Monday, 31 December 2018

JELLYFISH: GAGISAMA

These festive lovelies are jellyfish. Jellyfish are found all over the world, from surface waters to our deepest seas — and they are old. They are some of the oldest animals in the fossil record.

Sea jellies and jellyfish are the common names for the medusa-phase or adult phase of certain gelatinous members of the subphylum Medusozoa, a major part of the phylum Cnidaria — more closely related to anemones and corals.

Jellyfish are not fish at all. Jellyfish evolved millions of years before true fish. 

The oldest conulariid scyphozoans — picture an ice-cream cone with fourfold symmetry — appeared between 635 and 577 million years ago in the Neoproterozoic of the Lantian Formation a 150-meter-thick sequence of rocks deposited in southern China. 

Others are found in the youngest Ediacaran rocks of the Tamengo Formation of Brazil, c. 505 mya, through to the Triassic. Cubozoans and hydrozoans appeared in the Cambrian of the Marjum Formation in Utah, USA, c. 540 mya. Like other soft-bodied organisms, ctenophores (comb jellies), sea jellies and jellyfish only produce fossils only under exceptional taphonomic conditions — think rare.

I have seen all sorts of their brethren growing up on the west coast of Canada. I have seen them in tide pools, washed up on the beach and swam amongst thousands of Moon Jellyfish while scuba diving in the Salish Sea. Their movement in the water is marvellous.  

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, jellyfish are known as ǥaǥisama.

The watercolour ǥaǥisama you see here is a bit of fancy. While I chose blue, purple and pink for these lovelies, they also come in bright yellow, orange and relatively clear — and are often luminescent.

Jellyfish such as comb jellies produce bright flashes to startle a predator, others such as siphonophores can produce a chain of light or release thousands of glowing particles into the water as a mimic of small plankton to confuse the predator.

For most jellyfish bioluminescence is used for defence against predators — and about half of all jellyfish are bioluminescent. Some produce a glowing sticky slime that clings to predators making them vulnerable to other predators. Some jellyfish can release their tentacles as glowing decoys. So you see that there are many strategies for using bioluminescence by jellyfish.

All bioluminescence comes from energy released from a chemical reaction. This is very different from other sources of light, such as from the sun or a light bulb, where the energy comes from heat. In a luminescent reaction, two types of chemicals, called luciferin and luciferase, combine together. The luciferase acts as an enzyme, allowing the luciferin to release energy as it is oxidized. The colour of the light depends on the chemical structures of the chemicals. 

There are more than a dozen known chemical luminescent systems, indicating that bioluminescence evolved independently in different groups of organisms. One type of luciferin is called coelenterazine, found in jellyfish, shrimp, and fish. Dinoflagellates and krill share another class of unique luciferins, while ostracods (firefleas) and some fish have a completely different luciferin. The occurrence of identical luciferins for different types of organisms suggests a dietary source for some groups. Organisms such as bacteria and fireflies have unique luminescent chemistries. In many other groups, the chemistry is still unknown

Some of the most amazing deep-sea jellyfish are the comb jellies, which can get as large as a basketball, and are in some cases so fragile that they are almost impossible to collect intact.

Also spectacular are the siphonophores, some of which can reach several meters in length. Siphonophores deploy many tentacles like a gill net casting for small fish.

Sunday, 30 December 2018

CALYCOCERAS TARRANTENSE

Previously Calycoceras Tarrantense, this ammonite is now called Conlinoceras tarrantense after J.P. Conlin, a famous early 20th century Texas fossil collector.

Ammonite expert Bill Cobban used this collection to describe many Texas Cretaceous ammonites species including this species from Tarrant County, Arlington, Texas.

He was a surveyor by training and kept incredibly detailed notes on the context of his fossils.

Conlin donated his collection to the USGS and we’ve learned much by studying it along with other specimens from the Lone Star State. Almost a quarter of Texas is covered by Cretaceous strata, much of it fossiliferous. If we stepped back 95 million years, the world and what we now call Texas, was a very different place.

