Tuesday, 31 December 2019


This lovely specimen is Zeacrinites magnoliaeformis, an Upper Mississippian-Chesterian crinoid found by Keith Metts in the Glen Dean Formation, Grayson County, Kentucky, USA.

Crinoids are unusually beautiful and graceful members of the phylum Echinodermata. They resemble an underwater flower swaying in an ocean current. But make no mistake they are marine animals. Picture a flower with a mouth on the top surface that is surrounded by feeding arms. Awkwardly, add an anus right beside that mouth. That's him!

Crinoids with root-like anchors are called Sea Lilies. They have graceful stalks that grip the ocean floor. Those in deeper water have longish stalks up to 3.3 ft or a meter in length.

Then there are other varieties that are free-swimming with only vestigial stalks. They make up the majority of this group and are commonly known as feather stars or comatulids. Unlike the sea lilies, the feather stars can move about on tiny hook-like structures called cirri. It is this same cirri that allows crinoids to latch to surfaces on the seafloor. Like other echinoderms, crinoids have pentaradial symmetry. The aboral surface of the body is studded with plates of calcium carbonate, forming an endoskeleton similar to that in starfish and sea urchins.

These make the calyx somewhat cup-shaped, and there are few, if any, ossicles in the oral (upper) surface called a tegmen. It is divided into five ambulacral areas, including a deep groove from which the tube feet project, and five interambulacral areas between them. The anus, unusually for echinoderms, is found on the same surface as the mouth, at the edge of the tegmen.

Crinoids are alive and well today. They are also some of the oldest fossils on the planet. We have lovely fossil specimens dating back to the Ordovician.

Monday, 30 December 2019


Hoplites (Hoplites) bennettiana (Sowerby, 1826)
A beautiful example of the ammonite, Hoplites (Hoplites) bennettiana (Sowerby, 1826), from Early Albian localities in the Carrière de Courcelles Villemoyenne, Région de Troyes, near Champagne in northeastern France.

The species name is an homage to Etheldred Benett, an early English geologist often credited with being the first female geologist — a fossil collector par excellence.

She was also credited with being a man  —  the Natural History Society of Moscow awarding her membership as Master Etheldredus Benett in 1836. The confusion over her name (it did sound masculine) came again with the bestowing of a Doctorate of Civil Law from Tsar Nicholas I.

The Tsar had read Sowerby's Mineral Conchology, a major fossil reference work which contained the second-highest number of contributed fossils of the day, many the best quality available at the time. Forty-one of those specimens were credited to Benett. Between her name and this wonderous contribution to a growing science, the Russian Tsar awarded the Doctorate to what he believed was a young male scientist on the rise. He believed in education, founding Kiev University in 1834, just not for women. He was an autocratic military man frozen in time — the thought that this work could have been done by a female unthinkable. Doubly charming is that the honour from the University of St Petersburg was granted at a time when women were not allowed to attend St. Pete's or any higher institutions. That privilege arrived in 1878, twenty years after Nicholas I's death.

Benett took these honours (and social blunders) with grace. She devoted her life to collecting and studying fossils from the southwest of England, amassing an impressive personal collection she openly shared with geologist friends, colleagues and visitors to her home. Her specialty was fossils from the Middle Cretaceous, Upper Greensand in the Vale of Wardour — a valley in the county of Wiltshire near the River Nadder.

Etheldred Benett was born on 22 July 1775 at Pyt House, Tisbury, Wiltshire, the eldest daughter of the local squire Thomas Benett.

Etheldred's interest was cultivated by the botanist Aylmer Bourke Lambert (1761-1842), a founding member of the Linnean Society. Benett's brother had married Lucy Lambert, Aylmer's half-sister. Aylmer was a Fellow of the Royal Society and the Society of the Arts. He was also an avid fossil collector and member of the Geological Society of London. The two met and got on famously.

Aylmer kindled an interest in natural history in both of Benett's daughters. Etheldred had a great fondness in geology, stratigraphy and all things paleo, whilst her sister concentrated on botany. Etheldred had a distinct advantage over her near contemporary, the working-class Mary Anning (1799-1847), in that Benett was a woman of independent wealth who never married — and didn't need to — who could pursue the acquisition and study of fossils for her own interest.

While Anning was the marine reptile darling of the age, she was also greatly hindered by her finances. "She sells, seashells by the seashore..." while chanted in a playful spirit today, was not meant kindly at the time.

Aylmer's encouragement emboldened Etheldred to go into the field to collect for herself — and collect she did. Profusely.

Benett’s contribution to the early history of Wiltshire geology is significant. She corresponded extensively with the coterie of gentlemen scientists of the day —  Gideon Mantell, William Buckland, James Sowerby, George Bellas Greenough and, Samuel Woodward. She also consorted with the lay folk and had an ongoing correspondence with William Smith, whose stratigraphy work had made a favourable impression on her brother-in-law, Aylmer.

Her collections and collaboration with geologists of the day was instrumental in helping to form the field of geology as a science. One colleague and friend, Gideon Mantell, British physician, geologist and paleontologist, who discovered four of the five genera of dinosaurs and Iguanadon, was so inspired by Benett's work he named this Cretaceous ammonite after her — Hoplites bennettiana.

Benett's fossil assemblage was a valuable resource for her contemporaries and remains so today. It contains thousands of Jurassic and Cretaceous fossil specimens from the Wiltshire area and the Dorset Coast, including a myriad of first recorded finds. The scientific name of every taxon is usually based on one particular specimen, or in some cases multiple specimens. Many of the specimens she collected serve as the Type Specimen for new species.

Fossil Sponge, Polypothecia quadriloba, Warminster, Wiltshire
Her particular interest was the collection and study of fossil sponges. Alcyonia caught her eye early on. She collected and recorded her findings with the hope that one of her colleagues might share her enthusiasm and publish her work as a contribution to their own. Alas, no one took up the helm — those interested were busy with other pursuits (or passed away) and others were less than enthusiastic or never seemed to get around to it.

To ensure the knowledge was shared in a timely fashion, she finally wrote them up and published them herself. You can read her findings in her publication, ‘A Catalogue of Organic Remains of the County of Wiltshire’ (1831), where she shares observations on the fossil sponge specimens and other invert goodies from the outcrops west of town.

She shared her ideas freely and donated many specimens to local museums. It was through her exchange of observations, new ideas and open sharing of fossils with Gideon Mantell and others that a clearer understanding of the Lower Cretaceous sedimentary rocks of Southern England was gained.

In many ways, Mantell was drawn to Benett as his ideas went against majority opinion. At a time when marine reptiles were dominating scientific discoveries and discussions, he pushed the view that dinosaurs were terrestrial, not amphibious, and sometimes bipedal. Mantell's life's work established the now-familiar idea that the Age of Reptiles preceded the Age of Mammals. Mantell kept a journal from 1819-1852, that remained unpublished until 1940 when E. Cecil Curwen published an abridged version. (Oxford University Press 1940). John A. Cooper, Royal Pavilion and Museums, Brighton and Hove, published the work in its entirety in 2010.

I was elated to get a copy, both to untangle the history of the time and to better learn about the relationship between Mantell and Benett. So much of our geologic past has been revealed since Mantell's first entry two hundred years ago. The first encounter we share with the two of them is a short note from March 8, 1819. "This morning I received a letter from Miss Bennett of Norton House near Warminster Wilts, informing me of her having sent a packet of fossils for me, to the Waggon Office..." The diary records his life, but also the social interactions of the day and the small connected community of the scientific social elite. It is a delight!

Though a woman in a newly evolving field, her work, dedication and ideas were recognized and appreciated by her colleagues. Gideon Mantell described her as, "a lady of great talent and indefatigable research," whilst the Sowerbys noted her, "labours in the pursuit of geological information have been as useful as they have been incessant."

Benett produced the first measured sections of the Upper Chicksgrove quarry near Tisbury in 1819, published and shared with local colleagues as, "the measure of different beds of stone in Chicksgrove Quarry in the Parish of Tisbury.” The stratigraphic section was later published by naturalist James Sowerby without her knowledge. Her research contradicted many of Sowerby’s conclusions.

She wrote and privately published a monograph in 1831, containing many of her drawings and sketches of molluscs and sponges. Her work included sketches of fossil Alcyonia (1816) from the Green Sand Formation at Warminster Common and the immediate vicinity of Warminster in Wiltshire.

