![]() |
| Icelandic Horses |
![]() |
| Icelandic Horses |
![]() |
| Icelandic Horses |
![]() |
| Icelandic Horses |
![]() |
| Stemec suntokum, a Fossil Plopterid from Sooke, BC |
As romantic as it sounds, it happens more often than you think.
I can think of more than a dozen new fossil species from my home province of British Columbia on Canada’s far western shores that have been named after people I know who have collected those specimens or contributed to their collection over the past 20 years.
British Columbia, Canada, is a paleontological treasure trove, and one of its most rewarding spots is tucked away near the southwestern tip of Vancouver Island: the Sooke Formation along the rugged shores of Muir Beach.
A Beach Walk into Deep Time
Follow Highway 14 out of the town of Sooke, just west of Victoria, and you’ll soon find yourself staring at the cool, clear waters of the Strait of Juan de Fuca. Step onto the gravel parking area near Muir Creek, and from there, walk right (west) along the beach. The low yellow-brown cliffs up ahead mark the outcrop of the upper Oligocene Sooke Formation, part of the larger Carmanah Group.
For collectors, families, and curious wanderers alike, this spot is a dream. On a sunny summer day, the sandstone cliffs glow under the warm light, and if you’re lucky enough to visit in the quieter seasons, there’s a certain magic in the mist and drizzle—just you, the crashing surf, and the silent secrets of a world long gone.
Geological Canvas of the Oligocene
The Sooke Formation is around 25 to 30 million years old (upper Oligocene), when ocean temperatures had cooled to levels not unlike those of today. That ancient shoreline supported many of the marine organisms we’d recognize in modern Pacific waters—gastropods, bivalves, echinoids, coral, chitons, and limpets. Occasionally, larger remains turn up: bones from marine mammals, cetaceans, and, in extremely rare instances, birds.
Beyond Birds: Other Fossil Treasures
The deposits in this region yield abundant fossil molluscs. Look carefully for whitish shell material in the grey sandstone boulders along the beach. You may come across Mytilus (mussels), barnacles, surf clams (Spisula, Macoma), or globular moon snails. Remember, though, to stay clear of the cliffs—collecting directly from them is unsafe and discouraged.
These same rock units have produced fossilized remains of ancient marine mammals. Among them are parts of desmostylids—chunky, herbivorous marine mammals from the Oligocene—and the remains of Chonecetus sookensis, a primitive baleen whale ancestor. There are even rumors of jaw sections from Kolponomos, a bear-like coastal carnivore from the early Miocene, found in older or nearby formations.
Surprisingly, avian fossils at this site do exist, though they’re few and far between. Which brings us to one of the most exciting paleontological stories on the island: the discovery of a flightless diving bird.
The Suntok Family’s Fortuitous Find
In 2013, while strolling the shoreline near Sooke, Steve Suntok and his family picked up what they suspected were fossilized bones. Their instincts told them these were special, so they brought the specimens to the Royal British Columbia Museum (RBCM) in Victoria.
Enter Gary Kaiser: a biologist by profession who, after retirement, turned his focus to avian paleontology. As a research associate with the RBCM, Kaiser examined the Suntoks’ finds and realized these were no ordinary bones. They were the coracoid of a 25-million-year-old flightless diving bird—a rare example of the extinct Plotopteridae. In honor of the region’s First Nations and the intrepid citizen scientists who found it, he named the new genus and species Stemec suntokum.
Meet the Plotopterids
Plotopterids once lived around the North Pacific from the late Eocene to the early Miocene. They employed wing-propelled diving much like modern penguins, “flying” through the water using robust, flipper-like wings. Fossils of these extinct birds are known from outcrops in the United States and Japan, where some specimens reached up to two meters in length.
The Sooke fossil, on the other hand, likely belonged to a much smaller individual—somewhere in the neighborhood of 50–65 cm long and 1.7–2.2 kg, about the size and weight of a small Magellanic Penguin (Spheniscus magellanicus) chick. The key to identifying Stemec suntokum was its coracoid, a delicate shoulder bone that provides insight into how these birds powered their underwater movements.
From Penguin Waddle to Plotopterid Dive
If you’ve ever seen a penguin hopping near the ocean’s edge or porpoising through the water, you can imagine the locomotion of these ancient Plotopterids. The coracoid bone pivots as a bird flaps its wings, providing a hinge for the up-and-down stroke. Because avian bones are so delicate—often scavenged or destroyed by ocean currents before they can fossilize—finding such a beautifully preserved coracoid is a stroke of incredible luck.
