver and Quadra." The Spanish captain's name was later dropped and given to the island on the east side of Discovery Strait. Again, another vain and unearned title that persists to this day.

Early settlement of the island was carried out mainly under the sponsorship of the Hudson's Bay Company whose lease from the Crown amounted to 7 shillings per year — that's roughly equal to £100.00 or $174 CDN today. Victoria, the capital of British Columbia, was founded in 1843 as Fort Victoria on the southern end of Vancouver Island by the Hudson's Bay Company's Chief Factor, Sir James Douglas. 

With Douglas's help, the Hudson's Bay Company established Fort Rupert on the north end of Vancouver Island in 1849. Both became centres of fur trade and trade between First Nations and solidified the Hudson's Bay Company's trading monopoly in the Pacific Northwest.

The settlement of Fort Victoria on the southern tip of Vancouver Island — handily south of the 49th parallel — greatly aided British negotiators to retain all of the islands when a line was finally set to mark the northern boundary of the United States with the signing of the Oregon Boundary Treaty of 1846. Vancouver Island became a separate British colony in 1858. British Columbia, exclusive of the island, was made a colony in 1858 and in 1866 the two colonies were joined into one — becoming a province of Canada in 1871 with Victoria as the capital.

Dan Bowen, Chair of the Vancouver Island Palaeontological Society (VIPS) did a truly splendid talk on the Fossils of Nootka Sound. With his permission, I have uploaded the talk to the ARCHEA YouTube Channel for all to enjoy. Do take a boo, he is a great presenter. Dan also graciously provided the photos you see here. The last of the photos you see here is from a VIPS Nootka Fossil Field Trip. We head out each year as the people, scenery, wildlife and fossils are amazing. Photo: John Fam, Vice-Chair, Vancouver Paleontological Society (VanPS).

Know Before You Go — Nootka Trail

The Nootka Trail passes through the traditional lands of the Mowachaht/Muchalat First Nations who have lived here since always. They share this area with humpback and Gray whales, orcas, seals, sea lions, black bears, wolves, cougars, eagles, ravens, sea birds, river otters, insects and the many colourful intertidal creatures that you'll want to photograph.

This is a remote West Coast wilderness experience. Getting to Nootka Island requires some planning as you'll need to take a seaplane or water taxi to reach the trailhead. The trail takes 4-8 days to cover the 37 km year-round hike. The peak season is July to September. Permits are not required for the hike. 

Access via: Air Nootka floatplane, water taxi, or MV Uchuck III

  • Dan Bowen, VIPS on the Fossils of Nootka: https://youtu.be/rsewBFztxSY
  • https://www.thecanadianencyclopedia.ca/en/article/sir-james-douglas
  • file:///C:/Users/tosca/Downloads/186162-Article%20Text-199217-1-10-20151106.pdf
  • Nootka Trip Planning: https://mbguiding.ca/nootka-trail-nootka-island/#overview


Friday 28 October 2022

SQUIRRELS: SHADOW TAILS

One of the little animals I see daily in Kitsilano, Vancouver, are the very busy, highly comic rodents we know as squirrels. 

They spend their days busily gathering and caching food and their nights resting from all that hard work. 

My neighbourhood has mostly Eastern Gray squirrels, Sciurus carolinensis (Gmelin, 1788) who come in a colour palette of reddish-brown, grey (British spelling) and black. 

These cuties have bushy tails and a spring in their step — racing around gathering nuts, finding secret hiding spots to cache them, teasing dogs and generally exuding cuteness.

We find the first fossil evidence of tree squirrels in the Pleistocene. At least twenty specimens have been found of Sciurus carolinensis in Pleistocene outcrops in Florida on the eastern coast of the United States. Over time, their body size grew larger then shrunk down to the 400 to 600 g (14 to 21 oz) weight we see them today.  

Eastern Gray squirrels have two breeding seasons in December-January and June-July. This past year was warm. On Vancouver Island, the Eastern Grays bred again in early September. One wonders if the heat dome killed off the July litter, and with the return of more favourable weather, the parents have been induced to breed again.

While they are not native to Vancouver, they are plentiful. They were introduced to the region over a hundred years ago and have been happily multiplying year upon year. 

Our native species are the smaller, reddish-brown, rather shy Douglas squirrels, Tamiasciurus douglasii (Bachman, 1839), and the nocturnal Northern Flying Squirrels, Glaucomys sabrinus (Shaw, 1801).  

Sciurus, is derived from two Greek words, skia, meaning shadow, and oura, meaning tail. The name choice is poetic, alluding to squirrels sitting in the shadow of their tails. 

The specific epithet, carolinensis, refers to the Carolinas on the eastern seaboard of the United States, an area that includes both North and South Carolina. It was here that the species was first recorded and still rather common. In the United Kingdom and Canada, Sciurus carolinensis is referred to as the Eastern Gray or grey squirrel — and though adorable is an invasive species. 

In the United States, Eastern is used to differentiate the species from the Western Gray or Silver-Gray squirrel, Sciurus griseus, (Ord, 1818). 

The Ord here, of course, is George Ord, the American zoologist who named the species based on notes recorded by Lewis and Clark in the early 1800s. If you fancy a read, check out his article from 1815, "Zoology of North America." It is charming, anachronistic and the first systemic zoology of America by an American. 

In the Kwak̓wala language of the Kwakwaka'wakw First Nation, speakers of Kwak'wala, of the Pacific Northwest, we use the word ta̱minasux̱, to say: "that is a squirrel." 

The word for shadow in Kwak'wala is gagumas and tail is ha̱t̕sa̱x̱ste' — so I will think of these wee wonders of the Order Rodentia in the family Sciuridae as the Gagumas ha̱t̕sa̱x̱ste' of Khahtsahlano. 

Thursday 27 October 2022

DIOMORPHODON

This remarkable fellow is Dimorphodon — a genus of medium-sized pterosaur from the Early Jurassic. He is another favourite of mine for his charming awkwardness.

You can see this fellow's interesting teeth within his big, bulky skull. Dimorphodon had two distinct types of teeth in their jaws — an oddity amongst reptiles — and also proportionally short wings for their overall size. 

Just look at him. What an amazing beast. We understand their anatomy quite well today, but can you imagine being the first to study their fossils and try to make sense of them. 

The first fossil remains now attributed to Dimorphodon were found in England by fossil collector Mary Anning, at Lyme Regis in Dorset, United Kingdom in December 1828. While she faced many challenges in her life, she was blessed to live in one of the richest areas in Britain for finding fossils. 

She walked the beaches way back in the early 1800s of what would become the Jurassic Coast UNESCO World Heritage Site. The Jurassic Coast holds some of the most interesting fossils ever found — particularly within the strata of the Blue Lias which date back to the Hettangian-Sinemurian. It is one of the world’s most famous fossil sites. Millions come to explore the eroding coastline looking for treasures that provide delight and inspiration to young and old.
 
These fossil treasures provide us with tremendous insights into our world 185 million years ago when amazing animals like Dimorphodon ruled the skies. 

Mary's specimen was acquired by William Buckland and reported in a meeting of the Geological Society on 5 February 1829. Six years later, in 1835, William Clift and William John Broderip built upon the work by Buckland to publish in the Transactions of the Geological Society, describing and naming the fossil as a new species. 

As was the case with most early pterosaur finds, Buckland classified the remains in the genus Pterodactylus, coining the new species Pterodactylus macronyx. The specific name is derived from Greek makros, "large" and onyx, "claw", in reference to the large claws of the hand. The specimen, presently NHMUK PV R 1034, consisted of a partial and disarticulated skeleton on a slab — notably lacking the skull. Buckland in 1835 also assigned a piece of the jaw from the collection of Elizabeth Philpot to P. macronyx

Later, the many putative species assigned to Pterodactylus had become so anatomically diverse that they began to be broken into separate genera.

In 1858, Richard Owen reported finding two new specimens, NHMUK PV OR 41212 and NHMUK PV R 1035, again partial skeletons but this time including the skulls. Having found the skull to be very different from that of Pterodactylus, Owen assigned Pterodactylus macronyx its own genus, which he named Dimorphodon

His first report contained no description and the name remained a nomen nudum. In 1859, however, a subsequent publication by Owen provided a description. After several studies highlighting aspects of Dimorphodon's anatomy, Owen finally made NHMUK PV R 1034 the holotype in 1874  — 185 million years after cruising our skies the Dimorphodon had finally fully arrived.