95 million years ago, during the late Cretaceous, a shallow seaway separated North America into separate eastern and western landmasses. We have a pretty complete picture in the fossil record of the western groups of species but relatively little in comparison for their cohorts in the east.

At the time this fellow was swimming our ancient seas, he was sharing the Earth with carnivorous dinosaurs, duck-billed dinosaurs, mammals, crocodilians, turtles, a variety of amphibians, prehistoric bony fish, oddly prolific sea cucumbers, various invertebrates and plants. Many of these sites are just being written up now and contain new species just being discovered.

During the Late Cretaceous Period a shallow seaway separated North America into separate eastern and western landmasses. The Woodbine Formation in Texas preserves a rare fossil record of this time for the east, but many of these fossils are isolated and incomplete, making interpretations more difficult. Preliminary excavations at the AAS are providing hints at a more complete ecosystem, preserving similar patterns of change to what we see in the west.

The AAS contains an extraordinary diversity, abundance, and quality of fossil material, preserving one of the most complete terrestrial ecosystems known for this time period and area.

The AAS has a lot to tell us about Late Cretaceous life in the east. Over 2200 individual specimens have been found belonging to numerous groups including carnivorous dinosaurs, duck-billed dinosaurs, crocodilians, turtles, mammals, amphibians, sharks, bony fish, invertebrates, and plants.

Many of the fossils found here represent brand new species and studying these fossils will help to establish the geographic and environmental forces that shaped Cretaceous ecosystems in North America by providing a necessary comparison to the fossil record of the west.

Saturday, 29 December 2018

ORYGMASPIS OF THE TANGLEFOOT

This calcified beauty is Orygmaspis (Parabolinoides) spinula (Westrop, 1986) an Upper Cambrian trilobite from the McKay Group near Tanglefoot Mountain in the Kootenay Rockies. 

Orygmaspis is a genus of asaphid trilobite with an inverted egg-shaped outline, a wide headshield, small eyes, long genal spines, 12 spined thorax segments and a small, short tail shield, with four pairs of spines. 

Asaphida is comprised of six superfamilies found as marine fossils that date from the Middle Cambrian through to the Ordovician — Anomocaroidea, Asaphoidea, Cyclopygoidea, Dikelocephaloidea, Remopleuridoidea and Trinucleioidea. It was here, in the Ordovician, that five of the six lineages met their end along with 60% of all marine life at the time. They did leave us with some wonderful examples of their form and adaptations. The stubby eyed Asaphids evolved to give us Asaphus kowalewskii with delightfully long eyestalks. These specialized protrusions would have given that lovely species a much better field of view in which to hunt Ordovician seas — and avoid becoming the hunted.

Only the hardy Superfamily Trinucleiodea pushed through. They were to meet their end in the final days of the Silurian where yet another cataclysmic event wiped out much of the life on Earth, including the last remains of Asaphida (Fortey & Chatterton, 1988).

The outline of the exoskeleton Orygmaspis is inverted egg-shaped, with a parabolic headshield — or cephalon less than twice as wide as long. Picture a 2-D egg where the head is wider than the tail.

The glabella, the well-defined central raised area excluding the backward occipital ring, is ¾× as wide as long, moderately convex, truncate-tapering, with 3 pairs of shallow to obsolete lateral furrows. 

The occipital ring is well defined. The distance between the glabella and the border (or preglabellar field) is ±¼× as long as the glabella. This fellow had small to medium-sized eyes, 12-20% of the length of the cephalon. These were positioned between the front and the middle of the glabella and about ⅓ as far out as the glabella is wide. 

The remaining parts of the cephalon, the fixed and free cheeks — or fixigenae and librigenae — are relatively flat. The fracture lines or sutures — that separate the librigenae from the fixigenae in moulting — are divergent just in front of the eyes. These become parallel near the border furrow and strongly convergent at the margin. 