Kaiser’s detailed observations on the coracoid of Stemec suntokum—notably its unusually narrow, conical shaft—sparked debate among avian paleontologists. You can read his paper, co-authoried with Junya Watanabe and Marji Johns, was published in Palaeontologia Electronica in November 2015. You can find the paper online at:
https://palaeo-electronica.org/content/2015/1359-plotopterid-in-canada
The Suntok Legacy
It turns out the Suntok family’s bird discovery wasn’t their last remarkable find. Last year, they unearthed part of a fish dental plate that caught the attention of Russian researcher Evgeny Popov. He named it Canadodus suntoki (meaning “Tooth from Canada”), another nod to the family’s dedication as citizen scientists.
While the name may not be as lyrical as Stemec suntokum, it underscores the continuing tradition of everyday fossil lovers making big contributions to science.
Planning Your Own Expedition
Location: From Sooke, drive along Highway 14 for about 14 km. Just after crossing Muir Creek, look for the gravel pull-out on the left. Park and walk down to the beach; turn right (west) and stroll about 400 meters toward the sandstone cliffs.
Tip: Check the tide tables and wear sturdy footwear or rubber boots. Fossils often appear as white flecks in the greyish rocks on the beach. A small hammer and chisel can help extract specimens from coquinas (shell-rich rock), but always use eye protection and respect the local environment.
Coordinates: 48.4°N, 123.9°W (modern), which corresponds to around 48.0°N, 115.0°W in Oligocene paleo-coordinates.
Why Head to Sooke? Pure Gorgeousness!
Whether you’re scanning the shoreline for ancient bird bones or simply soaking in the Pacific Northwest vistas, Muir Beach offers a blend of natural beauty and deep-time adventure. For many, the idea of unearthing a brand-new fossil species seems almost mythical.
Yet the Suntok family’s story proves it can—and does—happen. With an appreciative eye, a sense of curiosity, and a willingness to learn, any of us could stumble upon the next chapter of Earth’s distant past.
So pack your boots, bring a hammer and some enthusiasm, and you just might find yourself holding a piece of ancient avian history—like Stemec suntokum—in your hands.
References & Further Reading
Clark, B.L. and Arnold, R. (1923). Fauna of the Sooke Formation, Vancouver Island, B.C. University of California Publications in Geological Sciences 14(6).
Hasegawa et al. (1979); Olson and Hasegawa (1979, 1996); Olson (1980); Kimura et al. (1998); Mayr (2005); Sakurai et al. (2008); Dyke et al. (2011).
Russell, L.S. (1968). A new cetacean from the Oligocene Sooke Formation of Vancouver Island, British Columbia. Canadian Journal of Earth Sciences, 5, 929–933.
Barnes, L.G. & Goedert, J.L. (1996). Marine vertebrate palaeontology on the Olympic Peninsula. Washington Geology, 24(3), 17–25.
Kaiser, G., Watanabe, J. & Johns, M. (2015). A new member of the family Plotopteridae (Aves) from the late Oligocene of British Columbia, Canada. Palaeontologia Electronica.
Howard, H. (1969). A new avian fossil from the Oligocene of California. Described Plotopterum joaquinensis.
Wetmore, A. (1928). Avian fossils from the Miocene and Pliocene of California.
![]() |
| Triassic Paper clams, Pardonet Formation |
Here, in outcrops of the Pardonet Formation, the remains of once-living bivalves called paper clams—or “flat clams”—paint a vivid picture of life in the Late Triassic seas.
During the Triassic, roughly 237–201 million years ago, these delicate-shelled bivalves of the genus Moinotis, specifically Moinotis subcircularis, thrived in shallow marine environments.
Their thin, flattened shells resemble wafer-like sheets, earning them the common name “paper clams.”
Despite their fragile appearance, they were ecologically tough, colonizing vast seafloor regions after the Permian-Triassic mass extinction—Earth’s most catastrophic biodiversity crisis. In the wake of devastation, paper clams became pioneers in new marine ecosystems, spreading widely across the Triassic world.
At Pine Pass, the Pardonet Formation captures this resilience in stone. The strata—composed mainly of silty shales and fine-grained sandstones—represent an ancient seabed deposited along the western margin of Pangea. These rocks are part of the larger Western Canada Sedimentary Basin and are well known for their rich fossil assemblages, including ammonoids, conodonts, and marine reptiles. Yet, among these Triassic relics, it’s the paper clams that often dominate.
