Showing posts with label paleontology. Show all posts
Showing posts with label paleontology. Show all posts

Wednesday, 26 March 2025

BERLIN-ICHTHYSAUR STATE PARK, NEVADA

Time Slows at Berlin-Ichthyosaur State Park
High on the hillside up a long entry road sits the entrance to Berlin-Ichthyosaur State Park in central Nevada.

A worn American flag and sun bleached outbuildings greet you on your way to the outcrops. Away from the hustle and bustle that define the rest of Nevada this place feels remarkably serene. Your eyes squint against the sun as you search for ammonoids and other marine fossil fauna while your nose tends to the assault from the bracing smell of sage brush.

This site holds many stories. The interpretive centre displays wonderful marine reptiles, ichthyosaurs in situ, as you might expect from the name of the park — but it also showcases years of history lovingly tended. This stretch of dry golden low hills dappled with the yellow of creosote and desert grasses is an important locality for our understanding of the Carnian-Norian boundary (CNB) in North America.

The area is known worldwide as one of the most important ichthyosaur Fossil-Lagerstätte because of the sheer volume of remarkably well-preserved, fully articulated (all the sweet bones laid out all in a row...) specimens of Shonisaurus popularis.

Rich ammonoid faunas outcrop in the barren hills of the Upper Triassic (Early Norian, Kerri zone), Luning Formation, West Union Canyon, Nevada. They were studied by N. J. Silberling (1959) and provide support for the definition of the Schucherti and Macrolobatus zones of the latest Carnian — which are here overlain by well-preserved faunas of the earliest Norian Kerri Zone. 

The genus Gonionotites, very common in the Tethys and British Columbia, is for the moment, unknown in Nevada. The Upper Carnian faunas are dominated by Tropitidae, while Juvavitidae are conspicuously lacking. 

Middle Triassic Ammonoids
Despite its importance, no further investigations had been done at this site for a good 50 years. That changed in 2010 when Jim Haggart, Mike Orchard and Paul Smith — all local Vancouverites — collaborated on a project that took them down to Nevada to look at the conodonts and ammonoids. They did a bed-by-bed sampling of ammonoids and conodonts in West Union Canyon during October of that year.

October is an ideal time to do fieldwork in this area. There are a few good weeks between screaming hot and frigid cold. It is also tarantula breeding season so keep your eyes peeled. Those sweet little burrows you see are not from rodents but rather largish arachnids. 

The eastern side of the canyon provides the best record of the Macrolobatus Zone, which is represented by several beds yielding ammonoids of the Tropites group, together with Anatropites div. sp. 

Conodont faunas from both these and higher beds are dominated by ornate metapolygnthids that would formerly have been collectively referred to Metapolygnathus primitius, a species long known to straddle the CNB. Within this lower part of the section, they resemble forms that have been separated as Metapolygnathus mersinensis. Slightly higher, forms close to Epigondolella' orchardi and a single Orchardella n. sp. occur. This association can be correlated with the latest Carnian in British Columbia.

Higher in the section, the ammonoid fauna shows a sudden change and is dominated by Tropithisbites. Few tens of metres above, but slightly below the first occurrence of Norian ammonoids Guembelites jandianus and Stikinoceras, two new species of conodonts (Gen et sp. nov. A and B) appear that also occur close to the favoured Carnian/Norian boundary at Black Bear Ridge, British Columbia. Stratigraphically higher collections continue to be dominated by forms close to M. mersinensis and E. orchardi after BC's own Mike Orchard.

The best exposure of the Kerri Zone is on the western side of the West Union Canyon. Ammonoids, dominated by Guembelites and Stikinoceras div. sp., have been collected from several fossil-bearing levels. Conodont faunas replicate those of the east section. The collected ammonoids fit perfectly well with the faunas described by Silberling in 1959, but they differ somewhat from coeval faunas of the Tethys and Canada. 

The ammonoid fauna paints a compelling picture of Tethyan influence with a series of smoking guns. We see an abundance of Tropitidae in the Carnian, a lack of Pterosirenites in the Norian, copious Guembelites, the Tethyan species G. philostrati, the stratigraphic position of G. clavatus and the rare occurrence of Gonionotites. Their hallelujah moment was likely finding an undescribed species of the thin-shelled bivalve Halobia similar to Halobia beyrichi — the clincher that perhaps seals this deal on Tethyan influence. 

I'll take a boo to see what Christopher McRoberts published on the find. A jolly good idea to have him on this expedition as it would have been easy to overlook if the focus remained solely on the conodonts and ammonoids. McRoberts has published on the much-studied Pardonet Formation up in the Willison Lake Area of Northeastern, British Columbia. He knows a thing or two about Upper Triassic Bivalvia and the correlation to coeval faunas elsewhere in the North American Cordillera, and to the Boreal, Panthalassan and Tethyan faunal realms. 

If you fancy a read, they published a paper: "Towards the definition of the Carnian/Norian Boundary: New data on Ammonoids and Conodonts from central Nevada," which you can find in the proceedings of the 21st Canadian Paleontology Conference; by Haggart, J W (ed.); Smith, P L (ed.); Canadian Paleontology Conference Proceedings no. 9, 2011 p. 9-10.

