Showing posts with label ammonite. Show all posts
Showing posts with label ammonite. Show all posts

Monday, 26 January 2026

A MASSIVE AMMONITE THE SIZE OF A CAR: THE FERNIE AMMONITE

Titanites occidentalis, Fernie Ammonite
The Fernie ammonite—long known as Titanites occidentalis—has officially been given a new name: Corbinites occidentalis, a fresh genus erected after a meticulous re-evaluation of this Western Giant’s anatomy and lineage. 

What hasn’t changed is its breathtaking presence high on Coal Mountain near Fernie, British Columbia, where this colossal cephalopod has rested for roughly 150 million years.

This extraordinary fossil belongs to the family Lithacoceratinae within the ataxioceratid ammonites. 

Once thought to be a close cousin of the great Titanites of Dorset, new material—including two additional large specimens discovered at nearby mine sites—reveals ribbing patterns and growth-stage features that simply didn’t match Titanites

With these multiple overlapping growth stages finally available, paleontologists had the missing pieces needed to correct its identity.

So, Titanites occidentalis no more—meet Corbinites occidentalis, a giant ammonite likely endemic to the relatively isolated early Alberta foreland basin of the Late Jurassic.

Fernie, British Columbia, Canada
The Fernie ammonite is a carnivorous cephalopod from the latest Jurassic (Tithonian). 

The spectacular individual on Coal Mountain measures 1.4 metres across—about the size of a small car tire and absolutely staggering when you first see it hugged by the mountainside.

The first specimen, discovered in 1947 by a British Columbia Geophysical Society mapping team at Coal Creek, was initially mistaken for a “fossil truck tire.” 

Fair enough—if a truck tire had been forged in the Jurassic and left on a mountaintop. It was later described by GSC paleontologist Hans Frebold, who gave it the name Titanites occidentalis, inspired by the giant ammonites of Dorset. 

For decades, that name stuck, even though paleontologists suspected the attribution was shaky due to poor preservation of the holotype’s inner whorls.

Recent discoveries of two additional specimens at Teck Resources’ Coal Mountain Mine finally provided the evidence needed for reassessment. 

With intact inner whorls and beautifully preserved ribbing—including hallmark variocostate and ataxioceratoid ornamentation—researchers Terence P. Poulton and colleagues demonstrated that the Canadian ammonite does not belong in Titanites

Their work (Volumina Jurassica, 2023) established Corbinites as a brand-new genus, with C. occidentalis as its type and only known species.

These specimens—one exceeding a metre, another about 64 cm—confirm a resident ammonite population within this basin. And as of now, these giants are unique to Western Canada.
A Journey Up Coal Mountain

If you’re keen to meet Corbinites occidentalis in the wild, you’ll want to head to Fernie, in southeastern British Columbia, close to the Alberta border. 

As your feet move up the hillside, you can imagine this land 10,000 years ago, rising above great glaciers. Where footfalls trace the steps of those that came before you. This land has been home to the Yaq̓it ʔa·knuqⱡi ‘it First Nation and Ktunaxa or Kukin ʔamakis First Nations whose oral history have them living here since time immemorial. Like them, take only what you need and no more than the land offers — packing out anything that you packed in. 

Active logging in the area since 2021 means that older directions are now unreliable—trailheads have shifted, and a fair bit of bushwhacking is the price of admission. Though clear-cutting reshaped the slope, loggers at CanWel showed admirable restraint: they worked around the fossil, leaving it untouched.

The non-profit Wildsight has been championing efforts to protect the ammonite, hoping to establish an educational trail with provincial support and possible inclusion under the Heritage Conservation Act—where the fossil’s stewardship could be formally recognised.

HIKING TO THE FERNIE AMMONITE (IMPORTANT UPDATE: TRAIL CLOSED)

From the town of Fernie, British Columbia, you would traditionally head east along Coal Creek Road toward Coal Creek, with the ammonite site sitting 3.81 km from the road’s base as the crow flies. 

The classic approach begins at a roadside exposure of dark grey to black Cretaceous plant fossils, followed by a creek crossing and a steep, bushwhacking ascent.

However — and this is critical — the trail is currently closed.

The entire access route runs straight through an area of active logging, and conditions on the slope are extremely dangerous. Between heavy equipment, unstable cutblocks, and altered drainages, this is not a safe place for hikers right now.

Conservation groups, including Wildsight, continue working toward restoring safe public access and formalising the site under the Heritage Conservation Act. 

Their long-term goal is to reopen the trail as a designated educational hike with proper signage, but at present, the route should not be attempted. 

Once logging operations move out of the area and safety assessments are done, the possibility of reopening may return.

For now, the safest—and strongly recommended—way to view this iconic fossil is via the excellent cast on display at the Courtenay & District Museum on Vancouver Island, or at the Visitor Information Centre in Sparwood.

Photo credit: Vince Mo Media. Vince is an awesome photographer and drone operator based in Fernie, BC. Check out his work (and hire him!) by visiting his website at vmmedia.ca.

Friday, 16 January 2026

AMMONITES IN CONCRETION

At first glance they look like ordinary stones—rounded, weathered, unassuming. 

But then you notice the delicious hints: a spiral ghosting through the surface, a faint rib, a seam where time is ready to split wide open—it's magic!

Ammonites, long extinct cephalopods, so often appear this way because, shortly after death, their shells became chemical centres of attraction on the seafloor. 

As the soft tissues decayed, they altered the surrounding sediment, triggering minerals—often calcium carbonate or iron-rich compounds—to precipitate rapidly around the shell. 

This early cementation formed a concretion, a protective stone cocoon that hardened long before the surrounding mud was compressed into rock. While everything around it flattened, cracked, and distorted under pressure, the ammonite inside remained cradled and whole.

What you see here is a gathering of these time capsules: a cluster of ammonites preserved in their concretions, each one split or weathered just enough to reveal the coiled story within. 

Some are neatly halved, spirals laid bare like fingerprints from ages past; others are only just beginning to show themselves, teasing their presence beneath rough stone skins. 

Together, they tell a familiar fossil-hunter’s tale—of patience, sharp eyes, and the quiet thrill of knowing that a simple rock can hold an ancient ocean inside.

Thursday, 8 January 2026

TASEKO LAKES FOSSIL ADVENTURE

John Fam, VIPS & VanPS
Over three field seasons, thirty-five taxa from the Mineralense and Rursicostatum zones were studied and three new species were discovered and named: Fergusonites hendersonae, Eolytoceras constrictum and Pseudaetomoceras victoriense

The late Hettangian ammonite fauna from Taseko Lakes is diverse and relatively well‐preserved.

This material is very important as it greatly expands our understanding of the fauna and ranges of ammonites currently included in the North American regional ammonite zonation. 

Castle Peak, Taseko Lakes
If you look closely, you can see a wee jet ranger helicopter hovering over a very chilly Castle Peak in the southern Chilcotin Range, British Columbia, Canada. 