A short scramble up the rocky slope near the highway reveals bedding planes glittering with thousands of tiny, overlapping shells. They lie perfectly preserved, their paper-thin forms cemented into the matrix as though frozen in a whisper of time. Each shell records a pulse of ancient life in a warm, shallow sea teeming with invertebrates.
Our field stop at Pine Pass was a spontaneous detour en route to a paleontological conference in nearby Tumbler Ridge—a region equally famed for its dinosaur tracks and marine fossils. What was meant to be a quick roadside break became a fossil feast.
Within minutes, we were crouched among the rocks, gently tracing our fingers over Moinotis subcircularis—delicate, symmetrical, and as hauntingly beautiful as the day they settled on the Triassic seafloor.
![]() |
| Pennsylvanian Coal Age Ecosystem, 300-Million-Years-Old |
References & further reading:
Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/
Image: Hylonomus lyelli, Una ricostruzione di ilonomo by Matteo De Stefano/MUSEThis file was uploaded by MUSE - Science Museum of Trento in cooperation with Wikimedia Italia., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=48143186
Image: Arthropleura: Par Tim Bertelink — Travail personnel, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=48915156
Joggins Map: Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/
![]() |
| Phaeolus schweinitzii |
![]() |
| Phaeolus schweinitzii |
| Ankylosaur — Armoured Plant-Eating Dinosaur |
The air hums with insects, dragonflies dart over shallow pools, and cicada-like calls echo through the dense stands of magnolias and cycads.
A herd of Triceratops horridus moves slowly across the open landscape, their massive, parrot-like beaks tearing into low-growing ferns and palm fronds. Each step sinks slightly into the damp soil, leaving broad three-toed tracks.
The ground vibrates with the low, resonant bellows they use to keep in contact with one another, a chorus of sound that carries across the plain.
You might catch glimpses of other giants sharing the same world. Herds of hadrosaurs—Edmontosaurus—graze nearby, their duck-billed snouts sweeping back and forth through the vegetation like living lawnmowers.
Overhead, toothed seabirds wheel and cry, their calls mixing with the shrieks of distant pterosaurs. And lurking at the edges of the scene, half-hidden among the trees, the apex predator Tyrannosaurus rex waits, its presence felt more than seen, a reminder that this landscape is ruled by both plant-eaters and their formidable hunters.
Triceratops was one of the last and largest ceratopsians, measuring up to 9 meters (30 feet) long and weighing as much as 12 metric tons. Its most iconic features were the three horns—two long brow horns above the eyes and a shorter horn on the nose—backed by a broad bony frill. These structures were likely used for defense against predators like T. rex, but also for display within their own species, signaling dominance, maturity, or readiness to mate.
Its beak and shearing dental batteries made Triceratops a highly efficient plant-eater. Unlike many earlier ceratopsians, it possessed hundreds of teeth stacked in dental batteries, capable of slicing through tough, fibrous plants like cycads and palms that flourished in the Late Cretaceous.
Triceratops lived at the very end of the Cretaceous, in what is now western North America, within the region known as Laramidia, a long island continent separated from eastern North America by the Western Interior Seaway.
Alongside Triceratops, this ecosystem hosted a staggering diversity of dinosaurs, including ankylosaurs (like Ankylosaurus magniventris), duck-billed hadrosaurs, pachycephalosaurs, and smaller predators like Dakotaraptor. Crocodilians, turtles, and mammals also thrived in the wetlands and forests.
Fossil evidence suggests that Triceratops may have lived in herds, though adults are often found alone, hinting at possible solitary behavior outside of mating or nesting seasons. Juveniles, on the other hand, may have grouped together for protection.
Triceratops was among the very last non-avian dinosaurs before the mass extinction event at the Cretaceous–Paleogene (K–Pg) boundary, 66 million years ago. Their fossils are found in the uppermost layers of the Hell Creek Formation, placing them just before the asteroid impact that ended the Mesozoic. Triceratops mark the end of an era, as it were, representing both the culmination of ceratopsian evolution and the twilight of the age of dinosaurs.
Today, Triceratops remains one of the most recognizable dinosaurs in the world and a personal fav—its horns and frill embodying the strange beauty and raw power of prehistoric life. Standing face-to-face with a Triceratops skeleton in a museum is awe-inspiring, but to truly imagine them alive, you must step back into their world: warm floodplains, buzzing insects, herds of plant-eaters, and the constant tension of predators in the shadows.