Fig. 1. Location map of Berlin-Ichthyosaur State Park

Marco Balini, James Jenks, Riccardo Martin, Christopher McRoberts, along with Mike Orchard and Norman Siberling, did a bed by bed sampling in 2013 and published on The Carnian/Norian boundary succession at Berlin-Ichthyosaur State Park (Upper Triassic, central Nevada, USA) and published in January 2014 in Paläontologische Zeitschrift 89:399–433. That work is available for download from ResearchGate. The original is in German, but there is a translation available.

After years of reading about the correlation between British Columbia and Nevada, I had the very great pleasure of walking through these same sections in October 2019 with members of the Vancouver Paleontological Society and Vancouver Island Palaeontological Society. It was with that same crew that I'd originally explored fossil sites in the Canadian Rockies in the early 2000s. Those early trips led to paper after paper and the exciting revelations that inspired our Nevada adventure.

If you plan your own adventure, you'll want to keep an eye out for some of the other modern fauna — mountain lions, snakes, lizards, scorpions, wolves, coyotes, foxes, ground squirrels, rabbits, falcons, hawks, eagles, bobcats, sheep, deer and pronghorns.

Figure One: Location map of Berlin-Ichthyosaur State Park. A detailed road log with access information for this locality is provided in Lucas et al. (2007).

Sunday, 23 March 2025

MASSIVE FOSSIL AMMONITE NEAR FERNIE, BRITISH COLUMBIA

Titanites occidentalis, Fernie Ammonite
The Fernie ammonite, Titanites occidentalis, from outcrops on Coal Mountain near Fernie, British Columbia, Canada. 

This beauty is the remains of a carnivorous cephalopod within the family Dorsoplanitidae that lived and died in a shallow sea some 150 million years ago.

If you would like to get off the beaten track and hike up to see this ancient beauty, you will want to head to the town of Fernie in British Columbia close to the Alberta border. 

This is the traditional territory of the the Yaq̓it ʔa·knuqⱡi ‘it First Nation who have lived here since time immemorial. There was some active logging along the hillside in 2021, so if you are looking at older directions on how to get to the site be mindful that many of the trailheads have been altered and a fair bit of bushwhacking will be necessary to get to the fossil site proper. That being said, the loggers from CanWel may have clear-cut large sections of the hillside but they did give the ammonite a wide berth and have left it intact.

Wildsight, a non-profit environmental group out of the Kimberly Cranbrook area has been trying to gain grant funding to open up the site as an educational hike with educational signage for folks visiting the Fernie area. It is likely the province of British Columbia would top up those funds if they are able to place the ammonite under the Heritage Conservation Act. CanWel would remain the owners of the land but the province could assume the liability for those visiting this iconic piece of British Columbia's palaeontological history. 

Driving to the trail base is along an easy access road just east of town along Fernie Coal Road. There are some nice exposures of Cretaceous plant material on the north side (left-hand side) of the road as you head from Fernie towards Coal Creek. I recently drove up to Fernie to look at Cretaceous plant material and locate the access point to the now infamous Late Jurassic (Tithonian) Titanites (S.S. Buckman, 1921) site. While the drive out of town is on an easy, well-maintained road, the slog up to the ammonite site is often a wet, steep push.

Fernie, British Columbia, Canada
The first Titanites occidentalis was about one-third the size and was incorrectly identified as Lytoceras, a fast-moving nektonic carnivore. The specimen you see here is significantly larger at 1.4 metres (about four and a half feet) and rare in North America. 

Titanites occidentalis, the Western Giant, is the second known specimen of this extinct fossil species. 

The first was discovered in 1947 in nearby Coal Creek by a British Columbia Geophysical Society mapping team. When they first discovered this marine fossil high up on the hillside, they could not believe their eyes — both because it is clearly marine at the top of a mountain and the sheer size of this ancient beauty.

In the summer of 1947, a field crew was mapping coal outcrops for the BC Geological Survey east of Fernie. One of the students reported finding “a fossil truck tire.” Fair enough. The similarity of size and optics are pretty close to your average Goodridge. 

A few years later, GSC Paleontologist Hans Frebold described and named the fossil Titanites occidentalis after the large Jurassic ammonites from Dorset, England. The name comes from Greek mythology. Tithonus, as you may recall, was the Prince of Troy. He fell in love with Eos, the Greek Goddess of the Dawn. Eos begged Zeus to make her mortal lover immortal. Zeus granted her wish but did not grant Tithonus eternal youth. He did indeed live forever — ageing hideously. Ah, Zeus, you old trickster. It is a clever play on time placement. Dawn is the beginning of the day and the Tithonian being the latest age of the Late Jurassic. Clever Hans!

HIKING TO THE FERNIE AMMONITE

From the town of Fernie, British Columbia, head east along Coal Creek Road towards Coal Creek. The site is 3.81 km from the base of Coal Creek Road to the trailhead as the crow flies. I have mapped it here for you in yellow and added the wee purple GPS marker for the ammonite site proper. There is a nice, dark grey to black roadcut exposure of Cretaceous plants on the north side of the dirt road that is your cue to pull over and park.  

You access what is left of the trailhead on the south side of the road. You will need to cross the creek to begin your ascent. There is no easy way across the creek and you'll want to tackle this one with a friend when the water level is low. 