From the back of the eyes, the sutures bend out, then in, diverging outward and backward at approximately 45°, cutting the posterior margin well within the inner bend of the spine — or opisthoparian sutures. 

The thorax or articulating middle part of the body has 12 segments. The anteriormost segment gradually narrows into a sideward directed point, while further to the back the spines are directed outward and the spine is of increasing length up until the ninth spine, while the spine on the tenth segment is abruptly smaller, and 11 and 12 even more so. 

This fellow has a wee pygidium or tail shield that is only about ⅓× as wide as the cephalon. It is narrowly transverse about 2× wider than long. Its axis is slightly wider than the pleural fields to each side, and has up to 4 axial rings and a terminal and almost reaches the margin. Up to 4 pleural segments with obsolete interpleural grooves and shallow pleural furrows. The posterior margin has 3 or 4 pairs of spines, getting smaller further to the back. 

References:

Chatterton, Brian D. E.; Gibb, Stacey (2016). Furongian (Upper Cambrian) Trilobites from the McKay Group, Bull River Valley, Near Cranbrook, Southeastern British Columbia, Canada; Issue 35 of Palaeontographica Canadiana; ISBN: 978-1-897095-79-9

Moore, R.C. (1959). Arthropoda I - Arthropoda General Features, Proarthropoda, Euarthropoda General Features, Trilobitomorpha. Treatise on Invertebrate Paleontology. Part O. Boulder, Colorado/Lawrence, Kansas: Geological Society of America/University of Kansas Press. pp. O272–O273. ISBN 0-8137-3015-5.

Friday, 28 December 2018

KOURISODON PUNTLEDGENSIS

Kourisodon puntledgensis
Mosasaurs were large, globally distributed marine predators who dominated our Late Cretaceous oceans. Since the unearthing of the first mosasaur in 1766 (Mulder, 2003) we've discovered their fossil remains most everywhere around the globe — New Zealand, Antarctica, Africa, North and South America, Europe and Japan.

We've now found the fossil remains of an elasmosaur and two mosasaurs along the banks of the Puntledge River, says Dan Bowen, Chair of the Vancouver Island Palaeontological Society.

The first set of about 10 mosasaurs vertebrae (Platecarpus) was found by Tim O’Bear and unearthed by a team of VIPS and Museum enthusiasts led by Dr. Rolf Ludvigsen. Dan Bowen and Joe Morin of the VIPS prepped these specimens for the Museum.

In 1993, a new species of mosasaur, Kourisodon puntledgensis, a razor-toothed mosasaur, was found upstream from the elasmosaur site by Joe Zembiliwich on a fossil field trip led by Mike Trask. A replica of this specimen now calls The Canadian Fossil Discovery Centre in Morden home. What is significant about this specimen is that it is a new genus and species. At 4.5 meters, it is a bit smaller than most mosasaurs and similar to Clidastes, but just as mighty. It shared its environment with a variety of Elasmosaurids, turtles, and other mosasaurs, although it seems that no polycotylids were present in its Pacific environment.

Interestingly, this species has been found in this one locality in Canada and across the Pacific in the basal part of the Upper Cretaceous — middle Campanian to Maastrichtian — of the Izumi Group, Izumi Mountains and Awaji Island of southwestern Japan. We see an interesting correlation with the ammonite fauna from these two regions as well. What we do not see is a correlation between our Pacific fauna and those from our neighbouring province to the east. Betsy Nicholls and Dirk Meckert published on the marine reptiles from the Nanaimo Group (Upper Cretaceous) of Vancouver Island in the Canadian Journal of Earth Sciences in 2002. What we see in our faunal mix reinforces the provinciality of the Pacific faunas and their isolation from contemporaneous faunas in the Western Interior Seaway.