Fossils of Stegosaurus have been found primarily in the Morrison Formation, a magnificent rock unit famous for preserving one of the most diverse dinosaur ecosystems ever discovered.
Stegosaurus could reach up to 9 meters (30 feet) in length but had a disproportionately small head with a brain roughly the size of a walnut.
Despite this, it thrived as a low-browser, feeding on ferns, cycads, and other ground-level plants using its beak-like mouth and peg-shaped teeth. Its most iconic features were the dermal plates, some nearly a meter tall, running down its back. Their function remains debated—some have proposed they were used for display, species recognition, or thermoregulation.
At the end of its tail, Stegosaurus bore four long spikes, known as the thagomizer.Stegosaurus did not live in isolation. It shared its world with a cast of iconic dinosaurs and other ancient animals:
Interesting Facts
![]() |
| Glorious Parasaurolophus art work by Daniel Eskridge |
Sunlight filters through the canopy of towering conifers, catching the mist in golden rays that dance across the forest floor.
In the dappled light, a herd of Edmontosaurus—duck-billed hadrosaurs—trundle slowly along the muddy bank. Their broad, flattened snouts graze the lush vegetation as they move, leaves crunching softly underfoot.
Occasionally, one lifts its head, nostrils flaring as it senses the faint rustle of small mammals or the distant call of a Troodon hunting nearby. The low, resonant calls of the herd echo through the valley—a combination of hums, grunts, and whistling notes, a complex social language that signals alertness or contentment.
Around the herd, the world teems with life. Tiny lizards dart among fallen logs. Feathered dinosaurs like Caudipteryx flit through the branches, their wings rustling against the leaves. In the sky, pterosaurs wheel silently, shadowing the riverbanks, while fish occasionally leap from the water, disturbing the mirrored surface.
A Tyrannosaurus stalks at a distance, its presence felt more than seen, tension rippling through the herd as they lift their heads in unison, scanning the forest edge. Yet for now, they continue to feed, grazing on conifers, ferns, and flowering plants, their broad dental batteries efficiently shearing tough plant material.
As the sun climbs higher, the herd’s rhythm shifts. Juveniles cluster together near the center of the group, protected by adults forming a loose perimeter. Mothers communicate constantly with low-frequency hums that travel through the ground, letting their young know it is safe to graze. Each hadrosaur maintains a personal space, yet the herd moves as a fluid unit, coordinated by sight, sound, and subtle gestures.
Occasionally, two adults nuzzle briefly or bump heads—a gentle reinforcement of social bonds within the herd.
By midday, the river becomes a focal point. Hadrosaurs wade into shallow water, stirring the mud with their broad feet, creating a chorus of splashes and grunts. The water’s surface reflects the glittering canopy above, disturbed only by the occasional leap of fish or the landing of a pterosaur.
Here, the herd drinks, cools down, and reorients itself to the sun’s angle. Younglings playfully chase each other through the shallows, their calls mingling with the rhythmic lapping of water. Predators lurk nearby, and the herd’s vigilance never wavers—any unusual sound or movement triggers a wave of alert postures, heads lifting in unison, tails flicking nervously.
As afternoon wanes, the herd moves toward forested areas, seeking shade. The scent of resin from conifers mingles with the damp earth, masking the smell of predators. The larger adults lead, while subadults and juveniles follow, practicing the complex patterns of herd movement they will rely on for survival.
The subtle vibrational signals—footsteps, tail swishes, body shifts—help coordinate the group over distances that the eyes alone cannot manage. Within these social structures, older hadrosaurs seem to guide the young, showing where the most nutritious plants grow and signaling which areas are safe.
By evening, the forest becomes alive with nocturnal creatures. Crickets and insects add a constant hum to the air, while small mammals rustle in the underbrush. The herd settles in a sheltered clearing, forming protective clusters.Some adults lower themselves to rest, heads tucked under broad forelimbs, while juveniles huddle close, still vocalizing softly, practicing the calls they will use to communicate when they reach adulthood.
The sounds of the night—rustling leaves, distant predator calls, and the gentle low-frequency hums of the hadrosaurs—create a layered, symphonic soundscape of life at the end of a Cretaceous day.