The beginning of the trail is not clear but a bit of searching will reveal the trailhead with its telltale signs of previous hikers. This is a moderate 6.3-kilometre hike up & back bushwhacking through scrub and fallen trees. Heading up, you will make about a 246-metre elevation gain. You will likely not have a cellular signal up here but if you download the Google Map to your mobile, you will have GPS to guide you. The area has been recently logged so much of the original trail has been destroyed. There may now be easier vehicle access up the logging roads but I have not driven them since the logging and new road construction.

If you are coming in from out of town, the closest airport is Cranbrook. Then it is about an hour and change to Fernie and another 15-minutes or so to park near the site.

You will want to leave your hammers with your vehicle (no need to carry the weight and this lovely should never be struck with anything more than a raindrop) as this site is best enjoyed with a camera. 

This is a site you will want to wear hiking boots to access. Know that these will get wet as you cross the creek. 

If you would like to see the ammonite but are not keen on the hike, a cast has been made by fossil preparator Rod Bartlett is on display at the Courtenay Museum in Courtenay, Vancouver Island, Canada. 

Respect for the Land / Leave No Trace

As your feet move up the hillside, you can imagine this land 10,000 years ago, rising above great glaciers. Where footfalls trace the steps of those that came before you. This land has been home to the Yaq̓it ʔa·knuqⱡi ‘it First Nation and Ktunaxa or Kukin ʔamakis First Nations whose oral history have them living here since time immemorial. Like them, take only what you need and no more than the land offers — packing out anything that you packed in. 

Fernie Ammonite Palaeo Coordinates: 49°29'04"N 115°00'49"W


Friday, 21 March 2025

ANCIENT SEA MONSTERS: ICHTHYOSAURS AND MOSASAURS

When we think of prehistoric creatures, dinosaurs usually steal the spotlight. But beneath the ancient waves swam giants just as awe-inspiring—and sometimes even more terrifying. 

Among these marine reptiles, two groups stand out: ichthyosaurs and mosasaurs. Though they never coexisted, both ruled the oceans in their own time and in their own terrifying ways.

Ichthyosaurs: Dolphin-Like Reptiles of the Jurassic

Ichthyosaurs (meaning "fish lizards") were sleek, fast swimmers that first appeared around 250 million years ago during the Triassic. 

Their streamlined bodies, long snouts, and large eyes gave them an appearance eerily similar to modern dolphins—though they weren’t mammals. This resemblance is a perfect example of convergent evolution, where unrelated animals develop similar traits to adapt to similar environments.

Some ichthyosaurs grew as long as a school bus, and their enormous eyes (some as large as dinner plates) suggest they were capable of deep-sea hunting. They fed on fish, squid, and other marine life, and some species likely gave birth to live young—a rare trait among reptiles.

They thrived for millions of years but began to decline in the mid-Cretaceous, eventually going extinct before the rise of mosasaurs.

Mosasaurs: Apex Predators of the Cretaceous Seas

Enter the mosasaurs, who rose to dominance after the ichthyosaurs were gone. Mosasaurs appeared around 98 million years ago and ruled the oceans until the mass extinction event 66 million years ago that also wiped out the dinosaurs.

These were true marine lizards, closely related to today’s monitor lizards and snakes. Picture a massive, crocodile-headed Komodo dragon with flippers and a shark-like tail—and you’ll have a good image of a mosasaur. Some species grew over 50 feet long, and their jaws were packed with conical, backward-curving teeth perfect for gripping slippery prey.

Mosasaurs were apex predators, eating anything they could catch—fish, turtles, birds, and even other mosasaurs. Their double-jointed jaws could open wide, allowing them to swallow large prey whole.

Who Would Win in a Fight?

While it’s fun to imagine a battle between an ichthyosaur and a mosasaur, it never could have happened—ichthyosaurs were long extinct by the time mosasaurs evolved. That said, mosasaurs were more heavily built and had powerful jaws, making them formidable hunters. Ichthyosaurs were faster and more agile, more suited to quick chases than brute force.

Legacy Beneath the Waves

Both ichthyosaurs and mosasaurs left behind rich fossil records, giving scientists insight into how reptiles adapted to life in the oceans. Their bones have been found on every continent, including Antarctica, reminding us that the ancient oceans were just as dynamic and dangerous as today’s wildest habitats.

Next time you watch a documentary about dinosaurs or visit a natural history museum, take a moment to appreciate the marine reptiles that once ruled the seas. After all, the land wasn't the only place where prehistoric giants thrived.

Monday, 17 March 2025

UNEARTHING A JUVENILE ELASMOSAUR ON THE TRENT RIVER

Pat Trask with a Fossil Rib Bone. Photo: Rebecca Miller
In August of 2020, an incredible elasmosaur fossil—a mighty marine reptile—was unearthed high up on the cliffs of the Trent River near Courtenay, on the east coast of Vancouver Island, British Columbia. 

This thrilling find marks the culmination of a three-year palaeontological puzzle that began with mere fragments and ended with a daring cliffside excavation!

Elasmosaurs were long-necked marine reptiles roaming Earth's oceans from the Late Triassic to the Late Cretaceous (roughly 215 to 80 million years ago). 

Our Trent River specimen clocks in at about 85 million years old. The rock layers in this area were originally laid down as tropical islands far to the south of the equator. Over tens of millions of years, plate tectonics slowly carried these ancient seabeds north and slightly east to the site we know today on Vancouver Island.

For years, tantalizing fragments of this juvenile elasmosaur washed out of the riverbanks—bones that fired the imagination of fossil enthusiasts but stubbornly refused to reveal their precise origin. The first clue surfaced back in 2017 during a Courtenay Museum fossil tour led by Pat Trask. 