Echinoids and Bivalves. Collection of Etheldred Benett (1775-1845)
The Society holds two copies, one was given to George Bellas Greenough, and another copy was given to her friend Gideon Mantell. This work established her as a true, pioneering biostratigrapher following but not always agreeing with the work of William Smith.

If you'd like to read a lovely tale on William's work, check out the Map that Changed the World: William Smith and the Birth of Modern Geology by Simon Winchester. It narrates the intellectual context of the time, the development of Smith's ideas and how they contributed to the theory of evolution and more generally to a dawning realization of the true age of the earth.

The book describes the social, economic or industrial context for Smith's insights and work, such as the importance of coal mining and the transport of coal by means of canals, both of which were a stimulus to the study of geology and the means whereby Smith supported his research. Benett debated many of the ideas Smith put forward. She was luckier than Smith financially, coming from a wealthy family, a financial perk that allowed her the freedom to add fossils to her curiosity cabinet at will.

Most of her impressive collection was assumed lost in the early 20th century. It was later found and purchased by an American, Thomas Bellerby Wilson, who donated it to the Academy of Natural Sciences of Philadelphia. Small parts of it made their way into British museums, including the Leeds City Museum, London, Bristol and to the University of St. Petersburg. These collections contain many type specimens and some of the very first fossils found — some with the soft tissues preserved. When Benett died in 1845, it was Mantell who penned her obituary for the London Geological Journal.

Etheldred Benett (1776-1845)
In 1989, almost a hundred and fifty years after her death, a review of her collection had Arthur Bogen and Hugh Torrens remark that her work has significantly impacted our modern understanding of Porifera, Coelenterata, Echinodermata, and the molluscan classes, Cephalopoda, Gastropoda, and Bivalvia. A worthy legacy, indeed.

Her renown lives on through her collections, her collaborations and through the beautiful 110 million-year-old ammonite you see here, Hoplites bennettiana. The lovely example you see here is in the collection of the deeply awesome Christophe Marot.

Spamer, Earle E.; Bogan, Arthur E.; Torrens, Hugh S. (1989). "Recovery of the Etheldred Benett Collection of fossils mostly from Jurassic-Cretaceous strata of Wiltshire, England, analysis of the taxonomic nomenclature of Benett (1831), and notes and figures of type specimens contained in the collection". Proceedings of the Academy of Natural Sciences of Philadelphia. 141. pp. 115–180. JSTOR 4064955.

Torrens, H. S.; Benamy, Elana; Daeschler, E.; Spamer, E.; Bogan, A. (2000). "Etheldred Benett of Wiltshire, England, the First Lady Geologist: Her Fossil Collection in the Academy of Natural Sciences of Philadelphia, and the Rediscovery of "Lost" Specimens of Jurassic Trigoniidae (Mollusca: Bivalvia) with Their Soft Anatomy Preserved.". Proceedings of the Academy of Natural Sciences of Philadelphia. 150. pp. 59–123. JSTOR 4064955.

Photo credit: Fossils from Wiltshire.  In the foreground are three examples of the echinoid, Cidaris crenularis, from Calne, a town in Wiltshire, southwestern England, with bivalves behind. Caroline Lam, Archivist at the Geological Society, London, UK. http://britgeodata.blogspot.com/2016/03/etheldred-benett-first-female-geologist_30.html

Photo credit: Fossil sponges Polypothecia quadriloba, from Warminster, Wiltshire. The genus labels are Benett’s, as is the handwriting indicating the species. The small number, 20812, is the Society’s original accession label from which we can tell that the specimen was received in April 1824. The tablet onto which the fossils were glued is from the Society’s old Museum.


Sunday, 29 December 2019


Oncorhynchus nerka
This toothy specimen is an Oncorhynchus nerka, a Pleistocene Sockeye Salmon from outcrops along the South Fork Skokomish River, Olympic Peninsula, Washington State, USA.

I'd expected to learn that the locality contained a single or just a few partial specimens, but the fossils beds are abundant with large, 45–70 cm, four-year-old adult salmon concentrated in a beautiful sequence of death assemblages.

The specimens include individuals with enlarged breeding teeth and worn caudal fins. It is likely that these salmon acted very similar to their modern counterparts with males partaking in competitive and sneaky tactics to gain access to the sexiest (large and red) females who were ready to mate. These ancient salmon had migrated, dug their nests, spawned and defended their eggs prior to their death. For now, we're referring to the species found here as Oncorhynchus nerka, as they have many of the characteristics of sockeye salmon, but also several minor traits of the Pink Salmon, Oncorhynchus gorbuscha.

Gerald Smith, a retired University of Michigan professor was shown the specimens and recognized them as Pleistocene, a time when the northern part of North America was undergoing a series of glacial advances and retreats that carved their distinctive signature into the Pacific Northwest. It looks as though this population diverged from the original species about one million years ago, possibly when the salmon were deposited at the head of a proglacial lake impounded by the Salmon Springs advancement of a great glacier known as the Puget lobe of the Cordilleran Ice Sheet. Around 17,000 years ago, this 3,000 foot-thick hunk of glacial ice had made its way down from Canada, sculpting a path south and pushing its way between the Cascade and Olympic Mountains. The ice touched down as far south as Olympia, stilled for a few hundred years, then began to melt.

After the ice began melting and retreating north, the landscape slowly changed —  both the land and sea levels rising — and great freshwater lakes forming in the lowlands filled with glacial waters from the melting ice. The sea levels rose quite considerably, about one and a half centimetres per year between 18,000 and 13,000 years ago. The isostatic rebound (rising) of the land rose even higher with an elevation gain of about ten centimetres per year from 16,000 to 12,500 years ago.

Around 14,900 years ago, sea-levels had risen to a point where the salty waters of Puget Sound began to slowly fill the lowlands. Both the land and sea continued to rise and by 5,000 years ago, the sea level was about just over 3 meters lower than it is today. The years following were an interesting time in the geologic history of the Pacific Northwest. The geology of the South Fork Skokomish River continued to shift, undergoing a complicated series of glacial damming and river diversions after these salmon remains were deposited.

Today, we find their remains near the head of a former glacial lake at an elevation of 115 metres on land owned by the Green Diamond Company. The first fossil specimens were found back in 2001 by locals fishing for trout along the South Fork Skokomish River.

Upon seeing the fossil specimens, Smith teamed up with David Montgomery of the University of Washington, Seattle, along with N. Phil Peterson and Bruce Crowley, a Late Oligocene Mysticete specialist from the Burke Museum, to complete fieldwork and author a paper.

The fossil specimen you see here is housed in the Burke Museum collection. They opened the doors to their new building and exhibitions in the Fall of 2019. These photos are by the deeply awesome John Fam from a trip to see the newly opened exhibits this year. If you fancy a visit to the Burke Museum, check out their website here: https://www.burkemuseum.org/.

David B. Williams did up a nice piece on historylink.org on the Salmon of the Puget lowland. You can find his work here: https://www.historylink.org/File/20263

If you'd like to read more of the papers on the topic, check out:

Smith, G., Montgomery, D., Peterson, N., and Crowley, B. (2007). Spawning sockeye salmon fossils in Pleistocene lake beds of Skokomish Valley, Washington. Quaternary Research, 68(2), 227-238. doi:10.1016/j.yqres.2007.03.007.

Easterbrook, D.J., Briggs, N.D., Westgate, J.A., and Gorton, M.P. (1981). Age of the Salmon Springs Glaciation in Washington. Geology 9, 87–93.

Hikita, T. (1962). Ecological and morphological studies of the genus Oncorhynchus (Salmonidae) with particular consideration on phylogeny. Scientific Reports of the Hokkaido Salmon Hatchery 17, 1–97.

If you fancy a read of Crowley's work on Late Oligocene Mysticete from Washington State, you can check out:  Crowley, B., & Barnes, L. (1996). A New Late Oligocene Mysticete from Washington State. The Paleontological Society Special Publications, 8, 90-90. doi:10.1017/S2475262200000927

Saturday, 28 December 2019


Cadoceras tonniense, Harrison Lake, British Columbia
This lovely ammonite is Cadoceras (Paracadoceras) tonniense (Imlay, 1953), a fast-moving nektonic carnivore from the Jurassic macrocephalites macrocephalus ammonoid zone of the Mysterious Creek Formation near Harrison Lake in British Columbia.

