Saturday, 28 May 2022

WILD WEST COAST: NOOTKA ISLAND

The rugged west coast of Vancouver Island offers spectacular views of a wild British Columbia. Here the seas heave along the shores of deep inlets slowly eroding the magnificent deposits that often contain fossils. 

Just off the shores of Vancouver Island, east of Gold River and south of Tahsis is the picturesque and remote Nootka Island.

This is the land of the proud and thriving Nuu-chah-nulth First Nations who have lived here always

Always is a long time, but we know from oral history and archaeological evidence that the Mowachaht and Muchalaht peoples lived here, along with many others, for many thousands of years — a time span much like always

While we know this area as Nootka Sound and the land we explore for fossils as Nootka Island, these names stem from a wee misunderstanding. 

Just four years after the 1774 visit by Spanish explorer Juan Pérez — and only a year before the Spanish established a military and fur trading post on the site of Yuquot — the Nuu-chah-nulth met the Englishman, James Cook.  

Captain Cook sailed to the village of Yuquot just west of Vancouver Island to a very warm welcome. He and his crew stayed on for a month of storytelling, trading and ship repairs. Friendly, but not familiar with the local language, he misunderstood the name for both the people and land to be Nootka. In actual fact, Nootka means, go around, go around

Two hundred years later, in 1978, the Nuu-chah-nulth chose the collective term Nuu-chah-nulth — nuučaan̓uł, meaning all along the mountains and sea or along the outside (of Vancouver Island) — to describe themselves. 

West Coast First Nations
It is a term now used to describe several First Nations people living along western Vancouver Island, British Columbia. When Pérez and Cook arrived, this was home to twenty-four villages. 

Many of those villages are now deserted, some coalesced, blending together shrinking numbers from smaller villages to form new social units in larger villages. They made their villages close to the bounty of the rivers and sea. 

Within the sheltered bays, river heads and remote wilderness along the west coast of Vancouver Island their villages and people were bonded language, culture, marriage, tradition and war. Sometimes they would join forces to trade, sometimes to wage war and sometimes they would battle one another.

Those that live on into the future, the few who have survived and now thrive are the Nuu-chah-nulth you meet today. 

Using Nuu-chah-nulth is similar to the use of the United Kingdom to refer to the lands of England, Scotland and Wales — though using United Kingdom-ers would be odd. Bless the Nuu-chah-nulth for their grace in choosing this collective name.  

An older term for this group of peoples was Aht, which means people and is a component in all the names of their subgroups, and of some locations — Yuquot, Mowachaht, Kyuquot, Opitsaht. While collectively, they are the Nuu-chah-nulth, be interested in their more regional name should you meet them. 

But why does it matter? If you have ever mistakenly referred to someone from New Zealand as an Aussie or someone from Scotland as English, you have likely been schooled by an immediate — sometimes forceful, sometimes gracious — correction of your ways. The best answer to why it matters is because it matters.

Each of the subgroups of the Nuu-chah-nulth viewed their lands and seasonal migration within them (though not outside of them) from a viewpoint of inside and outside. Kla'a or outside is the term for their coastal environment and hilstis for their inside or inland environment.

It is to their kla'a that I was most keen to explore. Here, the lovely Late Eocene and Early Miocene exposures offer up fossil crab, mostly the species Raninid, along with fossil gastropods, bivalves, pine cones and spectacularly — a singular seed pod. These wonderfully preserved specimens are found in concretion along the foreshore where time and tide erode them out each year.

Five years after Spanish explorer Juan Pérez's first visit, the Spanish built and maintained a military post at Yuquot where they tore down the local houses to build their own structures and set up what would become a significant fur trade port for the Northwest Coast — with the local Chief Maquinna's blessing and his warriors acting as middlemen to other First Nations. 

Following reports of Cook's exploration British traders began to use the harbour of Nootka (Friendly Cove) as a base for a promising trade with China in sea-otter pelts but became embroiled with the Spanish who claimed (albeit erroneously) sovereignty over the Pacific Ocean. 

VIPS & VanPS Nootka Crew. Photo: John Fam, VanPS
The ensuing Nootka Incident of 1790 nearly led to war between Britain and Spain (over lands neither could actually claim) but talk of war settled and the dispute was settled diplomatically. 

George Vancouver on his subsequent exploration in 1792 circumnavigated the island and charted much of the coastline. His meeting with the Spanish captain Bodega y Quadra at Nootka was friendly but did not accomplish the expected formal ceding of land by the Spanish to the British. 

It resulted however in his vain naming the island "Vancouver and Quadra." The Spanish captain's name was later dropped and given to the island on the east side of Discovery Strait. Again, another vain and unearned title that persists to this day.

Early settlement of the island was carried out mainly under the sponsorship of the Hudson's Bay Company whose lease from the Crown amounted to 7 shillings per year — that's roughly equal to £100.00 or $174 CDN today. Victoria, the capital of British Columbia, was founded in 1843 as Fort Victoria on the southern end of Vancouver Island by the Hudson's Bay Company's Chief Factor, Sir James Douglas. 

With Douglas's help, the Hudson's Bay Company established Fort Rupert on the north end of Vancouver Island in 1849. Both became centres of fur trade and trade between First Nations and solidified the Hudson's Bay Company's trading monopoly in the Pacific Northwest.

Wakash, wakash! A Fossil Crab
The settlement of Fort Victoria on the southern tip of Vancouver Island — handily south of the 49th parallel — greatly aided British negotiators to retain all of the islands when a line was finally set to mark the northern boundary of the United States with the signing of the Oregon Boundary Treaty of 1846. 

Vancouver Island became a separate British colony in 1858. British Columbia, exclusive of the island, was made a colony in 1858 and in 1866 the two colonies were joined into one — becoming a province of Canada in 1871 with Victoria as the capital.

Dan Bowen, Chair of the Vancouver Island Palaeontological Society (VIPS) did a truly splendid talk on the Fossils of Nootka Sound. With his permission, I have uploaded the talk to the Fossil Huntress ARCHEA YouTube Channel for all to enjoy. 

Do take a boo, he is a great presenter. Dan also graciously provided the photos you see here. The last of the photos you see here is from the August 2021 Nootka Fossil Field Trip. Photo: John Fam, Vice-Chair, Vancouver Paleontological Society (VanPS).

What to Know Before You Go — Nootka Trail

The Nootka Trail passes through the traditional lands of the Mowachaht/Muchalat First Nations who have lived in Yuquot since always but today hail from the north island town of Gold River. 

As you walk the Nootka Trail and look to land and sea, you share the area with Gray whales, humpback whales, orcas, seals, sea lions, black bears, wolves, cougars, eagles, ravens, sea birds, river otters, slugs and the many colourful intertidal creatures that you'll want to photograph.

This is a remote West Coast wilderness experience. Getting to Nootka Island requires some planning as you'll need to take a seaplane or water taxi to reach the trailhead. The trail takes 4-8 days to cover the 37 km year-round hike. The peak season is July to September. Permits are not required for the hike. 

Access via: Air Nootka floatplane, water taxi, or MV Uchuck III

  • Dan Bowen, VIPS on the Fossils of Nootka: https://youtu.be/rsewBFztxSY
  • https://www.thecanadianencyclopedia.ca/en/article/sir-james-douglas
  • file:///C:/Users/tosca/Downloads/186162-Article%20Text-199217-1-10-20151106.pdf
  • Nootka Trip Planning: https://mbguiding.ca/nootka-trail-nootka-island/#overview
What am I reading?

This originated as a travel piece but is being edited to form part of a book and short film on the history and palaeontology of the west coast of Vancouver Island. What you are reading today is a 'bird's eye view' into my workshop. The many references for this piece (and it is a loooong list) will be in the bibliography. You are welcome to use any of my work if referenced but do know that what I have learned has come from others... so please do a bit of searching so you can credit them as well. 

This piece has not been run past my editorial team. All errors and omissions are on me. If you find one or have something to share, please head to www.fossilhuntress.com. There is a contact page there where you can reach me.

For the lovely Bee of Ucluelet, this is the piece I was speaking of! I'm headed back next month and again in July. I'd love to connect! Before I come, I am hoping to connect with some folk from the Yuułuʔiłʔatḥ (Nuu-chah-nulth: [juːɬuʔiɬʔatħ]) Ucluelet First Nation to ask their input and blessing on the project.

Thursday, 26 May 2022

FRESH, DRIED, BOILED, STEAMED... AND FOSSILIZED: SALMON

Salmon permeate First Nations mythology and have been a prized food source for thousands of years — fresh, dried, boiled, steamed or smoked — the bones carefully returned to the river or sea to continue the lifecycle of these immortal beings. 