One lucky participant picked up a small finger bone from the river. Pat recognized it immediately as belonging to a marine reptile, possibly an elasmosaur. Although it was an exciting discovery, its source on the cliffs remained a frustrating mystery.

Fast forward to 2018. Another fossil tour, another chance encounter: a wrist bone—again, possibly elasmosaur—turning up in the Trent River. Pat looked down in that very moment and spotted a vertebra right at his feet! Now with multiple bones in hand, Pat collected them in the museum’s lab, increasingly determined to find their point of origin.

Throughout 2019, Pat and volunteers from the Vancouver Island Palaeontological Society (VIPS) combed the area for clues. They rappelled down cliff faces, deployed a drone to scour every crack and crevice, but found nothing definitive. 

Then, in August 2020, everything changed. While leading another fossil tour, Pat stumbled across a newly revealed bone in the river—one that absolutely had not been there the day before. Looking up, he spotted a promising section of cliff and, with help from his wife, Deb, and a trusty telescope, he finally spied a bone jutting from the rock.

The excavation that followed was a marvel of planning and perseverance. Scaffolding had to be built, climbing gear prepared, and countless safety measures put into place. 

Over several weeks, the team carefully pried fossil after fossil from the cliff—loose rib bones, gastroliths (stones swallowed for digestion), wrist bones, finger bones, and parts of the back and pelvis. 

The bigger prize, wrapped safely in plaster and lowered ever-so-gently to the riverbank below, contained an array of bones that could include the skull.

Pat Trask Wrapping the plaster casing
This discovery is part of the Trent River’s ongoing reputation for yielding stunning fossils. 

The Courtenay Museum regularly hosts tours here, offering members of the public a chance to walk the same banks and maybe—just maybe—spot the next big find. 

Past discoveries include other marine reptiles and invertebrate fossils, painting a picture of Vancouver Island’s prehistoric marine ecosystems.

For Pat Trask and his family, the discovery is deeply personal. Pat’s brother, Mike Trask, famously found another elasmosaur on the nearby Puntledge River back in 1988. 

There’s even talk that if this particular find proves to be a new species, it could bear the Trask family name in the scientific literature—a fitting tribute to their passion, grit, and history-making finds in the Comox Valley.

 So far, the bones point clearly to an elasmosaur. At roughly four meters in length, this juvenile is smaller than its adult kin, but it’s no less impressive. Every retrieved vertebra, humerus, and pelvis bone draws us deeper into the ancient ocean world of 85 million years ago. James Wood of the VIPS has taken on the painstaking task of preparing the specimen, aided by a new air abrasive generously provided by the Courtenay Museum.

With the fossil safely in the museum’s care, and research well underway, the Trent River elasmosaur story is poised to shine a spotlight on Vancouver Island’s extraordinary prehistoric past. From the moment that first finger bone surfaced in 2017 to the triumphant lowering of the plaster-wrapped jacket in 2020, this has been an adventure for the ages—and a spectacular reminder that our island still has secrets waiting to be discovered!

I hope to see it published with the Trask family name. Their paleontological history is forever tied to the Comox Valley and the honour would be fitting.  

Photo One: Rebecca Miller, Little Prints Photography — she is awesome!

Photo Two: James Wood prepped the material and Pat Trask labelled and oriented the bones.

Photo Three: Pat Trask perched atop scaffolding along the Trent River. And yes, he's attached to a safety line to secure him in case of fall. 

Photo Four: A diagram of the juvenile elasmosaur. See the Excavation Moment via Video Link: https://youtu.be/r82EcEF7Pfc

Sunday, 16 March 2025

SECRETS IN STONE: VANCOUVER ISLAND'S TRENT RIVER

Trent River, Vancouver Island, BC
Deep in the moss-draped forests of Vancouver Island, beneath a green canopy of second-growth firs and the distant chatter of ravens, an ancient story lies written in stone. 

You’ll find it not in dusty museums but in the riverbeds, sandstone ledges, and shale cliffs of the Trent River, just south of Courtenay, British Columbia. 

This is a place where geology meets adventure — and where fossil hunters walk through time.

This area has been collected and studied in large part due to the efforts of the Vancouver Island Paleontological Society (VIPS) and its members. 

These keen and knowledgeable citizen scientists have had a huge impact on our understanding of fossils in the region. 

The picture below taken on August 20, 2020, when we were all down on the Trent for the extraction of Baby E-a marine reptile found high up in the bank by Pat Trask. 

The Courtenay Museum hosts regular fossil tours here, led by Pat Trask. On one of those field trips back in 2017, Pat was leading a trip with a family and one of the field trip participants picked up a marine reptile finger bone. 

It was laying in the river having eroded out from a nearby cliff. She showed it to Pat and he immediately recognized it as being diagnostic — it definitely belonged to a marine reptile — possibly an elasmosaur — but what species and just where on the river it had eroded from were still a mystery. As more and more of these bits and pieces were discovered, a very tasty pattern was emerging. Somewhere here, embedded in stone and eroding out bit by bit was a mighty marine reptile. 

The excavation was the culmination of a three-year paleontological puzzle of various folk finding bits and pieces of the specimen but ever elusive, had been unable to locate the source. Time and perseverance won the day and that August morning we were on hand to bring that baby, aptly named Baby-E, out of the site and off to be prepped.