Castle Peak served as our glorious landmark and loadstone of basalt that marked the spot on our Jurassic/Triassic palaeo adventures collecting about 7000 ft. 

The peak itself reaches higher still to around 8,176 ft. 

The site is special, both in terms of its geology and paleontological bounty, but also for the time spent there with friends. 

I had the very great honour of having the newly named, Fergusonites hendersonae, a new species of nektonic carnivorous ammonite, named after me by palaeontologist Louse Longridge from the University of British Columbia. 

Fergusonites hendersonae (Longridge, 2008)
I had met Louise as an undergrad and was pleased as punch to hear that she would be continuing the research by Dr. Howard Tipper, the authority on this area of the Chilcotins and Haida Gwaii — which he dearly loved. 

"Tip" was a renowned Jurassic ammonite palaeontologist and an excellent regional mapper who mapped large areas of the Cordillera. 

He made significant contributions to Jurassic paleobiogeography and taxonomy in collaboration with Dr. Paul Smith, Head of Earth and Ocean Science at the University of British Columbia. 

Tip’s regional mapping within BC has withstood the test of time and for many areas became the region's base maps for future studies. The scope of Tip’s understanding of Cordilleran geology and Jurassic palaeontology will likely never be matched. He passed away on April 21, 2005. His humour, knowledge and leadership will be sorely missed. 

Badouxia ammonites
Before he left us, he shared that knowledge with many of whom would help to secure his legacy for future generations. 

We did several trips over the years up to the Taseko Lake area of the Rockies joined by many wonderful researchers from the Vancouver Island Palaeontological Society and Vancouver Paleontological Society, as well as the University of British Columbia. 

Both Dan Bowen and John Fam were instrumental in planning those expeditions and each of them benefited greatly from the knowledge of Dr. Howard Tipper. 

If not for Tipper's early work in the region, our shared understanding and much of what was accomplished in his last years and after his passing would not have been possible. 

Over the course of three field seasons, we endured elevation sickness, rain, snow, grizzly bears and very chilly nights  — we were sleeping right next to a glacier at one point — but were rewarded by the enthusiastic crew, and helicopter rides — which really cut down the hiking time — excellent specimens including three new species of ammonites, along with a high-spired gastropod and lobster claw that have yet to be written up. 

This area of the world is wonderful to hike and explore — a stunningly beautiful country. We were also blessed with access as the area is closed to all fossil collecting except with a permit.

Monday, 8 December 2025

HOLCOPHYLLOCERAS: A JEWEL OF JURASSIC SEAS

What is most wonderful about natural science is that every fossil—every spiral, ridge, and suture—opens a window onto a vanished world. 

Take, for instance, this tremendously robust, intricately sutured ammonite: Holcophylloceras mediterraneum (Neumayr, 1871). Collected from Late Jurassic (Oxfordian) deposits near Sokoja, Madagascar, it is a marvel of paleontological sculpture, a testament to evolutionary experimentation that thrived in the tropical Tethyan seas some 160 million years ago.

Madagascar has long been recognized as a treasure trove of beautifully preserved fossils. From its Cretaceous dinosaurs to its Triassic amphibians and its extraordinary Jurassic ammonites, the island offers a richness few regions can rival. 

The spiraled shell of Holcophylloceras mediterraneum is no exception—its ornate sutures and lustrous preservation hint at a creature exquisitely adapted to the warm, shallow continental shelf of Gondwana’s eastern margin.

Like all ammonites, Holcophylloceras built its shell in a series of chambers divided by walls known as septa. These septa, when intersecting the outer shell, formed the elaborate suture patterns that make collectors swoon—tangled, fractal-like lines that resemble botanical tracings or rivers on an ancient map.

Running through each chamber was the siphuncle, a biological marvel that allowed the ammonite to adjust the gas and fluid content inside its shell. In effect, ammonites carried a set of built-in ballast tanks, enabling them to rise and sink through the water column almost effortlessly. Their final and largest chamber—the body chamber—housed the soft tissues, including the tentacles, eyes, and muscular arms.

Picture, if you will, a squid or octopus, then surround it with a coiled, beautifully ribbed shell. Now place it in a warm tropical sea filled with predators and prey, reefs and drifting plankton, and a ton upon ton of water pressing down from above. That was the world Holcophylloceras mastered.

The Oxfordian oceans surrounding Madagascar were not quiet waters. They were alive—thrumming with movement, colour, and competition. The ammonite’s elegant spiral belies the reality of its bustling neighbourhood. Some of the many animals that would have swum, crawled, hunted, or drifted around Holcophylloceras mediterraneum include:

Marine Reptiles
  • Plesiosaurs – long-necked Cryptoclidus–like forms gliding between shoals of fish.
  • Ichthyosaurs – such as Ophthalmosaurus, sleek torpedo-shaped hunters with dinner-plate eyes built for dim, deeper waters.
  • Pliosaurs – apex predators like Liopleurodon, whose cavernous jaws could swallow a human whole.
Other Cephalopods

Belemnites – dart-shaped squid-relatives such as Hibolithes, flickering through the water column like living arrows.

Other ammonite genera sharing these seas:
  • Perisphinctes
  • Asaphoceras
  • Physodoceras
  • Aspidoceras
  • Glochiceras
Each species filled its own ecological niche, from fast-swimming pursuit hunters to slow-drifting plankton feeders.

Fishes and Sharks
  • Hybodont sharks – including Hybodus and Asteracanthus, equipped with crushing teeth for shelled prey and formidable dorsal spines.
  • Teleost fishes – early ray-finned fishes beginning to diversify.
  • Coelacanths – ancient lobe-finned holdovers patrolling calmer waters.
Invertebrates
  • Bivalves – oysters, rudists, and inoceramids carpeting the shallow seafloor.
  • Gastropods – from turreted turritellids to broad-shelled neritids.
  • Crustaceans – shrimp, lobsters, and small crabs scraping algae from reef structures.
  • Sea urchins and echinoids – spiny architects of sandy burrows.
Reefs & Drifting Life
  • Sponges and corals creating pocket reefs in warm carbonate-rich environments.
  • Planktonic foraminifera and radiolarians – the drifting micro-architecture of the Jurassic sea, powering food webs from below.
Ammonites like Holcophylloceras thrived in these diverse ecosystems by filling a mid-level trophic niche. They were both predator and prey—nimble enough to hunt small fish and crustaceans, yet vulnerable to larger hunters. Their greatest evolutionary advantage was their ability to regulate buoyancy, adjusting depth as easily as a modern submarine.

But their most beautiful legacy remains their shells. In death, they fell to the seafloor, where their chambers filled with sediment, minerals, and eventually time itself. 

Today, polished by erosion or revealed in limestone, they offer a perfect blend of geometry, biology, and ancient artistry.

