![]() |
| Puffbird similar to Fossil Birds found at Driftwood Canyon |
| Metasequoia, the Dawn Redwood |
![]() |
| A Tapir showing off his prehensile nose trunk |
![]() |
| Puffbird similar to Fossil Birds found at Driftwood Canyon |
| Metasequoia, the Dawn Redwood |
![]() |
| A Tapir showing off his prehensile nose trunk |
![]() |
| Pterodactylus spectabilis |
The air hums with the buzz of ancient insects, and along the silty shores of the Solnhofen archipelago—an island paradise trapped in time—a delicate shadow flits overhead. It’s Pterodactylus spectabilis, one of the earliest and most iconic of the pterosaurs.
Unlike the later, giant azhdarchids that would dominate the skies of the Cretaceous, Pterodactylus was petite and elegant. With a wingspan of about 1.5 metres, it would have weighed less than a modern crow. Its long, narrow jaws bristled with fine, conical teeth—perfect for snapping up fish and small invertebrates from the shallows or even catching insects mid-flight.
The fossils of Pterodactylus spectabilis are beautifully preserved in the fine-grained limestone of Solnhofen, Bavaria—the same deposits that yielded Archaeopteryx. These ancient lagoon sediments captured everything from the membranes of its wings to delicate impressions of skin and muscle. The exquisite preservation has allowed paleontologists to study details of its anatomy rarely seen in other pterosaurs, including evidence of pycnofibers—fine, hair-like filaments that may have helped insulate its small, warm-blooded body.
As a member of the order Pterosauria, Pterodactylus represents one of the earliest experiments in vertebrate flight. Its elongated fourth finger supported a broad membrane that stretched to its hind limbs, forming a living kite of bone and skin. The genus was first described in 1784 by the Italian naturalist Cosimo Alessandro Collini, later named by Georges Cuvier, who recognized it as a flying reptile—a revelation that forever changed how scientists imagined prehistoric life.
Pterodactylus spectabilis remains tell us of early flight and exceptional preservation and beauty—a window into a lagoon world where reptiles ruled the air long before birds had truly taken wing.
![]() |
| Icelandic Horses |
![]() |
| Icelandic Horses |
![]() |
| Stemec suntokum, a Fossil Plopterid from Sooke, BC |
As romantic as it sounds, it happens more often than you think.
I can think of more than a dozen new fossil species from my home province of British Columbia on Canada’s far western shores that have been named after people I know who have collected those specimens or contributed to their collection over the past 20 years.
British Columbia, Canada, is a paleontological treasure trove, and one of its most rewarding spots is tucked away near the southwestern tip of Vancouver Island: the Sooke Formation along the rugged shores of Muir Beach.
A Beach Walk into Deep Time
Follow Highway 14 out of the town of Sooke, just west of Victoria, and you’ll soon find yourself staring at the cool, clear waters of the Strait of Juan de Fuca. Step onto the gravel parking area near Muir Creek, and from there, walk right (west) along the beach. The low yellow-brown cliffs up ahead mark the outcrop of the upper Oligocene Sooke Formation, part of the larger Carmanah Group.
For collectors, families, and curious wanderers alike, this spot is a dream. On a sunny summer day, the sandstone cliffs glow under the warm light, and if you’re lucky enough to visit in the quieter seasons, there’s a certain magic in the mist and drizzle—just you, the crashing surf, and the silent secrets of a world long gone.
Geological Canvas of the Oligocene
The Sooke Formation is around 25 to 30 million years old (upper Oligocene), when ocean temperatures had cooled to levels not unlike those of today. That ancient shoreline supported many of the marine organisms we’d recognize in modern Pacific waters—gastropods, bivalves, echinoids, coral, chitons, and limpets. Occasionally, larger remains turn up: bones from marine mammals, cetaceans, and, in extremely rare instances, birds.
Beyond Birds: Other Fossil Treasures
The deposits in this region yield abundant fossil molluscs. Look carefully for whitish shell material in the grey sandstone boulders along the beach. You may come across Mytilus (mussels), barnacles, surf clams (Spisula, Macoma), or globular moon snails. Remember, though, to stay clear of the cliffs—collecting directly from them is unsafe and discouraged.