These rare beauties are from the Lower Callovian, 164.7 - 161.2 million years ago. Interestingly, the ammonites from here are quite similar to the ones found within the lower part of the Chinitna Formation, Alaska and Jurassic Point, Kyuquot, on the west coast of Vancouver Island.

These species are from Callomon's (1984) Cadoceras comma Fauna B8 for the western Cordillera of North America, which is equivalent in part to the Macrocephalus Zone of Europe of the Early Callovian. The faunal association at locality 17 near Harrison suggests a more precise correlation to Callomon's zonation; namely, the Cadoceras wosnessenskii Fauna B8(e) found in the Chinitna Formation, southern Alaska (Imlay, 1953b). The type specimen is USNM 108088, from locality USGS Mesozoic 21340, Iniskin Peninsula, found in a Callovian marine siliciclastic in the Chinitna Formation of Alaska.

There are many fossils to be found on the west side of the Harrison lake near the town of Harrison, British Columbia. Exploration of the geology around Harrison Lake has a long history with geologists from the Geological Survey of Canada studying geology and paleontological exposures as far back as the 1880s. They were probably looking for coal exposures —  but happy day, they found fossils!

The paleo outcrops were first mentioned in the Geological Survey of Canada's Director's Report in 1888 (Selwyn, 1888), then studied by Whiteaves a year later. Whiteaves identified the prolific bivalve Aucella (now Buchia) from several specimens collected in 1882 by A. Bowman of the Geological Survey of Canada. The first detailed geological work in the Harrison Lake area was undertaken in a doctoral study by Crickmay (1925), who compiled a geological map, describing the stratigraphy and establishing the formational names, many of which we still use today. Crickmay went on to interpret the paleogeography and structure of the region.

There was a time when Jim Haggart asked one of the VanPS members to take up the mantle and try to cherry-pick through a boatload of buchia finds to sort their nomenclature. I'm not sure if that project ever bore fruit.

Around Harrison Lake, Callovian beds of the Mysterious Creek Formation are locally overlain disconformably by 3,000 feet of Early Oxfordian conglomerate. We find Cadoceras tonniense here and at nine localities in the Alaska Peninsula and Cook Inlet regions of the USA.

If you'd like to visit the site at Chinitna Bay, you'll want to hike into 59.9° N, 153.0° W: paleo-coordinates 31.6° N, 86.6° W.

If you're a keen bean for the Canadian site, you can drive the 30 km up Forestry Road #17, stopping just past Hale Creek at 49.5° N, 121.9° W: paleo-coordinates 42.5° N, 63.4° W, on the west side of Harrison Lake. You'll see Long Island to your right. If you can pre-load the Google Earth map of the area you'll thank yourself. Pro tip: access Forestry Road #17 at the northeast end of the parking lot from the Sasquatch Inn at 46001 Lougheed Hwy, Harrison  Mills. Look for signs for the Chehalis River Fish Hatchery to get you started. NTS: 92H/05NW; 92H/05SW; 92H/12NW; 92H/12SW.

A. J. Arthur, P. L. Smith, J. W. H. Monger and H. W. Tipper. 1993. Mesozoic stratigraphy and Jurassic paleontology west of Harrison Lake, southwestern British Columbia. Geological Survey of Canada Bulletin 441:1-62

R. W. Imlay. 1953. Callovian (Jurassic) ammonites from the United States and Alaska Part 2. The Alaska Peninsula and Cook Inlet regions. United States Geological Survey Professional Paper 249-B:41-108

An overview of the tectonic history of the southern Coast Mountains, British Columbia; Monger, J W H; in, Field trips to Harrison Lake and Vancouver Island, British Columbia; Haggart, J W (ed.); Smith, P L (ed.). Canadian Paleontology Conference, Field Trip Guidebook 16, 2011 p. 1-11 (ESS Cont.# 20110248).

Friday, 27 December 2019


A lovely example of Trilacinoceras norvegicum (Sweet, 1958), a nektonic carnivorous cephalopod from Ordovician outcrops on Helgö Island, Hovindsholm, Helgøya, Lake Mjosa, Norway.

This has been a site of human habitation for more than 5,000 years. Vikings, kings, traders, farmers —  and geologists have walked these fields.

The fossils found here are part of the Engervik Member, Elnes Formation, Aseri, and date back to the Middle Ordovician, 463.5 - 460.9 million years ago. W. C. Sweet did fossil fieldwork here in the 1950s and published a paper on the Middle Ordovician of the Oslo Region, Norway 10. Nautiloid Cephalopods. Norsk Geologisk Tidsskrift 38:1-178.

Deservedly, Sweetoceras boreale, is named for him and is one of the most delightful species names of all time. In the 1960s, Yochelson picked up where Sweet left off, continuing the survey of the Middle Ordovician of the Oslo region. I chose this Trilacinoceras for a holiday post because their curly tops remind me of a wee Norwegian gnome, or Nisse from the Norse niðsi, a dear little relative. My Swedish relatives call them Tomte, a throwback to Saint Birgitta of Sweden in the 1300s.

Helgøya is an island in Mjøsa located in the Ringsaker municipality of Hedmark county, Norway. It was formerly a part of the Nes municipality. And long before that, it was the ruling centre for the Kings in Hedmark, where bold men and women held great blót celebrations to Odin and planned raids and expansion into Europe and Russia — roughly A.D. 793 — the beginning of the Viking Age.

Today, it is lush and green and easy to explore — or fish. Mjøsa is Norway's largest lake, as well as one of the deepest lakes in Norway and in Europe. Battles have been fought on its waters and its depths hold interesting archaeological and paleontological secrets. They also hold a goodly amount of large and tasty trout, pike, perch, burbot and graylings.

Helgøya is the largest freshwater island in Norway at 18.3 km². The island is delightful to explore and home to 32 farms. One of the most beautiful of these is the Hovinsholm manor. You can visit the farm in both summer and winter (both equally beautiful) and enjoy a café, workshop or their Christmas market. They have lush gardens and some very friendly horses you can pet — or spoil with apples, as you do. The property is massive at 2012 acres, divided into grain, potatoes and forest. It has been home to kings and court. It was a monastery in the Middle Ages from the 5th to the 15th century. Today, Tolle Hoel Slotnæs, and his wife, Charlotte Holberg Sveinsen own and run the manor with their three daughters.

Hovinsholm, Helgøya, Lake Mjosa, Norway
Helgøya means, "Holy Island," in Norwegian. There is a lovely double meaning here and such layered history. The manor, in its various iterations, has been on this site since the 1500s. They had their own Christian manor church until 1612.

On the southern tip of the island, there is an old pagan temple to the Norse Gods, Thor, Frigg, Loki, Hod, Heimdall, Tyr, and Baldur.

Here, farmers of the area would gather at four blót sacrifices a year that followed the seasons, one for each of the winter solstice, spring equinox, summer solstice and autumn equinox. Animals would be sacrificed, their blood splattered on altars, walls and folk around them. Toasts were made. The first was in honour of Thor or Odin, “to the king and victory.” Odin, although nominally chief of the gods, was more the god of aristocrats. If a king were toasting, particularly a Danish King, it would be for Odin. If you look at place names in Scandinavia, you'll see him conspicuously absent in favour of Thor, the god of the common man.

When the farmers at Helgøya were shouting "Skål," it was likely for Thor. The toasting and drinking continued with cups emptied for Njörd and Freyr and Freyja in the hope of securing a prosperous future. Finally, personal pledges (and beer-soaked boasts) would be made to undertake great exploits, Valknut — to die well in battle — and finally to kinsmen laid to rest now drinking with the gods in Valhalla. Weapons, jewellery and tools were thrown into the lake as offerings.

If they were gathering for Jol (Old Norse), Jul (Norwegian) or the Yule blót, they'd also make a large sun wheel (picture a circle with a cross in the middle), carve it up with runes, set it on fire and roll it down a hill. It was quite a celebration with the festivities going on for three days and nights. With the formalities over, people did as people do  — drink, sing, boast, play games and find someone to bed down with — Gods be good.

Thor and Odin are still going strong nearly 1,000 years after the end of the Viking Age. You'd think that the old Nordic religion — the belief in the Norse gods — disappeared with the introduction of Christianity. That is not the case. There are still folk in Denmark (Odin-lovers) and Norway (Thor's their guy) who follow the old Norse religion and worship its ancient gods — right down to the splatter.