In the photo are VIPS members, James Wood, Betty Franklin, Dan Bowen and Jay Hawley. Each of their personal contributions to the paleontology of the Comox Valley, Vancouver Island and the Pacific Northwest are immense.

A Journey Across Oceans and Ages

The rocks that make up the Trent River landscape weren’t born here. In fact, they began their journey over 85 million years ago, far south of the equator as part of a scattered chain of tropical islands. 

These fragments, riding the massive Pacific Plate, drifted slowly across the ocean, eventually slamming into the western edge of the North American continent.

The Pacific Plate — the largest tectonic plate on Earth, covering over 103 million square kilometers — is a restless force. Fueled by volcanic activity at its spreading center, it continues to expand, pushing against the North American Plate and forcing the ocean floor beneath the continent in a process known as subduction. Over time, this relentless collision helped build the rugged mountains and rich geological complexity of British Columbia.

Among the remnants of those far-flung islands is the Insular Superterrane — a mash-up of crustal fragments welded onto the continent from the Late Cretaceous through the Eocene. This allochthonous (meaning "foreign") terrain is geologically distinct from the rest of the mainland. The rocks you walk on along the Trent River don’t match anything next door in Alberta or even down the road. They’re relics of a world long lost to time.

Fossils Beneath Your Feet

In the 1970s, pioneering geologists Jim Monger and Charlie Ross of the Geological Survey of Canada helped map the complex tectonic puzzle of the Comox Basin. Their work revealed that by 85 million years ago, the Insular Superterrane — and the rocks of the Trent River — had already collided with the mainland, forming part of what we now know as Vancouver Island.

Back then, this region was a lush, subtropical landscape. Fossilized leaves and wood found in the area show ancient relatives of oak, poplar, maple, ash — even figs and breadfruit — thrived here. These are the botanical echoes of the Late Cretaceous, preserved in the mudstones and sandstones along the riverbank.

As you follow the river upstream, you'll come to a striking boundary: the transition from the dark-grey marine shales of the Haslam Formation to the sandy, more terrestrial Comox Formation. This contact zone marks a shift from deep ocean to coastal plain, and both formations offer their own fossil treasures.

Ammonites, Turtles, and Dinosaurs — Oh My!

Head west from Trent River Falls and you’ll arrive at Ammonite Alley, where the shale of the Haslam Formation has yielded beautiful examples of Mesopuzosia and Kitchinites, coiled marine cephalopods that once swam in warm Cretaceous seas. This section represents the Polytychoceras vancouverense ammonite zone, a biostratigraphic marker dating back roughly 84 to 83 million years.

Further along, past slick algae-covered stones and twisting alder roots, the story shifts from ocean to land. Paleontologists have uncovered both marine and terrestrial fossil turtles here — including the rare helochelydrid Naomichelys speciosa, a stubby-limbed, tank-like land turtle that once lumbered through the Cretaceous underbrush.

Even more impressive is the discovery of hadrosauroid dinosaur vertebrae by awesome possum Mike Trask — the tailbone of a duck-billed herbivore that may have wandered the nearby floodplains. Nearby, in the fine-grained sediments of Idle Creek, fossilized leaves and logs still peek from the rock, offering tantalizing clues about the forest these creatures once called home.

And then there’s the ratfish — one of the most bizarre and enigmatic finds from the Trent. Fossils of Hydrolagus colliei, a modern-day chimaera species still living off the Pacific coast, have been found in the area. This particular specimen was a bruiser, larger than its modern kin and armed with disproportionately large eyes and unusual reproductive anatomy. As unappetizing to ancient predators as it is to us, this creature is a fascinating link between ancient and modern marine ecosystems.

Where the Ancient Meets the Present

The Trent River is just one piece of a larger fossil-rich puzzle that includes nearby rivers like the Puntledge, also known for its fossil finds — including marine turtles such as Desmatochelys, as detailed in a 1992 paper by paleontologist Elizabeth Nicholls. 

The Puntledge is significant to the K'ómoks First Nation, who have lived in this region since Time Immemorial and know the river by many names from the Puntledge, Sahtloot, Sasitla, and Ieeksun.

Today, fossil hunters — amateur and professional alike — can follow the rivers through time, discovering clues to a vastly different world hidden in the layers beneath their boots.

Planning Your Adventure

If you're ready to explore the paleontological wonders of the Trent River, head about three kilometres south of Courtenay along Highway 19. Look for a safe pull-off just south of the Cumberland Interchange. A trail leads from the highway beneath the bridge, bringing you to the river’s north bank. From here, the journey unfolds — a mix of scrambling, creek-walking, and sharp-eyed searching that can reveal fossils untouched for millions of years.

To head out on a guided tour of the river, visit the Courtenay Museum website and book in with Pat Trask to take you there, share the river's paleontological history and how to find fossils.

Remember: fossil collection is regulated, so always check local rules and never remove fossils from protected sites. In British Columbia, fossils belong to the province. If you find a fossil, you become its steward, noting where you found it and keeping it safe. Sharing your fossil finds with local paleontological societies and museums helps us to know what has been found and let's you know if that find is significant. If it is a new species, it might even be named after you!

The Trent River reminds us that adventure doesn’t always mean scaling peaks or paddling rapids. Sometimes, it’s found in quiet moments along a riverside, where the moss is thick, the rocks are ancient, and time itself feels close enough to touch.