These same rock units have produced fossilized remains of ancient marine mammals. Among them are parts of desmostylids—chunky, herbivorous marine mammals from the Oligocene—and the remains of Chonecetus sookensis, a primitive baleen whale ancestor. There are even rumors of jaw sections from Kolponomos, a bear-like coastal carnivore from the early Miocene, found in older or nearby formations.
Surprisingly, avian fossils at this site do exist, though they’re few and far between. Which brings us to one of the most exciting paleontological stories on the island: the discovery of a flightless diving bird.
The Suntok Family’s Fortuitous Find
In 2013, while strolling the shoreline near Sooke, Steve Suntok and his family picked up what they suspected were fossilized bones. Their instincts told them these were special, so they brought the specimens to the Royal British Columbia Museum (RBCM) in Victoria.
Enter Gary Kaiser: a biologist by profession who, after retirement, turned his focus to avian paleontology. As a research associate with the RBCM, Kaiser examined the Suntoks’ finds and realized these were no ordinary bones. They were the coracoid of a 25-million-year-old flightless diving bird—a rare example of the extinct Plotopteridae. In honor of the region’s First Nations and the intrepid citizen scientists who found it, he named the new genus and species Stemec suntokum.
Meet the Plotopterids
Plotopterids once lived around the North Pacific from the late Eocene to the early Miocene. They employed wing-propelled diving much like modern penguins, “flying” through the water using robust, flipper-like wings. Fossils of these extinct birds are known from outcrops in the United States and Japan, where some specimens reached up to two meters in length.
The Sooke fossil, on the other hand, likely belonged to a much smaller individual—somewhere in the neighborhood of 50–65 cm long and 1.7–2.2 kg, about the size and weight of a small Magellanic Penguin (Spheniscus magellanicus) chick. The key to identifying Stemec suntokum was its coracoid, a delicate shoulder bone that provides insight into how these birds powered their underwater movements.
From Penguin Waddle to Plotopterid Dive
If you’ve ever seen a penguin hopping near the ocean’s edge or porpoising through the water, you can imagine the locomotion of these ancient Plotopterids. The coracoid bone pivots as a bird flaps its wings, providing a hinge for the up-and-down stroke. Because avian bones are so delicate—often scavenged or destroyed by ocean currents before they can fossilize—finding such a beautifully preserved coracoid is a stroke of incredible luck.
Kaiser’s detailed observations on the coracoid of Stemec suntokum—notably its unusually narrow, conical shaft—sparked debate among avian paleontologists. You can read his paper, co-authoried with Junya Watanabe and Marji Johns, was published in Palaeontologia Electronica in November 2015. You can find the paper online at:
https://palaeo-electronica.org/content/2015/1359-plotopterid-in-canada
The Suntok Legacy
It turns out the Suntok family’s bird discovery wasn’t their last remarkable find. Last year, they unearthed part of a fish dental plate that caught the attention of Russian researcher Evgeny Popov. He named it Canadodus suntoki (meaning “Tooth from Canada”), another nod to the family’s dedication as citizen scientists.
While the name may not be as lyrical as Stemec suntokum, it underscores the continuing tradition of everyday fossil lovers making big contributions to science.
Planning Your Own Expedition
Location: From Sooke, drive along Highway 14 for about 14 km. Just after crossing Muir Creek, look for the gravel pull-out on the left. Park and walk down to the beach; turn right (west) and stroll about 400 meters toward the sandstone cliffs.
Tip: Check the tide tables and wear sturdy footwear or rubber boots. Fossils often appear as white flecks in the greyish rocks on the beach. A small hammer and chisel can help extract specimens from coquinas (shell-rich rock), but always use eye protection and respect the local environment.
Coordinates: 48.4°N, 123.9°W (modern), which corresponds to around 48.0°N, 115.0°W in Oligocene paleo-coordinates.
Why Head to Sooke? Pure Gorgeousness!
Whether you’re scanning the shoreline for ancient bird bones or simply soaking in the Pacific Northwest vistas, Muir Beach offers a blend of natural beauty and deep-time adventure. For many, the idea of unearthing a brand-new fossil species seems almost mythical.