The world of hadrosaurs was far from solitary—their forests, riverbanks, and floodplains teemed with life, forming a complex and interconnected ecosystem. While the herd grazed, the air vibrated with the calls of feathered dinosaurs like Microraptor flitting between branches, occasionally diving to snatch insects from the foliage. Small mammals—ancestors of shrews and multituberculates—scuttled across the forest floor, their tiny claws stirring the moss and fallen leaves.
Predators lurked at every edge. Tyrannosaurus and Albertosaurus prowled open plains and forest margins, stalking both hadrosaurs and smaller herbivores. Juvenile hadrosaurs, particularly vulnerable, relied on the protective circle of adults, whose heads, tails, and bodies created a living barrier. Even crocodilians patrolled the rivers, their eyes breaking the water’s surface as they waited for an unwary hadrosaur to drink or bathe.
But the landscape was not only danger and vigilance. Insects buzzed among flowering angiosperms, pollinating as they fed, while dragonfly-like odonates skimmed over ponds and streams. Frogs croaked from the damp undergrowth, adding a pulsing rhythm to the daily soundscape. Trees, ferns, and cycads provided more than food; their dense canopies offered shelter from predators and sun, while fallen logs and leaf litter created microhabitats for countless invertebrates.
Seasonal changes added another layer of complexity. During rainy months, riverbanks became muddy feeding grounds, leaving tracks that we find and study today.
In drier periods, herds migrated across plains and valleys, guided by the scent of water and fresh vegetation. The interplay of predators, prey, plants, and smaller animals created a dynamic, constantly shifting stage where survival depended on vigilance, cooperation, and adaptability.
Through fossil evidence—trackways, bone beds, and stomach content analysis—we can reconstruct this rich tapestry. Imagining the sensory richness: the smell of resin and damp soil, the low hum of a herd communicating, the distant roar of predators, and the flash of feathered wings overhead, gives life to a world that has been silent for 66 million years.
In that world, hadrosaurs were central actors in a vibrant, thriving ecosystem. Hadrosaurs were not solitary wanderers but highly social beings, capable of complex communication, coordinated group behavior, and protective care of their young.
The hadrosaurs you see in this post are Parasaurolophus — one of the last of the duckbills to roam the Earth and their great crests were the original trumpets. We now know that their bizarre head adornments help them produce a low B-Flat or Bb. This is the same B-Flat you hear wind ensembles tune to with the help of their tuba, horn or clarinet players.
I imagine them signaling to the troops with their trumpeting sound carried on the winds similar to the bugle-horn call of an elephant.
Imagining a day in their life—from morning grazing along rivers to evening rest in the forest—reveals the richness of their world, teeming with interactions and sensory experiences that echo across millions of years.
For those that love paleo art, check out the work of Daniel Eskridge (shared with permission here) to see more of his work and purchase some to bring into your world by visiting:https://daniel-eskridge.pixels.com/
With shells for drums and sunlight for spotlight, they turn survival into play, joy into power. Tiny jesters of the ocean, yet fierce enough to hold an entire ecosystem in their grasp.
Sea otters (Enhydra lutris) are more than just charismatic charmers of the Pacific Coast; they are living links to an ancient evolutionary journey. Their playful demeanor hides a lineage that stretches back millions of years, into a fossil record that tells a story of transformation from river to sea.
The tale begins with their ancestors in the family Mustelidae—the same diverse group that gave us weasels, badgers, martens, and wolverines. The earliest otter-like mustelids appeared around 18 million years ago in the Miocene. Among them was Enhydriodon, a giant otter that roamed rivers and wetlands of Eurasia and Africa, weighing over 200 pounds—far larger than today’s sea otters.
By the late Miocene to early Pliocene, otter evolution was branching out. Fossils of Enhydra, the direct ancestor of modern sea otters, show up in the North Pacific around 5 million years ago. Unlike their freshwater kin, these otters were already well adapted to marine life: short, robust limbs for swimming, strong jaws for crushing mollusks, and teeth built for a diet of hard-shelled prey.
By the Pleistocene (2.6 million to 11,700 years ago), sea otters had fully taken to the sea. They developed one of nature’s thickest pelts—up to a million hairs per square inch—allowing them to survive frigid northern waters without relying on the blubber used by seals and whales. Fossil remains and genetic studies suggest that their range was once broader than it is today, extending along vast stretches of the North Pacific Rim.
These adaptations made sea otters not only survivors but keystone species. By preying on sea urchins, they keep kelp forests thriving, shaping entire marine ecosystems with their appetites. Without them, underwater forests collapse into barren urchin wastelands. With them, the kelp sways tall and green, sheltering fish, seabirds, and countless invertebrates.