Wednesday 26 October 2022

KILLER WHALES OF THE PACIFIC: KEET MAX'INUX

One of the iconic animals of the Pacific Northwest are Orca or Killer Whales — Keet in Lingit. Keet-Shaa-gooon' — our ancestors. These playful giants hunt and play in our local waters and all the oceans of the world.

This past week, there has been a pod hunting and playing in the waters near Maple Bay on Vancouver Island. It is wonderful and a wee bit unusual to see them so long in the same hunting grounds. This partially due to their normal hunting behaviour but definitely impacted by the relentless roar of the motors of whale-watching boats.
I do like folk taking an interest in our wildlife. We are more likely to work to protect them if we get to know them. But hunting down a decent meal, courting a mate and rearing your young are challenging with all that racket going on. Imagine trying to cook dinner, play catch with your kid or make love to your partner with half a dozen looky-loos on a hovercraft watching your every move. A bit of attention is flattering but at some point that becomes creepy. 

And yes, whale watchers are meant to keep a healthy distance but that was certainly not the case with the crowd of boats this week. 

Not surprising then that the whales try to dodge the relentless spectators — expending energy on avoiding us instead of on the business of being whales... hunting, eating, rearing, mating. I share this so we do not forget ourselves and enjoy wildlife to our own amusement not realizing the impact we have.

Orca are toothed whales who hunt our waters for fish, squid, birds and aquatic mammals. They are the largest member of the Dolphin family who hunt and live amongst their family groups or pods. 

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, orca are known as max̱'inux̱. I do not know the word for orca in the language of the Quw'utsun Cowichan First Nation whose shores they are swimming near this week. 

These large marine mammals are easily distinguished by their black-and-white colouration, large dorsal fin and a sleek, streamlined body. You can often get a peek at their top fin and just enough of their distinctive white eye patch to identify them from a distance.

Up close, their colouring is equally lovely. When I was little, a few resident orcas would come up to our float house and rub up against the side to give themselves a good scritch. We used to offer to help them with this by lowering a deck broom and rubbing it along them. They would roll around playfully and seemed to enjoy it much the same way dogs and cats appreciate a good scratch. 

They show curiosity and intelligence when they look at you and understand that your intention was to help not hurt when the broom was offered. One of them did give the broom a gentle nibble and carried it off a ways but very politely returned it a few minutes later. 

Across their back and along their pectoral flippers is a nice glossy black, The exception is their saddle, a wee patch of greyish white just behind their dorsal fin.  

Whales breathe through their nostril or blowhole that sits in the centre of their forehead. The blow of mist you see in the photo above is this fellow breathing and pushing air out through his blowhole and some seawater along with it. 

Killer whales have a white patch under their heads (lower jaw), under each fluke and a patch along their rear edge as you move towards the tail. While these patches of white make them easier for us to see and identify them, they act as camouflage to those they are hunting in the water.

Their large bodies are streamlined (hydrodynamic), like a submarine, for moving through the water. Whales have flukes or a tail used for swimming. The flukes are moved in an up-and-down motion to accelerate. The dorsal fin acts like the keel of a boat; it keeps the whale from rolling side to side while swimming. They have pectoral flippers just behind the head. These pectoral flippers are used for steering, turning, and stopping.

Live in coastal and offshore waters; resident pods may frequent localized waterways (bays, sounds, etc.) whereas transient pods tend to cover more extensive, varied areas.

An extended clan of orcas, known as the Southern Resident Orca community, socialize and forage in the inland waters of Washington State and British Columbia. The population grows and lessens in relation to the overall Chinook salmon abundance. It may have been this pod that were playing off our shores this week. They are certainly in the neighborhood on and off.

Females (cows) reach reproductive maturity quite late in life at around 14 to 15 years. They give birth every three to ten years, following a 17-month pregnancy. In our local waters, these young join the pod and stay together their whole lives.

At birth, the 2.6 m long calves arrive able to swim and dive and grow quickly feasting on their mothers' milk for the first year of their lives. 

The newborns stay close to mamma, feeding and learning from her and from the close-knit members of the pod. Over the course of their lives, these newborns will grow from 120 to 160 kg up to 3,600 to 7,250 kg.

Like all dolphins, orcas use sophisticated biological sonar, called echolocation. Echolocation enables them to locate and discriminate objects underwater. The vocalizations within whale communities vary and each are different from those in other communities. The calls also bring the pods together over large areas of water when it is not possible for the whales to see each other.

When all goes well, orcas live to be a ripe old age. Some males have been known to live into their 40s and perhaps up to 60+ years old. Females have been known to live up to 90+ years old.


Tuesday 25 October 2022

ARTURIA OF THE OLYMPIC PENINSULA

This lovely Lower Miocene nautiloid is Aturia angustata collected on the foreshore near Clallam Bay, Olympic Peninsula, northwestern Washington. 

I have been exploring Washington State for many years. It is rugged, windswept and has amazing fossil exposures all along its northern edge. The area goes by the name of the Olympic Peninsula and it is a wilderness playground. The sites I usually visit are Majestic Beach for its rare but prized fossil whale bone.

Further west are the beach exposures that have fossil echinoids in matrix and Ghost shrimp claws in concretion. There is a clay mine that holds wonderful nautiloids like the creamy Aturia you see here. Sometimes they are cemented together and come out whole. Sometimes calcified and show yellow, brown and white when you hold them to the light. Further up are the beach exposures along Clallam Bay.

Aturia is an extinct genus of Paleocene to Miocene nautilids within Aturiidae, a monotypic family, established by Campman in 1857 for Aturia Bronn, 1838, and is included in the superfamily Nautilaceae in Kümmel, 1964.

Aturia is characterized by a smooth, highly involute, discoidal shell with a complex suture and subdorsal siphuncle. 

Their shells are rounded ventrally and flattened laterally; the dorsum is deeply impressed. The suture is one of the most complex within Nautiloidea. It has a broad flattened ventral saddle, narrow pointed lateral lobes, broad rounded lateral saddles, broad lobes on the dorso-umbilical slopes, and a broad dorsal saddle divided by a deep, narrow median lobe. 

The siphuncle is moderate in size and located subdorsally in the adapical dorsal flexure of the septum. Based on the feeding and hunting behaviours of living nautiluses, Aturia most likely preyed upon small fish and crustaceans. It is well worth exploring the exposures at Clallam Bay. The local clay quarry is on private land so you would need to seek permission. I have also seen calcified beauties of this species collected from river sites within the Olympic Peninsula range, though I have not explored these myself.

Monday 24 October 2022

PTEROSAURS AND SARODONTID FISH OF HORNBY ISLAND

Quetzalcoatlus
If you could travel through time and go back to observe our ancient skies, you would see massive pterosaurs — huge, winged flying reptiles of the extinct order Pterosauria — cruising along with you.

They soared our skies during most of the Mesozoic — from the late Triassic to the end of the Cretaceous (228 to 66 million years ago). 

By the end of the Cretaceous, they had grown to giants and one of their brethren, Quetzalcoatlus, a member of the family Azhdarchidae, boasts being the largest known flying animal that ever lived. They were the earliest vertebrates known to have evolved powered flight. Their wings were formed by a membrane of skin, muscle, and other tissues stretching from the ankles to a dramatically lengthened fourth finger.

We divide their lineage into two major types: basal pterosaurs and pterodactyloids. Basal pterosaurs — also called 'non-pterodactyloid pterosaurs' or ‘rhamphorhynchoids’ — were smaller with fully toothed jaws and longish tails. Their wide wing membranes connected to their hind legs giving them some maneuverability on the ground, but with an awkward sprawling posture. Picture a bat trying to walk or crawl along — doable but painful to watch. They were better climbers with flexible joint anatomy and strong claws. Basal pterosaurs preferred to dine on insects and small vertebrates.