Yet the Suntok family’s story proves it can—and does—happen. With an appreciative eye, a sense of curiosity, and a willingness to learn, any of us could stumble upon the next chapter of Earth’s distant past.
So pack your boots, bring a hammer and some enthusiasm, and you just might find yourself holding a piece of ancient avian history—like Stemec suntokum—in your hands.
References & Further Reading
Clark, B.L. and Arnold, R. (1923). Fauna of the Sooke Formation, Vancouver Island, B.C. University of California Publications in Geological Sciences 14(6).
Hasegawa et al. (1979); Olson and Hasegawa (1979, 1996); Olson (1980); Kimura et al. (1998); Mayr (2005); Sakurai et al. (2008); Dyke et al. (2011).
Russell, L.S. (1968). A new cetacean from the Oligocene Sooke Formation of Vancouver Island, British Columbia. Canadian Journal of Earth Sciences, 5, 929–933.
Barnes, L.G. & Goedert, J.L. (1996). Marine vertebrate palaeontology on the Olympic Peninsula. Washington Geology, 24(3), 17–25.
Kaiser, G., Watanabe, J. & Johns, M. (2015). A new member of the family Plotopteridae (Aves) from the late Oligocene of British Columbia, Canada. Palaeontologia Electronica.
Howard, H. (1969). A new avian fossil from the Oligocene of California. Described Plotopterum joaquinensis.
Wetmore, A. (1928). Avian fossils from the Miocene and Pliocene of California.
![]() |
| Pennsylvanian Coal Age Ecosystem, 300-Million-Years-Old |
References & further reading:
Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/
Image: Hylonomus lyelli, Una ricostruzione di ilonomo by Matteo De Stefano/MUSEThis file was uploaded by MUSE - Science Museum of Trento in cooperation with Wikimedia Italia., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=48143186
Image: Arthropleura: Par Tim Bertelink — Travail personnel, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=48915156
Joggins Map: Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/
But their story begins long before that, deep in the fossil record, when canids first began to evolve.
The ancestors of today’s wolves can be traced back more than 30 million years to the early canids of the Oligocene. One of the earliest known members of the dog family is Hesperocyon, a small, fox-like carnivore that lived in what is now North America.
Over millions of years, these early canids diversified into various forms, including the dire wolf (Aenocyon dirus) and the gray wolf (Canis lupus), which appeared around 1 to 2 million years ago.
The gray wolf evolved in Eurasia and migrated into North America via the Bering land bridge during the Pleistocene. Once here, it quickly became a dominant predator across the continent, adapting to a wide range of environments—from the Arctic tundra to the deserts of Mexico.
Today, Canis lupus is still widely distributed across North America, although its range has contracted significantly due to human expansion, habitat loss, and historical persecution. Wolves are found in:
Wolves are apex predators and essential for maintaining healthy ecosystems. They primarily prey on large ungulates such as deer, moose, elk, and caribou.
In coastal regions, particularly on British Columbia’s Central Coast and Vancouver Island, wolves have adapted their diets to include salmon, intertidal invertebrates, and even seals. I have seen them eat their way along the tide line, scavenging whatever the sea has washed up for their breakfasts.
These wolves have been observed swimming between islands in search of food, a behavior rarely seen in inland populations. If you explore the coast by boat, kayak or other means, you can see their footprints in the sand, telling you that you are not alone as you explore the rugged coast.
Wolves help control herbivore populations, which in turn benefits vegetation and can even influence river systems, as famously demonstrated in Yellowstone National Park after wolves were reintroduced in 1995.
Wolves on Vancouver Island
Vancouver Island is home to a small but resilient population of coastal wolves, often referred to as coastal sea wolves.These wolves are genetically and behaviorally distinct from their inland counterparts. While exact numbers fluctuate, current estimates suggest approximately 350 wolves live on Vancouver Island.
In Kwak'wala, the language of the many Kwakwaka'wakw First Nations of Vancouver Island, wolves are known as atła'na̱m, u'liga̱n or wišqii. They symbolize loyalty, strength, family, and the spirit of unity.
Wolves are highly respected as wise, cooperative, and powerful hunters, often seen as spirit guides.