Wednesday, 26 December 2018

PHOTONS: ELECTROMAGNETIC RADIATION

Light is a form of electromagnetic radiation, like radio or microwaves. Some aspects of light, such as its frequency (colour), are based on its wave properties. 

Light can also be considered a stream of particles called photons, each of which contains energy. This concept is called the quantum theory. 

So there are two ways to express how much light there is. One is based on energy (in units of watts, joules, or calories, and the other is based on the number of photons. 

For example, the wavelength of green light is less than 1 millionth of an inch, and the energy of one photon of green light is equivalent to 1 million billionths of a calorie! Even though photons are particles, they are particles of energy and are different from particles in a cell such as molecules.

Tuesday, 25 December 2018

DANCERS OF THE DEEP: JELLYFISH

This lovely ocean dancer with her long delicate tentacles or lappets and thicker rouched oral arms is a jellyfish. 

Her brethren are playing in the waters of the deep all over the world, from surface waters to our deepest seas — and they are old. They are some of the oldest animals in the fossil record.

Jellyfish and sea jellies are the informal common names given to the medusa-phase or adult phase of certain gelatinous members of the subphylum Medusozoa, a major part of the phylum Cnidaria — more closely related to anemones and corals.

Jellyfish are not fish at all. They evolved millions of years before true fish. The oldest conulariid scyphozoans appeared between 635 and 577 million years ago in the Neoproterozoic of the Lantian Formation, a 150-meter-thick sequence of rocks deposited in southern China. 

Others are found in the youngest Ediacaran rocks of the Tamengo Formation of Brazil, c. 505 mya, through to the Triassic. Cubozoans and hydrozoans appeared in the Cambrian of the Marjum Formation in Utah, USA, c. 540 million years ago.

I have seen all sorts of their brethren growing up on the west coast of Canada. I have seen them in tide pools, washed up on the beach and swam amongst thousands of Moon Jellyfish while scuba diving in the Salish Sea. Their movement in the water is marvellous.  

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, jellyfish are known as ǥaǥisama.

The watercolour ǥaǥisama you see here in dreamy pink and white is but one colour variation. They come in blue, purple, orange, yellow and clear — and are often luminescent. They produce light by the oxidation of a substrate molecule, luciferin, in a reaction catalyzed by a protein, luciferase.

Sunday, 23 December 2018

LINKING TIME: AMMONITE INDEX FOSSIL

Ammonites were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish.

They filled our world's oceans back in the day.  We find ammonite fossils (and plenty of them) in sedimentary rock from all over the world. In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past.

For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. Generally, deeper is older, so we use the sedimentary layers of rock to match up to specific geologic time periods, rather the way we use tree rings to date trees.

Saturday, 22 December 2018

PHASIANUS CHOLCHICUS

Common Pheasant, Phasianus Cholchicus
These playful lovelies with the gorgeous gold and green plumage are beautiful examples of the Common Pheasant, Phasianus Cholchicus

We associate them with tweet shorn English aristocrats jauntily going about the hunt on horseback. 

Pheasants build their nests on the ground and can fly for short distances. They spend their days searching through fields and around streams looking for tasty insects, seeds and grain.

Friday, 21 December 2018

COUGARS CONCOLOR: BADI

Cougars are meat-eating mammals, preferring to dine on deer. 

They are impressive athletes, able to leap 18 feet or more straight upward from a sitting position.

They are the most widely distributed land mammal in the Western hemisphere and yet we never seem to see them. They lead solitary lives and are excellent at avoiding humans. They see us far more often than we see them — boasting a field of vision spanning 130 degrees.

Cougars have a massive range that runs from the mountainous Canadian Rockies in northwestern Canada all the way down to Patagonia in South America. These cats make their dens in mountain crags, along rocky ledges, in dense woodland areas and under uprooted trees and debris. 

In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest — or Kwakwaka'wakw, speakers of Kwak'wala — a cougar or mountain lion is known as ba̱di — with an emphasis on the b.