Wednesday, 24 September 2025

LOWER LIAS LYTOCERAS AMMONITE

A superbly prepped and extremely rare Lytoceras (Suess, 1865) ammonite found as a green ammonite nodule by Matt Cape in the Lower Lias of Dorset. 

Lytoceras are rare in the Lower Lias of Dorset — apart from the Belemnite Stone horizon — so much so that Paul Davis, whose skilled prep work you see here, initially thought it might be a Becheiceras hidden within the large, lumpy nodule. 

One of the reasons these lovelies are rarely found from here is that they are a Mediterranean Tethyian genus. The fossil fauna we find in the United Kingdom are dominated by Boreal Tethyian genera. 

We do find Lytoceras sp. in the Luridum subzone of the Pliensbachian showing that there was an influx of species from the Mediterranean realm during this time. This is the first occurrence of a Lytoceras that he has ever seen in a green nodule and Paul's seen quite a few. 

This absolutely cracking specimen was found and is in the collections of the awesome Matt Cape. Matt recognized that whatever was hidden in the nodule would take skilled and careful preparation using air scribes. Indeed it did. It took more than five hours of time and skill to unveil the lovely museum-worthy specimen you see here. 

We find Lytoceras in more than 1,000 outcrops around the globe ranging from the Jurassic through to the Cretaceous, some 189.6 to 109.00 million years ago. Once this specimen is fully prepped with the nodule material cut or scraped away, you can see the detailed crinkly growth lines or riblets on the shell and none of the expected coarse ribbing. 

Lytoceras sp. Photo: Craig Chivers
If you imagine running your finger along these, you would be tracing the work of decades of growth of these cephalopods. 

While we cannot know their actual lifespans, but we can make a healthy guess. 

The nautilus, their closest living cousins live upwards of 20 years — gods be good — and less than three years if conditions are poor.

The flanges, projecting flat ribs or collars, develop at the edge of the mouth border on the animal's mantle as they grow each new chamber. 

Each delicate flange grows over the course of the ammonites life, marking various points in time and life stages as the ammonite grew. There is a large variation within Lytoceras with regards to flanges. They provide both ornamentation and strength to the shell to protect it from water pressure as they moved into deeper seas.

The concretion prior to prep
This distinctive genus with its evolute shells are found in the Cretaceous marine deposits of: 

Antarctica (5 collections), Austria (19), Colombia (1), the Czech Republic (3), Egypt (2), France (194), Greenland (16), Hungary (25), Italy (11), Madagascar (2), Mexico (1), Morocco (4), Mozambique (1), Poland (2), Portugal (1), Romania (1), the Russian Federation (2), Slovakia (3), South Africa (1), Spain (24), Tanzania (1), Trinidad and Tobago (1), Tunisia (25); and the United States of America (17: Alaska, California, North Carolina, Oregon).

We also find them in Jurassic marine outcrops in:

Austria (15), Canada (9: British Columbia), Chile (6), France (181), Germany (11), Greenland (1), Hungary (189), India (1), Indonesia (1), Iran (1), Italy (50), Japan (14), Kenya (2), Luxembourg (4), Madagascar (2), Mexico (1), Morocco (43), New Zealand (15), Portugal (1), Romania (5), the Russian Federation (1), Slovakia (1), Spain (6), Switzerland (2), Tunisia (11), Turkey (12), Turkmenistan (1), Ukraine (5), the United Kingdom (12), United States (11: Alaska, California) — in at least 977 known collections. 

References:

Sepkoski, Jack (2002). "A compendium of fossil marine animal genera (Cephalopoda entry)". Bulletins of American Paleontology. 363: 1–560. Archived from the original on 2008-05-07. Retrieved 2017-10-18.

Paleobiology Database - Lytoceras. 2017-10-19.

Systematic descriptions, Mesozoic Ammonoidea, by W.J Arkell, Bernhard Kummel, and C.W. Wright. 1957. Treatise on Invertebrate Paleontology, Part L. Geological Society of America and University of Kansas press.

Tuesday, 12 August 2025

INDEX FOSSILS: AMMONITES

Argonauticeras besairei, Collection of José Juárez Ruiz.
An exceptional example of fractal building of an ammonite septum, in this clytoceratid Argonauticeras besairei from the awesome José Juárez Ruiz.

Ammonites were predatory, squid-like creatures that lived inside coil-shaped shells.

Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. They used these tentacles to snare prey, — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunt today.

Catching a fish with your hands is no easy feat, as I'm sure you know. But the Ammonites were skilled and successful hunters. They caught their prey while swimming and floating in the water column. Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. By pushing air in or out, they were able to control their buoyancy in the water column.

They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.

They were a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs, commonly referred to as ammonites, are more closely related to living coleoids — octopuses, squid, and cuttlefish) than they are to shelled nautiloids such as the living Nautilus species.

The Ammonoidea can be divided into six orders:
  • Agoniatitida, Lower Devonian - Middle Devonian
  • Clymeniida, Upper Devonian
  • Goniatitida, Middle Devonian - Upper Permian
  • Prolecanitida, Upper Devonian - Upper Triassic
  • Ceratitida, Upper Permian - Upper Triassic
  • Ammonitida, Lower Jurassic - Upper Cretaceous
Ammonites have intricate and complex patterns on their shells called sutures. The suture patterns differ across species and tell us what time period the ammonite is from. If they are geometric with numerous undivided lobes and saddles and eight lobes around the conch, we refer to their pattern as goniatitic, a characteristic of Paleozoic ammonites.

If they are ceratitic with lobes that have subdivided tips; giving them a saw-toothed appearance and rounded undivided saddles, they are likely Triassic. For some lovely Triassic ammonites, take a look at the specimens that come out of Hallstatt, Austria and from the outcrops in the Humboldt Mountains of Nevada.

Hoplites bennettiana (Sowby, 1826).
If they have lobes and saddles that are fluted, with rounded subdivisions instead of saw-toothed, they are likely Jurassic or Cretaceous. If you'd like to see a particularly beautiful Lower Jurassic ammonite, take a peek at Apodoceras. Wonderful ridging in that species.

One of my favourite Cretaceous ammonites is the ammonite, Hoplites bennettiana (Sowby, 1826). This beauty is from Albian deposits near Carrière de Courcelles, Villemoyenne, near la région de Troyes (Aube) Champagne in northeastern France.

At the time that this fellow was swimming in our oceans, ankylosaurs were strolling about Mongolia and stomping through the foliage in Utah, Kansas and Texas. Bony fish were swimming over what would become the strata making up Canada, the Czech Republic and Australia. Cartilaginous fish were prowling the western interior seaway of North America and a strange extinct herbivorous mammal, Eobaatar, was snuffling through Mongolia, Spain and England.

In some classifications, these are left as suborders, included in only three orders: Goniatitida, Ceratitida, and Ammonitida. Once you get to know them, ammonites in their various shapes and suturing patterns make it much easier to date an ammonite and the rock formation where is was found at a glance.