They play a role in our ceremonies and are prominently featured in our art on totem poles, jewellery and ceremonial masks. We have dances with the dancers wearing wolf headdresses called xisiwe' that are impressive to behold.
If you are looking to see more of these coastal predators, search out the work of photographers like Liron Gertsman, Ian Harland, and Sandy Sharkey, who have captured stunning images and footage of these elusive creatures in their natural habitat, along our beaches and old-growth forests.
Despite their adaptability, wolves face a number of threats:
On Vancouver Island and across the continent, conservation efforts, education, and science-based wildlife management are essential to ensuring wolves continue to howl in the wild for generations to come.
Vancouver Island local, Gary Allan, who runs the SWELL Wolf Education Centre in Nanaimo and is known for his extensive work in wolf advocacy and education is a good resource of up-to-date information on our coastal wolves.
He has been educating the public about wolves since 2006, both through the Tundra Speaks Society and the education centre. Allan's work involves interacting with wolves, including his wolf-dog Tundra, and sharing his knowledge with schools, community groups, and First Nations organizations.
Have you seen one of our coastal wolves up close and in person? It is a rare treat and for me, generally on an early morning walk. I hope we keep the balance so that the wolves live in peace and continue to thrive.
Further Reading and Resources
McAllister, Ian. The Last Wild Wolves: Ghosts of the Rain Forest. Greystone Books, 2007.
Mech, L. David, and Boitani, Luigi (eds.). Wolves: Behavior, Ecology, and Conservation. University of Chicago Press, 2003.
Fossil Canids Database – University of California Museum of Paleontology
Raincoast Conservation Foundation – https://www.raincoast.org
![]() |
| Elpistostege watsoni |
In the late 1930s, our understanding of the transition of fish to tetrapods — and the eventual jump to modern vertebrates — took an unexpected leap forward.
The evolutionary a'ha came from a single partial fossil skull found on the shores of a riverbank in Eastern Canada.
Meet the Stegocephalian, Elpistostege watsoni, an extinct genus of finned tetrapodomorphs that lived during the Late Givetian to Early Frasnian of the Late Devonian — 382 million years ago.
Elpistostege watsoni — perhaps the sister taxon of all other tetrapods — was first described in 1938 by British palaeontologist and elected Fellow of the Royal Society of London, Thomas Stanley Westoll. Westoll's research interests were wide-ranging. He was a vertebrate palaeontologist and geologist best known for his innovative work on Palaeozoic fishes and their relationships with tetrapods.
As a specialist in early fish, Westoll was asked to interpret that single partial skull roof discovered at the Escuminac Formation in Quebec, Canada. His findings and subsequent publication named Elpistostege watsoni and helped us to better understand the evolution of fishes to tetrapods — four-limbed vertebrates — one of the most important transformations in vertebrate evolution.
Hypotheses of tetrapod origins rely heavily on the anatomy of but a few tetrapod-like fish fossils from the Middle and Late Devonian, 393–359 million years ago. These taxa — known as elpistostegalians — include Panderichthys, Elpistostege and Tiktaalik — none of which had yet to reveal the complete skeletal anatomy of the pectoral fin.
![]() |
| Elpistostege watsoni |
The specimen helped us to understand the origin of the vertebrate hand. Stripped from its encasing stone, it revealed a set of paired fins of Elpistostege containing bones homologous to the phalanges (finger bones) of modern tetrapods and is the most basal tetrapodomorph known to possess them.
Once the phalanges were uncovered, prep work began on the fins. The fins were covered in wee scales and lepidotrichia (fin rays). The work was tiresome, taking more than 2,700 hours of preparation but the results were thrilling.
![]() |
| Origin of the Vertebrate Hand |
Despite this skeletal pattern — which represents the most tetrapod-like arrangement of bones found in a pectoral fin to date blurring the line between fish and land vertebrates — the fin retained lepidotrichia (those wee fin rays) distal to the radials.
This arrangement confirmed an age-old question — showing us for the first time that the origin of phalanges preceded the loss of fin rays, not the other way around.
E. watsoni is very closely related to Tiktaalik roseae found in 2004 in the Canadian Arctic — a tetrapodomorpha species also known as a Choanata. These were advanced forms transitional between fish and the early labyrinthodonts playfully referred to as fishapods — half-fish, half-tetrapod in appearance and limb morphology.