Later pterosaurs (pterodactyloids) evolved many sizes, shapes, and lifestyles. Pterodactyloids had narrower wings with free hind limbs, highly reduced tails, and long necks with large heads. On the ground, pterodactyloids walked better than their earlier counterparts, maneuvering all four limbs smoothly with an upright posture. 

They walked standing plantigrade on the hind feet and folding the wing finger upward to walk on the three-fingered "hand." These later pterosaurs were more nimble. They could take off from the ground, run and wade and swim. Their jaws had horny beaks and some of these later groups lacked the teeth of earlier lineages. Some groups developed elaborate head crests that were likely used to attract mates' sexy-pterosaur style.

So can we or have we found pterosaurs on Hornby Island? The short answer is yes.

Collishaw Point, known locally as Boulder Point, Hornby Island
Hornby Island is a lovely lush, island in British Columbia's northern Gulf Islands. It was formed from sediments of the upper Nanaimo Group which are also widely exposed on adjacent Denman Island and the southern Gulf Islands.

Peter Mustard, a geologist from the Geologic Survey of Canada, did considerable work on the geology of the island. It has a total stratigraphic thickness of 1350 m of upper Nanaimo Group marine sandstone, conglomerate and shale. 

These are partially exposed in the Campanian to the lower Maastrichtian outcrops at Collishaw Point on the northwest side of Hornby Island. Four formations underlie the island from oldest to youngest, and from west to east: the Northumberland, Geoffrey, Spray and Gabriola.

During the upper Cretaceous, between ~90 to 65 Ma, sediments derived from the Coast Belt to the east and the Cascades to the southeast poured seaward to the west and northwest into what was the large ancestral Georgia Basin. This major forearc basin was situated between Vancouver Island and the mainland of British Columbia. The rocks you find here originated far to the south in Baja California and are the right age and type of sediment for a pterosaur find. But are we California dreaming?

Upper Cretaceous Nanaimo Group Fossil Concretion
Well, truth be told, we were with one of the potential pterosaur finds from Hornby. 

It wasn't just hopeful thinking that had the west coast in a paleo uproar many ago when Sharon Hubbard of the Vancouver Island Palaeontological Society found what looked very much like a pterosaur.

Right time period. Right location. And, we have found them here in the past. Sandy McLachlan found the first definitive pterosaur, an azhdarchid, back in 2008.

But was Sharon's find a pterosaur?

Victoria Arbour, a Canadian evolutionary biologist and palaeontologist working as a Natural Sciences and Engineering Research Council of Canada postdoctoral fellow at the University of Toronto and Royal Ontario Museum, certainly thought so. 

While Arbour is an expert on ankylosaurs, our lumbering armoured dinosaurs friends, she has studied pterosaurs and participated in the naming of Gwawinapterus from Hornby Island. But here's the thing — bony material encased in stone and let to cement for millions of years can be tricky.

While this fossil find was initially described as a very late-surviving member of the pterosaur group Istiodactylidae, further examination cast doubt on the identification. Once more detail was revealed the remains were published as being those of a saurodontid fish, an ambush predator with very sharp serrated teeth and elongate, torpedo-like bodies that grew up to two meters. 

Not a pterosaur but still a massively exciting find. Arbour was very gracious at the renaming, taking it in stride. She has since gone on to name a partial ornithischian dinosaur from Sustut Basin, as well as the ankylosaurs Zuul, Zaraapelta, Crichtonpelta, and Ziapelta. But she may have another shot at a pterosaur.

Dan Bowen, Chair, VIPS. Photo: Deanna Steptoe Graham
In 2019, Dan Bowen, Chair of the Vancouver Island Palaeontological Society and a truly awesome possum, found some very interesting bones in concretion on Hornby. 

The concretion was nestled amongst the 72 million-year-old grey shales of the Northumberland Formation, Campanian to the lower Maastrichtian, part of the Cretaceous Nanaimo Group from Collishaw Point.

The site is known as Boulder Point to the locals and it has been a popular fossil destination for many years. It is the same site where Sharon made her find years earlier.

The concretion contains four articulated vertebrae that looked to be fish at first glance. Jay Hawley, a local fossil enthusiast was asked to prep the block to reveal more details. Once the matrix was largely removed the vertebrae inside were revealed to be bird bones, not fish and not another saurodontid as originally thought. Palaeontologist Victoria Arbour was called back in to put her keen lens on the discovery. 

You will appreciate that she took a good long look at the specimen and confirmed it to be a bird or a pterosaur. We still do not have confirmation on which it is as yet. The delicate bony material is very flattened with a very shallow u-shape on the bottom but will need additional study to confirm if the skies above California were once home to a great pterosaur who died, was fossilized then rode our tectonic plates to now call Hornby home. It is a great story and one that I am keen to follow.

References: To learn more about the azhdarchid remains found by Sandy McLachlan, check out the paper by Martin-Silverston et al. 2016.

Sunday 23 October 2022

ETHELDRED BENNETT: ENGLISH PALAEONTOLOGIST

Hoplites (Hoplites) bennettiana (Sowerby, 1826)
A beautiful example of the ammonite, Hoplites (Hoplites) bennettiana (Sowerby, 1826), from Early Albian localities in the Carrière de Courcelles Villemoyenne, Région de Troyes, near Champagne in northeastern France.

The species' name is a homage to Etheldred Benett, an early English geologist often credited with being the first female geologist — a fossil collector par excellence.

If you happened to join us for today's VIPS talk with Phil Hadland, Collections & Engagement Curator of Natural Sciences at the Hastings Museum & Art Gallery, UK, on 101 Fossils of Folkstone, you will have heard him mention her in his talk.

She was also credited with being a man  —  the Natural History Society of Moscow awarded her membership as Master Etheldredus Benett in 1836. The confusion over her name (it did sound masculine) came again with the bestowing of a Doctorate of Civil Law from Tsar Nicholas I.

The Tsar had read Sowerby's Mineral Conchology, a major fossil reference work which contained the second-highest number of contributed fossils of the day, many of the best quality available at the time. Forty-one of those specimens were credited to Benett. Between her name and this wonderous contribution to a growing science, the Russian Tsar awarded the Doctorate to what he believed was a young male scientist on the rise. He believed in education, founding Kyiv University in 1834, just not for women. He was an autocratic military man frozen in time — the thought that this work could have been done by a female was unthinkable. Doubly charming is that the honour from the University of St Petersburg was granted at a time when women were not allowed to attend St. Pete's or any higher institutions. That privilege arrived in 1878, twenty years after Nicholas I's death.

Benett took these honours (and social blunders) with grace. She devoted her life to collecting and studying fossils from the southwest of England, amassing an impressive personal collection she openly shared with geologist friends, colleagues and visitors to her home. Her speciality was fossils from the Middle Cretaceous, Upper Greensand in the Vale of Wardour — a valley in the county of Wiltshire near the River Nadder.

Etheldred was a local Wiltshire girl. Born Etheldred Benett on 22 July 1775 at Pyt House, Tisbury, Wiltshire, the eldest daughter of the local squire Thomas Benett. Etheldred's interest was cultivated by the botanist Aylmer Bourke Lambert (1761-1842), a founding member of the Linnean Society. Benett's brother had married Lucy Lambert, Aylmer's half-sister. Aylmer was a Fellow of the Royal Society and the Society of the Arts. He was also an avid fossil collector and member of the Geological Society of London. The two met and got on famously.

Aylmer kindled an interest in natural history in both of Benett's daughters. Etheldred had a great fondness in geology, stratigraphy and all things paleo, whilst her sister concentrated on botany. Etheldred had a distinct advantage over her near contemporary, the working-class Mary Anning (1799-1847), in that Benett was a woman of independent wealth who never married — and didn't need to — who could pursue the acquisition and study of fossils for her own interest.

While Anning was the marine reptile darling of the age, she was also greatly hindered by her finances. "She sells, seashells by the seashore..." while chanted in a playful spirit today, was not meant kindly at the time. Aylmer's encouragement emboldened Etheldred to go into the field to collect for herself — and collect she did. Profusely.

Benett’s contribution to the early history of Wiltshire geology is significant. She corresponded extensively with the coterie of gentlemen scientists of the day —  Gideon Mantell, William Buckland, James Sowerby, George Bellas Greenough and, Samuel Woodward. She also consorted with the lay folk and had an ongoing correspondence with William Smith, whose stratigraphy work had made a favourable impression on her brother-in-law, Aylmer.