In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest — or Kwakwaka'wakw, speakers of Kwak'wala — sockeye salmon are known as ma̱łik

For the Tk'emlúps te Secwépemc First Nation, people of the confluence, of the Interior of British Columbia, near Kamloops, salmon was the most important of the local fishing stock and the salmon fishing season was a significant social event that warranted the nomination of a Salmon Chief who directed the construction of the hooks, weirs and traps and the distribution of the catch.

In the Interior of the province, archaeological evidence dates the use of salmon as a food source back a mere 3,500 years. While the First Nation groups have an oral history telling us they have lived here since always, 3,500 years falls short of the mark. 

The truth, it seems, needed to be teased from the rock. Sheri Burton and Catherine Carlson were able to isolate and amplify mitochondrial DNA from the salmon remains at archaeological sites near Kamloops. The DNA came from the species as Oncorhynchus nerka or Sockeye salmon, preserved in concretion and collected along the southern shores of Kamloops Lake.

The concretions were originally dated as Miocene (24 – 5.5 million years old) by the Geological Survey of Canada, based on pollen grain analysis. However, many local experts, including UBC geology professor W.R. (Ted) Danner (my mentor), W.H. Mathews and Richard Hughes, suspected the remains were much more recent, perhaps the Late Pleistocene. It was a topic that provided lively debate for many years and much pounding on tables during dinner. But it was not until the early 1990s that Catherine Carlson and Ken Klein found definitive proof of this.

Oncorhynchus nerka
By good luck, the fish remains in the Kamloops Lake concretions had not been completely replaced by minerals — enough of the original organic bone collagen remained for radiocarbon dating. 

For those on either side of the debate, the results were startling — 18,000 years. It is likely that erosion during the time of deposition had carried pollen down from Miocene layers in surrounding hills, to be deposited around the dead fish, causing the initial over-estimation of the age of the concretions.

This lovely specimen is Oncorhynchus nerka, a Late Pleistocene Fossil Sockeye Salmon, from the fine-grained, silty clays on the south shore of Kamloops Lake, British Columbia, Canada. The site was originally collected in the 1970s by the late geologist and palaeontologist Richard Hughes. I was introduced to the site much later after its rediscovery by Catherine Carlson and Kenneth Klein in the fall of 1991 with the help of local and gracious host, Bill Huxley.

They later wrote up and published a chapter in Rolf Ludvigsen's "Life in Stone: A Natural History of British Columbia's Fossils." It was Huxley who shared its location with John Leahy — a local Kamloops resident and avid fossil hunter — and him with me. 

This specimen was collected by John in the 1990s, his tenth partial salmon from this site and the sole one in my collection.

An age of 18,000 plus years sets the fossils firmly as the only salmonids of the Late Pleistocene in North America, a very significant find. The date also changed our ideas about the early climate of the Interior; the Thompson Valley could not have been covered by glacial ice for as long as originally thought. Indeed, it makes the Interior ice-free only 2,000 years after the Last Glacial Maximum and some 4,000 years before our western continental coastline and the Rocky Mountain Foothills.  

It has long been accepted that the most recent series of ice ages began approximately 1.6 million years ago, beginning as ice accumulations at higher altitudes with the gradual cooling of the climate. Four times the ice advanced and receded, most recently melting away somewhere around 10,000 years ago. Ice retreated from southwestern British Columbia and the Puget Sound area around 15,000 years ago. 

In the southern Interior, ice built up first in the northern Selkirk Mountains, then slowly flowed down into the valleys. Once the valleys were filled, the depth of the ice increased until it began to climb to the highlands and finally covered most of the Interior of British Columbia. Between ice advances, there were times when the Kamloops area was ice-free and the climate warm and hospitable. 

Glacial ice was believed to have initiated its most recent retreat from the South Thompson area around 11,000 to 12,000 years ago, but salmon remains from 18,000 years ago suggest that it may have actually begun its northwest decline much earlier — and presenting the possibility of a much warmer climate in the Interior than archaeologists or geologists had originally thought.

Eighteen thousand-year-old salmon also challenge the archaeological notion that the First Nation people of the Interior have had access to salmon as a significant protein source for only a few thousand years. 

In the popular view, people living in the Okanagan and Thompson Valleys were felt to have moved to settlements that were semi-permanent about 4,500 years ago. By that time they would have had a seasonally regulated diet composed primarily of salmon and supplemented by local game — deer, elk, small mammals — and available shellfish, birds and plant foods, roots and berries. If salmon were present much earlier, it is possible that this pattern of food utilization may have arisen earlier than thought.

Richard Hughes had originally identified the fossilized Kamloops salmon as Oncorhynchus nerka or Sockeye salmon, the same species found in the 3,500-year-old archaeological sites. But, using the carbon-13 isotope ratio, Klein and Carlson were able to determine that these salmon did not feed on protein from a marine source and relied solely on a freshwater diet. 

In other words, they could not have spent part of their life in the ocean, as modern Sockeye salmon do. Based on the specimens’ smaller heads and stunted bodies, the longest measuring in at a pint-sized 11.5 cm, Klein and Carlson feel that the fossils are likely Kokanee — a modern landlocked variety of Sockeye.

If you are wondering about the traditional First Nation use of salmon, this McGill University link is outstanding:http://traditionalanimalfoods.org/fish/searun-fish/page.aspx?id=6446


Wednesday, 25 May 2022

ANCIENT FOSSIL TRACKWAYS

Trilobite and Sea Scorpion Fossil Trackways
This is a very interesting block with wee trace fossil trackways from our Mississippian seas some 359.2 million to 318.1 million years ago. 

It shows a nice combination of Cruziana fossil trilobite trackway and eurypterid (sea scorpion) or horseshoe crab trackway on the same matrix. 

When we use the term Cruziana, we are not referring to the trilobite species, but to the particular shape and form of the trackway. 

In this case, elongate, bilaterally symmetrical burrows preserved along the bedding plane with repeated striations that are mostly oblique to the long dimension. I like to picture a teeny, tiny painter or sculpture with a small putty knife making angled cuts along a line or a wave motion to create a small curved line. Very showy skate skiing is another good visual. Sadly, neither is the case. While a Cruziana trace fossil is most often associated with trilobites, it can be made by other arthropods. 

When we see trace fossils — preserved tracks or other signs of behaviour from our marine friends living on the seafloor — they are generally from their furrowing, resting, emerging, walking or striding. They provide a glimpse of how these ancient sea creatures moved about to make a living. 

Trilobite and Sea Scorpion Fossil Trackways
This busy 4 1/2" x 3 1/2" x 1 1/4" block hails from the Tar Springs Formation in Perry County, Indiana, USA, and is in the collections of the deeply awesome David Appleton.

The Tar Springs Formation is recognized on the surface from southwestern Orange County to the Ohio River and is known in the subsurface from central Martin County southwestward (Gray, 1970, 1986).

In Indiana, the Tar Springs Formation is primarily shale, but it also contains scattered thin beds of limestone and massive local lenses of sandstone that on outcrop are differentiated as the Tick Ridge Sandstone Member (Gray, 1986). The formation ranges in thickness from about 70 ft (21 m) to more than 150 ft (46 m) in central Posey County and in southwestern Gibson County (Droste and Keller, 1995). Commonly sandstone predominates in those areas where the Tar Springs is as much as 150 ft (46 m) thick (Droste and Keller, 1995).

Tuesday, 24 May 2022

JURASSIC SEA URCHIN: AM'DA'MA

This lovely little biscuit is a Holectypus sea urchin from 120 million-year-old deposits from the Lagniro Formation of Madagascar.

The specimen you see here is in the collections of my beautiful friend Ileana. She and I were blessed to meet in China many years ago and formed an unbreakable bond that happens so few times in one's life. 

Holectypus are a genus of extinct echinoids related to modern sea urchins and sand dollars. They were abundant from the Jurassic to the Cretaceous (between 200 million and 65.5 million years ago).

This specimen is typical of Holectypus with his delicate five-star pattern adorning a slightly rounded test and flattened bottom. The specimen has been polished and was harvested both for its scientific and aesthetic value. 

I have many wonderful memories of collecting their modern cousins that live on the north end of Vancouver Island and along the beaches of Balaklava Island. In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, sea urchins are known as a̱m'da̱'ma and it is this name that I hear in my head when I think of them.