If you visit Norway at Christmas, Jul (Yule), you'll find much more of the pagan than the Christian in the festivities. King Haakon, old Haakon the Good, Hákon Góði or Håkon den Gode,  moved the Winter Solstice or Yule, Jul, Jol blót over to match up with the Christian holiday (December 25th) in his attempts to introduce Christianity in the 10th century but both traditions are still celebrated but without an overtly religious tone.

Old traditions run deep, animals are still sacrificed (but without all the splatter), bread is baked, houses cleaned, beer is abundant and fires warmth the hearth.

After all the drinking, toasting and feasting at the Jul blót, leftover food was not cleaned up but left overnight for the little relatives. Though shy, Nisse like a good feast and failing to offer them their tithe brings ill-fortune.

But we started this journey together admiring a lovely (and oddly festive) Ordovician cephalopod. Go on, picture him in red and white with a little beard. If you fancy a visit to the Ordovician outcrops, you can find them at Nes-Hamar, Norway. 60.0° N, 11.2° E: paleo-coordinates 33.7° S, 10.3° W. Look for gastropods (five known species) and cephalopods (at least 15 species).

If you'd like to visit the burial mound of Haakon the Good, you'll want to head to Seim, Hordaland, about 10 km north of Knarvik. Good 'ol Haakon may have tried to bring Christianity to Norway but he died full Viking — taking an arrow at the Battle of Fitjar. Many of my rellies live in Knarvik. We've spent many a sunny afternoon feasting at the Håkonarspelet summer festivals and exploring Haakon's burial mound at Håkonhaugen in Seim.

If you're more of the manor type, you can stop by Hovinsholm gård, Helgøyvegen 850, 2350 Nes på Hedmarken, Norway. If you're curious and want to see the farmstead, head on over to: https://www.skafferiet.no/about. If you need to square things up with Odin, you're on your own.

E. L. Yochelson. 1963. The Middle Ordovician of the Oslo Region, Norway. 15. Monoplacophora and Gastropoda. Norsk Geologisk Tidsskrift 43 (2):133-213.

Thursday, 26 December 2019


Puffins are any of three small species of alcids or auks in the bird genus Fratercula with a brightly coloured beak during the breeding season.

Their sexy orange beaks shift from a dull grey to bright orange when it is time to attract a mate. While not strictly monogamous, most Puffins choose the same mate year upon year producing adorable chicks or pufflings (awe) from their mating efforts.

Female Puffins produce one single white egg which the parents take turns to incubate over a course of about six weeks. Their dutiful parents share the honour of feeding the wee pufflings five to eight times a day until the chick is ready to fly. Towards the end of July, the fledgeling Puffins begin to venture from the safety of their parents and dry land. Once they take to the seas, mom and dad are released from duty and the newest members of the colony are left to hunt and survive on their own.

These are pelagic seabirds that feed primarily by diving in the water. They breed in large colonies on coastal cliffs or offshore islands, nesting in crevices among rocks or in burrows in the soil. Two species, the tufted puffin and horned puffin are found in the North Pacific Ocean, while the Atlantic puffin is found in the North Atlantic Ocean. This lovely fellow, with his distinctive colouring, is an Atlantic Puffin or "Sea Parrot" from Skomer Island near Pembrokeshire in the southwest of Wales. Wales is bordered by Camarthenshire to the east and Ceredigion to the northeast with the sea bordering everything else. It is a fine place to do some birding if it's seabirds you're after.

These Atlantic Puffins are one of the most famous of all the seabirds and form the largest colony in Southern Britain. They live about 25 years making a living in our cold seas dining on herring, hake and sand eels. Some have been known to live to almost 40 years of age. They are good little swimmers as you might expect, but surprisingly they are great flyers, too! They are hindered by short wings, which makes flight challenging but still possible with effort. Once they get some speed on board, they can fly up to 88 km an hour.

The oldest alcid fossil is Hydrotherikornis from Oregon dating to the Late Eocene while fossils of Aethia and Uria go back to the Late Miocene. Molecular clocks have been used to suggest an origin in the Pacific in the Paleocene. Fossils from North Carolina were originally thought to have been of two Fratercula species but were later reassigned to one Fratercula, the tufted puffin, and a Cerorhinca species. Another extinct species, Dow's puffin, Fratercula dowi,  was found on the Channel Islands of California until the Late Pleistocene or early Holocene.

The Fraterculini are thought to have originated in the Pacific primarily because of their greater diversity in the region. There is only one extant species in the Atlantic, compared to two in the Pacific. The Fraterculini fossil record in the Pacific extends at least as far back as the middle Miocene, with three fossil species of Cerorhinca, and material tentatively referred to that genus, in the middle Miocene to late Pliocene of southern California and northern Mexico.

Although there no records from the Miocene in the Atlantic, a re-examination of the North Carolina material indicated that the diversity of puffins in the early Pliocene was as great in the Atlantic as it is in the Pacific today. This diversity was achieved through influxes of puffins from the Pacific; the later loss of species was due to major oceanographic changes in the late Pliocene due to closure of the Panamanian Seaway and the onset of severe glacial cycles in the North Atlantic.

Wednesday, 25 December 2019


God Jul & the Very Best of the Holiday Season to You & Yours. However you celebrate, sending you love and light for a wonderful holiday season with family and friends. Merry Ho Ho. Joyeux Noël. Chag Urim Sameach. Seku Kulu. Vrolijk Kerstfeest. Prettige Kerst. Wesołych Świąt. Nadelik Lowen. Glædelig Jul. Hyvää joulua. Bon Natale. Feliz Natal. Frohe Weihnachten. Mele Kalikimaka. Gleðileg jól. Christmas MobArak. Buon Natale. Meri Kuri. Felicem Diem Nativitatis.  Среќен Божик. Quvianagli Anaiyyuniqpaliqsi. Gledelig Jul. Maligayang Pasko. Crăciun Fericit. Blithe Yule. Veselé Vianoce. Hanukkah Sameach. Nollaig Chridheil. Счастливого рождества. Cualli netlācatilizpan. חג מולד שמח. Nollaig Shona Dhuit. Śubh krisamas (शुभ क्रिसमस). Prabhu Ka Naya Din Aapko Mubarak Ho. And Ho Ho Ho!

Tuesday, 24 December 2019


Over vast expanses of time, powerful tectonic forces have massaged the western edge of the continent, smashing together a seemingly endless number of islands to produce what we now know as North America and the Pacific Northwest.

In the time expanse in which we live our very short human lives, the Earth's crust appears permanent. A fixed outer shell – terra firma. Aside from the rare event of an earthquake or the eruption of Mount St. Helen’s, our world seems unchanging, the landscape constant. In fact, it has been on the move for billions of years and continues to shift each day. As the earth’s core began cooling, some 4.5 billion years ago, plates, small bits of continental crust, have become larger and smaller as they are swept up in or swept under their neighbouring plates. Large chunks of the ocean floor have been uplifted, shifted and now find themselves thousands of miles in the air, part of mountain chains far from the ocean today or carved by glacial ice into valleys and basins.

Two hundred million years ago, Washington was two large islands, bits of the continent on the move westward, eventually bumping up against the North American continent and calling it home. Even with their new fixed address, the shifting continues; the more extreme movement has subsided laterally and continues vertically. The upthrusting of plates continue to move our mountain ranges skyward, the path of least resistance. This dynamic movement has created the landscape we see today and helped form the fossil record that tells much of our recent and ancient history.

Monday, 23 December 2019


Deep inside the largest and deepest gold mine in North America scientists are looking for dark matter particles and neutrinos instead of precious metals.

The Homestake Gold Mine in Lawrence County, South Dakota was a going concern from about 1876 to 2001.

The mine produced more than forty million troy ounces of gold in its one hundred and twenty-five-year history, dating back to the beginnings of the Black Hills Gold Rush. To give its humble beginnings a bit of context, Homestake was started in the days of miners hauling loads of ore via horse and mule and the battles of the Great Sioux War. Folk moved about via horse-drawn buggies and Alexander Graham Bell had just made his first successful telephone call. Wyatt Earp was working in Dodge City, Kansas (he had yet to get the heck outta Dodge) and Mark Twain was in the throes of publishing “The Adventures of Tom Sawyer.”   Ooh, and Thomas Edison had just opened his first industrial research lab in Menlo Park.