Her collections and collaboration with geologists of the day were instrumental in helping to form the field of geology as a science. One colleague and friend, Gideon Mantell, British physician, geologist and palaeontologist, who discovered four of the five genera of dinosaurs and Iguanadon, was so inspired by Benett's work he named this Cretaceous ammonite after her — Hoplites bennettiana.

Benett's fossil assemblage was a valuable resource for her contemporaries and remains so today. It contains thousands of Jurassic and Cretaceous fossil specimens from the Wiltshire area and the Dorset Coast, including a myriad of first-recorded finds. The scientific name of every taxon is usually based on one particular specimen, or in some cases multiple specimens. Many of the specimens she collected serve as the Type Specimen for new species.

Fossil Sponge, Polypothecia quadriloba, Warminster, Wiltshire
Her particular interest was the collection and study of fossil sponges. Alcyonia caught her eye early on. She collected and recorded her findings with the hope that one of her colleagues might share her enthusiasm and publish her work as a contribution to their own.

Alas, no one took up the helm — those interested were busy with other pursuits (or passed away) and others were less than enthusiastic or never seemed to get around to it.

To ensure the knowledge was shared in a timely fashion, she finally wrote them up and published them herself. You can read her findings in her publication, ‘A Catalogue of Organic Remains of the County of Wiltshire’ (1831), where she shares observations on the fossil sponge specimens and other invert goodies from the outcrops west of town.

She shared her ideas freely and donated many specimens to local museums. It was through her exchange of observations, new ideas and open sharing of fossils with Gideon Mantell and others that a clearer understanding of the Lower Cretaceous sedimentary rocks of Southern England was gained.

In many ways, Mantell was drawn to Benett as his ideas went against the majority opinion. At a time when marine reptiles were dominating scientific discoveries and discussions, he pushed the view that dinosaurs were terrestrial, not amphibious, and sometimes bipedal. Mantell's life's work established the now-familiar idea that the Age of Reptiles preceded the Age of Mammals. Mantell kept a journal from 1819-1852, that remained unpublished until 1940 when E. Cecil Curwen published an abridged version. (Oxford University Press 1940). John A. Cooper, Royal Pavilion and Museums, Brighton and Hove, published the work in its entirety in 2010.

I was elated to get a copy, both to untangle the history of the time and to better learn about the relationship between Mantell and Benett. So much of our geologic past has been revealed since Mantell's first entry two hundred years ago. The first encounter we share with the two of them is a short note from March 8, 1819. "This morning I received a letter from Miss Bennett of Norton House near Warminster Wilts, informing me of her having sent a packet of fossils for me, to the Waggon Office..." The diary records his life, but also the social interactions of the day and the small connected community of the scientific social elite. It is a delight!

Though a woman in a newly evolving field, her work, dedication and ideas were recognized and appreciated by her colleagues. Gideon Mantell described her as, "a lady of great talent and indefatigable research," whilst the Sowerbys noted her, "labours in the pursuit of geological information have been as useful as they have been incessant."

Benett produced the first measured sections of the Upper Chicksgrove quarry near Tisbury in 1819, published and shared with local colleagues as, "the measure of different beds of stone in Chicksgrove Quarry in the Parish of Tisbury.” The stratigraphic section was later published by naturalist James Sowerby without her knowledge. Her research contradicted many of Sowerby’s conclusions.

She wrote and privately published a monograph in 1831, containing many of her drawings and sketches of molluscs and sponges. Her work included sketches of the fossil Alcyonia (1816) from the Green Sand Formation at Warminster Common and the immediate vicinity of Warminster in Wiltshire.

Echinoids and Bivalves. Collection of Etheldred Benett (1775-1845)
The Society holds two copies, one was given to George Bellas Greenough, and another copy was given to her friend Gideon Mantell. This work established her as a true, pioneering biostratigrapher following but not always agreeing with the work of William Smith.

If you'd like to read a lovely tale on William's work, check out the Map that Changed the World: William Smith and the Birth of Modern Geology by Simon Winchester. It narrates the intellectual context of the time, the development of Smith's ideas and how they contributed to the theory of evolution and more generally to a dawning realization of the true age of the earth.

The book describes the social, economic or industrial context for Smith's insights and work, such as the importance of coal mining and the transport of coal by means of canals, both of which were a stimulus to the study of geology and the means whereby Smith supported his research. Benett debated many of the ideas Smith put forward. She was luckier than Smith financially, coming from a wealthy family, a financial perk that allowed her the freedom to add fossils to her curiosity cabinet at will.

Most of her impressive collection was assumed lost in the early 20th century. It was later found and purchased by an American, Thomas Bellerby Wilson, who donated it to the Academy of Natural Sciences of Philadelphia. Small parts of it made their way into British museums, including the Leeds City Museum, London, Bristol and to the University of St. Petersburg. These collections contain many type specimens and some of the very first fossils found — some with the soft tissues preserved. When Benett died in 1845, it was Mantell who penned her obituary for the London Geological Journal.

In 1989, almost a hundred and fifty years after her death, a review of her collection had Arthur Bogen and Hugh Torrens remark that her work has significantly impacted our modern understanding of Porifera, Coelenterata, Echinodermata, and the molluscan classes, Cephalopoda, Gastropoda, and Bivalvia. A worthy legacy, indeed.

Her renown lives on through her collections, her collaborations and through the beautiful 110 million-year-old ammonite you see here, Hoplites bennettiana. The lovely example you see here is in the collection of the deeply awesome Christophe Marot.

Spamer, Earle E.; Bogan, Arthur E.; Torrens, Hugh S. (1989). "Recovery of the Etheldred Benett Collection of fossils mostly from Jurassic-Cretaceous strata of Wiltshire, England, analysis of the taxonomic nomenclature of Benett (1831), and notes and figures of type specimens contained in the collection". Proceedings of the Academy of Natural Sciences of Philadelphia. 141. pp. 115–180. JSTOR 4064955.

Torrens, H. S.; Benamy, Elana; Daeschler, E.; Spamer, E.; Bogan, A. (2000). "Etheldred Benett of Wiltshire, England, the First Lady Geologist: Her Fossil Collection in the Academy of Natural Sciences of Philadelphia, and the Rediscovery of "Lost" Specimens of Jurassic Trigoniidae (Mollusca: Bivalvia) with Their Soft Anatomy Preserved.". Proceedings of the Academy of Natural Sciences of Philadelphia. 150. pp. 59–123. JSTOR 4064955.

Photo credit: Fossils from Wiltshire.  In the foreground are three examples of the echinoid, Cidaris crenularis, from Calne, a town in Wiltshire, southwestern England, with bivalves behind. Caroline Lam, Archivist at the Geological Society, London, UK. http://britgeodata.blogspot.com/2016/03/etheldred-benett-first-female-geologist_30.html

Photo credit: Fossil sponges Polypothecia quadriloba, from Warminster, Wiltshire. The genus labels are Benett’s, as is the handwriting indicating the species. The small number, 20812, is the Society’s original accession label from which we can tell that the specimen was received in April 1824. The tablet onto which the fossils were glued is from the Society’s old Museum.

Saturday 22 October 2022

ANCIENT BEAUTIES: FOSSIL PEARLS

One of my favourite pairs of earrings are a simple set of pearls. I have worn them pretty much every day since 2016 when I received them as a gift. What is it about pearls that makes them so appealing? I am certainly not alone in this. 

A simple search will show you a vast array of pearls being used for their ornamental value in cultures from all over the world. I suppose the best answer to why they are appealing is just that they are

If you make your way to Paris, France and happen to visit the Louvre's Persian Gallery, do take a boo at one of the oldest pearl necklaces in existence — the Susa necklace. It hails from a 2,400-year-old tomb of long lost Syrian Queen. It is a showy piece with three rows of 72 pearls per strand strung upon a bronze wire. 