Ammonites first appeared about 240 million years ago, though they descended from straight-shelled cephalopods called bacrites that date back to the Devonian, about 415 million years ago, and the last species vanished in the Cretaceous–Paleogene extinction event.

They were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish. They were prolific back in the day, living (and sometimes dying) in schools in oceans around the globe. We find ammonite fossils (and plenty of them) in sedimentary rock from all over the world.

In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past.

For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. Generally, deeper is older, so we use the sedimentary layers rock to match up to specific geologic time periods, rather the way we use tree-rings to date trees. A handy way to compare fossils and date strata across the globe.

References: Inoue, S., Kondo, S. Suture pattern formation in ammonites and the unknown rear mantle structure. Sci Rep 6, 33689 (2016). https://doi.org/10.1038/srep33689
https://www.nature.com/articles/srep33689?fbclid=IwAR1BhBrDqhv8LDjqF60EXdfLR7wPE4zDivwGORTUEgCd2GghD5W7KOfg6Co#citeas

Photo: Hoplites Bennettiana from near Troyes, France. Collection de Christophe Marot

Sunday, 10 August 2025

AINOCERAS OF VANCOUVER ISLAND

A wee baby deep chocolate Ainoceras sp. heteromorph ammonite from Vancouver Island. This adorable corkscrew-shaped ammonite is an extinct marine mollusc related to squid and octopus.  

Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. 

By pushing air in or out, they were able to control their buoyancy in the water column. These little cuties were predators who hunted in Cretaceous seas.

They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber. 

Not all ammonites have this whacky corkscrew design. Most are coiled and some are even shaped like massive paperclips. This one is so remarkable, so joyously perfect my internal thesaurus can’t keep up.

I will be heading back to the area where these lovelies are found in late March this year to see if I can find other associated fossils and learn more about his paleo community

Friday, 18 July 2025

SPIRALING BEAUTY: AMMONITES AS INDEX FOSSILS

Argonauticeras besairei, Collection of José Juárez Ruiz.
An exceptional example of fractal building of an ammonite septum, in this clytoceratid Argonauticeras besairei from the awesome José Juárez Ruiz.

Ammonites were predatory, squid-like creatures that lived inside coil-shaped shells.

Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. They used these tentacles to snare prey, — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunt today.

Catching a fish with your hands is no easy feat, as I'm sure you know. But the Ammonites were skilled and successful hunters. They caught their prey while swimming and floating in the water column. Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. By pushing air in or out, they were able to control their buoyancy in the water column.

They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.

They were a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs, commonly referred to as ammonites, are more closely related to living coleoids — octopuses, squid, and cuttlefish) than they are to shelled nautiloids such as the living Nautilus species.

The Ammonoidea can be divided into six orders:
  • Agoniatitida, Lower Devonian - Middle Devonian
  • Clymeniida, Upper Devonian
  • Goniatitida, Middle Devonian - Upper Permian
  • Prolecanitida, Upper Devonian - Upper Triassic
  • Ceratitida, Upper Permian - Upper Triassic
  • Ammonitida, Lower Jurassic - Upper Cretaceous
Ammonites have intricate and complex patterns on their shells called sutures. The suture patterns differ across species and tell us what time period the ammonite is from. If they are geometric with numerous undivided lobes and saddles and eight lobes around the conch, we refer to their pattern as goniatitic, a characteristic of Paleozoic ammonites.

If they are ceratitic with lobes that have subdivided tips; giving them a saw-toothed appearance and rounded undivided saddles, they are likely Triassic. For some lovely Triassic ammonites, take a look at the specimens that come out of Hallstatt, Austria and from the outcrops in the Humboldt Mountains of Nevada.

Hoplites bennettiana (Sowby, 1826).
If they have lobes and saddles that are fluted, with rounded subdivisions instead of saw-toothed, they are likely Jurassic or Cretaceous. If you'd like to see a particularly beautiful Lower Jurassic ammonite, take a peek at Apodoceras. Wonderful ridging in that species.

One of my favourite Cretaceous ammonites is the ammonite, Hoplites bennettiana (Sowby, 1826). This beauty is from Albian deposits near Carrière de Courcelles, Villemoyenne, near la région de Troyes (Aube) Champagne in northeastern France.

At the time that this fellow was swimming in our oceans, ankylosaurs were strolling about Mongolia and stomping through the foliage in Utah, Kansas and Texas. Bony fish were swimming over what would become the strata making up Canada, the Czech Republic and Australia. Cartilaginous fish were prowling the western interior seaway of North America and a strange extinct herbivorous mammal, Eobaatar, was snuffling through Mongolia, Spain and England.

In some classifications, these are left as suborders, included in only three orders: Goniatitida, Ceratitida, and Ammonitida. Once you get to know them, ammonites in their various shapes and suturing patterns make it much easier to date an ammonite and the rock formation where is was found at a glance.

Ammonites first appeared about 240 million years ago, though they descended from straight-shelled cephalopods called bacrites that date back to the Devonian, about 415 million years ago, and the last species vanished in the Cretaceous–Paleogene extinction event.

They were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish. They were prolific back in the day, living (and sometimes dying) in schools in oceans around the globe. We find ammonite fossils (and plenty of them) in sedimentary rock from all over the world.

In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past.

For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. Generally, deeper is older, so we use the sedimentary layers rock to match up to specific geologic time periods, rather the way we use tree-rings to date trees. A handy way to compare fossils and date strata across the globe.

References: Inoue, S., Kondo, S. Suture pattern formation in ammonites and the unknown rear mantle structure. Sci Rep 6, 33689 (2016). https://doi.org/10.1038/srep33689
https://www.nature.com/articles/srep33689?fbclid=IwAR1BhBrDqhv8LDjqF60EXdfLR7wPE4zDivwGORTUEgCd2GghD5W7KOfg6Co#citeas

Photo: Hoplites Bennettiana from near Troyes, France. Collection de Christophe Marot

Wednesday, 9 July 2025

TOP 10 FAMOUS CANADIAN FOSSIL FINDS

Canada, with its vast and varied landscapes, is a treasure trove of prehistoric wonders. 

From towering tyrannosaurs to exquisitely preserved marine creatures, the fossil record here is not only rich—it’s legendary. 

It is hard to choose our best fossils as there are so many. I have my personal favorites, some found by me, some by good friends and others that rank high simply by my having the good fortune to be there at the moment of discovery. 

These ten fossils stand out not only for their scientific value but also for the astonishing stories they tell about life on ancient Earth. Whether entombed in the Rocky Mountains, buried beneath Arctic permafrost, or hidden in coastal cliffs, each discovery shines a light on a world lost to time.