The mine is part of the Homestake Formation, an Early Proterozoic layer of iron carbonate and iron silicate that produces auriferous greenschist gold. What does all that geeky goodness mean? If you were a gold miner it would be music to your ears. They ground down that schist to get the glorious good stuff and made a tiny wee sum doing so. But then gold prices levelled off  from 1997 ($287.05) to 2001 ($276.50)  and rumblings from the owners started to grow. They bailed in 2001, ironically just before gold prices started up again.

But back to 2001, that levelling saw the owners look to a new source of revenue in an unusual place. One they had explored way back in the 1960s in a purpose-built underground laboratory that sounds more like something out of a science fiction book. The brainchild of chemist and astrophysicists, John Bahcall and Raymond Davis Jr. from the Brookhaven National Laboratory in Upton, New York, the laboratory was used to observe solar neutrinos, electron neutrinos produced by the Sun as a product of nuclear fusion.

Davis had the ingenious idea to use 100,000 gallons of dry-cleaning solvent, tetrachloroethylene, with the notion that neutrinos headed to Earth from the Sun would pass through most matter but on very rare occasions would hit a chlorine-37 atom head-on turning it to argon-37. His experiment was a general success, detecting electron neutrinos,  though his technique failed to sense two-thirds of the number predicted. In particle physics, neutrinos come in three types: electron, muon and tau. Think yellow, green, blue. What Davis had failed to initially predict was the neutrino oscillation en route to Earth that altered one form of neutrino into another. Blue becomes green, yellow becomes blue... He did eventually correct this wee error and was awarded the Nobel Prize in Physics in 2002 for his efforts.

Though Davis’ experiments were working, miners at Homestake continued to dig deep for ore in the belly of the Black Hills of western South Dakota for almost another forty years. As gold prices levelled out and ore quality dropped the idea began to float to repurpose the mine as a potential site for a new Deep Underground Engineering Laboratory (DUSEL).

A pitch was made and the National Science Foundation awarded the contract to Homestake in 2007.  The mine is now home to the Deep Underground Neutrino Experiment (DUNE) using DUSEL and Large Underground Xenon to look at both neutrinos and dark particle matter. It is a wonderful re-purposing of the site and one that few could ever have predicted. Well done, Homestake. The future of the site is a gracious homage to the now deceased Davis. He would likely be delighted to know that his work continues at Homestake and our exploration of the Universe with it.

Sunday, 22 December 2019


A very beautiful Lower Campanian block from Haroto, Hokkaido, Japan. This specimen contains an ancient undersea world at a glance.

The beautiful block you see here was prepared, photographed and is in the collections of José Juárez Ruiz. In it, you can see a lovely Pseudoxybeloceras (Parasolenoceras) soyaense (143 mm), Polyptychoceras jimboi (134 mm), Polyptychoceras sp. (114 mm), Gaudryceras mite (48 and 45 mm), Gaudryceras tenuiliratum (Hirano, 1978) at (48 and 20 mm), and a wee fragment of wood (69 mm).

Matsumoto published on the ammonites from the Campanian (Upper Cretaceous) of northern Hokkaido back in 1984, in the Palaeontological Society of Japan Special Series Papers, Number #27.

This was my first look at the glorious fauna from northern Japan. The species and preservation are truly outstanding. Since then, many of the Japanese palaeontologists have made their way over to Vancouver Island, to look at ammonites, inoceramids and coleoid jaws from the Nanaimo Group and compare them to the Japanese species.

Rick Ross and Pat Trask, both of Courtenay on Vancouver Island, collaborated with Dr. Kazushige Tanabe and Yoshinori Hikida of Japan, to produce a wonderful paper in the Journal of Paleontology, 82 (2), 2008, pp 398-408, on Late Cretaceous Octobrachiate Coleoid Lower Jaws from the North Pacific Regions. They compared eight well-preserved cephalopod jaws from Upper Cretaceous (Santonian and Campanian) deposits of Vancouver Island, Canada, and Hokkaido, Japan. Seven of these were from Santonian to lower Campanian strata of the Nanaimo Group in the northeastern region of Vancouver Island. The eighth specimen was from Santonian strata of the Yezo Group in the Nakagawa area, northern Hokkaido, Japan. 

While they were collaborating on identifying coleoid jaws from the Comox Valley, Rick was visited twice by Dr. Kazushige Tanabe who was joined by his colleague Akinori Takahashi. Takahashi is an expert on temporal species-diversity changes in Japanese Cretaceous inoceramid bivalves.

They had the very great pleasure of visiting many fossil sites and seeing personal and museum collections. If you'd like to read Matsumoto's paper, here is the link: http://www.palaeo-soc-japan.jp/download/SP/SP27.pdf  I have a pdf copy of the Coleoid paper from Rick. It has very nice photos and illustrations, including a drawing of the holotypes of Paleocirroteuthis haggerti n. gen. and Paleocirroteuithis pacifica.

Here's a link to one of Takahashi's papers: https://bioone.org/journals/paleontological-research/volume-9/issue-3/prpsj.9.217/Diversity-changes-in-Cretaceous-inoceramid-bivalves-of-Japan/10.2517/prpsj.9.217.short

Saturday, 21 December 2019


Exposures of the Upper Triassic (Early Norian, Kerri zone), Luning formation, West Union Canyon, just outside Berlin-Ichthyosaur State Park, Nevada.

The Berlin-Ichthyosaur State Park in central Nevada is a very important locality for the understanding of the Carnian-Norian boundary (CNB) in North America.

Rich ammonoid faunas from this site within the Luning Formation were studied by Silberling (1959) and provided support for the definition of the Schucherti and Macrolobatus zones of the latest Carnian, which are here overlain by well-preserved faunas of the earliest Norian Kerri Zone. Despite its importance, no further investigations have been done at this site during the last 50 years.

Jim Haggart, Mike Orchard and Paul Smith (all local Vancouverites) collaborated on a project that took them down to Nevada to look at the conodonts (Oh, Mike) and ammonoids (Jim's fav); the group then published a paper, "Towards the definition of the Carnian/Norian Boundary: New data on Ammonoids and Conodonts from central Nevada," which you can find in the proceedings of the 21st Canadian Paleontology Conference; by Haggart, J W (ed.); Smith, P L (ed.); Canadian Paleontology Conference Proceedings no. 9, 2011 p. 9-10.

They conducted a bed-by-bed sampling of ammonoids and conodonts in West Union Canyon during October 2010. The eastern side of the canyon provides the best record of the Macrolobatus Zone, which is represented by several beds yielding ammonoids of the Tropites group, together with Anatropites div. sp. Conodont faunas from both these and higher beds are dominated by ornate 'metapolygnthids' that would formerly have been collectively referred to Metapolygnathus primitius, a species long known to straddle the CNB. Within this lower part of the section, they resemble forms that have been separated as Metapolygnathus mersinensis. Slightly higher, forms close to 'Epigondolella' orchardi and a single 'Orchardella' n. sp. occur. This association can be correlated with the latest Carnian in British Columbia.

Higher in the section, the ammonoid fauna shows a sudden change and is dominated by Tropithisbites. Few tens of metres above, but slightly below the first occurrence of Norian ammonoids Guembelites jandianus and Stikinoceras, two new species of conodonts (Gen et sp. nov. A and B) appear that also occur close to the favoured Carnian/Norian boundary at Black Bear Ridge, British Columbia. Stratigraphically higher collections continue to be dominated by forms close to M. mersinensis and 'E.' orchardi.

The best exposure of the Kerri Zone is on the western side of the West Union Canyon. Ammonoids, dominated by Guembelites and Stikinoceras div. sp., have been collected from several fossil-bearing levels. Conodont faunas replicate those of the east section. The collected ammonoids fit perfectly well with the faunas described by Silberling in 1959, but they differ somewhat from coeval faunas of the Tethys and Canada.

The genus Gonionotites, very common in the Tethys and British Columbia, is for the moment unknown in Nevada. More in general, the Upper Carnian faunas are dominated by Tropitidae, while Juvavitidae are lacking.