Up to that point, the relationship of limbed vertebrates (tetrapods) to lobe-finned fish (sarcopterygians) was well known, but the origin of major tetrapod features remained obscure for lack of fossils that document the sequence of evolutionary changes — until Tiktaalik. While Tiktaalik is technically a fish, this fellow is as far from fish-like you can be and still be a card-carrying member of the group.
![]() |
| Tiktaalik roseae |
Its fins have thin ray bones for paddling like most fish, but with brawny interior bones that gave Tiktaalik the ability to prop itself up, using his limbs for support. I picture him propped up on one paddle saying, "how you doing?"
Six years after Tiktaalik was discovered by Neil Shubin and team in the ice-covered tundra of the Canadian Arctic on southern Ellesmere Island, a team working the outcrops at Miguasha on the Gaspé Peninsula discovered the only fully specimen of E. watsoni found to date — greatly increasing our knowledge of this finned tantalizingly transitional tetrapodomorph.
E. watsoni fossils are rare — this was the fourth specimen collected in over 130 years of hunting. Charmingly, the specimen was right on our doorstop — extracted but a few feet away from the main stairs descending onto the beach of Miguasha National Park.
L'nu Mi’gmaq First Nations of the Gespe’gewa’gi Region
Miguasha is nestled in the Gaspésie or Gespe’gewa’gi region of Canada — home to the Mi’gmaq First Nations who self-refer as L’nu or Lnu. The word Mi’gmaq or Mi’kmaq means the family or my allies/friends in Mi'kmaw, their native tongue (and soon to be Nova Scotia's provincial first language). They are the people of the sea and the original inhabitants of Atlantic Canada having lived here for more than 10,000 years.
The L'nu were the first First Nation people to establish contact and trade with European explorers in the 16th and 17th centuries — and perhaps the Norse as early as the turn of the Millenium. Sailing vessels filled with French, British, Scottish, Irish and others arrived one by one to lay claim to the region — settling and fighting over the land.
As each group rolled out their machinations of discovery, tensions turned to an all-out war with the British and French going head to head. I'll spare you the sordid details but for everyone caught in the crossfire, it went poorly.
![]() |
| North America Map 1775 (Click to Enlarge) |
The bittersweet British victory sparked the American War of Independence.
For the next twenty years, the L'nu would witness and become embroiled in yet another war for these lands, their lands — first as bystanders, then as American allies, then intimidated into submission by the British Royal Navy with a show of force by way of a thirty-four gun man-of-war, encouraging L'nu compliance — finally culminating in an end to the hostilities with the 1783 Treaty of Paris.
The peace accord held no provisions for the L'nu, Métis and First Nations impacted. None of these newcomers was Mi'kmaq — neither friends nor allies.
It was to this area some sixty years later that the newly formed Geological Survey of Canada (GSC) began exploring and mapping the newly formed United Province of Canada. Geologists in the New Brunswick Geology Branch traipsed through the rugged countryside that would become a Canadian province in 1867.
It was on one of these expeditions that the Miguasha fossil outcrops were discovered. They, too, would transform in time to become Miguasha National Park or Parc de Miguasha, but at first, they were simply the promising sedimentary exposures on the hillside across the water — a treasure trove of Late Devonian fauna waiting to be discovered.
In the summer of 1842, Abraham Gesner, New Brunswick’s first Provincial Geologist, crossed the northern part of the region exploring for coal. Well, mostly looking for coal. Gesner also had a keen eye for fossils and his trip to the Gaspé Peninsula came fast on the heels of a jaunt along the rocky beaches of Chignecto Bay at the head of the Bay of Fundy and home to the standing fossil trees of the Joggins Fossil Cliffs.
Passionate about geology and chemistry, he is perhaps most famous for his invention of the process to distil the combustible hydrocarbon kerosene from coal oil — a subject on which his long walks exploring a budding Canada gave him a great deal of time to consider. We have Gesner to thank for the modern petroleum industry. He filed many patents for clever ways to distil the soft tar-like coal or bitumen still in use today.