Honorable mentions are many for a list of this type. Dave Rudkin's find of the Isotelus rex, the largest known trilobite definitely ranks. There are some very fetching crabs and ammonites who deserve mention. As does the First Record of an Oligocene Chimaeroid Fish (Ratfish) Egg Capsule from Vancouver Island . 

The isopod found by the deeply awesome Betty Franklin that is getting ready for publication by Torrey Nyborg is another superb example and makes my personal list. He also has an unexpected fossil lobster in the cue to write up that I found in the South Chilcotin many moons ago, so I will add that here to remind him! 

On that note, Dr. Dave Evans has a paper in the works on the first dinosaur from Vancouver Island found by our own Mike Trask that will hopefully be out soon. There is a new paper by Phil Currie et al. on the fossil fauna from the Eager Formation near Cranbrook that bears mentioning as well as the work being done by Chris Jenkins, Chris New with Brian Chatterton on the Upper Cambrian fauna near there. We can add all the finds from Tumbler Ridge, Wapiti Lake and Miguasha National Park as well.

Oh, so many options!     

So, this is by no means a complete list, but if you are wanting to check out the fossil bounty that Canada has to offer, it is a wonderful place to start!

1. Scotty the T. rex (Saskatchewan)

Discovered in 1991 near Eastend, Saskatchewan, Scotty is the largest and most complete Tyrannosaurus rex ever found in Canada—and one of the oldest individuals known of its species. Weighing an estimated 8,800 kg and measuring over 13 meters, Scotty was a bruiser of a predator. The fossil is housed at the Royal Saskatchewan Museum.

Reference: Funston, G. F., Currie, P. J., & Persons, W. S. IV. (2019). An older and exceptional specimen of Tyrannosaurus rex.

2. The Burgess Shale Fauna (British Columbia)

This World Heritage Site near Field, BC, offers a snapshot of the Cambrian Explosion (~508 million years ago), preserving soft-bodied creatures with extraordinary detail. Marrella, Opabinia, and Anomalocaris are just a few of the iconic oddballs discovered here by Charles Walcott in 1909. The site reshaped our understanding of early animal evolution. The fossils from this site have the most wonderous, albeit wacky, body plans see the world over!

Reference: Conway Morris, S. (1986). The community structure of the Middle Cambrian phyllopod bed (Burgess Shale). Paleontology, 29(3).

3. The Courtenay Elasmosaur (British Columbia)

Unearthed by my good friend Mike Trask along the Puntledge River in 1988, this long-necked marine reptile from the Late Cretaceous is one of BC’s most famous fossils—and its first major marine reptile discovery. Now housed at the Courtenay and District Museum, it inspired a new wave of paleontological exploration on Vancouver Island. 

Mike gets the credit for this find and the founding of the first paleontological society in British Columbia (VIPS), the British Columbia Paleontological Alliance (BCPA) and inspired us all with his incredible curiosity and zest for life. He passed earlier this year and is incredibly missed!

Reference: Arbour, V. M., & Trask, M. (2023). A new elasmosaurid from the Late Cretaceous of British Columbia. Canadian Journal of Earth Sciences.

4. Dakota the Dinosaur Mummy (Alberta)

This extraordinary hadrosaur (Edmontosaurus annectens) found in 1999 features fossilized skin and soft tissue impressions. While partially excavated in North Dakota, it crossed into Canadian paleontological territory through the collaborative work between Canadian and American scientists. The mummy-like preservation gives unique insight into dinosaur musculature and skin texture.

Reference: Manning, P. L., et al. (2009). Mineralized soft-tissue structure and chemistry in a mummified hadrosaur. Proceedings of the Royal Society B.

5. Zuul crurivastator (Alberta)

Discovered in 2014 in Montana but now part of the Royal Ontario Museum collection due to fossil trade agreements, Zuul is an astonishingly complete ankylosaur with preserved skin and tail club armor. Named after the Ghostbusters demon-dog, it’s as fierce as it is beautifully preserved.

Reference: Arbour, V. M., & Evans, D. C. (2017). A new ankylosaurid with exceptional soft-tissue preservation. Royal Society Open Science, 4(5).

6. Tiktaalik roseae (Nunavut)

Found on Ellesmere Island in 2004, Tiktaalik bridges the gap between fish and land vertebrates. With its fish-like body and amphibian-style neck and limbs, it's a critical fossil in understanding the water-to-land transition in vertebrate evolution.

Reference: Daeschler, E. B., Shubin, N. H., & Jenkins, F. A. (2006). A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature, 440.

If you have not had the pleasure, also pick up a copy of Shubin's book, Your Inner Fish. It is a classic read with the amazing tale of this fossil's discovery and Shubin's journey in paleontology. 

7. Nodosaur from the Suncor Mine (Alberta)

In 2011, miners at a Fort McMurray oilsands site uncovered the best-preserved armored dinosaur ever found. The 110-million-year-old nodosaur is so well-preserved it looks like a sleeping dragon, with skin impressions, armor, and even stomach contents intact.

Reference: Brown, C. M., & Demarco, N. (2017). The rise of fossil preservation in Alberta’s oil sands. National Geographic, May Issue.

8. The Joggins Fossil Cliffs (Nova Scotia)

These coastal cliffs reveal the Carboniferous "Coal Age" (circa 310 million years ago) with fossilized trees, trackways, and even the oldest known reptile, Hylonomus lyelli. Declared a UNESCO World Heritage Site, Joggins provides unparalleled insight into early terrestrial ecosystems.

Reference: Carroll, R. L. (1964). The earliest reptiles. Journal of Paleontology, 38(1).

9. Parksosaurus (Alberta)

One of the lesser-known but scientifically significant dinosaurs from Alberta, Parksosaurus was a small, agile herbivore named after Canadian paleontologist William Parks. It contributes to our understanding of small ornithopods in the Late Cretaceous of North America.

Reference: Boyd, C. A. (2015). The systematic relationships and biogeographic history of ornithischian dinosaurs. Paleobiology, 41(3).

10. Blue Beach Fossils (Nova Scotia)

The Blue Beach site near Hantsport yields some of the oldest known tetrapod trackways in the world, from the Late Devonian to Early Carboniferous period. These fossils document early vertebrate life coming onto land.

Reference: Mansky, C. F., & Lucas, S. G. (2013). A review of tetrapod trackways from Blue Beach. New Mexico Museum of Natural History Bulletin, 61.

Canada’s fossil discoveries span more than half a billion years of life on Earth. They showcase evolutionary milestones—from the earliest invertebrates to apex dinosaurs, marine reptiles, and the first vertebrates on land. 

The fossils are the Rosetta stones of our country, unlocking the secrets of life's history.

Monday, 16 June 2025

FOSSIL HUNTRESS PODCAST: DEAD SEXY SCIENCE

Close your eyes & fly with me as we head out together to explore Earth's rich history written in her rock. Travel to extraordinary places, sacred sites & unearth mysteries millions of years old on the Fossil Huntress Podcast.