In echinoids, the skeleton is almost always made up of tightly interlocking plates that form a rigid structure or test — in contrast with the more flexible skeletal arrangements of starfish, brittle stars, and sea cucumbers. Test shapes range from nearly globular, as in some sea urchins, to highly flattened, as in sand dollars. 

Sea Urchin Detail
Living echinoids are covered with spines, which are movable and anchored in sockets in the test. These spines may be long and prominent, as in typical sea urchins and most have lovely raised patterns on their surface. 

In sand dollars and heart urchins, however, the spines are very short and form an almost felt-like covering. The mouth of most echinoids is provided with five hard teeth arranged in a circle, forming an apparatus known as Aristotle’s lantern.

Echinoids are classified by the symmetry of the test, the number and arrangement of plate rows making up the test, and the number and arrangement of respiratory pore rows called petals. Echinoids are divided into two subgroups: regular echinoids, with nearly perfect pentameral (five-part) symmetry; and irregular echinoids with altered symmetry.

Because most echinoids have rigid tests, their ability to fossilize is greater than that of more delicate echinoderms such as starfish, and they are common fossils in many deposits. The oldest echinoids belong to an extinct regular taxon called the Echinocystitoidea. 

They first appeared in the fossil record in the Late Ordovician. Cidaroids or pencil urchins appear in the Mississippian (Early Carboniferous) and were the only echinoids to survive the mass extinction at the Permo-Triassic boundary. Echinoids did not become particularly diverse until well after the Permo-Triassic mass extinction event, evolving the diverse forms we find them in today. 

True sea urchins first appear in the Late Triassic, cassiduloids in the Jurassic, and spatangoids or heart urchins in the Cretaceous. Sand dollars, a common and diverse group today, do not make an appearance in the fossil record until the Paleocene. They remain one of my favourite echinoderms and stand tall amongst the most pleasing of the invertebrates.

Monday, 23 May 2022

FROM FISH TO TETRAPODS

Elpistostege watsoni

In the late 1930s, our understanding of the transition of fish to tetrapods — and the eventual jump to modern vertebrates — took an unexpected leap forward. The evolutionary a'ha came from a single partial fossil skull found on the shores of a riverbank in Eastern Canada. 

Meet the Stegocephalian, Elpistostege watsoni, an extinct genus of finned tetrapodomorphs that lived during the Late Givetian to Early Frasnian of the Late Devonian — 382 million years ago. 

Elpistostege watsoni — perhaps the sister taxon of all other tetrapods — was first described in 1938 by British palaeontologist and elected Fellow of the Royal Society of London, Thomas Stanley Westoll. Westoll's research interests were wide-ranging. He was a vertebrate palaeontologist and geologist best known for his innovative work on Palaeozoic fishes and their relationships with tetrapods. 

As a specialist in early fish, Westoll was asked to interpret that single partial skull roof discovered at the Escuminac Formation in Quebec, Canada. His findings and subsequent publication named Elpistostege watsoni and helped us to better understand the evolution of fishes to tetrapods — four-limbed vertebrates — one of the most important transformations in vertebrate evolution. 

Hypotheses of tetrapod origins rely heavily on the anatomy of but a few tetrapod-like fish fossils from the Middle and Late Devonian, 393–359 million years ago. These taxa — known as elpistostegalians — include Panderichthys, Elpistostege and Tiktaalik — none of which had yet to reveal the complete skeletal anatomy of the pectoral fin. 

Elpistostege watsoni
None until 2010 that is, when a complete 1.57-metre-long articulated specimen was found and described by Richard Cloutier et al. in 2020. 

The specimen helped us to understand the origin of the vertebrate hand. Stripped from its encasing stone, it revealed a set of paired fins of Elpistostege containing bones homologous to the phalanges (finger bones) of modern tetrapods and is the most basal tetrapodomorph known to possess them. 

Once the phalanges were uncovered, prep work began on the fins. The fins were covered in wee scales and lepidotrichia (fin rays). The work was tiresome, taking more than 2,700 hours of preparation but the results were thrilling. 

Origin of the Vertebrate Hand
We could now clearly see that the skeleton of the pectoral fin has four proximodistal rows of radials — two of which include branched carpals — as well as two distal rows organized as digits and putative digits. 

Despite this skeletal pattern — which represents the most tetrapod-like arrangement of bones found in a pectoral fin to date blurring the line between fish and land vertebrates — the fin retained lepidotrichia (those wee fin rays) distal to the radials. 

This arrangement confirmed an age-old question — showing us for the first time that the origin of phalanges preceded the loss of fin rays, not the other way around.

E. watsoni is very closely related to Tiktaalik roseae found in 2004 in the Canadian Arctic — a tetrapodomorpha species also known as a Choanata. These were advanced forms transitional between fish and the early labyrinthodonts playfully referred to as fishapods — half-fish, half-tetrapod in appearance and limb morphology. 

Up to that point, the relationship of limbed vertebrates (tetrapods) to lobe-finned fish (sarcopterygians) was well known, but the origin of major tetrapod features remained obscure for lack of fossils that document the sequence of evolutionary changes — until Tiktaalik. While Tiktaalik is technically a fish, this fellow is as far from fish-like you can be and still be a card-carrying member of the group. 

Tiktaalik roseae
Complete with scales and gills, this proto-fish lacked the conical head we see in modern fish but had a rather flattened triangular head more like that of a crocodile. 

Tiktaalik had scales on its back and fins with fin webbing but like early land-living animals, it had a distinctive flat head and neck. He was a brawny brute. The shape of his skull and shoulder look part fish and part amphibian.

The watershed moment came as Tiktaalik was prepped. Inside Tiktaalik's fins, we find bones that correspond to the upper arm, forearm and even parts of the wrist — all inside a fin with webbing — remarkable! 

Its fins have thin ray bones for paddling like most fish, but with brawny interior bones that gave Tiktaalik the ability to prop itself up, using his limbs for support. I picture him propped up on one paddle saying, "how you doing?" 

Six years after Tiktaalik was discovered by Neil Shubin and team in the ice-covered tundra of the Canadian Arctic on southern Ellesmere Island, a team working the outcrops at Miguasha on the Gaspé Peninsula discovered the only fully specimen of E. watsoni found to date — greatly increasing our knowledge of this finned tantalizingly transitional tetrapodomorph. 

E. watsoni fossils are rare — this was the fourth specimen collected in over 130 years of hunting. Charmingly, the specimen was right on our doorstop — extracted but a few feet away from the main stairs descending onto the beach of Miguasha National Park. 

L'nu Mi’gmaq First Nations of the Gespe’gewa’gi Region

Miguasha is nestled in the Gaspésie or Gespe’gewa’gi region of Canada — home to the Mi’gmaq First Nations who self-refer as L’nu or Lnu. The word Mi’gmaq or Mi’kmaq means the family or my allies/friends in Mi'kmaw, their native tongue (and soon to be Nova Scotia's provincial first language). They are the people of the sea and the original inhabitants of Atlantic Canada having lived here for more than 10,000 years. 

The L'nu were the first First Nation people to establish contact and trade with European explorers in the 16th and 17th centuries — and perhaps the Norse as early as the turn of the Millenium. Sailing vessels filled with French, British, Scottish, Irish and others arrived one by one to lay claim to the region — settling and fighting over the land. As each group rolled out their machinations of discovery, tensions turned to an all-out war with the British and French going head to head. I'll spare you the sordid details but for everyone caught in the crossfire, it went poorly.

North America Map 1775 (Click to Enlarge)
Cut to 1760, the British tipped the balance with their win at the Battle of the Restigouche, the last naval battle between France and England for possession of the North American continent — Turtle Island. 

The bittersweet British victory sparked the American War of Independence. 

For the next twenty years, the L'nu would witness and become embroiled in yet another war for these lands, their lands — first as bystanders, then as American allies, then intimidated into submission by the British Royal Navy with a show of force by way of a thirty-four gun man-of-war, encouraging L'nu compliance — finally culminating in an end to the hostilities with the 1783 Treaty of Paris. 

The peace accord held no provisions for the L'nu, Métis and First Nations impacted. None of these newcomers was Mi'kmaq — neither friends nor allies.

It was to this area some sixty years later that the newly formed Geological Survey of Canada (GSC) began exploring and mapping the newly formed United Province of Canada. Geologists in the New Brunswick Geology Branch traipsed through the rugged countryside that would become a Canadian province in 1867. 