He was skilled in a broad range of scientific disciplines — being a geologist, palaeontologist, physician, chemist, anatomist and naturalist — a brass tacks geek to his core. Gesner explored the coal exposures and fossil outcrops across the famed area that witnessed the region become part of England and not France — and no longer L'nu.
Following the Restigouche River in New Brunswick through the Dalhousie region, Gesner navigated through the estuary to reach the southern coast of the Gaspé Peninsula into what would become the southeastern coast of Quebec to get a better look at the cliffs across the water. He was the first geologist to lay eyes on the Escuminac Formation and its fossils.
In his 1843 report to the Geologic Survey, he wrote, “...I found the shore lined with a coarse conglomerate. Farther eastward the rocks are light blue sandstones and shales, containing the remains of vegetables. (...) In these sandstone and shales, I found the remains of fish and a small species of tortoise with fossil foot-marks.”
We now know that this little tortoise was the famous Bothriolepis, an antiarch placoderm fish. It was also the first formal mention of the Miguasha fauna in our scientific literature. Despite the circulation of his report, Gesner’s discovery was all but ignored — the cliffs and their fossil bounty abandoned for decades to come. Geologists like Ells, Foord and Weston, and the research of Whiteaves and Dawson, would eventually follow in Gesner's footsteps.
![]() |
| North America Map 1866 (Click to Enlarge) |
This is exciting as it is the lobe-finned fishes — the sarcopterygians — that gave rise to the first four-legged, air-breathing terrestrial vertebrates – the tetrapods.
Fossil specimens from Miguasha include twenty species of lower vertebrates — anaspids, osteostra-cans, placoderms, acanthodians, actinopterygians and sarcopterygians — plus a limited invertebrate assemblage, along with terrestrial plants, scorpions and millipedes.
Originally interpreted as a freshwater lacustrine environment, recent paleontological, taphonomic, sedimentological and geochemical evidence corroborates a brackish estuarine setting — and definitely not the deep waters of the sea. This is important because the species that gave rise to our land-living animals began life in shallow streams and lakes. It tells us a bit about how our dear Elpistostege watsoni liked to live — preferring to lollygag in cool river waters where seawater mixed with fresh. Not fully freshwater, but a wee bit of salinity to add flavour.
References & further reading:
![]() |
| Phaeolus schweinitzii |
![]() |
| Phaeolus schweinitzii |
These plump, chocolate-brown rodents—often mistaken for oversized squirrels by first-time hikers—are Canada’s most endangered mammal and one of the rarest in the world.
With their expressive faces, social chatter, and luxurious fur coats, they’ve become beloved mascots of the region, yet their story stretches far beyond the ski hills—deep into the Ice Age and the fossil record.
Marmots live only in a few scattered pockets of alpine habitat on Vancouver Island.
They’re burrowers by trade, digging deep tunnels into the rocky soil of meadows that blossom with lupines and sedges in summer. Above ground, they’re social creatures—touching noses, grooming one another, and giving high-pitched warning whistles whenever a golden eagle or wandering cougar appears on the horizon.
They fatten themselves through the brief mountain summer, storing energy for their long, seven-month hibernation beneath the snow.
Each colony is a close-knit family unit, with older marmots helping younger ones learn where to dig and when to hide. They even recognize one another’s voices, an important trick when you’re living in echoing valleys where one chirp can bounce for kilometres.
The marmot’s lineage reaches far back into the Pleistocene, around 2.6 million to 11,700 years ago. Fossil evidence from North America shows that their ancestors, early marmotine rodents, thrived across cooler steppe and tundra landscapes when glaciers waxed and waned over the continent.
Fossilized marmot bones—particularly jaw and skull fragments—have been found in Ice Age deposits in Yukon, Alaska, and Alberta, revealing that marmots were already well adapted to cold, alpine life long before modern humans reached the Pacific Northwest.
The Whistler marmot’s closest relatives today include the hoary marmot (Marmota caligata) and the Olympic marmot (Marmota olympus), both descendants of those hardy Ice Age pioneers. Genetic studies suggest that the Whistler marmot’s ancestors became isolated on Vancouver Island after sea levels rose at the end of the last glaciation, creating an island-bound species uniquely suited to its misty mountaintop home.