It is a joy to watch them crack open a clam on its belly or twirl through kelp in a flurry of bubbles.From Miocene rivers to Pleistocene shores, for me sea otters embody resilience and adaptation, carrying forward the legacy of their fossil kin.
Sea otters are tender and attentive parents, especially the mothers who cradle their pups on their bellies as they float in the swells.
A newborn pup’s fur is so dense and buoyant that it cannot dive, so the mother becomes both raft and refuge.
She grooms the pup constantly, blowing air into its coat to keep it dry and warm, and when she needs to forage, she may wrap her young in strands of kelp to keep it from drifting away.
This intimate bond, played out on the rolling surface of the sea, is one of the most endearing sights in the animal kingdom—proof that even in the wild’s ceaseless struggle for survival, tenderness finds its place.
We call these playful relatives, ḵ̓asa, in Kwak'wala, the language of the Kwakwakaʼwakw (those who speak Kwak'wala), First Nations along the Pacific Northwest Coast.
Bison move across the prairie like living storms, vast and steady, with the weight of centuries in their stride.
Their dark eyes hold a quiet, unwavering depth—as if they’ve looked into the heart of time itself and carry its secrets in silence. Look into the eyes of this fellow and tell me you do not see his deep intelligence as he gives the camera a knowing look.
Shaggy fur ripples in the wind, rich and earthy, brushed by sun and shadow, a cloak woven from wilderness. When they breathe, clouds rise in the cold air, soft and ephemeral, like whispered promises that vanish but leave warmth behind.
There is something profoundly romantic in their presence: strength wrapped in gentleness, endurance softened by grace. To watch them is to feel the wild itself lean closer, reminding us of a love as vast as the horizon, as eternal as the ground beneath our feet.
When we think of bison today, images of great herds roaming the North American plains come to mind—dark, shaggy shapes against sweeping prairies. But the story of bison goes back far deeper in time.
These massive grazers are part of a lineage that stretches millions of years into the past, their fossil record preserving the tale of their rise, spread, and survival.
Bison belong to the genus Bison, within the cattle family (Bovidae). Their story begins in Eurasia during the late Pliocene, around 2.6 million years ago, when the first true bison evolved from earlier wild cattle (Bos-like ancestors).
Fossils suggest they descended from large bovids that roamed open grasslands of Eurasia as forests retreated and cooler, drier climates expanded.
The earliest known species, Bison priscus, or the Steppe Bison, was a giant compared to modern bison, sporting long horns that could span over six feet tip to tip. These animals thrived across Europe, Asia, and eventually crossed into North America via the Bering Land Bridge during the Pleistocene Ice Age.
The fossil record of bison stretches back about 2 million years in Eurasia and at least 200,000 years in North America, where they became one of the most successful large herbivores of the Ice Age. Fossil evidence shows that at least seven different species of bison once lived in North America, including the iconic Bison latifrons with its massive horns, and Bison antiquus, which is considered the direct ancestor of the modern American bison (Bison bison).
Some of the richest fossil bison deposits come from Siberia and Eastern Europe – home to abundant Bison priscus fossils, often preserved in permafrost with soft tissues intact. They are also found in Alaska, USA and in Canada's Yukon region – where Ice Age bison fossils are found alongside mammoth, horse, and muskox remains.
The Great Plains of the United States and Canada are rich in Bison antiquus and later species, often in mass bone beds where entire herds perished. We also find their remains in California and the American Southwest at sites like the La Brea Tar Pits. La Brea preserves bison remains from the Late Pleistocene and their museum of the same name has a truly wonderful display of Pleistocene wolves. Definitely worthy of a trip!
One particularly famous fossil site is the Hudson-Meng Bison Kill Site in Nebraska, where remains of over 600 Bison antiquus dating to about 10,000 years ago provide a window into Ice Age hunting practices and herd behavior.
By the end of the Ice Age, many megafauna species disappeared, but bison endured. Bison antiquus gradually gave rise to the modern American bison (Bison bison), which still carries echoes of its Ice Age ancestors. Though smaller than their Pleistocene relatives, today’s bison remain the largest land mammals in North America.
Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube.
By pushing air in or out, they were able to control their buoyancy in the water column. These little cuties were predators who hunted in Cretaceous seas.
They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.
Not all ammonites have this whacky corkscrew design. Most are coiled and some are even shaped like massive paperclips. This one is so remarkable, so joyously perfect my internal thesaurus can’t keep up.