It was on one of these expeditions that the Miguasha fossil outcrops were discovered. They, too, would transform in time to become Miguasha National Park or Parc de Miguasha, but at first, they were simply the promising sedimentary exposures on the hillside across the water —  a treasure trove of  Late Devonian fauna waiting to be discovered.

In the summer of 1842, Abraham Gesner, New Brunswick’s first Provincial Geologist, crossed the northern part of the region exploring for coal. Well, mostly looking for coal. Gesner also had a keen eye for fossils and his trip to the Gaspé Peninsula came fast on the heels of a jaunt along the rocky beaches of Chignecto Bay at the head of the Bay of Fundy and home to the standing fossil trees of the Joggins Fossil Cliffs. 

Passionate about geology and chemistry, he is perhaps most famous for his invention of the process to distil the combustible hydrocarbon kerosene from coal oil — a subject on which his long walks exploring a budding Canada gave him a great deal of time to consider. We have Gesner to thank for the modern petroleum industry. He filed many patents for clever ways to distil the soft tar-like coal or bitumen still in use today.

He was skilled in a broad range of scientific disciplines — being a geologist, palaeontologist, physician, chemist, anatomist and naturalist — a brass tacks geek to his core. Gesner explored the coal exposures and fossil outcrops across the famed area that witnessed the region become part of England and not France — and no longer L'nu.

Following the Restigouche River in New Brunswick through the Dalhousie region, Gesner navigated through the estuary to reach the southern coast of the Gaspé Peninsula into what would become the southeastern coast of Quebec to get a better look at the cliffs across the water. He was the first geologist to lay eyes on the Escuminac Formation and its fossils.

In his 1843 report to the Geologic Survey, he wrote, “...I found the shore lined with a coarse conglomerate. Farther eastward the rocks are light blue sandstones and shales, containing the remains of vegetables. (...) In these sandstone and shales, I found the remains of fish and a small species of tortoise with fossil foot-marks.”

We now know that this little tortoise was the famous Bothriolepis, an antiarch placoderm fish. It was also the first formal mention of the Miguasha fauna in our scientific literature. Despite the circulation of his report, Gesner’s discovery was all but ignored — the cliffs and their fossil bounty abandoned for decades to come. Geologists like Ells, Foord and Weston, and the research of Whiteaves and Dawson, would eventually follow in Gesner's footsteps.

North America Map 1866 (Click to Enlarge)
Over the past 180 years, this Devonian site has yielded a wonderfully diverse aquatic assemblage from the Age of Fishes — five of the six fossil fish groups associated with the Devonian including exceptionally well-preserved fossil specimens of the lobe-finned fishes. 

This is exciting as it is the lobe-finned fishes — the sarcopterygians — that gave rise to the first four-legged, air-breathing terrestrial vertebrates – the tetrapods. 

Fossil specimens from Miguasha include twenty species of lower vertebrates — anaspids, osteostra-cans, placoderms, acanthodians, actinopterygians and sarcopterygians — plus a limited invertebrate assemblage, along with terrestrial plants, scorpions and millipedes.

Originally interpreted as a freshwater lacustrine environment, recent paleontological, taphonomic, sedimentological and geochemical evidence corroborates a brackish estuarine setting — and definitely not the deep waters of the sea. This is important because the species that gave rise to our land-living animals began life in shallow streams and lakes. It tells us a bit about how our dear Elpistostege watsoni liked to live — preferring to lollygag in cool river waters where seawater mixed with fresh. Not fully freshwater, but a wee bit of salinity to add flavour.  

  • Photos: Elpistostege watsoni (Westoll, 1938 ), Upper Devonian (Frasnian), Escuminac formation, Parc de Miguasha, Baie des Chaleurs, Gaspé, Québec, Canada. John Fam, VanPS
  • Origin of the Vertebrate Hand Illustration, https://www.nature.com/articles/s41586-020-2100-8
  • Tiktaalik Illustration: By Obsidian Soul - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=47401797

References & further reading:

  • From Water to Land: https://www.miguasha.ca/mig-en/the_first_discoveries.php
  • UNESCO Miguasha National Park: https://whc.unesco.org/en/list/686/
  • Office of L'nu Affairs: https://novascotia.ca/abor/aboriginal-people/
  • Cloutier, R., Clement, A.M., Lee, M.S.Y. et al. Elpistostege and the origin of the vertebrate hand. Nature 579, 549–554 (2020). https://doi.org/10.1038/s41586-020-2100-8
  • Daeschler, E. B., Shubin, N. H. & Jenkins, F. A. Jr. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440, 757–763 (2006).
  • Shubin, Neil. Your Inner Fish: A Journey into the 3.5 Billion History of the Human Body.
  • Evidence for European presence in the Americas in AD 1021: https://www.nature.com/articles/s41586-021-03972-8

Saturday, 21 May 2022

UNESCOCERATOPS KOPPELHUSAE BY JULIUS CSOTONYI

Unescoceratops koppelhusae, Julius Csotonyi
A very sweet small leptoceratopsid dinosaur, Unescoceratops koppelhusae — a new species in the collections of the Royal Tyrrell Museum of Palaeontology in Drumheller, Alberta.

The colourful and beautifully detailed painting you see here is by the very talented Julius Csotonyi who captured the magnificence of form, texture and palette to bring this small leptoceratopsid dinosaur to life.

The Royal Tyrrell Museum of Palaeontology, named in honour of Joseph Burr Tyrrell, is a palaeontology museum and research facility in Drumheller, Alberta, Canada. 

This jaw is the holotype specimen of this small leptoceratopsid dinosaur. Only a handful of isolated fossils have been found from this species, including a jaw that is the holotype specimen now in collections at the Royal Tyrell. 

The Royal Tyrrell Museum of Palaeontology, named in honour of Joseph Burr Tyrrell, is a palaeontology museum and research facility in Drumheller, Alberta, Canada. 

Unescoceratops koppelhusae, RTMP Collections
The rusty chocolate jaw bone you see here is the puzzle piece that helped all of the research come together and help us to better understand more about the diminutive leptoceratopsid dinosaurs from Alberta. 

The Cleveland Museum of Natural History's Michael Ryan and David Evans of the Royal Ontario Museum in Toronto recently determined that the specimen was a new genus and species. 

Unescoceratops is a genus of leptoceratopsid ceratopsian dinosaurs known from the Late Cretaceous (about 76.5-75 million years ago) of Alberta, Canada. Unescoceratops is thought to have been between one and two meters long and less than 91 kilograms. A plant-eater, its teeth were the roundest of all Leptocertopsids.

Dinosaur Provincial Park, Alberta, Canada
The genus name acknowledges the UNESCO  World Heritage Site, Dinosaur Provincial Park, where the fossil was found. 

In addition to its particularly beautiful scenery, Dinosaur Provincial Park – located at the heart of the province of Alberta's badlands – is unmatched in terms of the number and variety of high-quality specimens.

To date, they represent more than 44 species, 34 genera and 10 families of dinosaurs, dating back 75-77 million years. This provides us with remarkable insight into life millions of years ago.

The park contains exceptional riparian habitat features as well as badlands of outstanding aesthetic value.

The creamy honey, beige and rust coloured hills around the fossil locality are outstanding examples of major geological processes and fluvial erosion patterns in semi-arid steppes — think glorious! 

The scenic badlands stretch along 26 kilometres of high quality and virtually undisturbed riparian habitat, presenting a landscape of stark but exceptional natural beauty.

The species name honours Dr. Eva Koppelhus, who has made significant contributions to vertebrate palaeontology and palynology. 

The genus is named to honour the UNESCO World Heritage Site designation for the locality where the specimen was found and from the Greek “ceratops,” which means 'horned face'. 

Dr Michael Ryan explained that he meant to honour UNESCO's efforts to increase understanding of natural history sites around the world.

© Julius T. Csotonyi An illustration of Unescoceratops koppelhusae, a plant-eating dinosaur from the Late Cretaceous period that lived approximately 75 million years ago shared with his gracious permission. 

ABOUT THE ARTIST

Dr. Julius Csotonyi is a Vancouver-based scientific illustrator and natural history fine artist. He is a featured paleoartist on Season One of BC's Fossil Bounty. Julius has a scientific background in ecology (MSc) and microbiology (PhD) which has taken him to study sensitive ecosystems, from sand dunes in the Rocky Mountain parks to hydrothermal vents at the bottom of the Pacific Ocean. 

These experiences have fuelled his strong resolve to work toward preserving our Earth’s biota. Painting biological subjects is one means that he uses to both enhance public awareness of biological diversity and to motivate concern for its welfare.   