A queen who truly knew how to accessorize

I imagine her putting the final touches of her outfit together, donning the pearls and making an entrance to wow the elite of ancient Damascus. The workmanship is superb, intermixing pure gold to offset the lustre of the pearls. It is precious and ancient, crafted one to two hundred years before Christ. Perhaps a gift from an Egyptian Pharaoh or from one of the Sumerians, Eblaites, Akkadians, Assyrians, Hittites, Hurrians, Mitanni, Amorites or Babylonian dignitaries who sued for peace but brought war instead. 

Questions, good questions, but questions without answers. So, what can we say of pearls? We do know what they are and it is not glamorous. Pearls form in shelled molluscs when a wee bit of sand or some other irritant gets trapped inside the shell, injuring the flesh. As a defensive and self-healing tactic, the mollusc wraps it in layer upon layer of mother-of-pearl — that glorious shiny nacre that forms pearls. 

They come in all shapes and sizes from minute to a massive 32 kilograms or 70 pounds. While a wide variety of our mollusc friends respond to injury or irritation by coating the offending intruder with nacre, there are only a few who make the truly gem-y pearls. 

These are the marine pearl oysters, Pteriidae and a few freshwater mussels. Aside from Pteriidae and freshwater mussels, we sometimes find less gem-y pearls inside conchs, scallops, clams, abalone, giant clams and large marine gastropods.

Pearls are made up mostly of the carbonate mineral aragonite, a polymorphous mineral — the same chemical formula but different crystal structure — to calcite and vaterite, sometimes called mu-calcium carbonate. These polymorphous carbonates are a bit like Mexican food where it is the same ingredients mixed in different ways. Visually, they are easy to tell apart — vaterite has a hexagonal crystal system, calcite is trigonal and aragonite is orthorhombic.

As pearls fossilize, the aragonite usually gets replaced by calcite, though sometimes by vaterite or another mineral. When we are very lucky, that aragonite is preserved with its nacreous lustre — that shimmery mother-of-pearl we know and love.  

Molluscs have likely been making pearls since they first evolved 530 million years ago. The oldest known fossil pearls found to date, however, are 230-210 million years old. 

This was the time when our world's landmass was concentrated into the C-shaped supercontinent of Pangaea and the first dinosaurs were calling it home. In the giant ancient ocean of Panthalassa, ecosystems were recovering from the high carbon dioxide levels that fueled the Permian extinction. Death begets life. With 95% of marine life wiped out, new species evolved to fill each niche.  

While this is where we found the oldest pearl on record, I suspect we will one day find one much older and hopefully with its lovely great-great grandmother-of-pearl intact. 

Friday 21 October 2022

SHELTER POINT FOSSIL CRAB SITE

This lovely fossil crab is Longusorbis cuniculosus from the Upper Cretaceous ) Late Campanian, Northumberland Formation near Campbell River, British Columbia. This photo was featured in the 2004 BCPA Calendar.

Shelter Point on northern Vancouver Island is a lovely beach site where clastic strata are exposed in the intertidal platform of Oyster Bay. 

The site is located just off the Island Highway, about 10 km south of downtown Campbell River and 4 km farther south along the lower Oyster River. Haggart et al. presented an abstract on this locality at the 12th British Columbia Paleontological Symposium, 2018, Courtenay, abstracts; 2018 p. 28-30. I'll pop a link below if you'd like to give it a read. 

Shelter Point has been collected since the 1970s. No pre-glacial strata were recognized in this area by Muller and Jeletzky (1970). Richards (1975) described an abundant fauna in the beds at Shelter Point, approximately 2 km north of the Oyster Bay exposures, including the crab Longusorbis and associated ammonites and inoceramid bivalves, and he assigned these beds to the Spray Formation of the Nanaimo Group. This information, combined with the very low dip of the Oyster Bay strata and their general lithological similarity with the coarse clastic strata found commonly in the Nanaimo Group, suggested a Late Cretaceous (Campanian) age of the Oyster Bay strata.

Beginning in the 1980s, fossil collectors from the Vancouver Island Palaeontological Society began amassing significant collections of fossils from the strata of southern Oyster Bay that are found several hundred metres southeast of the local road called Appian Way, thus providing the informal moniker Appian Way Beds for these localized exposures. 

While these collections included a great diversity of gastropod, bivalve, nautiloid, scaphopod, echinoderm, and coral specimens, as well as impressive collections of plant materials, much previously undescribed, no taxa found commonly in Campanian strata of the Nanaimo Group were noted in these collections; particularly lacking were ammonites and inoceramid bivalves. For this reason, the hypothesis began to emerge that the Appian Way Beds of Oyster Bay were of younger, post-Cretaceous, age than thought previously. 

Just how young, however, has been a source of some controversy, with different parties continuing to favour the traditional Campanian age — based on lithostratigraphy — others a Paleocene age, and still others an Eocene age — based on plant macrofossils.

Fossil Collecting at Shelter Point:

Fossil Collecting at Shelter Point
At the northern end of Shelter Bay, turn east onto Heard Road, which ends at a public access to Shelter Point. 

Low tide is necessary in order to collect from these shales. Some friends are looking to explore this site over the next week. If you see some keen beans on the beach, check to see if they are the New family, Chris and Bonnie. Welcome them — they are lovely folk!

Industrious collectors unwilling to wait for the tide have employed rubber boots to wade through knee-deep water — rubber boots are highly recommended in any case — and even headlamps to capitalize on low tides during the night. Bring eye protection and sunscreen to safely enjoy this lovely family trip.   

The fossils, mainly the crab, Longusorbis and the straight ammonite Baculites, occur only in the gritty concretions that weather out of the shale. You'll need a rock hammer to see the lovelies preserved inside. Best to hold the concretion in your hand and give it one good tap. Aside from the fossils, check out the local tide pools and sea life in the area. Those less interested in the fossils can look for seals and playful otters basking on the beaches.

References:

Haggart, J. et al. 58 million and 25 years in the making: stratigraphy, fauna, age, and correlation of the Paleocene/Eocene sedimentary strata at Oyster Bay and adjacent areas, southeast Vancouver Island, British Columbia; https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=308471

Thursday 20 October 2022

AMMONITES: KEEPERS OF ANCIENT TIME

Argonauticeras besairei, José Juárez Ruiz
An exceptional example of the fractal building of an ammonite septum, in this clytoceratid Argonauticeras besairei from the awesome José Juárez Ruiz.

Ammonites were predatory, squidlike creatures that lived inside coil-shaped shells.

Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. 

They used these tentacles to snare prey, — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunt today.

Catching a fish with your hands is no easy feat, as I am sure you know. But the Ammonites were skilled and successful hunters. They caught their prey while swimming and floating in the water column. 

Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. By pushing air in or out, they were able to control their buoyancy in the water column.

They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.

They were a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. 

These molluscs, commonly referred to as ammonites, are more closely related to living coleoids — octopuses, squid, and cuttlefish) than they are to shelled nautiloids such as the living Nautilus species.

The Ammonoidea can be divided into six orders:

  • Agoniatitida, Lower Devonian - Middle Devonian
  • Clymeniida, Upper Devonian
  • Goniatitida, Middle Devonian - Upper Permian
  • Prolecanitida, Upper Devonian - Upper Triassic
  • Ceratitida, Upper Permian - Upper Triassic
  • Ammonitida, Lower Jurassic - Upper Cretaceous

Ammonites have intricate and complex patterns on their shells called sutures. The suture patterns differ across species and tell us what time period the ammonite is from. If they are geometric with numerous undivided lobes and saddles and eight lobes around the conch, we refer to their pattern as goniatitic, a characteristic of Paleozoic ammonites.

If they are ceratitic with lobes that have subdivided tips; giving them a saw-toothed appearance and rounded undivided saddles, they are likely Triassic. For some lovely Triassic ammonites, take a look at the specimens that come out of Hallstatt, Austria and from the outcrops in the Humboldt Mountains of Nevada.

Hoplites bennettiana (Sowby, 1826) Christophe Marot
If they have lobes and saddles that are fluted, with rounded subdivisions instead of saw-toothed, they are likely Jurassic or Cretaceous. If you'd like to see a particularly beautiful Lower Jurassic ammonite, take a peek at Apodoceras. Wonderful ridging in that species.