After years of reading about the correlation between British Columbia and Nevada, I had the very great pleasure of walking through these same sections in October 2019 with members of the Vancouver Paleontological Society and Vancouver Island Palaeontological Society. It was with that same crew that I'd originally explored fossil sites in the Canadian Rockies in the early 2000s. Those early trips led to paper after paper and the exciting revelations that inspired our Nevada adventure.

Friday, 20 December 2019


A stunning replica of Bothriolepis canadensis from Upper Devonian (Frasnian), Escuminac formation, Parc de Miguasha, Baie des Chaleurs, Gaspé, Québec, Canada.

Over the past 170 years, the Late Devonian Miguasha biota from eastern Canada has yielded a diverse aquatic assemblage including 20 species of lower vertebrates (anaspids, osteostra-cans, placoderms, acanthodians, actinopterygians and sarcopterygians), a more limited invertebrate assemblage, and a continental component including plants, scorpions and millipedes.

Originally interpreted as a freshwater lacustrine environment, recent paleontological, taphonomic, sedimentological and geochemical evidence corroborates a brackish estuarine setting. Over 18,000 fish specimens have been recovered showing various modes of fossilization, including uncompressed material and soft-tissue preservation. Most vertebrates are known from numerous, complete, articulated specimens. Exceptionally well-preserved larval and juvenile specimens have been identified for 14 out of the 20 species of fishes, allowing growth studies. Numerous horizons within the Escuminac Formation are now interpreted as either Konservat– or Konzentrat–Lagerstätten.

This replica was purchased at the Musée d'Histoire Naturelle, Miguasha (MHNM) and is in the collection of the deeply awesome (and well-travelled) John Fam.

Great Canadian Lagerstätten 4. The Devonian Miguasha Biota (Québec): UNESCO World Heritage Site and a Time Capsule in the Early History of Vertebrates, Richard Cloutier, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, QC, Canada, G5L 3A1, richard_cloutier@uqar.ca, http://dx.doi.org/10.12789/geocanj.2013.40.008

Thursday, 19 December 2019


Sarcosuchus is an extinct genus of crocodyliform and distant relative of living crocodylians that lived ~129-112 million years ago. Fossil remains date from the Lower Cretaceous of what is now Africa and South America.

Strictly speaking, Sarcosuchus was not a crocodile as we know them today, but a kind of pre-crocodile. These early croc-types were Crocodylomorphs.

This crocodylian lineage (clade Pseudosuchia, formerly Crurotarsi) was a very diverse and adaptive group of reptiles. We used to lump all known living and extinct crocodiles indiscriminately into the order Crocodilia. Sometime in the late 1980s, we finally moved all living species into the order Crocodilia, segregating closely related extinct relatives such as Mekosuchus. Our true "modern" crocodiles, now all safely ensconced in the order Crocodilia without their ancient ancestors, arrived millions of years after the first crocodylomorphs, with the first members of the modern species arriving on the scene in the Upper Cretaceous.

The Crocodylomorpha were a very ancient group of animals, at least as old as the dinosaurs, who evolved into a very diverse spectrum of weird and wonderful forms you might not recognize as croc-like. During the Jurassic and the Cretaceous, marine Crocodylomorphs in the family Metriorhynchidae, such as Metriorhynchus, evolved forelimbs that were paddle-like and had a tail similar to modern fish. Dakosaurus andiniensis, a species closely related to Metriorhynchus, had a skull that was adapted to feast upon large marine reptiles. We see several (unexpected) herbivorous terrestrial species during the Cretaceous, such as the tiny and adorable Simosuchus clarki and Chimaerasuchus paradoxus, both roughly the size of a dog. During the Cenozoic, a number of lineages left their ancient river homes and became wholly terrestrial predators.

Sarcosuchus was one of the largest early crocodile-like reptiles, reaching up to 9.5 m in body length and weighing up to 8 to 10 tons. He was almost twice as long as our modern saltwater crocodiles, so one big croc! These big beasts lived and hunted in ancient rivers, grabbing and crushing prey that came too close to the water.

The first remains were discovered during field expeditions in the Sahara led by French paleontologist, Albert-Félix de Lapparent, from 1946 to 1959. Remains were found of skull fragments, vertebrae, teeth, and scutes.

In 1964, an almost complete skull was found in Niger by the French CEA, but it was not until 1997 and 2000 that most of its anatomy became known to science when an expedition led by the American paleontologist Paul Sereno discovered six new specimens, including one with about half the skeleton intact and most of the spine.

A common method to estimate the size of crocodiles and crocodile-like reptiles is the use of the length of the skull measured in the midline from the tip of the snout to the back of the skull table since in living crocodilians there is a strong correlation between skull length and total body length in subadult and adult individuals irrespective of their sex, this method was used by Sereno et al. (2001) for Sarcosuchus due to the absence of a complete enough skeleton. Two regression equations were used to estimate the size of S. imperator, they were created based on measurements gathered from 17 captive gharial individuals from northern India and from 28 wild saltwater crocodile individuals from northern Australia, both datasets supplemented by available measurements of individuals over 1.5 m (4.92 ft) in length found in the literature.

The largest known skull of Sarcosuchus imperator (the type specimen) is 1.6 m (5.25 ft) long (1.5 m (4.92 ft) in the midline), and it was estimated that the individual it belonged to had a total body length of 11.65 m (38.2 ft), its snout-vent length of 5.7 m (18.7 ft) was estimated using linear equations for the saltwater crocodile and in turn, this measurement was used to estimate its body weight at 8 tonnes (8.8 short tons). These new measurements meant Sarcosuchus was able to reach a maximum body size not only greater than previously estimated but also greater than that of the Miocene "Beak crocodile" Rhamphosuchus, the Late Cretaceous Deinosuchus crocodilian related to our modern alligators, and the Miocene Purussaurus.

However, extrapolation from the femur of a subadult individual as well as measurements of the skull width further showed that the largest S. imperator was significantly smaller than was estimated by Sereno et al. (2001) based on modern crocodilians. O’Brien et al. (2019) estimated the length of the largest S. imperator specimen at 9.5 meters and body weight at 4.7 tons based on longirostrine crocodylians skull width to total length ratio. This estimate is very close to the femur based estimate is 9.1 m (29.9 ft).

Sereno, Paul C.; Larson, Hans C. E.; Sidor, Christian A.; Gado, Boubé (2001). "The Giant Crocodyliform Sarcosuchus from the Cretaceous of Africa". Science. 294 (5546): 1516–9. Bibcode:2001Sci...294.1516S. doi:10.1126/science.1066521. PMID 11679634.

Wednesday, 18 December 2019


Very proud of Mario Cournoyer for his first article to be published in the journal of paleontology on Ordovician and Silurian Crinoids of Anticosti Island, Quebec, Canada.

The end-Ordovician extinctions had a profound effect on shallow-water benthic communities, including the Crinoidea. A hard-won recovery after the extinctions led (not surprisingly) to macroevolutionary turnover in crinoid faunas. We do not have many of these exposures to study this impactful moment in our evolutionary history and our opportunity to see this transition in Canada is special indeed. Anticosti Island is the most complete Ordovician-Silurian boundary section recording shallow-water habitats.

Both new taxa and changes in Anticosti Island stratigraphic nomenclature are addressed in the paper. New taxa include Becsciecrinus groulxi n. sp., Bucucrinus isotaloi n. sp., Jovacrinus clarki n. sp., Plicodendrocrinus petryki n. sp., Plicodendrocrinus martini n. sp., Thalamocrinus daoustae n. sp., and Lateranicrinus saintlaurenti n. gen. n. sp.

The status of Xenocrinus rubus as a boundary-crossing taxon is confirmed, range extensions of several taxa are documented, and the distribution of crinoids with the revised stratigraphic nomenclature is documented. This publication is a labour of love covering many years of a collaborative effort by Cournoyer and William Ausich. Definitely give it a read:


Tuesday, 17 December 2019


The beautiful walled city of Volterra, an ancient Etruscan town some 45 miles southwest of Florence, is famous for its well-preserved medieval ramparts, museums and archeological sites and atmospheric cobblestone streets.

Since ancient times, Volterra, a key trading center and one of the most important Etruscan towns has been known as the city of alabaster.

The Etruscans mined alabaster in the nearby hills and considered it the stone of the dead. The mineral was used for elaborate funerary urns and caskets that housed the ashes of the departed, prized for its durability, beautiful coloration, natural veining and translucence. When the Romans ascended, alabaster fell out of favour and marble became the preferred sculpting material.