He paints murals and panels that have appeared in numerous museums including the Smithsonian’s National Museum of Natural History, press release images for scientific publications, books, stamp sets — including the outstanding 2018 “Sharks of Canada” set for Canada Post — and coins for the Royal Canadian Mint. To view more of Julius Csotonyi's exquisite work visit: https://csotonyi.com/

Friday, 20 May 2022

LYTOCERAS OF DORSET, ENGLAND

A superbly prepped and extremely rare Lytoceras (Suess, 1865) ammonite found as a green ammonite nodule by Matt Cape in the Lower Lias of Dorset. 

Lytoceras are rare in the Lower Lias of Dorset — apart from the Belemnite Stone horizon — so much so that Paul Davis, whose skilled prep work you see here, initially thought it might be a Becheiceras hidden within the large, lumpy nodule. 

One of the reasons these lovelies are rarely found from here is that they are a Mediterranean Tethyian genus. The fossil fauna we find in the United Kingdom are dominated by Boreal Tethyian genera. 

We do find Lytoceras sp. in the Luridum subzone of the Pliensbachian showing that there was an influx of species from the Mediterranean realm during this time. This is the first occurrence of a Lytoceras that he has ever seen in a green nodule and Paul's seen quite a few. 

This absolutely cracking specimen was found and is in the collections of the awesome Matt Cape. Matt recognized that whatever was hidden in the nodule would take skilled and careful preparation using air scribes. Indeed it did. It took more than five hours of time and skill to unveil the lovely museum-worthy specimen you see here. 

We find Lytoceras in more than 1,000 outcrops around the globe ranging from the Jurassic through to the Cretaceous, some 189.6 to 109.00 million years ago. Once this specimen is fully prepped with the nodule material cut or scraped away, you can see the detailed crinkly growth lines or riblets on the shell and none of the expected coarse ribbing. 

Lytoceras sp. Photo: Craig Chivers
If you imagine running your finger along these, you would be tracing the work of decades of growth of these cephalopods. 

While we cannot know their actual lifespans, but we can make a healthy guess. 

The nautilus, their closest living cousins live upwards of 20 years — gods be good — and less than three years if conditions are poor.

The flanges, projecting flat ribs or collars, develop at the edge of the mouth border on the animal's mantle as they grow each new chamber. 

Each delicate flange grows over the course of the ammonites life, marking various points in time and life stages as the ammonite grew. There is a large variation within Lytoceras with regards to flanges. They provide both ornamentation and strength to the shell to protect it from water pressure as they moved into deeper seas.

The concretion prior to prep
This distinctive genus with its evolute shells are found in the Cretaceous marine deposits of: 

Antarctica (5 collections), Austria (19), Colombia (1), the Czech Republic (3), Egypt (2), France (194), Greenland (16), Hungary (25), Italy (11), Madagascar (2), Mexico (1), Morocco (4), Mozambique (1), Poland (2), Portugal (1), Romania (1), the Russian Federation (2), Slovakia (3), South Africa (1), Spain (24), Tanzania (1), Trinidad and Tobago (1), Tunisia (25); and the United States of America (17: Alaska, California, North Carolina, Oregon).

We also find them in Jurassic marine outcrops in:

Austria (15), Canada (9: British Columbia), Chile (6), France (181), Germany (11), Greenland (1), Hungary (189), India (1), Indonesia (1), Iran (1), Italy (50), Japan (14), Kenya (2), Luxembourg (4), Madagascar (2), Mexico (1), Morocco (43), New Zealand (15), Portugal (1), Romania (5), the Russian Federation (1), Slovakia (1), Spain (6), Switzerland (2), Tunisia (11), Turkey (12), Turkmenistan (1), Ukraine (5), the United Kingdom (12), United States (11: Alaska, California) — in at least 977 known collections. 

References:

Sepkoski, Jack (2002). "A compendium of fossil marine animal genera (Cephalopoda entry)". Bulletins of American Paleontology. 363: 1–560. Archived from the original on 2008-05-07. Retrieved 2017-10-18.

Paleobiology Database - Lytoceras. 2017-10-19.

Systematic descriptions, Mesozoic Ammonoidea, by W.J Arkell, Bernhard Kummel, and C.W. Wright. 1957. Treatise on Invertebrate Paleontology, Part L. Geological Society of America and University of Kansas press.

Thursday, 19 May 2022

FOSSIL SEA LILLIES: CRINOIDS

Uintacrinus socialis from Utah, USA
Crinoids are one of my favourite echinoderms. It is magical when all the elements come together to preserve a particularly lovely specimen in such glorious detail. 

If you look closely at the detail here you can see a stunning example of Upper Cretaceous, Santonian age, Uintacrinus socialis — named by O.C. Marsh for the Uinta Mountains of Utah nearly 150 years ago.  

These lovelies are best known from the Smoky Hills Niobrara Formation of central Kansas.

Crinoids are unusually beautiful and graceful members of the phylum Echinodermata. They resemble an underwater flower swaying in an ocean current. 

But make no mistake they are marine animals. Picture a flower with a mouth on the top surface that is surrounded by feeding arms. Awkwardly, add an anus right beside that mouth. 

Crinoids with root-like anchors are called sea lilies. They have graceful stalks that grip the ocean floor. Those in deeper water have longish stalks up to 3.3 ft or a meter in length. Then there are other varieties that are free-swimming with only vestigial stalks. They make up the majority of this group and are commonly known as feather stars or comatulids. 

Unlike the sea lilies, the feather stars can move about on tiny hook-like structures called cirri. It is these same cirri that allow crinoids to latch to surfaces on the seafloor. Like other echinoderms, crinoids have pentaradial symmetry. The aboral surface of the body is studded with plates of calcium carbonate, forming an endoskeleton similar to that in starfish and sea urchins.

These make the calyx somewhat cup-shaped, and there are few, if any, ossicles in the oral (upper) surface, an area we call the tegmen. It is divided into five ambulacral areas, including a deep groove from which the tube feet project, and five interambulacral areas between them. 

Crinoids are alive and well today. They are also some of the oldest fossils on the planet. We have lovely fossil specimens dating back to the Ordovician — if one ignores the enigmatic Echmatocrinus of the Burgess Shale. And they can be quite plentiful. Crinoid fossils, and in particular disarticulated crinoid columnals, can be so abundant that they at times serve as the primary supporting clasts in sedimentary rocks.

Wednesday, 18 May 2022

HORNBY ISLAND FOSSIL CEPHALOPODS

Diplomoceras sp.
This gorgeous cream and brown big beast of a heteromorph, Diplomoceras (Diplomoceras) sp., (Hyatt, 1900) was found within the 72 million-year-old sediments of the upper Nanaimo Group on the northern Gulf Island of Hornby in southwestern British Columbia, Canada. 

The site is known as Boulder Point to the locals and it has been a popular fossil destination for many years. It is the home of the K'ómoks First Nation, who called the island Ja-dai-aich.

Many of the fossils found at this locality are discovered in concretions rolled smooth by time and tide. The concretions you find on the beach are generally round or oval in shape and are made up of hard, compacted sedimentary rock. 

If you are lucky, when you split these nodules you are rewarded with a fossil hidden within. That is not always the case but the rewards are worth the effort. 

These past few years, many new and wonderful specimens have been unearthed — particularly by members of the Vancouver Island Palaeontological Society. 

And so it was in the first warm days of early summer last year. Three members of the Vancouver Palaeontological Society excavated this 100 cm long fossil specimen over two days in June of 2020. The specimen was not in concretion but rather embedded in the hard sintered shale matrix beneath their feet. It was angled slightly downward towards the shoreline and locked within the rolling shale beds of the island. 

Diplomoceratidae (Spath, 1926) are often referred to as the paperclip ammonites. They are in the family of ammonites included in the order Ammonitida in the Class Cephalopoda and are found within marine offshore to shallow subtidal Cretaceous — 99.7 to 66.043 million-year-old — sediments worldwide. 

I was reading with interest this morning about a new find published by Muramiya and Shigeta in December 2020 of a new heteromorph ammonoid Sormaites teshioensis gen. et sp. nov. (Diplomoceratidae) described from the upper Turonian (Upper Cretaceous) in the Nakagawa area, Hokkaido, northern Japan. This lovely has a shell surface ornamented with simple, straight, sharp-tipped ribs throughout ontogeny, but infrequent flared ribs and constrictions occur on later whorls. Excluding its earliest whorls, its coiling and ornamentation are very similar to Scalarites mihoensis and Sc. densicostatus from the Turonian to Coniacian in Hokkaido and Sakhalin, suggesting that So. teshioensis was probably derived from one of these taxa in the Northwest Pacific during middle to late Turonian.