A Comeback Story
Once reduced to fewer than 30 individuals in the wild, the Whistler marmot is making a slow but steady comeback thanks to dedicated breeding and reintroduction programs. Today, over 200 roam the high meadows once more. Their cheerful whistles echo through the alpine air—sometimes feeling like a bit of heckling as you meander up the trails or stop to photograph the scenery—but always a welcome sound.
In Kwak'wala, the language of the many Kwakwaka'wakw First Nations of Vancouver Island, marmots are known as papika — the perfect word to describe these cute, fuzzy, chunky monkeys!
| Ankylosaur — Armoured Plant-Eating Dinosaur |
![]() |
| Hadrosaur Eggs |
I have found many fossil feathers (another personal fav) but have yet to find dino eggs or any egg for that matter. While my track record here is beyond sparse, dinosaur eggs have been found on nearly every continent, from the deserts of Mongolia to the floodplains of Montana and the nesting grounds of Patagonia.
The discovery of dinosaur eggs offers one of the most intimate glimpses into the life history of these long-extinct animals. Unlike bones or teeth, eggs preserve direct evidence of reproduction, nesting strategies, and even embryonic development.
Over the last century, paleontologists and citizen scientists have uncovered thousands of fossilized eggs and eggshell fragments across the globe, revealing that dinosaurs laid their clutches in diverse environments ranging from deserts to floodplains.
Early Discoveries — The first scientifically recognized dinosaur eggs were discovered in the 1920s by the American Museum of Natural History’s Central Asiatic Expeditions to Mongolia’s Gobi Desert.
Led by Roy Chapman Andrews, these expeditions unearthed clutches of round, fossilized eggs in the Djadokhta Formation. Initially misattributed to Protoceratops, later discoveries showed they belonged to the bird-like and immensely cool theropod Oviraptor. This corrected attribution changed the understanding of dinosaur nesting, particularly with the revelation of adults preserved brooding on nests.
Asia: The Richest Record — Asia remains the richest continent for dinosaur eggs.
Mongolia: The Gobi Desert has yielded numerous oviraptorid and hadrosaurid eggs, often preserved in nesting sites.
China: The Henan and Guangdong Provinces have produced abundant eggs, including complete clutches of hadrosaurs, theropods, and titanosaurs. Some sites, such as the Xixia Basin, contain thousands of eggshell fragments, telling us that these were long-term nesting grounds. Embryos preserved within eggs, like those of Beibeilong sinensis, provide rare developmental insights.
India: Extensive titanosaur nests from the Lameta Formation demonstrate colonial nesting behavior and some of the largest known egg accumulations.
North America has also yielded important dinosaur egg sites. Montana: The Two Medicine Formation preserves fossilized nests of hadrosaurids like Maiasaura peeblesorum, discovered by Jack Horner in the late 1970s. These finds gave rise to the concept of “good mother lizard,” as evidence suggested parental care and extended nesting.
Utah and Colorado: Eggshell fragments and isolated eggs of sauropods and theropods have been reported, though less commonly than in Asia.
South America: Sauropod Hatcheries — Argentina is home to some of the most significant sauropod nesting sites. In Patagonia, the Auca Mahuevo locality preserves thousands of titanosaur eggs, many with fossilized embryos inside. This site demonstrates large-scale nesting colonies and offers clues to sauropod reproductive strategies, including shallow burial of eggs in soft sediment.
Europe: A Widespread Record — Europe has produced diverse dinosaur egg finds, particularly in France, Spain, and Portugal. In southern France, sauropod egg sites such as those in the Provence region reveal clutches laid in sandy floodplains. Spain’s Tremp Formation contains both hadrosaurid and sauropod eggs, some associated with trackways, linking nesting and movement behavior.
Africa: Expanding the Map — Egg discoveries in Africa are less common but significant. In Morocco and Madagascar, titanosaur eggs have been recovered, suggesting a widespread distribution of sauropod nesting across Gondwana.
Dinosaur eggs fossilize under specific conditions. Burial by sediment soon after laying, mineral-rich groundwater for permineralization, and relative protection from erosion. Eggshell microstructure, pore density, and arrangement allow paleontologists to infer incubation strategies, from buried clutches similar to modern crocodilians to open nests akin to modern birds.