Saturday, 15 March 2025

MIDDLE TRIASSIC HUMBOLT RANGE OF NEVADA

Looking out over the Middle Triassic exposures of the Humboldt Mountain Range.

I was down in Nevada to walk through the outcrops of the Humbolt Range with Dan Bowen and Betty Franklin of the Vancouver Island Paleontological Society and John Fam from the Vancouver Paleontological Society in October. 

We were kindly hosted by a wonderful fossil enthusiast who owns some prime property and agreed to drive up from California to meet us. 

These hills were the site of the 1905 Expedition of the University of California’s Department of Geology in Berkeley funded by the beautiful and bold, Annie Alexander, the women to whom the UCMP owes both its collection and existence. 

Annie brought together a paleontological crew to explore these localities and kept an expedition journal of their trip which is now on display at the University of California Museum of Paleontology at Berkeley.

Annie's interest was the ichthyosaurs and she was well pleased with the results. They dodged rattlesnakes and tarantulas, finding many new specimens as they opened up new quarries in the hills of the Humboldt Range of Nevada.

Ichthyosaurs range from quite small, just a foot or two, to well over twenty-six metres in length and resembled both modern fish and dolphins. The specimens from Nevada are especially large and well-preserved. They hail from a time, some 217 million years ago, when Nevada, and parts of the western USA, was covered by an ancient ocean that would one day become our Pacific Ocean. Many ichthyosaur specimens have come out of Nevada. So many, in fact, that they named it their State Fossil back in 1977.

Fossil fragments and complete specimens of these marine reptiles have been collected in the Blue Lias near Lyme Regis and the Black Ven Marls. More recently, specimens have been collected from the higher succession near Seatown. Paddy Howe, Lyme Regis Museum geologist, found a rather nice Ichthyosaurus breviceps skull a few years back. A landslip in 2008 unveiled some ribs poking out of the Church cliffs and a bit of digging revealed the ninth fossil skull ever found of a breviceps, with teeth and paddles to boot.

Specimens have since been found in Europe in Belgium, England, Germany, Switzerland and in Indonesia. Many tremendously well-preserved specimens come from the limestone quarries in Holzmaden, southern Germany.

Sunday, 9 March 2025

BLUE LIAS ICHTHYOSAUR

This well-preserved partial ichthyosaur was found in the Blue Lias shales by Lewis Winchester-Ellis. The vertebrae you see here are from the tail section of this marine reptile.

The find includes stomach contents which tell us a little about how this particular fellow liked to dine.

As with most of his brethren, he enjoyed fish and cephalopods. Lewis found fishbone and squid tentacle hooklets in his belly. 

Oh yes, these ancient cephies had grasping hooklets on their tentacles. I'm picturing them wiggling all ominously. The hooklets were the only hard parts of the animal preserved in this case as the softer parts of this ancient calamari were fully or partially digested before this ichthyosaur met his end.

Ichthyosaurus was an extinct marine reptile first described from fossil fragments found in 1699 in Wales. Shortly thereafter, fossil vertebrae were published in 1708 from the Lower Jurassic and the first member of the order Ichthyosauria to be discovered.

To give that a bit of historical significance, this was the age of James Stuart, Jacobite hopeful to the British throne. While scientific journals of the day were publishing the first vertebrae ichthyosaur finds, he was avoiding the French fleet in the Firth of Forth off Scotland. This wasn’t Bonnie Prince Charlie, this was his Dad. Yes, that far back.

The first complete skeleton was discovered in the early 19th century by Mary Anning and her brother Joseph along the Dorset Jurassic Coast. Joseph had mistakenly, but quite reasonably, taken the find for an ancient crocodile. Mary excavated the specimen a year later and it was this and others that she found that would supply the research base others would soon publish on.

Mary's find was described by a British surgeon, Sir Everard Home, an elected Fellow of the Royal Society, in 1814. The specimen is now on display at the Natural History Museum in London bearing the name Temnodontosaurus platyodon, or “cutting-tooth lizard.”

Ichthyosaurus communis
In 1821, William Conybeare and Henry De La Beche, a friend of Mary's, published a paper describing three new species of unknown marine reptiles based on the Anning's finds.

Rev. William Buckland would go on to describe two small ichthyosaurs from the Lias of Lyme Regis, Ichthyosaurus communis and Ichthyosaurus intermedius, in 1837.

Remarkable, you'll recall that he was a theologian, geologist, palaeontologist AND Dean of Westminster. It was Buckland who published the first full account of a dinosaur in 1824, coining the name, "Megalosaurus."

The Age of Dinosaurs and Era of the Mighty Marine Reptile had begun.

Ichthyosaurs have been collected in the Blue Lias near Lyme Regis and the Black Ven Marls. More recently, specimens have been collected from the higher succession near Seatown. Paddy Howe, Lyme Regis Museum geologist, found a rather nice Ichthyosaurus breviceps skull a few years back. A landslip in 2008 unveiled some ribs poking out of the Church cliffs and a bit of digging revealed the ninth fossil skull ever found of a breviceps, with teeth and paddles to boot.

Specimens have since been found in Europe in Belgium, England, Germany, Switzerland and in Indonesia. Many tremendously well-preserved specimens come from the limestone quarries in Holzmaden, southern Germany.