Much like the long-lived geoducks living in Puget Sound today, studies of Diplomoceras suggest that members of this family could live to be over 200 years old — a good 40-years longer than a geoduck but not nearly as long-lived as the extant bivalve Arctica islandica that reach 405 to 410 years in age. 

Along with this jaw-dropper of a heteromorph, the same group found an Actinosepia, gladius — internal hard body part found in many cephalopods of a Vampyropod. Vampyropods are members of the proposed group Vampyropoda — equivalent to the superorder Octopodiformes — which includes vampire squid and octopus.

The upper Nanaimo Group is a mix of marine sandstone, conglomerate and shale. These are partially exposed in the Campanian to the lower Maastrichtian outcrops at Collishaw Point on the northwest side of Hornby Island.

Along with fossil crabs, shark teeth, bivalves and occasional rare and exquisite saurodontid fish, an ambush predator with very sharp serrated teeth and elongate, torpedo-like body — we also find three heteromorph ammonite families are represented within the massive, dark-grey mudstones interlaminated and interbedded with siltstone and fine-grained sandstone of the upper Campanian (Upper Cretaceous) strata of the Northumberland Formation exposed here: Baculitidae, Diplomoceratidae and Nostoceratidae. 

A variety of species are distinguished within these families, of which only three taxa – Baculites occidentalis (Meek, 1862), Diplomoceras (Diplomoceras) cylindraceum (Defrance, 1816) and Nostoceras (Nostoceras) hornbyense (Whiteaves, 1895), have been studied and reported previously. 

Over the last decade, large new collections by many members of the Vancouver Island Palaeontological Society and palaeontologists working at the Geologic Survey of Canada, along with a renewed look at previous collections have provided new taxonomic and morphometric data for the Hornby Island ammonite fauna. This renewed lens has helped shape our understanding and revamp descriptions of heteromorph taxa. Eleven taxa are recognized, including the new species Exiteloceras (Exiteloceras) densicostatum sp. nov., Nostoceras (Didymoceras?) adrotans sp. nov. and Solenoceras exornatus sp. nov. 

A great variety of shape and form exist within each group. Morphometric analyses by Sandy McLachlan and Jim Haggart of over 700 specimens unveiled the considerable phenotypic plasticity of these ammonites. They exhibit an extraordinarily broad spectrum of variability in their ornamentation and shell dimensions. 

The presence of a vibrant amateur palaeontological community on Vancouver Island made the extent of their work possible. Graham Beard, Doug Carrick, Betty Franklin, Raymond Graham, Joe Haegert, Bob Hunt, Stevi Kittleson, Kurt Morrison and Jean Sibbald are thanked for their correspondence and generosity in contributing many of the exquisite specimens featured in that study. 

These generous individuals, along with many other members of the Vancouver Island Palaeontological Society (VIPS), Vancouver Paleontological Society (VanPS), and British Columbia Paleontological Alliance (BCPA), have contributed a great deal to our knowledge of the West Coast of Canada and her geologic and palaeontological correlations to the rest of the world; notably, Dan Bowen, Rick Ross, John Fam and Pat and Mike Trask, Naomi & Terry Thomas. Their diligence in the collection, preparation and documentation of macrofossils is a reflection of the passion they have for palaeontology and their will to help shape the narrative of Earth history.

Through their efforts, a large population sample of Nostoceras (Nostoceras) hornbyense was made available and provided an excellent case study of a member of the Nostoceratidae. It was through the well-documented collection and examination of a remarkable number of nearly complete, well-preserved specimens that a re-evaluation of diagnostic traits within the genus Nostoceras was made possible. 

The north-east Pacific Nostoceras (Nostoceras) hornbyense Zone and the global Nostoceras (Nostoceras) hyatti Assemblage Zone are regarded as correlative, reinforcing a late Campanian age for the Northumberland Formation. This builds on the earlier work of individuals like Alan McGugan and others. McGugan looked at the Upper Cretaceous (Campanian and Maastrichtian) Foraminifera from the Upper Lambert and Northumberland Formations, Gulf Islands, British Columbia, Canada.

The Maastrichtian Bolivina incrassata fauna (upper part of Upper Lambert Formation) of Hornby Island (northern Comox Basin) is now recognized in the southern Nanaimo Basin on Gabriola and Galiano Islands. The Maastrichtian planktonic index species Globotruncana contusa occurs in the Upper Northumberland Formation of Mayne Island and Globotruncana calcarata (uppermost Campanian) occurs| in the Upper Northumberland Formation of Mayne Island and also in the Upper Lambert Formation at Manning Point on the north shore of Hornby Island (Comox Basin).

Very abundant benthonic and planktonic foraminiferal assemblages from the Upper Campanian Lower Northumberland Formation of Mayne Island enable paleoecological interpretations to be made using the Fisher diversity index, triangular plots of Texturlariina/Rotaliina/Miliolina, calcareous/agglutinated ratios, planktonic/benthonic ratios, generic models, and associated microfossils and megafossils. 

Combined with local geology and stratigraphy a relatively shallow neritic depositional environment is proposed for the Northumberland Formation in agreement with Scott but not Sliter who proposed an Outer shelf/slope environment with depths of 300 m or more.

References & further reading: Sandy M. S. McLachlan & James W. Haggart (2018) Reassessment of the late Campanian (Late Cretaceous) heteromorph ammonite fauna from Hornby Island, British Columbia, with implications for the taxonomy of the Diplomoceratidae and Nostoceratidae, Journal of Systematic Palaeontology, 16:15, 1247-1299, DOI: 10.1080/14772019.2017.1381651

Crickmay, C. H., and Pocock, S. A. J. 1963. Cretaceous of Vancouver, British Columbia. American Association of Petroleum Geologists Bulletin, 47, pp. 1928-1942.

England, T.D.J. and R. N. Hiscott (1991): Upper Nanaimo Group and younger strata, outer Gulf Islands, southwestern British Columbia: in Current Research, Part E; Geological Survey of Canada, Paper 91-1E, p. 117-125.

McGugan, Alan. (2011). Upper Cretaceous (Campanian and Maestrichtian) Foraminifera from the Upper Lambert and Northumberland Formations, Gulf Islands, British Columbia, Canada. Canadian Journal of Earth Sciences. 16. 2263-2274. 10.1139/e79-211. 

Scott, James. (2021). Upper Cretaceous foraminifera of the Haslam, Qualicum, and Trent River formations, Vancouver Island, British Columbia /. 

Sliter, W. & Baker, RA. (1972). Cretaceous bathymetric distribution of benthic foraminifers. Journal of Foraminiferal Research - J FORAMIN RES. 2. 167-183. 10.2113/gsjfr.2.4.167. 

Spath L. F. 1926. A Monograph of the Ammonoidea of the Gault; Part VI. Palaeontographical Society London

Sullivan, Rory (4 November 2020). "Large squid-like creature that looked like a giant paperclip lived for 200 years — 68 million years ago". The Independent. Archived from the original on 4 November 2020.

Urquhart, N. & Williams, C.. (1966). Patterns in Balance of Nature. Biometrics. 22. 206. 10.2307/2528236. 

Yusuke Muramiya and Yasunari Shigeta "Sormaites, a New Heteromorph Ammonoid Genus from the Turonian (Upper Cretaceous) of Hokkaido, Japan," Paleontological Research 25(1), 11-18, (30 December 2020). https://doi.org/10.2517/2020PR016.

Photos: Vancouver Island Palaeontological Society, Courtenay, British Columbia, Naomi and Terry Thomas.

Tuesday, 17 May 2022

QUINTUS SEERTORIUS AND THE MYTH OF ANTAEUS

Tetralophodon
During the Miocene and Pliocene, 12-1.6 million years ago, a diverse group of extinct proboscideans, elephant-like animals walked the Earth.

Most of these large beasts had four tusks and likely a trunk similar to modern elephants. They were creatures of legend, inspiring myths and stories of fanciful creatures to the first humans to encounter them.

Beyond our Neanderthal friends, one such fellow was Quintus Sertorius, a Roman statesman come general, who grew up in Umbria. Born into a world at war just two years before the Romans sacked Corinth to bring Greece under Roman rule, Quintus lived much of his life as a military man far from his native Norcia. Around 81 BC, he travelled to Morocco, the land of opium, massive trilobites and the birthplace of Antaeus, the legendary North African ogre who was killed by the Greek hero Heracles.