One of my favourite Cretaceous ammonites is the ammonite, Hoplites bennettiana (Sowby, 1826). This beauty is from Albian deposits near Carrière de Courcelles, Villemoyenne, near la région de Troyes (Aube) Champagne in northeastern France.

At the time that this fellow was swimming in our oceans, ankylosaurs were strolling about Mongolia and stomping through the foliage in Utah, Kansas and Texas. Bony fish were swimming over what would become the strata making up Canada, the Czech Republic and Australia. Cartilaginous fish were prowling the western interior seaway of North America and a strange extinct herbivorous mammal, Eobaatar, was snuffling through Mongolia, Spain and England.

In some classifications, these are left as suborders, included in only three orders: Goniatitida, Ceratitida, and Ammonitida. Once you get to know them, ammonites in their various shapes and suturing patterns make it much easier to date an ammonite and the rock formation where it is found.

Ammonites first appeared about 240 million years ago, though they descended from straight-shelled cephalopods called bacrites that date back to the Devonian, about 415 million years ago, and the last species vanished in the Cretaceous–Paleogene extinction event.

They were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish. They were prolific back in the day, living (and sometimes dying) in schools in oceans around the globe. We find ammonite fossils (and plenty of them) in sedimentary rock from all over the world.

In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past.

For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. 

Generally, deeper is older, so we use the sedimentary layers of rock to match up to specific geologic time periods, rather like the way we use tree rings to date trees. A handy way to compare fossils and date strata across the globe.

References: Inoue, S., Kondo, S. Suture pattern formation in ammonites and the unknown rear mantle structure. Sci Rep 6, 33689 (2016). https://doi.org/10.1038/srep33689

https://www.nature.com/articles/srep33689?fbclid=IwAR1BhBrDqhv8LDjqF60EXdfLR7wPE4zDivwGORTUEgCd2GghD5W7KOfg6Co#citeas

Photos: Argonauticeras besairei from the awesome José Juárez Ruiz.

Photo: Hoplites bennettiana from near Troyes, France. Collection de Christophe Marot

Wednesday 19 October 2022

DRIFTWOOD CANYON FOSSIL BEDS / KUNGAX

White Eared Puffbird, Nystalus chacuru
Driftwood Canyon Provincial Park 

Driftwood Canyon Provincial Park covers 23 hectares of the Bulkley River Valley, on the east side of Driftwood Creek, a tributary of the Bulkley River, 10 km northeast of the town of Smithers in northern British Columbia. 

Wet'suwet'en First Nation

The parklands are part of the asserted traditional territory of the Wet'suwet'en First Nation which includes lands around the Bulkley River, Burns Lake, Broman Lake, and François Lake in the northwestern Central Interior of British Columbia. 

The Wetʼsuwetʼen are part of the Dakelh or Carrier First Nation, and in combination with the Babine First Nation are referred to as the Western Carrier. They speak Witsuwitʼen, a dialect of the Babine-Witsuwitʼen language which, like its sister language Carrier, is a member of the Athabaskan family.

Their oral history or kungax recounts a time when their ancestral village, Dizkle or Dzilke, once stood upstream from the Bulkley Canyon. This cluster of cedar houses on both sides of the river was said to be abandoned because of an omen of impending disaster. The exact location of the village has been lost but their stories live on. 

The neighbouring Gitxsan people of the Hazelton area have a similar tale, though the village in their version is referred to as Dimlahamid or Temlahan. Their house groups include the Gilseyhu or Big Frog Clan, the Laksilyu or Small Frog Clan, the Tsayu or Beaver Clan, the Gitdumden or Wolf and Bear Clan and the Laksamshu or Fireweed and Owl Clan.

Driftwood Canyon Fossil Beds

Driftwood Canyon's Fossil Beds record life in the earlier portion of the Eocene when British Columbia — and indeed our world — was much warmer than it is today. This site is recognized as one of the world’s most significant fossil beds. It provides us with a fascinating opportunity to understand the area’s evolutionary processes of both geology and biology. The park was created in 1967 by the donation of the land by the late Gordon Harvey (1913–1976) to protect fossil beds on the east side of Driftwood Creek. The beds were discovered around the beginning of the 20th century. 

Metasequoia, the Dawn Redwood
We have found plant, fish and insect fossil here including Metasequoia, the Dawn Redwood, alder, fossil salmon, wasps, water striders and vertebrate material. Bird feathers are infrequently collected from the shales; however, two bird body fossils have been found here.

In 1968, a bird body fossil was collected in the Eocene shales of the Ootsa Lake Group in Driftwood Canyon Provincial Park by Pat Petley of Kamloops. Pat Petley donated the specimen in 2000 to the Thompson Rivers University (TRU) palaeontology collections. This fossil bird specimen is tentatively identified as the puffbird, Piciformes Bucconidae, of the genus Primobucco.

Primobucco is an extinct genus of bird placed in its own family, Primobucconidae. The type species, Primobucco mcgrewi, lived during the Lower Eocene of North America. It was initially described by American paleo-ornithologist Pierce Brodkorb in 1970, from a fossil right-wing, and thought to be an early puffbird. However, the discovery of a further 12 fossils in 2010 indicate that it is instead an early type of roller.

Related fossils from the European Messel deposits have been assigned to the two species P. perneri and P. frugilegus. Two specimens of P. frugilegus have been found with seeds in the area of their digestive tract, which suggests that these birds were more omnivorous than the exclusively predaceous modern rollers. The Driftwood specimen has never been thoroughly studied. If there is a grad student out there looking for a worthy thesis, head on down to the Thompson Rivers University where you'll find the specimen on display.

Another fossil bird, complete with feathers, was collected at Driftwood Canyon in 1970, This one was found by Margret and Albrecht Klöckner who were travelling from Germany. Theirs is a well-travelled specimen, having visited many sites in BC as they toured around, then to Germany and finally back to British Columbia when it was repatriated and donated to the Royal British Columbia Museum in Victoria. I'm not sure if it is still on display or back in collections, but it was lovingly displayed back in 2008. There is a new grad student, Alexis, looking at Eocene bird feathers down at the RBCM, so perhaps it is once again doing the rounds. 

This second bird fossil is of a long-legged water bird and has been tentatively identified by Dr. Gareth Dyke of the University of Southampton as possibly from the order Charadriiformes, a diverse order of small to medium-ish water birds that include 350 species of gulls, plovers, sandpipers, terns, snipes, and waders. Hopefully, we'll hear more on this find in the future.

Tapirs and Tiny Hedgehogs

The outcrops at Driftwood Canyon are also special because they record a record of some of the first fossil mammals ever to be found in British Columbia at this pivotal point in time. Wee proto-hedgehogs smaller than your thumb lived in the undergrowth of that fossil flora. They shared the forest floor with an extinct tapir-like herbivore in the genus Heptodon that looked remarkably similar to his modern, extant cousins but lacked their pronounced snout (proboscis). I'm guessing that omission made him the more fetching of his lineage.

In both cases, it was a fossilized jaw bone that was recovered from the mud, silt and volcanic ash outcrops in this ancient lakebed site. And these two cuties are significant— they are the very first fossil mammals we've ever found from the early Eocene south of the Arctic.

How can we be sure of the timing? The fossil outcrops here are found within an ancient lakebed. Volcanic eruptions 51 million years ago put loads of fine dust into the air that settled then sank to the bottom of the lake, preserving the specimens that found their way here — leaves, insects, birds, mammals.

 As well as turning the lake into a fossil making machine (water, ash, loads of steady sediment to cover specimens and stave off predation...) the volcanic ash contains the very chemically inert (resistant to mechanical weathering) mineral zircon which we can date with uranium/lead (U/Pb). 

The U/Pb isotopic dating technique is wonderfully accurate and mighty helpful in dating geologic events from volcanic eruptions, continental movements to mass extinctions. This means we know exactly when these lovelies were fossilized and, in turn, their significance.

What To Know Before You Go

If you fancy a visit to Driftwood Canyon Park, the park is accessible from Driftwood Road from Provincial Highway 16. You are welcome to view and photograph the fossils found here but collecting is strictly forbidden. 