These fossils are remarkable for their beauty and rarity but also for the wealth of biological information they provide. These elusive fossils help us to understand dinosaur reproduction, nesting behaviour, and evolutionary ties to modern birds. I will continue my hunt and post pics to share with all of you if the Paleo Gods smile on me!
But their story begins long before that, deep in the fossil record, when canids first began to evolve. The ancestors of today’s wolves can be traced back more than 30 million years to the early canids of the Oligocene.
One of the earliest known members of the dog family is Hesperocyon, a small, fox-like carnivore that lived in what is now North America.
Over millions of years, these early canids diversified into various forms, including the dire wolf (Aenocyon dirus) and the gray wolf (Canis lupus), which appeared around 1 to 2 million years ago.
The gray wolf evolved in Eurasia and migrated into North America via the Bering land bridge during the Pleistocene. Once here, it quickly became a dominant predator across the continent, adapting to a wide range of environments—from the Arctic tundra to the deserts of Mexico.
Today, Canis lupus is still widely distributed across North America, although its range has contracted significantly due to human expansion, habitat loss, and historical persecution. Wolves are found in:
Wolves are apex predators and essential for maintaining healthy ecosystems. They primarily prey on large ungulates such as deer, moose, elk, and caribou.
In coastal regions, particularly on British Columbia’s Central Coast and Vancouver Island, wolves have adapted their diets to include salmon, intertidal invertebrates, and even seals.I have seen them eat their way along the tide line, scavenging whatever the sea has washed up for their breakfasts.
These wolves have been observed swimming between islands in search of food, a behavior rarely seen in inland populations.
If you explore the coast by boat, kayak or other means, you can see their footprints in the sand, telling you that you are not alone as you explore the rugged coast. The best time to try to catch a glimpse of these elusive beauties is early morning, though I did take a late afternoon nap one fine day on the warm sand of Vargus Island and woke to wolf tracks all around me.
Wolves help control herbivore populations, which in turn benefits vegetation and can even influence river systems, as famously demonstrated in Yellowstone National Park after wolves were reintroduced in 1995.
Wolves on Vancouver Island
Vancouver Island is home to a small but resilient population of coastal wolves, often referred to as coastal sea wolves. These wolves are genetically and behaviorally distinct from their inland counterparts. While exact numbers fluctuate, current estimates suggest approximately 350 wolves live on Vancouver Island.
They are elusive and tend to avoid human interaction, making them difficult to study and count accurately. Much of what we know comes from the work of wildlife researchers and photographers such as Ian McAllister, whose documentation of coastal wolf behavior has been instrumental in raising awareness.
If you are looking to see more of these coastal predators, search out the work of photographers like Liron Gertsman, Ian Harland, and Sandy Sharkey, who have captured stunning images and footage of these elusive creatures in their natural habitat, along our beaches and old-growth forests.
Despite their adaptability, wolves face a number of threats:
On Vancouver Island and across the continent, conservation efforts, education, and science-based wildlife management are essential to ensuring wolves continue to howl in the wild for generations to come.
Vancouver Island local, Gary Allan, who runs the SWELL Wolf Education Centre in Nanaimo and is known for his extensive work in wolf advocacy and education is a good resource of up-to-date information on our coastal wolves.
He has been educating the public about wolves since 2006, both through the Tundra Speaks Society and the education centre. Allan's work involves interacting with wolves, including his wolf-dog Tundra, and sharing his knowledge with schools, community groups, and First Nations organizations.
Have you seen one of our coastal wolves up close and in person? It is a rare treat and for me, generally on an early morning walk. I hope we keep the balance so that the wolves live in peace and continue to thrive.
Further Reading and Resources
McAllister, Ian. The Last Wild Wolves: Ghosts of the Rain Forest. Greystone Books, 2007.
Mech, L. David, and Boitani, Luigi (eds.). Wolves: Behavior, Ecology, and Conservation. University of Chicago Press, 2003.
Fossil Canids Database – University of California Museum of Paleontology
Raincoast Conservation Foundation – https://www.raincoast.org