I will be heading back to the area where these lovelies are found in late March this year to see if I can find other associated fossils and learn more about his paleo community
Florence Filberg Centre, 411 Anderton Avenue, Courtenay, British Columbia, on the Traditional Territory of the K’ómoks First Nation, August 22-25, 2025
CELEBRATING THE PALEONTOLOGICAL BOUNTY OF THE COMOX VALLEY
The conference features over a dozen speakers in paleontology from Vancouver Island, mainland British Columbia, and beyond.
This year, we’re celebrating Courtenay’s own Traskasaura sandrae—a 12-metre-long marine elasmosaur discovered by Mike Trask along the Puntledge River. The fossil was recently named in the Journal of Systematic Paleontology, earning international recognition.
Traskasaura sandrae is a newly identified genus and species of elasmosaurid plesiosaur, a long-necked marine reptile, discovered in British Columbia, Canada.
The fossil, found along the Puntledge River on Vancouver Island, are from the Late Cretaceous (Santonian age), roughly 86 to 84 million years ago. Traskasaura sandrae is notable for its robust teeth, potentially adapted for crushing ammonites, and a unique mix of primitive and derived skeletal features, suggesting it was a powerful predator adapted for diving.
As well as highlighting this significant find and honouring the amazing life of Mike Trask, the symposium has an exciting lineup of scientific presentations, hands-on workshops, a paleontology-themed art exhibition, poster presentations, and guided field trips.
These events provide exciting opportunities to explore and celebrate the rich geological and paleontological history of Vancouver Island, bringing together world-renowned paleontologists, citizen scientists, fossil enthusiasts, researchers, artists, and the public in a vibrant exchange of ideas and inspiration.
Our Keynote Speaker is Dr. Kirk Johnson, Sant Director of the Smithsonian’s National Museum of Natural History, where he oversees the world's largest natural history collection.
As a field paleontologist, he has led expeditions in eighteen US states and eleven countries with a research focus on fossil plants and the extinction of the dinosaurs. He is known for his scientific articles, popular books, museum exhibitions, documentaries, and collaborations with artists.
BRITISH COLUMBIA PALEONTOLOGICAL ALLIANCE (BCPA)
The British Columbia Paleontological Alliance (BCPA) is a collaborative network of organisations led by professional and citizen scientists, working to advance the science of paleontology in the province.
Together, they promote fossil research and discovery through public education, responsible scientific collecting, and open communication among paleontologists, citizen scientists, fossil enthusiasts, researchers, and educators.
Every two years, the BCPA hosts a Paleontological Symposium, bringing together experts and the public from across Canada, North America, and beyond to share the latest research and discoveries related to British Columbia's fossil heritage. To learn more, visit www.bcfossils.ca.
VANCOUVER ISLAND PALEONTOLOGICAL SOCIETY (HOST ORGANIZATION):
This year, the Vancouver Island Paleontological Society (VIPS) is proud to host the 15th BCPA Symposium in Courtenay, in partnership with the Courtenay and District Museum & Palaeontology Centre.
Founded in 1992 and based in the Comox Valley, VIPS is a nonprofit society with charitable status in good standing dedicated to fostering public engagement with the natural world through field trips, workshops, symposia, and public lectures that bring science to life for the community.
COMMUNITY SPONSORSHIP, SILENT AUCTION ITEMS & WELCOME BAGS:
As host, the VIPS is currently welcoming sponsorship contributions and donations for the symposium's silent auction to help us offset conference costs, including printing, venue rental, catering, insurance, and participant support. We are also seeking items to include in our Welcome Bags for conference attendees, offering an excellent opportunity to showcase local businesses and community spirit.
Sponsors will be publicly recognised at the conference, within the Courtenay and District Museum, and across our social media platforms. Tax receipts are available for eligible donations.
Sponsorship cheques made out to the Vancouver Island Paleontological Society can be mailed to 930 Sandpines Drive, Comox, BC, V9M 3V3. Attn: 15th BCPA Symposium 2025.
We would be honoured to have your support—your contribution would bring meaningful value to this exciting scientific event. If you have an item to donate to our silent auction or to include in our Welcome Bags, we would be sincerely grateful and can arrange for convenient pickup.
To get involved or learn more, please contact us at bcpaleo.events@gmail.com—we’d love to hear from you!
Warm regards on behalf of the 15th BCPA Organising Committee.