This stream is for those who share an enduring passion for our world's hidden treasures, its wild places & want to uncover her beauty stone by stone. This is the story of the making of our Earth and the many wonderful creatures who have called it home. 

Join in the exploration of the fascinating science of palaeontology — that lens that examines ancient animals, plants & ecosystems from wee single-celled organisms to big & mighty dinosaurs.

​Learn about the interwoven disciplines of natural history, ecology, geology, conservation & stewardship of our world. To listen to the stories of the Earth, visit: https://open.spotify.com/show/1hH1wpDFFIlYC9ZW5uTYVL


Friday, 2 May 2025

AINOCERAS: VANCOUVER ISLAND HETEROMORPH

A wee baby deep chocolate Ainoceras sp. heteromorph ammonite from Vancouver Island. This adorable corkscrew-shaped ammonite is an extinct marine mollusc related to squid and octopus.  

Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. 

By pushing air in or out, they were able to control their buoyancy in the water column. These little cuties were predators who hunted in Cretaceous seas.

They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber. 

Not all ammonites have this whacky corkscrew design. Most are coiled and some are even shaped like massive paperclips. This one is so remarkable, so joyously perfect my internal thesaurus can’t keep up.

Monday, 31 March 2025

MASSIVE AMMONITE FROM MADAGASCAR

This big beastie is a superb specimen of the ammonite Lobolytoceras costellatum showing the intricate fractal pattern of its septa. 

This lovely measures to a whopping 230 mm and hails from Oxfordian outcrops near Sakara, Madagascar. Lovingly prepped by the supremely talented José Juárez Ruiz.

Ammonites were predatory, squidlike creatures that lived inside coil-shaped shells. Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. They used these tentacles to snare prey — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunt today.

Catching a fish with your hands is no easy feat, as I'm sure you know. Ammonites did the equivalent, catching prey in their tentacles. They were skilled and successful hunters. They caught their prey while swimming and floating in the water column. 

Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. By pushing air in or out, they were able to control their buoyancy in the water column.

They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.

They were a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs, commonly referred to as ammonites, are more closely related to living coleoids — octopuses, squid, and cuttlefish) then they are to shelled nautiloids such as the living Nautilus species.

Ammonites have intricate and complex patterns on their shells called sutures. The suture patterns differ across species and tell us what time period the ammonite is from. If they are geometric with numerous undivided lobes and saddles and eight lobes around the conch, we refer to their pattern as goniatitic, a characteristic of Paleozoic ammonites.

Ammonites first appeared about 240 million years ago, though they descended from straight-shelled cephalopods called bacrites that date back to the Devonian, about 415 million years ago, and the last species vanished in the Cretaceous–Paleogene extinction event.

They were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish. They were prolific back in the day, living (and sometimes dying) in schools in oceans around the globe. We find ammonite fossils (and plenty of them) in sedimentary rock from all over the world.

In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past.

For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. Generally, deeper is older, so we use the sedimentary layers rock to match up to specific geologic time periods, rather the way we use tree-rings to date trees. A handy way to compare fossils and date strata across the globe.

Sunday, 23 March 2025

MASSIVE FOSSIL AMMONITE NEAR FERNIE, BRITISH COLUMBIA

Titanites occidentalis, Fernie Ammonite
The Fernie ammonite—long known as Titanites occidentalis—has officially been given a new name: Corbinites occidentalis, a fresh genus erected after a meticulous re-evaluation of this Western Giant’s anatomy and lineage. 

What hasn’t changed is its breathtaking presence high on Coal Mountain near Fernie, British Columbia, where this colossal cephalopod has rested for roughly 150 million years.

This extraordinary fossil belongs to the family Lithacoceratinae within the ataxioceratid ammonites. 

Once thought to be a close cousin of the great Titanites of Dorset, new material—including two additional large specimens discovered at nearby mine sites—reveals ribbing patterns and growth-stage features that simply didn’t match Titanites

With these multiple overlapping growth stages finally available, paleontologists had the missing pieces needed to correct its identity.

So, Titanites occidentalis no more—meet Corbinites occidentalis, a giant ammonite likely endemic to the relatively isolated early Alberta foreland basin of the Late Jurassic.

Fernie, British Columbia, Canada
The Fernie ammonite is a carnivorous cephalopod from the latest Jurassic (Tithonian). 

The spectacular individual on Coal Mountain measures 1.4 metres across—about the size of a small car tire and absolutely staggering when you first see it hugged by the mountainside.

The first specimen, discovered in 1947 by a British Columbia Geophysical Society mapping team at Coal Creek, was initially mistaken for a “fossil truck tire.” 

Fair enough—if a truck tire had been forged in the Jurassic and left on a mountaintop. It was later described by GSC paleontologist Hans Frebold, who gave it the name Titanites occidentalis, inspired by the giant ammonites of Dorset. 

For decades, that name stuck, even though paleontologists suspected the attribution was shaky due to poor preservation of the holotype’s inner whorls.

Recent discoveries of two additional specimens at Teck Resources’ Coal Mountain Mine finally provided the evidence needed for reassessment. 

With intact inner whorls and beautifully preserved ribbing—including hallmark variocostate and ataxioceratoid ornamentation—researchers Terence P. Poulton and colleagues demonstrated that the Canadian ammonite does not belong in Titanites

Their work (Volumina Jurassica, 2023) established Corbinites as a brand-new genus, with C. occidentalis as its type and only known species.

These specimens—one exceeding a metre, another about 64 cm—confirm a resident ammonite population within this basin. And as of now, these giants are unique to Western Canada.
A Journey Up Coal Mountain

If you’re keen to meet Corbinites occidentalis in the wild, you’ll want to head to Fernie, in southeastern British Columbia, close to the Alberta border. 

As your feet move up the hillside, you can imagine this land 10,000 years ago, rising above great glaciers. Where footfalls trace the steps of those that came before you. This land has been home to the Yaq̓it ʔa·knuqⱡi ‘it First Nation and Ktunaxa or Kukin ʔamakis First Nations whose oral history have them living here since time immemorial. Like them, take only what you need and no more than the land offers — packing out anything that you packed in. 

Active logging in the area since 2021 means that older directions are now unreliable—trailheads have shifted, and a fair bit of bushwhacking is the price of admission. Though clear-cutting reshaped the slope, loggers at CanWel showed admirable restraint: they worked around the fossil, leaving it untouched.

The non-profit Wildsight has been championing efforts to protect the ammonite, hoping to establish an educational trail with provincial support and possible inclusion under the Heritage Conservation Act—where the fossil’s stewardship could be formally recognised.

HIKING TO THE FERNIE AMMONITE (IMPORTANT UPDATE: TRAIL CLOSED)

From the town of Fernie, British Columbia, you would traditionally head east along Coal Creek Road toward Coal Creek, with the ammonite site sitting 3.81 km from the road’s base as the crow flies. 