Saturday, 15 December 2018

TRIASSIC OF NORTH AMERICA

In the early 1980s, Tim Tozer, Geological Survey of Canada, looked at the distribution of marine invertebrate fauna in the Triassic of North America.

Tozer's interest in our marine invert friends was their distribution and what those occurrences could tell us. How and when did certain species migrate, cluster, evolve — and for those that were prolific, how could their occurrence — and therefore significance — aide in an assessment of plate and terrane movements that would help us to determine paleolatitudinal significance.

In the western terranes of the Cordillera, marine faunas from southern Alaska and Yukon to Mexico are known from the parts that are obviously allochthonous with regard to the North American plates. Lower and upper Triadic faunas of these areas, as well as some that are today up to 63 ° North, have the characteristics of the lower paleo latitudes. As far as is known, Middle Triadic faunas in these zones do not provide any significant data. In the western Cordillera, the faunas of the lower paleo latitudes can be found up to 3000 km north of their counterparts on the American plate. This indicates a tectonic shift of this magnitude.

There are marine triads on the North American plate over 46 latitudes from California to Ellesmere Island. For some periods, two to three different fauna provinces can be distinguished from one another. The differences in fauna are obviously linked to the paleolatitude. They are called LPL, MPL, HPL (lower, middle, higher paleolatitude). Nevada provides the diagnostic features of the lower; northeastern British Columbia that of the middle and Sverdrup Basin that of the higher paleolatitude. A distinction between the provinces of the middle and the higher paleo-situations can not be made for the lower Triassic and lower Middle Triassic (anise). However, all three provinces can be seen in the deposits of Ladin, Kam and Nor.

Diatoms / Microalgae dominant components of phytoplankton
If one looks at the fauna and the type of sediment, the paleogeography of the Triassic can be interpreted as follows: a tectonically calm west coast of the North American plate that bordered on an open sea; in the area far from the coast, a series of volcanic archipelagos delivered sediment to the adjacent basins. Some were lined or temporarily covered with coral wadding and carbonate banks.

Deeper pools were in between. The islands were probably within 30 degrees of the triadic equator. They moved away from the coast up to about 5000 km from the forerunner of the East Pacific Ridge. The geographical situation west of the back was probably similar.

Jurassic and later generations of the crust from near the back have brought some of the islands to the North American plate; some likely to South America; others have drifted west, to Asia. There are indications that New Guinea, New Caledonia and New Zealand were at a northern latitude of 30 ° or more during the Triassic period. The terranes that now form the western Cordillera were probably welded together and reached the North American plate before the end of the Jurassic period.

Tozer, ET (Tim): Marine Triassic faunas of North America: Their significance for assessing plate and terrane movements. Geol Rundsch 71, 1077-1104 (1982). https://doi.org/10.1007/BF01821119

Danner, W. (Ted): Limestone resources of southwestern British Columbia. Montana Bur. Mines & Geol., Special publ. 74: 171-185, 1976.

Davis, G., Monger, JWH & Burchfiel, BC: Mesozoic construction of the Cordilleran “collage”, central British Columbia to central California. Pacific Coast Paleography symposium 2, Soc. Economic Paleontologists and Mineralogists, Los Angeles: 1-32, 1978.

Gibson, DW: Triassic rocks of the Rocky Mountain foothills and front ranges of northeastern British Columbia and west-central Alberta. Geol. Surv. Canada Bull. 247, 1975.

Friday, 14 December 2018

OYSTER: TLOXTLOX

One of the now rare species of oysters in the Pacific Northwest is the Olympia oyster, Ostrea lurida, (Carpenter, 1864).  

While rare today, these are British Columbia’s only native oyster. Had you been dining on their brethren in the 1800s or earlier, it would have been this species you were consuming. Middens from Port Hardy to California are built from Ostrea lurida.

These wonderful invertebrates bare their souls with every bite. Have they lived in cold water, deep beneath the sea away from the suns rays and heat? Are they the rough and tumbled beach denizens whose thick shells have formed to withstand the pounding of the sea? 