Driftwood Canyon is recognized as one of the world’s most significant fossil beds. It provides park users with a fascinating opportunity to understand the area’s evolutionary processes of both geology and biology. The day-use area is open from May 15 to September 2. There is a short, wheelchair-accessible interpretative trail that leads from the parking are to the fossil beds. Pets are welcome on leash. Signs along the trail provide information on fossils and local history. 

Below a cliff face at the end of the trail is a viewing area that has interpretive information and viewing area overlooking Driftwood Creek.

This park proudly operated by Mark and Anais Drydyk
Email: kermodeparks@gmail.com / Tel: 1 250 877-1482 or 1 250 877-1782

Driftwood Canyon Provincial Park Brochure: 
https://bcparks.ca/explore/parkpgs/driftwood_cyn/driftwood-canyon-brochure.pdf?v=1638723136455


Tuesday 18 October 2022

A TASTE FOR STUDIES

Chelonia. Schildkröten by Ernst Haeckel, 1904
Care for some tarantula with that walrus? No? how about some Woolly mammoth?

While eating study specimens is not de rigueur today, it was once common practice for researchers in the 1700-1880s. 

The English naturalist, Charles Darwin belonged to an elite men's club dedicated to tasting exotic meats. In his first book, Darwin wrote almost three times as much about dishes like armadillo and tortoise urine as he did on the biogeography of his Galapagos finches. 

From his great love of gastronomy, I am surprised any of his tasty specimens made it back from his historic voyage on the HMS Beagle — particularly the turtles.

One of the most famous scientific meals occurred one Saturday evening on the 13th of January, 1951. This was at the 47th Explorers Club Annual Dinner (ECAD) when members purportedly dined on a frozen woolly mammoth. 

Commander Wendell Phillips Dodge was the promotor of the banquet. He sent out press notices proclaiming the event's signature dish would be a selection of prehistoric meat. Whether Dodge did this simply to gain attendees or play a joke remains a mystery. 

The prehistoric meat was supposedly found at Woolly Cove on Akutan in the Aleutians Islands of Alaska, USA, by the eminent polar explorers' Father Bernard Rosecrans Hubbard, American geologist, explorer sometimes called the Glacier Priest, and polar explorer Captain George Francis Kosco of the United States Navy.

Fried Tarantula & Goat Eyeballs

This much-publicized meal captured the public’s imagination and became an enduring legend and source of pride for the Club, popularizing an annual menu of exotics that continues today. The Club is well-known for its notorious hors d’oeuvres like fried tarantulas and goat eyeballs as it is for its veritable whose who of notable members — Teddy Roosevelt, Neil Armstrong, Buzz Aldrin, Roy Chapman Andrews, Thor Heyerdahl, James Cameron.

The Yale Peabody Museum holds a sample of meat preserved from the 1951 meal, interestingly labelled as a South American Giant Ground Sloth, Megatherium, not Mammoth. The specimen of meat from that famous meal was originally designated BRCM 16925 before a transfer in 2001 from the Bruce Museum to the Yale Peabody Museum of Natural History (New Haven, CT, USA) where it gained the number YPM MAM 14399.

The specimen is now permanently deposited in the Yale Peabody Museum with the designation YPM HERR 19475 and is accessible to outside researchers. The meat was never fixed in formalin and was initially stored in isopropyl alcohol before being transferred to ethanol when it arrived at the Peabody Museum. DNA extraction occurred at Yale University in a clean room with equipment reserved exclusively for aDNA analyses.

In 2016, Jessica Glass and her colleagues sequenced a fragment of the mitochondrial cytochrome-b gene and studied archival material to verify its identity, which if genuine, would extend the range of Megatherium over 600% and alter views on ground sloth evolution. 

Mammoth, Megatherium — Green Sea Turtle

Their results showed that the meat was not Mammoth or Megatherium, but a bit of Green Sea Turtle, Chelonia mydas. So much for elaborate legends. The prehistoric dinner was likely meant as a publicity stunt. 

Glass's study emphasizes the value of museums collecting and curating voucher specimens, particularly those used for evidence of extraordinary claims. Not so long before Glass et al. did their experiment, a friend's mother (and my kayaking partners) served up a venison steak from her freezer to dinner guests in Castlegar that hailed from 1978. Tough? Inedible? I have it on good report that the meat was surprisingly divine.

Reference: Glass, J. R., Davis, M., Walsh, T. J., Sargis, E. J., & Caccone, A. (2016). Was Frozen Mammoth or Giant Ground Sloth Served for Dinner at The Explorers Club?. PloS one, 11(2), e0146825. https://doi.org/10.1371/journal.pone.0146825

Image: Chelonia. Schildkröten by Ernst Haeckel, 1904, Prints & Photographs Division, Library of Congress, LC-DIG-ds-07619.

Join the Explorer's Club

Fancy yourself an explorer who should join the club? Here is a link to their membership application. The monied days of old are still inherent, but you will be well pleased to learn you can now join for as little as $50 US.

Link: https://www.explorers.org/wp-content/uploads/Membership-Application_2021-11-19.pdf

Monday 17 October 2022

OUR CHARMING TETRAPODS

The irresistable tetrapod Tiktaalik
In the late 1930s, our understanding of the transition of fish to tetrapods — and the eventual jump to modern vertebrates — took an unexpected leap forward. 

The evolutionary a'ha came from a single partial fossil skull found on the shores of a riverbank in Eastern Canada. 

Meet the Stegocephalian, Elpistostege watsoni, an extinct genus of finned tetrapodomorphs that lived during the Late Givetian to Early Frasnian of the Late Devonian — 382 million years ago. 

Elpistostege watsoni — perhaps the sister taxon of all other tetrapods — was first described in 1938 by British palaeontologist and elected Fellow of the Royal Society of London, Thomas Stanley Westoll. Westroll was an interesting fellow whose research interests were wide-ranging. He was a vertebrate palaeontologist and geologist best known for his innovative work on Palaeozoic fishes and their relationships with tetrapods. 

Elpistostege watsoni
As a specialist in early fish, Westoll was the perfect person to ask to interpret that single partial skull roof discovered at the Escuminac Formation in Quebec, Canada. 

His findings and subsequent publication named Elpistostege watsoni and helped us to better understand the evolution of fishes to tetrapods — four-limbed vertebrates — one of the most important transformations in vertebrate evolution. 

Hypotheses of tetrapod origins rely heavily on the anatomy of but a few tetrapod-like fish fossils from the Middle and Late Devonian, 393–359 million years ago. 

These taxa — known as elpistostegalians — include Panderichthys, Elpistostege and Tiktaalik — none of which had yet to reveal the complete skeletal anatomy of the pectoral fin. 

Elpistostege watsoni
None until 2010 that is, when a complete 1.57-metre-long articulated specimen was found and described by Richard Cloutier et al. in 2020. 

The specimen helped us to understand the origin of the vertebrate hand. Stripped from its encasing stone, it revealed a set of paired fins of Elpistostege containing bones homologous to the phalanges (finger bones) of modern tetrapods and is the most basal tetrapodomorph known to possess them. 

Once the phalanges were uncovered, prep work began on the fins. The fins were covered in wee scales and lepidotrichia (fin rays). The work was tiresome, taking more than 2,700 hours of preparation but the results were thrilling. 

Origin of the Vertebrate Hand
We could now clearly see that the skeleton of the pectoral fin has four proximodistal rows of radials — two of which include branched carpals — as well as two distal rows organized as digits and putative digits. 

Despite this skeletal pattern — which represents the most tetrapod-like arrangement of bones found in a pectoral fin to date blurring the line between fish and land vertebrates — the fin retained lepidotrichia (those wee fin rays) distal to the radials. 

This arrangement confirmed an age-old question — showing us for the first time that the origin of phalanges preceded the loss of fin rays, not the other way around.

E. watsoni is very closely related to Tiktaalik roseae found in 2004 in the Canadian Arctic — a tetrapodomorpha species also known as a Choanata. These were advanced forms transitional between fish and the early labyrinthodonts playfully referred to as fishapods — half-fish, half-tetrapod in appearance and limb morphology. 