The classic approach begins at a roadside exposure of dark grey to black Cretaceous plant fossils, followed by a creek crossing and a steep, bushwhacking ascent.

However — and this is critical — the trail is currently closed.

The entire access route runs straight through an area of active logging, and conditions on the slope are extremely dangerous. Between heavy equipment, unstable cutblocks, and altered drainages, this is not a safe place for hikers right now.

Conservation groups, including Wildsight, continue working toward restoring safe public access and formalising the site under the Heritage Conservation Act. 

Their long-term goal is to reopen the trail as a designated educational hike with proper signage, but at present, the route should not be attempted. 

Once logging operations move out of the area and safety assessments are done, the possibility of reopening may return.

For now, the safest—and strongly recommended—way to view this iconic fossil is via the excellent cast on display at the Courtenay & District Museum on Vancouver Island, or at the Visitor Information Centre in Sparwood.

Photo credit: Vince Mo Media. Vince is an awesome photographer and drone operator based in Fernie, BC. Check out his work (and hire him!) by visiting his website at vmmedia.ca.

Tuesday, 18 March 2025

PALEONTOLOGY PODCAST: DEAD SEXY SCIENCE

Geeky goodness from the Fossil Huntress. If you love paleontology, you will love this stream. Dinosaurs, trilobites, ammonites—you'll find them all here!

Close your eyes & fly with me as we head out together to explore Earth's rich history written in her rock. Travel to extraordinary places, sacred sites & unearth mysteries millions of years old on the Fossil Huntress Podcast.

This stream is for those who share an enduring passion for our world's hidden treasures, its wild places & want to uncover her beauty stone by stone. This is the story of the making of our Earth and the many wonderful creatures who have called it home. 

Join in the exploration of the fascinating science of palaeontology — that lens that examines ancient animals, plants & ecosystems from wee single-celled organisms to big & mighty dinosaurs. Save the stream to your favourites to listen while you drive, head out fossil collecting or snuggle in for the night!

​To listen now, visit: https://open.spotify.com/show/1hH1wpDFFIlYC9ZW5uTYVL


Friday, 7 March 2025

MEMEKAY JURASSIC AMMONITES OF VANCOUVER ISLAND

Coroniceras sp. from Sayward, British Columbia
This yummy Lower Jurassic ammonite with the creamy dark chocolate colouring is from an all but inaccessible outcrop of the Upper Sinemurian, Bonanza Group,  Harbledownense Zone, Memekay River area, near Sayward, Vancouver Island, British Columbia, Canada. 

This area is home to the We Wai Kai and Wei Wai Kum First Nations and lands of the K'omoks First Nation whose culture thrives and reflects the natural rugged beauty of the central island region.

I will be headed back to these outcrops next month on the way to northern Vancouver Island. 

It is rugged, remote and beautiful. Think trees and valleys for as far as the eye can see. Some of those hillsides on the horizon contain wonderful fossils, including this Coroniceras sp. with the truly marvellous keel.

By the time these ammonites were being buried in sediment, Wrangellia, the predominately volcanic terrane that now forms Vancouver Island and Haida Gwaii, had made its way to the northern mid-latitudes.

Within the basal part of the sequence, sedimentary beds are found interbedded with lapilli and crystal tuffs. Here you'll see maroon tuffaceous sandstone, orange-grey sandstone, granule sandstone and conglomerate. Within them we find ammonites nestled in with gastropods and pelecypods. 

While the fossiliferous outcrop is quite small, the Bonanza group is much larger, estimated to be at least 1000 metres thick. The site is quite small and in an active logging area, so the window to collect is limited. 

We have been to the site many times. One one of the past trips, the drive up the mountain was thrilling as there had just been heavy rains and the road was washed out and narrowed until it was barely the width of our wheelbase and very, very steep. Closer to the top it narrowed to be just shy of the width of the vehicle — thrilling, to say the least. 

So scary that my passengers all got out as there was a high probability of going head-first over the edge. I was navigating by some handwritten field notes and a wee map on a paper napkin that should have read, "park at the bottom and hike up." 

Did we park at the bottom and hike up? No, we did not. 

The torrential rains of the Pacific Northwest had been working their magic on the hillside and slowly washing out the road until it slowly became more of a trail.

At the base of the hillside all looked well. Giddy for the fossils to come, we ventured off with a truck full of enthusiasm. Within 15 minutes of steep elevation gain, we had a wonderful view of the valley below. We were halfway up the mountain before I realized the error of my ways. The road twisted and turned then slowly narrowed to the width of my tires. Too narrow to turn around, so the only way was up. 

Graham Beard from Qualicum Beach was the fellow who showed me the site and drew the wee map for me. I cannot recall everyone on the trip, but Perry Poon was there — he shot a video of the drive up that he described as thrilling. I have never seen it but would like to one day — and so was Patricia Coutts with her lovely Doberman. 

She and I had just done a trip up to Goldbridge where the cliff we were on had turned into a landslide into a ravine so she was feeling understandably cautious about the power of Mother Nature. 

Picture the angle, the hood of my jeep riding high and hiding what remained of the road beneath and a lovely stick shift that made you roll backwards a wee bit with every move to put it into gear. So, without being able to see the very narrow path beneath, I had to just keep going. 

Both Perry and Patricia helped with filling in the potholes so my tires would have something to grip. 

I bent the frame on the jeep heading up and had some explaining to do when I returned it to the car rental place. 

As I recall, I wasn't in my ordinary vehicle but a rental because my car had been stolen the weekend before when I was away with John Fam and Dan Bowen collecting at Jurassic Point, an epic fossil site accessible only by boat on our wild west coast.

Fortuitous timing really, as they stole my car but I had unloaded my precious fossil collecting gear out of the trunk just days before.  

In the end, we found what we were looking for. Memekay yields a mix of ammonites, gastropods and bivalves. 

Many of them are poorly preserved. It was a hell of a ride but well worth the effort as we found some great fossils and with them more information on the palaeontology and geology of Vancouver Island. Just look at the keel on this beauty.

I would share the site information but it is now covered over with debris and inaccessible. One day, this whole region will be developed and the site will be opened up again. Until then, we'll have to enjoy what has been unearthed.

Saturday, 1 March 2025

FRACTAL BUILDING: AMMONITES

Argonauticeras besairei, Collection of José Juárez Ruiz.
An exceptional example of fractal building of an ammonite septum, in this clytoceratid Argonauticeras besairei from the awesome José Juárez Ruiz.

Ammonites were predatory, squid-like creatures that lived inside coil-shaped shells.

Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. They used these tentacles to snare prey, — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunt today.

Catching a fish with your hands is no easy feat, as I'm sure you know. But the Ammonites were skilled and successful hunters. They caught their prey while swimming and floating in the water column. Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. By pushing air in or out, they were able to control their buoyancy in the water column.