Ichthyosaurs ranged from quite small, just a foot or two, to well over twenty-six metres in length and resembled both modern fish and dolphins.

Dean Lomax and Sven Sachs, both active (and delightful) vertebrate paleontologists, have described a colossal beast, Shonisaurus sikanniensis from the Upper Triassic (Norian) Pardonet Formation of northeastern British Columbia, Canada, measuring 3-3.5 meters in length. The specimen is now on display in the Royal Tyrrell Museum of Palaeontology in Alberta, Canada. It was this discovery that tipped the balance in the vote, making it British Columbia's Official Fossil. Ichthyosaurs have been found at other sites in British Columbia, on Vancouver Island and the Queen Charlotte Islands (Haida Gwaii) but Shoni tipped the ballot.

The first specimens of Shonisaurus were found in the 1990s by Peter Langham at Doniford Bay on the Somerset coast of England.

Dr. Betsy Nicholls, Rolex Laureate Vertebrate Palaeontologist from the Royal Tyrrell Museum, excavated the type specimen of Shonisaurus sikanniensis over three field sessions in one of the most ambitious fossil excavations ever ventured. Her efforts from 1999 through 2001, both in the field and lobbying back at home, paid off. Betsy published on this new species in 2004, the culmination of her life’s work and her last paper as we lost her to cancer in autumn of that year.

Roy Chapman Andrews, AMNH 1928 Expedition to the Gobi Desert
Charmingly, Betsy had a mail correspondence with Roy Chapman Andrews, former director of the American Museum of Natural History, going back to the late 1950s as she explored her potential career in palaeontology. Do you recall the AMNH’s sexy paleo photos of expeditions to the Gobi Desert in southern Mongolia in China in the early 20th century? I've posted a picture here to jog your memory. Roy Chapman Andrews was the lead on that trip. The man was dead sexy. His photos are what fueled the flames of my own interest in paleo.

We've found at least 37 specimens of Shonisaurus in Triassic outcrops of the Luning Formation in the Shoshone Mountains of Nevada, USA. The finds go back to the 1920s. The specimens that may it to publication were collected by M. Wheat and C. L. Camp in the 1950s.  The aptly named Shonisaurus popularis became the Nevada State Fossil in 1984. Our Shoni got around. Isolated remains have been found in a section of sandstone in Belluno, in the Eastern Dolomites, Veneto region of northeastern Italy. The specimens were published by Vecchia et al. in 2002.

For a time, Shonisaurus was the largest ichthyosaurus known.

Move over, Shoni, as a new marine reptile find competes with the Green Anaconda (Eunectes murinus) and the Blue Whale (Balaenoptera musculus) for size at a whopping twenty-six (26) metres.

The find is the prize of fossil collector turned co-author, Paul de la Salle, who (you guessed it) found it in the lower part of the intertidal area that outcrops strata from the latest Triassic Westbury Mudstone Formation of Lilstock on the Somerset coast. He contacted Dean Lomax and Judy Massare who became co-authors on the paper.

The find and conclusions from their paper put "dinosaur" bones from the historic Westbury Mudstone Formation of Aust Cliff, Gloucestershire, UK site into full reinterpretation.

And remember that ichthyosaur the good Reverend Buckland described back in 1837, the Ichthyosaurus communis? Dean Lomax was the first to describe a wee baby. A wee baby ichthyosaur! Awe. I know, right? He and paleontologist Nigel Larkin published this adorable first in the journal of Historical Biology in 2017.

They had teamed up previously on another first back in 2014 when they completed the reconstruction of an entire large marine reptile skull and mandible in 3-D, then graciously making it available to fellow researchers and the public. The skull and braincase in question were from an Early Jurassic, and relatively rare, Protoichthyosaurus prostaxalis. The specimen had been unearthed in Warwickshire back in the 1950s. Unlike most ichthyosaur finds of this age, it was not compressed and allowed the team to look at a 3-D specimen through the lens of computerized tomography (CT) scanning.

Another superb 3-D ichthyosaur skull was found near Lyme Regis by fossil hunter-turned-entrepreneur-local David Sole and prepped by the late David Costain. I'm rather hoping it went into a museum collection as it would be wonderful to see the specimen studied, imaged, scanned and 3-D printed for all to share. Here's hoping.


Ichthyosaurus somersetensis Credit: Dean R Lomax
Lomax and Sven Sachs also published on an embryo from one of the largest ichthyosaurs known, a new species named Ichthyosaurus somersetensis.

Their paper in the ACTA Palaeontologica Polonica from 2017, describes the third embryo known for Ichthyosaurus and the first to be positively identified to species level. The specimen was collected from Lower Jurassic strata (lower Hettangian, Blue Lias Formation) of Doniford Bay, Somerset, UK and is housed in the collection of the Niedersächsisches Landesmuseum (Lower Saxony State Museum) in Hannover, Germany.

We have learned a lot about them in the time we've been studying them. We now have thousands of specimens, some whole, some as bits and pieces. Many specimens that have been collected are only just now being studied and the tools we are using to study them are getting better and better.