The locals tell a tale that Quintus requested proof of Antaeus, hard evidence he could bring back to Rome to support their tales so they took him to a mound near Tingis, the ancient name for Tangier, Morocco. It was here they unearthed the bones of an extinct elephantoid, Tetralophodon.

Tetralophodon bones are large and skeletons singularly impressive. Impressive enough to be taken for something else entirely. By all accounts, these proboscidean remains were that of the mythical giant, Antaeus, son of the gods Poseidon and Gaea and were thus reported back to Rome as such. Antaeus went on to marry the goddess Tinge and it is from her, in part, that Tangier in northwestern Morocco gets its name. Together, Antaeus and Tinge had a son, Sophax. He is credited with having the North Africa city take her name. Rome was satisfied with the find. It would be hundreds of years later before the bones true ancestry was known and in that time, many more wonderful ancient proboscideans remains were unearthed..

There were other early proboscideans, of course. The earliest known proboscidean is Eritherium, followed by Phosphatherium, a small animal about the size of a fox. Both date from late Paleocene deposits of Morocco.

Proboscideans evolved in Africa, where they increased in size and diversity during the Eocene and early Oligocene. Several primitive families from these epochs have been described, including the Numidotheriidae, Moeritheriidae, and Barytheriidae, all found exclusively in Africa. 

The Anthracobunidae from the Indian subcontinent were also believed to be a family of proboscideans, but were excluded from the Proboscidea by Shoshani and Tassy (2005) and have more recently been assigned to the Perissodactyla.

When Africa became connected to Europe and Asia after the shrinking of the Tethys Sea, proboscideans migrated into Eurasia, with some families eventually reaching the Americas. Proboscideans found in Eurasia as well as Africa include the Deinotheriidae, which thrived during the Miocene and into the early Quaternary, Stegolophodon, an early genus of the disputed family Stegodontidae; the highly diverse Gomphotheriidae and Amebelodontidae; and the much loved Mammutidae, or mastodons.

I traveled and hiked through much of Morocco to explore the countryside, ancient Roman ruins and many splendid outcrops when I was eighteen. I wish I had known more of the fossil sites before that trip but many had yet to be discovered. I will share more of those stories — and there are plenty — in future posts.

Photo: Henan Geological Museum, Zhengzhou, China. Complete indexed photo collection at WorldHistoryPics.com.

Monday, 16 May 2022

BARNACLES: K'WIT'A'A

One of the most interesting and enigmatic little critters we find at the seashore are barnacles. They cling to rocks deep in the sea and at the waters' edge, closed to our curiosity, their domed mounds like little closed beaks shut to the water and the world.

They choose their permanent homes as larvae, sticking to hard substrates that will become their permanent homes for the rest of their lives. It has taken us a long time to find how they actually stick or what kind of "glue" they were using.

Remarkably, the barnacle glue sticks to rocks in a similar way to how red cells bind together. Red blood cells bind and clot with a little help from some enzymes. 

These work to create long protein fibres that first blind, clot then form a scab. The mechanism barnacles use, right down to the enzyme, is very similar. That's especially interesting as about a billion years separate our evolutionary path from theirs.

So, with the help of their clever enzymes, they can affix to most anything – ship hulls, rocks, and even the skin of whales. If you find them in tidepools, you begin to see their true nature as they open up, their delicate feathery finger-like projections flowing back and forth in the surf.

One of my earliest memories is of playing with them in the tidepools on the north end of Vancouver Island. It was here that I learned their many names. In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest, the word for barnacles is k̕wit̕a̱'a — and if it is a very small barnacle it is called t̕sot̕soma — and the Kwak'wala word for glue is ḵ̕wa̱dayu.

Sunday, 15 May 2022

MAMMOTH OF WRANGEL ISLAND

Mammoth Tusk, Wrangel Island, Arctic Ocean
This tusk is from Mammutus primigenius, our beloved Woolly Mammoths, from Wrangel Island in the Arctic Ocean.  He was a true elephant, unlike his less robust cousins, the mastodons. 

Mammoths were bigger — both in girth and height — weighing in at a max of 13 tonnes. If you stood beside him and reached way up, you might be able to touch his tusks but likely not reach up to his mouth or even his eyes. 

He would have had a shaggy coat of light or dark coloured hair with long outer hair strands covering a dense thick undercoat. His oil glands would have worked overtime to secrete oils, giving him natural — and I'm guessing stinky — waterproofing.

Some of the hair strands we have recovered are more than a meter in length. These behemoth proboscideans boasted long, curved tusks, little ears, short tails and grazed on leaves, shrubs and grasses that would have been work to get at as much of the northern hemisphere was covered in ice and snow during his reign. It is often the teeth of mammoths like those you see in the photo here that we see displayed. 

Woolly Mammoths, Mammutus primigenius
Their molar teeth were large and have always struck me as looking like ink plates from a printing press. 

If they are allowed to dry out in collection, they fall apart into discreet plates that can be mistaken for mineralized or calcified rock and not the bits and pieces of mammoth molars that they indeed are. 

Their large surface area was perfect for grinding down the low nutrient, but for the most part, plentiful grasses that sustained them.

How did they use their tusks? Likely for displays of strength, protecting their delicate trunks, digging up ground vegetation and in dry riverbeds, digging holes to get at the precious life-giving water. It's a genius design, really. A bit like having a plough on the front of your skull. In the photo above you can see a tusk washed clean in a creek bed on Wrangel Island.

Their size offered protection against other predators once the mammoth was full grown. Sadly for the juveniles, they offered meaty, tasty prey to big cats like Homotherium who roamed those ancient grasslands alongside them.

They roamed widely in the Pliocene to Holocene, roaming much of Africa, Europe, Asia and North America. We see them first some 150,000 years ago from remains in Russia then expanding out from Spain to Alaska. They enjoyed a very long lifespan of 60-80 — up to 20 years longer than a mastodon and longer than modern elephants. They enjoyed the prime position as the Apex predator of the megafauna, then declined — partially because of the environment and food resources and partially because of their co-existence with humans. 

In places where the fossil record shows a preference for hunting smaller prey, humans and megafauna do better together. We see this in places like the Indian Subcontinent where primates and rodents made the menu more often than the large megafauna who roamed there. We also see this in present-day Africa, where the last of the large and lovely megafauna show remarkable resilience in the face of human co-existence.  

The woolly mammoths from the Ukrainian-Russian plains died out 15,000 years ago. This population was followed by woolly mammoths from St. Paul Island in Alaska who died out 5,600 years ago — and quite surprisingly, at least to me, the last mammoth died just 4,000 years ago in the frosty ice on the small of Wrangel in the Arctic Ocean. 

Further reading: Laura Arppe, Juha A. Karhu, Sergey Vartanyan, Dorothée G. Drucker, Heli Etu-Sihvola, Hervé Bocherens. Thriving or surviving? The isotopic record of the Wrangel Island woolly mammoth population. Quaternary Science Reviews, 2019; 222: 105884 DOI: 10.1016/j.quascirev.2019.105884

Saturday, 14 May 2022

PORPOISE: KULUT'A

Dall's Porpoise
These delightfully friendly and super smart fellows are Dall's porpoise. 

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, a blowhole is known as a ka̱'was, whether on a dolphin (porpoise) or whale and a porpoise is known as a k̓ulut̕a

In the Pacific Northwest, we see many of their kind — the shy, blunt-nosed harbour porpoise, the social and herd-minded Pacific white-sided dolphin and the showy and social Dall's porpoise.  

Of these, the Dall's porpoise is a particular favourite. These speedy muscular black and white showboats like to ride the bow waves of passing boats — something they clearly enjoy and a thrill for everyone on board the vessel. If you slow down, they will often whisk away, but give them a chance to race you and they may stay with you all afternoon. 

Harbour porpoises are the complete opposite. You are much more likely to see their solid black bodies and wee fin skimming through the waves across the bay as they try to avoid you entirely. Harbour porpoise prefer quiet sheltered shorelines, often exploring solo or in small groups of two or three. 

We sometimes see these lovely marine mammals represented in the art of the First Nations in the Pacific Northwest, particularly along the coast of British Columbia. You will know them from their rather rectangular artistic depiction with a pronounced snout and lacking teeth (though they have them) used to portray killer whales or orca. 

As a group, even considering the shy Harbour porpoise, these marine mammals are social and playful. Humpback whales are fond of them and you will sometimes see them hanging out altogether in the bays and inlets or near the shore. 