To work alabaster requires an assortment of hand tools, an artistic eye, and a tolerance for vast clouds of dust. An alabastraio begins with a block or chunk of alabaster. If the final product is to be a vase or bowl, the stone is turned on a lathe similar to what is used to make pottery and then shaped with chiselling tools.

Although alabaster and marble may seem similar in appearance when polished, they are very different materials, particularly when it comes to their hardness and mineral content. Alabaster is a fine-grained form of gypsum, a sedimentary rock made from tiny crystals visible only under magnification. The ancient Egyptians preferred alabaster for making their sphinxes or creating burial objects such as cosmetic jars. The purest alabaster is white and a bit translucent; impurities such as iron oxide cause the spidery veins. I like a mix of both, preferably backlit to show the blending of colour.

Alabaster is more graceful in appearance than marble. Marble consists mostly of calcite, formed when limestone underground is changed through extreme pressure or heat. It’s not quite as delicate as alabaster and became the preferred material for master sculptors such as Michelangelo who relied on marble from Carrara for his most famous works.

I had the very great pleasure of travelling to Carrara with Guylaine Rondeau many years ago, making her stop at every single roadcut along the way. More on those wonders later...

Alabaster is the common name applied to a few types of rocks. Translucent and beautiful, alabaster generally includes some calcium in gypsum. Gypsum is a composite of calcium sulphate, a type of sedimentary rock formed millions of years ago in the depths of a shallow sea. Left by time and tide, it evaporated into the creamy (full of lovely chemical impurities) or fully transparent (pure gypsum) stone we see today.

Alabaster is simply beautiful. In the right hands, it can be sculpted to evoke the most wondrous reflections of light and emotion. And it stands the test of time, becoming more beautiful with each passing year... rather like my Auntie Gail. I'm thinking of you as I write this my beautiful one. Happy 70th birthday to my Auntie of Alabaster. xo

Monday, 16 December 2019


Prolyelliceras ulrichi (Knechtel, 1947) a fast-moving nektonic carnivore ammonite from Cretaceous lithified, black, carbonaceous limestone outcrops in Peru.

This specimen shows a pathology, a slight deviation to the side of the siphonal of the ammonite. We see Prolyelliceras from the Albian to Middle Albian from five localities in Peru.

Reference: M. M. Knechtel. 1947. Cephalopoda. In: Mesozoic fossils of the Peruvian Andes, Johns Hopkins University Studies in Geology 15:81-139

W. J. Kennedy and H. C. Klinger. 2008. Cretaceous faunas from Zululand and Natal, South Africa. The ammonite subfamily Lyelliceratinae Spath, 1921. African Natural History 4:57-111. The beauty you see here is in the collection of José Juárez Ruiz

Sunday, 15 December 2019


This trackway from the Iberian Peninsula is a busy one! The theropod dinosaur tracks (and a few sauropods, too) cover the entire surface. They must have crossed this muddy area en masse sometime back in the Jurassic.

The Iberian Peninsula is the westernmost of the three major southern European peninsulas — the Iberian, Italian, and Balkan. It is bordered on the southeast and east by the Mediterranean Sea, and on the north, west, and southwest by the Atlantic Ocean. The Pyrenees mountains are situated along the northeast edge of the peninsula, where it adjoins the rest of Europe. Its southern tip is very close to the northwest coast of Africa, separated from it by the Strait of Gibraltar and the Mediterranean Sea.

The Iberian Peninsula contains rocks of every geological period from the Ediacaran to the recent, and almost every kind of rock is represented. To date, there are 127 localities of theropod fossil finds ranging from the Callovian-Oxfordian (Middle-Upper Jurassic) to the Maastrichtian (Upper Cretaceous), with most of the localities concentrated in the Kimmeridgian-Tithonian interval and the Barremian and Campanian stages. The stratigraphic distribution is interesting and suggests the existence of ecological and/or taphonomic biases and palaeogeographical events that warrant additional time and attention.

As well as theropods, we also find their plant-eating brethren. This was the part of the world where the last of the hadrosaurs, the 'duck-billed' dinosaurs, lived then disappeared in the Latest Cretaceous K/T extinction event, 65.5 million years ago.

The core of the Iberian Peninsula consists of a Hercynian cratonic block known as the Iberian Massif. On the northeast, this is bounded by the Pyrenean fold belt, and on the southeast, it is bounded by the Baetic System. These twofold chains are part of the Alpine belt. To the west, the peninsula is delimited by the continental boundary formed by the magma-poor opening of the Atlantic Ocean. The Hercynian Foldbelt is mostly buried by Mesozoic and Tertiary cover rocks to the east but nevertheless outcrops through the Sistema Ibérico and the Catalan Mediterranean System. The photo you see here is care of the awesome Pedro Marrecas from Lisbon, Portugal. Hola, Pista de baile jurásica!

Pereda-Suberbiola, Xabier; Canudo, José Ignacio; Company, Julio; Cruzado-Caballero, Penélope; Ruiz-Omenaca, José Ignacio. "Hadrosauroid dinosaurs from the latest Cretaceous of the Iberian Peninsula" Journal of Vertebrate Paleontology 29(3): 946-951, 12 de septiembre de 2009.

Pereda-Suberbiola, Xabier; Canudo, José Ignacio; Cruzado-Caballero, Penélope; Barco, José Luis; López-Martínez, Nieves; Oms, Oriol; Ruíz-Omenaca, José Ignacio. Comptes Rendus Palevol 8(6): 559-572 septiembre de 2009.

Saturday, 14 December 2019


If you’re wondering if you have Fossil Bone, you’ll want to look for the telltale texture on the surface. It’s best to take the specimen outside & photograph it in natural light.

With fossil bone, you will be able to see the different canals and webbed structure of the bone, sure signs that the object was of biological origin.

As my good friend Mike Boyd notes, without going into the distinction between dermal bone and endochondral bone (which relates to how they form - or ossify), it's worth noting that bones such as the one illustrated here will usually have a layer of smooth (or periosteal) bone on the outer surface and spongy (or trabecular) bone inside.

The distinction can be well seen in the photograph. The partial weathering away of the smooth external bone has resulted in the exposure of the spongy bone interiors. Geographic context is important, so knowing where it was found is very helpful for an ID. Knowing the geologic context of your find can help you to figure out if you've perhaps found a terrestrial or marine fossil. Did you find any other fossils nearby? Can you see pieces of fossil shells or remnants of fossil leaves? Things get tricky with erratics. That's when something has deposited a rock or fossil far from the place it originated. We see this with glaciers. The ice can act like a plow, lifting up and pushing a rock to a new location, then melting away to leave something out of context.

Friday, 13 December 2019


If fossil fuels are made from fossils, are oil, gas and coal made from dead dinosaurs? Well, no, but they are made from fossils. We do not heat our homes or run our cars on dead hadrosaurs. No mighty T-Rex burns up your chimney, instead, for the most part, we burn very humble dead algae. Yep, plants. Really old ones.

I know, right? It sounds much less exciting, but the process by which algae and other plant life soak up the Sun's energy, store it for millions of years, then give it all up for us to burn as fuel is a pretty fantastic tale!

Fossil fuel is a fuel formed by a natural process, the anaerobic decomposition of buried dead organisms who soaked up and stored energy from ancient photosynthesis. Picture ancient trees, algae and peat soaking up the sun, then storing that energy for us to use millions of years later. These organisms and their resulting fossil fuels are millions of years old, sometimes more than 650 million years. That's way back in the day when Earth's inhabitants were mostly viruses, bacteria and some early multi-cellular jelly-like critters.

Fossil fuels consist mainly of dead plants – coal from trees, and natural gas and oil from algae, a diverse group of aquatic photosynthetic eukaryotic organisms I like to think of as pond scum. These deposits are called fossil fuels because, like fossils, they are the remains of plants and animals that lived long ago.

If we could go back far enough, we'd find that our oil, gas, and coal deposits are really remnants of algal pools, peat bogs and ancient muddy swamps. Dead plants and algae accumulate and over time, then pressure turns the mud and dead plants into rock. Geologists call the once-living matter in the rock kerogen. If they haven't been cooked too badly, we call them fossils.