Is the oyster in your mouth thin and slimy having just done the nasty spurred by the warming waters of Spring? Is this oyster a local or was it shipped to your current local and if asked would greet you with "Kon'nichiwa?" Not if the beauty on your plate is indeed Ostrea lurida

We have been cultivating, indeed maximizing the influx of invasive species to the cold waters of the Salish Sea. But in the wild waters off the coast of British Columbia is the last natural abundant habitat of the tasty Ostrea lurida in the pristine waters of  Nootka Sound. The area is home to the Nuu-chah-nulth First Nations who have consumed this species boiled or steamed for thousands of years. Here these ancient oysters not only survive but thrive — building reefs and providing habitat for crab, anemones and small marine animals. 

Oysters are in the family Ostreidae — the true oysters. Their lineage evolved in the Early Triassic — 251 - 247 million years ago. 

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, an oyster is known as t̕łox̱t̕łox̱. I am curious to learn if any of the Nuu-chah-nulth have a different word for an oyster. If you happen to know, I would be grateful to learn.

Sunday, 2 December 2018

HOLCOPHYLLOCERAS

Amazing suturing on this lovely ammonite, Holcophylloceras mediterraneum, (Neumayr 1871) from Late Jurassic (Oxfordian) deposits near Sokoja, Madagasgar.

The shells had many chambers divided by walls called septa. The chambers were connected by a tube called a siphuncle which allowed for the control of buoyancy with the hollow inner chambers of the shell acting as air tanks to help them float.

They were a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs, commonly referred to as ammonites, are more closely related to living coleoids — octopuses, squid, and cuttlefish) then they are to shelled nautiloids such as the living Nautilus species.

We can see the edges of this specimen's shell where it would have continued out to the last chamber, the body-chamber, where the ammonite lived. Picture a squid or octopus, now add a shell and a ton of water. That's him!


Saturday, 1 December 2018

AMMONITES OF THE CAUCAUS MOUNTAINS

A very pleasing example of the Ammonite Acanthohoplites bigoureti (Seunes, 1887). Lower Cretaceous, Upper Aptian, from a riverbed concretion, Kurdzhips River, North Caucasus Mountains, Republic of Adygea, Russia. 

Geologically, the Caucasus Mountains belong to a system that extends from southeastern Europe into Asia and is considered a border between them. The Greater Caucasus Mountains are mainly composed of Cretaceous and Jurassic rocks with the Paleozoic and Precambrian rocks in the higher regions. 

Some volcanic formations are found throughout the range. On the other hand, the Lesser Caucasus Mountains are formed predominantly of the Paleogene rocks with a much smaller portion of the Jurassic and Cretaceous rocks. 

The evolution of the Caucasus began from the Late Triassic to the Late Jurassic during the Cimmerian orogeny at the active margin of the Tethys Ocean while the uplift of the Greater Caucasus is dated to the Miocene during the Alpine orogeny.

The Caucasus Mountains formed largely as the result of a tectonic plate collision between the Arabian plate moving northwards with respect to the Eurasian plate. As the Tethys Sea was closed and the Arabian Plate collided with the Iranian Plate and was pushed against it and with the clockwise movement of the Eurasian Plate towards the Iranian Plate and their final collision, the Iranian Plate was pressed against the Eurasian Plate. 

As this happened, the entire rocks that had been deposited in this basin from the Jurassic to the Miocene were folded to form the Greater Caucasus Mountains. This collision also caused the uplift and the Cenozoic volcanic activity in the Lesser Caucasus Mountains.

The preservation of this Russian specimen is outstanding. Acanthohoplites bigoureti are also found in Madagascar, Mozambique, in the Rhone-Alps of France and the Western High Atlas Mountains and near Marrakech in Morocco. This specimen measures 55mm and is in the collection of the deeply awesome Emil Black.