Misty shores, moss-covered forests, dappled light, and the smell of salt air—these are my memories of Haida Gwaii, a land where ancient stories are written in stone.
Formerly known as the Queen Charlotte Islands, the archipelago of Haida Gwaii lies at the far western edge of Canada, where the Pacific Ocean meets the continental shelf. These islands—steeped in the rich culture of the Haida Nation—are not only a cultural treasure but a geologic and paleontological wonderland.
Geologically, Haida Gwaii is part of Wrangellia, an exotic tectonostratigraphic terrane that also includes parts of Vancouver Island, western British Columbia, and Alaska. The region's complex geological history spans hundreds of millions of years and includes volcanic arcs, seafloor spreading, and the accretion of entire landmasses.
The Geological Survey of Canada (GSC) has long been fascinated with these remote islands. Their geologists and paleontologists have led numerous expeditions over the past century, documenting the diverse sedimentary formations and fossiliferous beds. Much of the foundation for this work was laid by Joseph Frederick Whiteaves, the GSC’s chief paleontologist in Ottawa during the late 19th century.
In 1876, Whiteaves published a pioneering paper on the Jurassic and Cretaceous faunas of Skidegate Inlet. This work firmly established the paleontological significance of the archipelago and cemented Whiteaves’ reputation as a global authority in the field. His paper, "On the Fossils of the Cretaceous Rocks of British Columbia" (GSC Report of Progress for 1876–77), remains a key early reference for West Coast palaeontology.
Later, Whiteaves would go on to describe Anomalocaris canadensis from the Burgess Shale—an “unlike other shrimp” fossil that would later be recognized as one of the most extraordinary creatures of the Cambrian explosion.Whiteaves' early work on the fossil faunas of Haida Gwaii, particularly in the Haida Formation, created a foundation for generations of researchers to follow.
One of our most memorable fossil field trips was to the Cretaceous exposures of Lina Island, part of the Haida Formation. We considered it one of our “trips of a lifetime.”
With great sandstone beach exposures and fossil-rich outcrops dating from the Albian to Cenomanian, Lina Island offered both scientific riches and stunning natural beauty.
Our expedition was supported and organized by John Fam, Vice Chair of the Vancouver Paleontological Society, and Dan Bowen, Chair of the British Columbia Paleontological Alliance and the Vancouver Island Palaeontological Society.
Their dedication to fostering collaborative research and building relationships with local Haida communities was key. We were warmly welcomed, and field trips to fossil sites were arranged in partnership with community members and cultural stewards.
The Haida Formation yielded beautifully preserved specimens embedded both in bedding planes and in concretions—hard, rounded nodules that often house exceptionally preserved fossils. Among our finds were:
These fossils offered a rare glimpse into an ancient marine ecosystem that once teemed with life. Douvilleiceras, a spiny ammonite, is particularly striking. This genus, first identified by Whiteaves from Haida Gwaii, ranges from the Middle to Late Cretaceous and has been found across Asia, Africa, Europe, and the Americas. The Haida specimens, from the early to mid-Albian, remain among the most beautiful. It is one of my favourite ammonites of all time and I was blessed to find several good examples of that species.
All of the fossils I collected from Haida Gwaii have been skillfully prepped and donated to the Haida Gwaii Museum in Skidegate, British Columbia. It is a privilege to contribute in a small way to the scientific and cultural understanding of these extraordinary islands.
References and Further Reading:
Whiteaves, J.F. (1876). On the Fossils of the Cretaceous Rocks of British Columbia. Geological Survey of Canada, Report of Progress.
Jeletzky, J.A. (1970). Paleontology of the Cretaceous rocks of Haida Gwaii. Geological Survey of Canada, Bulletin 175.
Haggart, J.W. (1991). New Albian (Early Cretaceous) ammonites from Haida Gwaii. Canadian Journal of Earth Sciences, 28(1), 45–56.
Haggart, J.W. & Smith, P.L. (1993). Paleontology and stratigraphy of the Cretaceous Queen Charlotte Group. Geological Survey of Canada Paper 93-1A.
Carter, E.S., Haggart, J.W., & Mustard, P.S. (1988). Early Cretaceous radiolarians from Haida Gwaii and implications for tectonic setting. Micropaleontology, 34(1), 1–14.
![]() |
| Argonauticeras besairei, Collection of José Juárez Ruiz. |
![]() |
| Hoplites bennettiana (Sowby, 1826). |