Kerogen is the solid, insoluble organic matter in sedimentary rocks and it is made from a mixture of ancient organic matter. A bit of this tree and that algae all mixed together to form a black, sticky, oily rock. The Earth’s internal heat cooks the kerogen. The hotter it gets, the faster it becomes oil, gas, or coal. If the heat continues after the oil is formed, all the oil turns to gas. The oil and gas then seep through cracks in the rocks. Much of it is lost. We find oil and gas today because some happened to become trapped in porous, sponge-like rock layers capped by non-porous rocks. We tap into these the way you might crack into a bottle of olive oil sealed with wax.

Fossil fuel experts call this arrangement a reservoir and places like Alberta, Iran and Qatar are full of them. A petroleum reservoir or oil and gas reservoir is a subsurface pool of hydrocarbons contained in porous or fractured rock formations. Petroleum reservoirs are broadly classified as conventional and unconventional reservoirs. In the case of conventional reservoirs, the naturally occurring hydrocarbons, such as crude oil or natural gas, are trapped by overlying rock formations with lower permeability. In unconventional reservoirs, the rocks have high porosity and low permeability which keeps the hydrocarbons trapped in place, so these unconventional reservoirs don't need a rock cap.

Coal is an important form of fossil fuel. Much of the early geologic mapping of Canada (and other countries) was done for the sole purpose of mapping the coal seams. You can use it to heat your home, run a coal engine or sell it for cold hard cash. It's a dirty fuel, but for a very long time, most of our industries used it as the sole means of energy. But what is so bad about burning coal and other fossil fuels? Well, many things...

Burning fossil fuels, like oil and coal, releases large amounts of carbon dioxide and other gases into the atmosphere. They get trapped as heat, which we call the greenhouse effect. This plays havoc with global weather patterns and our world does not do so well when that happens. The massive end-Permian extinction event, the worst natural disaster in Earth's history when 90% of all life on Earth died was caused by massive volcanic eruptions that spewed gas and lava, covering the Earth in volcanic dust, then acid rain. Picture Mordor times ten. This wasn't a culling of the herd, this was full-on decimation. I'll spare you the details, but the whole thing ended poorly.

Dirty or no, coal is still pretty cool. It is wild to think that a lump of coal has the same number of atoms in it as the algae or rainforest that formed it. Yep, all the same atoms, just heated and pressurized over time. When you burn a lump of coal, the same number of atoms are released when those atoms dissipate as particles of soot. You may wonder what makes a rock burn. It's not intuitive that it would be possible, and yet there it is. Coal is combustible, meaning it is able to catch fire and burn. Coal is made up mostly from carbon with some hydrogen, sulphur (smells like rotting eggs, stinky pew), oxygen and nitrogen thrown in.

It is just that the long-ago rainforest was far less dense than the coal you hold in your hand today, and so is the soot into which it dissipates once burned. The energy was captured by the algal pool or rainforest by way of photosynthesis, then that same energy is released when the coal is burnt. So the energy captured in gravity and released billions of years later when the intrinsic gravity of the coal is dissipated by burning. It's enough to bend your brain.

The Sun loses mass all the time because of its process of fusion of atomic content and radiating that energy as light. Our ancient rainforests and algal pools on Earth captured some of it. So maybe our energy transformations between the Earth and the Sun could be seen more like ping-pong matches, with energy, as the ball, passing back and forth.

As mass sucks light in (hello, photosynthesis), it becomes denser, and as mass radiates light out (hello, heat from coal), it becomes less dense. Ying, yang and the beat goes on.

Thursday, 12 December 2019


A very bright, beautiful young mind asked the question, "does Earth's mass decrease when we burn fossil fuels? And if it does, is it measurable? Do we know how much of the Earth’s mass has been lost so far?"

Well, Melaina, the Earth’s mass does decrease when fossil fuels are burnt. But not in the sense you were probably imagining, and only to a very, very small degree.

There is no decrease in chemical mass. Burning fossil fuels rearranges atoms into different molecules, in the process releasing energy from chemical bonds, but in the end, the same particles — protons, neutrons, and electrons — remain, so there is no decrease in mass there.

But energy is released, and some of that energy is radiated out into space, escaping from the Earth entirely. Einstein's Theory of Relativity tells us that energy does have mass: E=mc^2, or m=E/c^2. When a chemical bond that stores energy is formed, the resulting molecule has a very tiny bit more mass than the sum of the masses of the atoms from which it was formed, so a net gain. Wait, what?

Again, this is an exceedingly tiny bit. In very rough numbers, worldwide energy consumption is about 160,000 terawatt-hours per year, and about 80% of that comes from fossil fuels. That is about 450,000,000 TJ/year (tera-joules/year). The speed of light is 300,000,000 meter/s; dividing 450,000,000 TJ by (300,000,000 m/s)^2 gives a decrease in mass of 5000 kilograms per year.

That is an exceedingly small fraction — 50 billionths of one percent — of the approximately 10,000,000,000,000 kilograms of fossil fuels consumed per year. And as far as making the Earth lighter, it’s a tenth of a billionth of a billionth of a percent of the Earth’s mass.

Of course, the energy in fossil fuels originally came from the Sun, and in absorbing that sunlight the Earth’s mass increases slightly. I picture the Earth expanding and contracting, taking a deep breath, then exhaling. We don't see this when we look, but it is a great visual for imaging this never-ending give and take process. I'm not sure how we'd measure the small changes to the Earth's net mass on any given day. The mass of the Earth may be determined using Newton's law of gravitation. It is given as the force (F), which is equal to the Gravitational constant multiplied by the mass of the planet and the mass of the object, divided by the square of the radius of the planet.

Newton's insight on the inverse-square property of gravitational force was from an intuition about the motion of the earth and the moon. The mathematical formula for gravitational force is F=GMmr2 F = G Mm r 2 where G is the gravitational constant. I know, Newton’s law could use some curb appeal but it is super useful when understanding what keeps the Earth and other planets in our solar system in orbit around the Sun and why the Moon orbits the Earth. We have Newton to thank for his formulas on the gravitational potential of water when we build hydroelectricity dams. Newton’s ideas work in most but not all scenarios. When things get very, very small, or cosmic, gravity gets weird... and we head on back to Einstein to make sense of it all.

There was a very cool paper published yesterday by King Yan Fong et al. in the journal Nature that looked at heat transferring in a previously unknown way — heat transferred across a vacuum by phonons — tiny, atomic vibrations. The effect joins conduction, convection and radiation as ways for heating to occur — but only across tiny distances. The heat is transferred by phonons — the energy-carrying particles of acoustic waves, taking advantage of the Casimir effect, in which the quantum fluctuations in the space between two objects that are really, really close together result in physical effects not predicted by classical physics. This is another excellent example of the universe not playing by conventional rules when things get small. Weird, but very cool!

But the question was specifically about the mass of the Earth and the burning of fossil fuels, and that process does decrease the mass.

So it is mostly true that the Earth’s mass does not decrease due to fossil fuel burning because the numbers are so low, but not entirely true. The fuel combines with oxygen from the atmosphere to produce carbon dioxide, water vapour, and soot or ash. The carbon dioxide and water vapour go back into the atmosphere along with some of the soot or ash, the rest of which is left as a solid residue. The weight of the carbon dioxide plus the water vapour and soot is exactly the same as the weight of the original fuel plus the weight of the oxygen consumed. In general, the products of any chemical reaction whatsoever weigh the same as the reactants.

There is only one known mechanism by which Earth’s mass decreases to any significant degree: molecules of gas in the upper atmosphere (primarily hydrogen and helium, because they are the lightest) escape from Earth’s gravity at a steady rate due to thermal energy. This is counterbalanced by a steady rain of meteors hitting Earth from outer space (if you ever want to hunt them, fly a helicopter over the frozen arctic, they really stand out), containing mostly rock, water, and nickel-iron. These two processes are happening all the time and will continue at a steady rate unchanged by anything we humans do. So, the net/net is about the same.

So, the answer is that the Earth's mass is variable, subject to both gain and loss due to the accretion of in-falling material (micrometeorites and cosmic dust), and the loss of hydrogen and helium gas, respectively. But, drumroll please, the end result is a net loss of material, roughly 5.5×107 kg (5.4×104 long tons) per year.

The burning of fossil fuels has an impact on that equation, albeit a very small one, but an excellent question to ponder. A thank you and respectful nod to Les Niles and Michael McClennen for their insights and help with the energy consumption figures.