They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.

They were a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs, commonly referred to as ammonites, are more closely related to living coleoids — octopuses, squid, and cuttlefish) than they are to shelled nautiloids such as the living Nautilus species.

The Ammonoidea can be divided into six orders:
  • Agoniatitida, Lower Devonian - Middle Devonian
  • Clymeniida, Upper Devonian
  • Goniatitida, Middle Devonian - Upper Permian
  • Prolecanitida, Upper Devonian - Upper Triassic
  • Ceratitida, Upper Permian - Upper Triassic
  • Ammonitida, Lower Jurassic - Upper Cretaceous
Ammonites have intricate and complex patterns on their shells called sutures. The suture patterns differ across species and tell us what time period the ammonite is from. If they are geometric with numerous undivided lobes and saddles and eight lobes around the conch, we refer to their pattern as goniatitic, a characteristic of Paleozoic ammonites.

If they are ceratitic with lobes that have subdivided tips; giving them a saw-toothed appearance and rounded undivided saddles, they are likely Triassic. For some lovely Triassic ammonites, take a look at the specimens that come out of Hallstatt, Austria and from the outcrops in the Humboldt Mountains of Nevada.

Hoplites bennettiana (Sowby, 1826).
If they have lobes and saddles that are fluted, with rounded subdivisions instead of saw-toothed, they are likely Jurassic or Cretaceous. If you'd like to see a particularly beautiful Lower Jurassic ammonite, take a peek at Apodoceras. Wonderful ridging in that species.

One of my favourite Cretaceous ammonites is the ammonite, Hoplites bennettiana (Sowby, 1826). This beauty is from Albian deposits near Carrière de Courcelles, Villemoyenne, near la région de Troyes (Aube) Champagne in northeastern France.

At the time that this fellow was swimming in our oceans, ankylosaurs were strolling about Mongolia and stomping through the foliage in Utah, Kansas and Texas. Bony fish were swimming over what would become the strata making up Canada, the Czech Republic and Australia. Cartilaginous fish were prowling the western interior seaway of North America and a strange extinct herbivorous mammal, Eobaatar, was snuffling through Mongolia, Spain and England.

In some classifications, these are left as suborders, included in only three orders: Goniatitida, Ceratitida, and Ammonitida. Once you get to know them, ammonites in their various shapes and suturing patterns make it much easier to date an ammonite and the rock formation where is was found at a glance.

Ammonites first appeared about 240 million years ago, though they descended from straight-shelled cephalopods called bacrites that date back to the Devonian, about 415 million years ago, and the last species vanished in the Cretaceous–Paleogene extinction event.

They were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish. They were prolific back in the day, living (and sometimes dying) in schools in oceans around the globe. We find ammonite fossils (and plenty of them) in sedimentary rock from all over the world.

In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past.

For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. Generally, deeper is older, so we use the sedimentary layers rock to match up to specific geologic time periods, rather the way we use tree-rings to date trees. A handy way to compare fossils and date strata across the globe.

References: Inoue, S., Kondo, S. Suture pattern formation in ammonites and the unknown rear mantle structure. Sci Rep 6, 33689 (2016). https://doi.org/10.1038/srep33689
https://www.nature.com/articles/srep33689?fbclid=IwAR1BhBrDqhv8LDjqF60EXdfLR7wPE4zDivwGORTUEgCd2GghD5W7KOfg6Co#citeas

Photo: Hoplites Bennettiana from near Troyes, France. Collection de Christophe Marot

Tuesday, 25 February 2025

BEAUTIFUL QUENSTEDTOCERAS AMMONITE WITH PATHOLOGY

What you are seeing here is a protuberance extruding from the venter of Quenstedtoceras cf. leachi (Sowerby). 

It is a pathology in the shell from hosting immature bivalves that shared the seas with these Middle Jurassic, Upper Callovian, Lamberti zone fauna from the Volga River basin. The collecting site is the now inactive Dubki commercial clay quarry and brickyard near Saratov, Russia. 

The site has produced thousands of ammonite specimens. A good 1,100 of those ended up at the Black Hills Institute of Geological Research in Hill City, South Dakota. 

Roughly 1,000 of those are Quenstedtoceras (Lamberticeras) lamberti and the other 100 are a mix of other species found in the same zone. These included Eboraciceras, Peltoceras, Kosmoceras, Grossouvria, Proriceras, Cadoceras and Rursiceras

What is especially interesting is the volume of specimens — 167 Quenstedtoceras (Lamberticeras) lamberti and 89 other species in the Black Hills collection — with healed predation injuries. It seems Quenstedtoceras (Lamberticeras) lamberti are the most common specimens found here and so not surprisingly the most common species found injured. Of the 1,000, 655 of the Quenstedtoceras (Lamberticeras) lamberti displayed some sort of deformation or growth on the shell or had grown in a tilted manner. 

Again, some of the Q. lamberti had small depressions in the centre likely due to a healed bite and hosting infestations of the immature bivalve Placunopsis and some Ostrea

The bivalves thrived on their accommodating hosts and the ammonites carried on, growing their shells right up and over their bivalve guests. This relationship led to some weird and deformities of their shells. They grow in, around, up and over nearly every surface of the shell and seem to have lived out their lives there. It must have gotten a bit unworkable for the ammonites, their shells becoming warped and unevenly weighted. Over time, both the flourishing bivalves and the ammonite shells growing up and over them produced some of the most interesting pathology specimens I have ever seen.    

In the photo here from Emil Black, you can see some of the distorted shapes of Quenstedtoceras sp. Look closely and you see a trochospiral or flattened appearance on one side while they are rounded on the other. 

All of these beauties hail from the Dubki Quarry near Saratov, Russia. The ammonites were collected in marl or clay used in brick making. The clay particles suggest a calm, deep marine environment. One of the lovely features of the preservation here is the amount of pyrite filling and replacement. It looks like these ammonites were buried in an oxygen-deficient environment. 

The ammonites were likely living higher in the water column, well above the oxygen-poor bottom. An isotopic study would be interesting to prove this hypothesis. 

There's certainly enough of these ammonites that have been recovered to make that possible. It's estimated that over a thousand specimens have been recovered from the site but that number is likely much higher. But these are not complete specimens. We mostly find the phragmocones and partial body chambers. Given the numbers, this may be a site documenting a mass spawning death over several years or generations.

If you fancy a read on all things cephie, consider picking up a copy of Cephalopods Present and Past: New Insights and Fresh Perspectives edited by Neil Landman and Richard Davis. Figure 16.2 is from page 348 of that publication and shows the hosting predation quite well. 

Photos: Courtesy of the deeply awesome Emil Black. These are in his personal collection that I hope to see in person one day. 

It was his sharing of the top photo and the strange anomaly that had me explore more about the fossils from Dubki and the weird and wonderful hosting relationship between ammonites and bivalves. Thank you, my friend!