They are quite vocal, making lots of distinctive and interesting noises in the water. They squeak, squawk and use body language — leaping from the water while snapping their jaws and slapping their tails on the surface. They love to blow bubbles, will swim right up to you for a kiss and cuddle. 

Each individual has a signature sound, a whistle that is uniquely their own. They use these whistles to tell one of their friends and family members from another.

Porpoise are marine mammals that live in our world's oceans. If it is salty and cold, you can be pretty sure they are there. They breathe air at the surface, similar to humans, using their lungs and inhaling and exhaling through a blowhole at the top of their heads instead of through their snouts. 



Friday, 13 May 2022

ROCK LOBSTER: HOMARUS

An artfully enhanced example of Homarus hakelensis, an extinct genus of fossil lobster belonging to the family Nephrophidae. Homarus is a genus of lobsters, which include the common and commercially significant species Homarus americanus (the American lobster) and Homarus gammarus (the European lobster).

The Cape lobster, which was formerly in this genus as H. capensis, was moved in 1995 to the new genus Homarinus.

Lobsters have long bodies with muscular tails and live in crevices or burrows on the seafloor. Three of their five pairs of legs have claws, including the first pair, which are usually much larger than the others.

Highly prized as seafood, lobsters are economically important and are often one of the most profitable commodities in coastal areas they populate. Commercially important species include two species of Homarus — which looks more like the stereotypical lobster — from the northern Atlantic Ocean, and scampi — which looks more like a shrimp — the Northern Hemisphere genus Nephrops and the Southern Hemisphere genus Metanephrops. Although several other groups of crustaceans have the word "lobster" in their names, the unqualified term lobster generally refers to the clawed lobsters of the family Nephropidae.

Clawed lobsters are not closely related to spiny lobsters or slipper lobsters, which have no claws or chelae, or to squat lobsters. The closest living relatives of clawed lobsters are the reef lobsters and the three families of freshwater crayfish. 

This cutie was found in Cretaceous outcrops at Hâdjoula. The sub‐lithographical limestones of Hâqel and Hâdjoula, in northwest Lebanon, produce beautifully preserved shrimp, fish, and octopus. The localities are about 15 km apart, 45 km away from Beirut and 15 km away from the coastal city of Jbail. 

Thursday, 12 May 2022

NEVADA FOSSILS: CARNIAN-NORIAN BOUNDARY

Time Slows at Berlin-Ichthyosaur State Park
High on the hillside up a long entry road sits the entrance to Berlin-Ichthyosaur State Park in central Nevada.

A worn American flag and sun bleached outbuildings greet you on your way to the outcrops. Away from the hustle and bustle that define the rest of Nevada this place feels remarkably serene. Your eyes squint against the sun as you search for ammonoids and other marine fossil fauna while your nose tends to the assault from the bracing smell of sage brush.

This site holds many stories. The interpretive centre displays wonderful marine reptiles, ichthyosaurs in situ, as you might expect from the name of the park — but it also showcases years of history lovingly tended. This stretch of dry golden low hills dappled with the yellow of creosote and desert grasses is an important locality for our understanding of the Carnian-Norian boundary (CNB) in North America.

The area is known worldwide as one of the most important ichthyosaur Fossil-Lagerstätte because of the sheer volume of remarkably well-preserved, fully articulated (all the sweet bones laid out all in a row...) specimens of Shonisaurus popularis.

Rich ammonoid faunas outcrop in the barren hills of the Upper Triassic (Early Norian, Kerri zone), Luning Formation, West Union Canyon, Nevada. They were studied by N. J. Silberling (1959) and provide support for the definition of the Schucherti and Macrolobatus zones of the latest Carnian — which are here overlain by well-preserved faunas of the earliest Norian Kerri Zone. 

The genus Gonionotites, very common in the Tethys and British Columbia, is for the moment, unknown in Nevada. The Upper Carnian faunas are dominated by Tropitidae, while Juvavitidae are conspicuously lacking. 

Middle Triassic Ammonoids
Despite its importance, no further investigations had been done at this site for a good 50 years. That changed in 2010 when Jim Haggart, Mike Orchard and Paul Smith — all local Vancouverites — collaborated on a project that took them down to Nevada to look at the conodonts and ammonoids. They did a bed-by-bed sampling of ammonoids and conodonts in West Union Canyon during October of that year.

October is an ideal time to do fieldwork in this area. There are a few good weeks between screaming hot and frigid cold. It is also tarantula breeding season so keep your eyes peeled. Those sweet little burrows you see are not from rodents but rather largish arachnids. 

The eastern side of the canyon provides the best record of the Macrolobatus Zone, which is represented by several beds yielding ammonoids of the Tropites group, together with Anatropites div. sp. 

Conodont faunas from both these and higher beds are dominated by ornate metapolygnthids that would formerly have been collectively referred to Metapolygnathus primitius, a species long known to straddle the CNB. Within this lower part of the section, they resemble forms that have been separated as Metapolygnathus mersinensis. Slightly higher, forms close to Epigondolella' orchardi and a single Orchardella n. sp. occur. This association can be correlated with the latest Carnian in British Columbia.

Higher in the section, the ammonoid fauna shows a sudden change and is dominated by Tropithisbites. Few tens of metres above, but slightly below the first occurrence of Norian ammonoids Guembelites jandianus and Stikinoceras, two new species of conodonts (Gen et sp. nov. A and B) appear that also occur close to the favoured Carnian/Norian boundary at Black Bear Ridge, British Columbia. Stratigraphically higher collections continue to be dominated by forms close to M. mersinensis and E. orchardi after BC's own Mike Orchard.

The best exposure of the Kerri Zone is on the western side of the West Union Canyon. Ammonoids, dominated by Guembelites and Stikinoceras div. sp., have been collected from several fossil-bearing levels. Conodont faunas replicate those of the east section. The collected ammonoids fit perfectly well with the faunas described by Silberling in 1959, but they differ somewhat from coeval faunas of the Tethys and Canada. 

The ammonoid fauna paints a compelling picture of Tethyan influence with a series of smoking guns. We see an abundance of Tropitidae in the Carnian, a lack of Pterosirenites in the Norian, copious Guembelites, the Tethyan species G. philostrati, the stratigraphic position of G. clavatus and the rare occurrence of Gonionotites. Their hallelujah moment was likely finding an undescribed species of the thin-shelled bivalve Halobia similar to Halobia beyrichi — the clincher that perhaps seals this deal on Tethyan influence. 

I'll take a boo to see what Christopher McRoberts published on the find. A jolly good idea to have him on this expedition as it would have been easy to overlook if the focus remained solely on the conodonts and ammonoids. McRoberts has published on the much-studied Pardonet Formation up in the Willison Lake Area of Northeastern, British Columbia. He knows a thing or two about Upper Triassic Bivalvia and the correlation to coeval faunas elsewhere in the North American Cordillera, and to the Boreal, Panthalassan and Tethyan faunal realms. 

If you fancy a read, they published a paper: "Towards the definition of the Carnian/Norian Boundary: New data on Ammonoids and Conodonts from central Nevada," which you can find in the proceedings of the 21st Canadian Paleontology Conference; by Haggart, J W (ed.); Smith, P L (ed.); Canadian Paleontology Conference Proceedings no. 9, 2011 p. 9-10.

Fig. 1. Location map of Berlin-Ichthyosaur State Park

Marco Balini, James Jenks, Riccardo Martin, Christopher McRoberts, along with Mike Orchard and Norman Siberling, did a bed by bed sampling in 2013 and published on The Carnian/Norian boundary succession at Berlin-Ichthyosaur State Park (Upper Triassic, central Nevada, USA) and published in January 2014 in Paläontologische Zeitschrift 89:399–433. That work is available for download from ResearchGate. The original is in German, but there is a translation available.

After years of reading about the correlation between British Columbia and Nevada, I had the very great pleasure of walking through these same sections in October 2019 with members of the Vancouver Paleontological Society and Vancouver Island Palaeontological Society. It was with that same crew that I'd originally explored fossil sites in the Canadian Rockies in the early 2000s. Those early trips led to paper after paper and the exciting revelations that inspired our Nevada adventure.

If you plan your own adventure, you'll want to keep an eye out for some of the other modern fauna — mountain lions, snakes, lizards, scorpions, wolves, coyotes, foxes, ground squirrels, rabbits, falcons, hawks, eagles, bobcats, sheep, deer and pronghorns.

Figure One: Location map of Berlin-Ichthyosaur State Park. A detailed road log with access information for this locality is provided in Lucas et al. (2007).