Up to that point, the relationship of limbed vertebrates (tetrapods) to lobe-finned fish (sarcopterygians) was well known, but the origin of major tetrapod features remained obscure for lack of fossils that document the sequence of evolutionary changes — until Tiktaalik. While Tiktaalik is technically a fish, this fellow is as far from fish-like you can be and still be a card-carrying member of the group. 

Tiktaalik roseae
Complete with scales and gills, this proto-fish lacked the conical head we see in modern fish but had a rather flattened triangular head more like that of a crocodile. 

Tiktaalik had scales on its back and fins with fin webbing but like early land-living animals, it had a distinctive flat head and neck. He was a brawny brute. The shape of his skull and shoulder look part fish and part amphibian.

The watershed moment came as Tiktaalik was prepped. Inside Tiktaalik's fins, we find bones that correspond to the upper arm, forearm and even parts of the wrist — all inside a fin with webbing — remarkable! 

Its fins have thin ray bones for paddling like most fish, but with brawny interior bones that gave Tiktaalik the ability to prop itself up, using his limbs for support. I picture him propped up on one paddle saying, "how you doing?" 

Six years after Tiktaalik was discovered by Neil Shubin and team in the ice-covered tundra of the Canadian Arctic on southern Ellesmere Island, a team working the outcrops at Miguasha on the Gaspé Peninsula discovered the only fully specimen of E. watsoni found to date — greatly increasing our knowledge of this finned tantalizingly transitional tetrapodomorph. 

E. watsoni fossils are rare — this was the fourth specimen collected in over 130 years of hunting. Charmingly, the specimen was right on our doorstop — extracted but a few feet away from the main stairs descending onto the beach of Miguasha National Park. 

L'nu Mi’gmaq First Nations of the Gespe’gewa’gi Region

Miguasha is nestled in the Gaspésie or Gespe’gewa’gi region of Canada — home to the Mi’gmaq First Nations who self-refer as L’nu or Lnu. The word Mi’gmaq or Mi’kmaq means the family or my allies/friends in Mi'kmaw, their native tongue (and soon to be Nova Scotia's provincial first language). They are the people of the sea and the original inhabitants of Atlantic Canada having lived here for more than 10,000 years. 

The L'nu were the first First Nation people to establish contact and trade with European explorers in the 16th and 17th centuries — and perhaps the Norse as early as the turn of the Millenium. Sailing vessels filled with French, British, Scottish, Irish and others arrived one by one to lay claim to the region — settling and fighting over the land. As each group rolled out their machinations of discovery, tensions turned to an all-out war with the British and French going head to head. I'll spare you the sordid details but for everyone caught in the crossfire, it went poorly.

North America Map 1775 (Click to Enlarge)
Cut to 1760, the British tipped the balance with their win at the Battle of the Restigouche, the last naval battle between France and England for possession of the North American continent — Turtle Island. 

The bittersweet British victory sparked the American War of Independence. 

For the next twenty years, the L'nu would witness and become embroiled in yet another war for these lands, their lands — first as bystanders, then as American allies, then intimidated into submission by the British Royal Navy with a show of force by way of a thirty-four gun man-of-war, encouraging L'nu compliance — finally culminating in an end to the hostilities with the 1783 Treaty of Paris. 

The peace accord held no provisions for the L'nu, Métis and First Nations impacted. None of these newcomers was Mi'kmaq — neither friends nor allies.

It was to this area some sixty years later that the newly formed Geological Survey of Canada (GSC) began exploring and mapping the newly formed United Province of Canada. Geologists in the New Brunswick Geology Branch traipsed through the rugged countryside that would become a Canadian province in 1867. 

It was on one of these expeditions that the Miguasha fossil outcrops were discovered. They, too, would transform in time to become Miguasha National Park or Parc de Miguasha, but at first, they were simply the promising sedimentary exposures on the hillside across the water —  a treasure trove of  Late Devonian fauna waiting to be discovered.

In the summer of 1842, Abraham Gesner, New Brunswick’s first Provincial Geologist, crossed the northern part of the region exploring for coal. Well, mostly looking for coal. Gesner also had a keen eye for fossils and his trip to the Gaspé Peninsula came fast on the heels of a jaunt along the rocky beaches of Chignecto Bay at the head of the Bay of Fundy and home to the standing fossil trees of the Joggins Fossil Cliffs. 

Passionate about geology and chemistry, he is perhaps most famous for his invention of the process to distil the combustible hydrocarbon kerosene from coal oil — a subject on which his long walks exploring a budding Canada gave him a great deal of time to consider. We have Gesner to thank for the modern petroleum industry. He filed many patents for clever ways to distil the soft tar-like coal or bitumen still in use today.

He was skilled in a broad range of scientific disciplines — being a geologist, palaeontologist, physician, chemist, anatomist and naturalist — a brass tacks geek to his core. Gesner explored the coal exposures and fossil outcrops across the famed area that witnessed the region become part of England and not France — and no longer L'nu.

Following the Restigouche River in New Brunswick through the Dalhousie region, Gesner navigated through the estuary to reach the southern coast of the Gaspé Peninsula into what would become the southeastern coast of Quebec to get a better look at the cliffs across the water. He was the first geologist to lay eyes on the Escuminac Formation and its fossils.

In his 1843 report to the Geologic Survey, he wrote, “...I found the shore lined with a coarse conglomerate. Farther eastward the rocks are light blue sandstones and shales, containing the remains of vegetables. (...) In these sandstone and shales, I found the remains of fish and a small species of tortoise with fossil foot-marks.”

We now know that this little tortoise was the famous Bothriolepis, an antiarch placoderm fish. It was also the first formal mention of the Miguasha fauna in our scientific literature. Despite the circulation of his report, Gesner’s discovery was all but ignored — the cliffs and their fossil bounty abandoned for decades to come. Geologists like Ells, Foord and Weston, and the research of Whiteaves and Dawson, would eventually follow in Gesner's footsteps.

North America Map 1866 (Click to Enlarge)
Over the past 180 years, this Devonian site has yielded a wonderfully diverse aquatic assemblage from the Age of Fishes — five of the six fossil fish groups associated with the Devonian including exceptionally well-preserved fossil specimens of the lobe-finned fishes. 

This is exciting as it is the lobe-finned fishes — the sarcopterygians — that gave rise to the first four-legged, air-breathing terrestrial vertebrates – the tetrapods. 

Fossil specimens from Miguasha include twenty species of lower vertebrates — anaspids, osteostra-cans, placoderms, acanthodians, actinopterygians and sarcopterygians — plus a limited invertebrate assemblage, along with terrestrial plants, scorpions and millipedes.

Originally interpreted as a freshwater lacustrine environment, recent paleontological, taphonomic, sedimentological and geochemical evidence corroborates a brackish estuarine setting — and definitely not the deep waters of the sea. This is important because the species that gave rise to our land-living animals began life in shallow streams and lakes. It tells us a bit about how our dear Elpistostege watsoni liked to live — preferring to lollygag in cool river waters where seawater mixed with fresh. Not fully freshwater, but a wee bit of salinity to add flavour.  

  • Photos: Elpistostege watsoni (Westoll, 1938 ), Upper Devonian (Frasnian), Escuminac formation, Parc de Miguasha, Baie des Chaleurs, Gaspé, Québec, Canada. John Fam, VanPS
  • Origin of the Vertebrate Hand Illustration, https://www.nature.com/articles/s41586-020-2100-8
  • Tiktaalik Illustration: By Obsidian Soul - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=47401797

References & further reading:

  • From Water to Land: https://www.miguasha.ca/mig-en/the_first_discoveries.php
  • UNESCO Miguasha National Park: https://whc.unesco.org/en/list/686/
  • Office of L'nu Affairs: https://novascotia.ca/abor/aboriginal-people/
  • Cloutier, R., Clement, A.M., Lee, M.S.Y. et al. Elpistostege and the origin of the vertebrate hand. Nature 579, 549–554 (2020). https://doi.org/10.1038/s41586-020-2100-8
  • Daeschler, E. B., Shubin, N. H. & Jenkins, F. A. Jr. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440, 757–763 (2006).
  • Shubin, Neil. Your Inner Fish: A Journey into the 3.5 Billion History of the Human Body.
  • Evidence for European presence in the Americas in AD 1021: https://www.nature.com/articles/s41586-021-03972-8