Link to Lomax Paper: https://journals.plos.org/plosone/article…

Link to Nathan's Paper: https://www.tandfonline.com/…/10.1080/03115518.2018.1523462…

Nicholls Paper: E. L. Nicholls and M. Manabe. 2004. Giant ichthyosaurs of the Triassic - a new species of Shonisaurus from the Pardonet Formation (Norian: Late Triassic) of British Columbia. Journal of Vertebrate Paleontology 24(4):838-849 [M. Carrano/H. Street]

Friday, 7 March 2025

MEMEKAY JURASSIC AMMONITES OF VANCOUVER ISLAND

Coroniceras sp. from Sayward, British Columbia
This yummy Lower Jurassic ammonite with the creamy dark chocolate colouring is from an all but inaccessible outcrop of the Upper Sinemurian, Bonanza Group,  Harbledownense Zone, Memekay River area, near Sayward, Vancouver Island, British Columbia, Canada. 

This area is home to the We Wai Kai and Wei Wai Kum First Nations and lands of the K'omoks First Nation whose culture thrives and reflects the natural rugged beauty of the central island region.

I will be headed back to these outcrops next month on the way to northern Vancouver Island. 

It is rugged, remote and beautiful. Think trees and valleys for as far as the eye can see. Some of those hillsides on the horizon contain wonderful fossils, including this Coroniceras sp. with the truly marvellous keel.

By the time these ammonites were being buried in sediment, Wrangellia, the predominately volcanic terrane that now forms Vancouver Island and Haida Gwaii, had made its way to the northern mid-latitudes.

Within the basal part of the sequence, sedimentary beds are found interbedded with lapilli and crystal tuffs. Here you'll see maroon tuffaceous sandstone, orange-grey sandstone, granule sandstone and conglomerate. Within them we find ammonites nestled in with gastropods and pelecypods. 

While the fossiliferous outcrop is quite small, the Bonanza group is much larger, estimated to be at least 1000 metres thick. The site is quite small and in an active logging area, so the window to collect is limited. 

We have been to the site many times. One one of the past trips, the drive up the mountain was thrilling as there had just been heavy rains and the road was washed out and narrowed until it was barely the width of our wheelbase and very, very steep. Closer to the top it narrowed to be just shy of the width of the vehicle — thrilling, to say the least. 

So scary that my passengers all got out as there was a high probability of going head-first over the edge. I was navigating by some handwritten field notes and a wee map on a paper napkin that should have read, "park at the bottom and hike up." 

Did we park at the bottom and hike up? No, we did not. 

The torrential rains of the Pacific Northwest had been working their magic on the hillside and slowly washing out the road until it slowly became more of a trail.

At the base of the hillside all looked well. Giddy for the fossils to come, we ventured off with a truck full of enthusiasm. Within 15 minutes of steep elevation gain, we had a wonderful view of the valley below. We were halfway up the mountain before I realized the error of my ways. The road twisted and turned then slowly narrowed to the width of my tires. Too narrow to turn around, so the only way was up. 

Graham Beard from Qualicum Beach was the fellow who showed me the site and drew the wee map for me. I cannot recall everyone on the trip, but Perry Poon was there — he shot a video of the drive up that he described as thrilling. I have never seen it but would like to one day — and so was Patricia Coutts with her lovely Doberman. 

She and I had just done a trip up to Goldbridge where the cliff we were on had turned into a landslide into a ravine so she was feeling understandably cautious about the power of Mother Nature. 

Picture the angle, the hood of my jeep riding high and hiding what remained of the road beneath and a lovely stick shift that made you roll backwards a wee bit with every move to put it into gear. So, without being able to see the very narrow path beneath, I had to just keep going. 

Both Perry and Patricia helped with filling in the potholes so my tires would have something to grip. 

I bent the frame on the jeep heading up and had some explaining to do when I returned it to the car rental place. 

As I recall, I wasn't in my ordinary vehicle but a rental because my car had been stolen the weekend before when I was away with John Fam and Dan Bowen collecting at Jurassic Point, an epic fossil site accessible only by boat on our wild west coast.

Fortuitous timing really, as they stole my car but I had unloaded my precious fossil collecting gear out of the trunk just days before.  

In the end, we found what we were looking for. Memekay yields a mix of ammonites, gastropods and bivalves. 

Many of them are poorly preserved. It was a hell of a ride but well worth the effort as we found some great fossils and with them more information on the palaeontology and geology of Vancouver Island. Just look at the keel on this beauty.

I would share the site information but it is now covered over with debris and inaccessible. One day, this whole region will be developed and the site will be opened up again. Until then, we'll have to enjoy what has been unearthed.

Sunday, 2 March 2025

FOSSIL BIRDS OF SOUTHERN VANCOUVER ISLAND

Stemec suntokum, Sooke Formation
The diving bird you see here is Stemec suntokum, a Fossil Plopterid from Sooke, British Columbia, Canada.

We all dream of finding new species, and new fossil species in particular. This happens more than you think. As impossible as it sounds, it has happened numerous times at many fossils sites in British Columbia including Sooke on Vancouver Island.

The upper Oligocene Sooke Formation outcrops at Muir Beach on southwestern Vancouver Island, British Columbia where it is flanked by the cool, clear waters of the Strait of Juan de Fuca.

While the site has been known since the 1890s, my first trip here was in the early 1990s as part of a Vancouver Paleontological Society (VanPS) fossil field trip. 

This easy, beach walk locality is a wonderful place to collect fossils and is especially good for families. If you are solar-powered, you will enjoy the sun playing off the surf from May through September. If you are built of hardier stuff, then the drizzle of Spring or Autumn is a lovely, un-people-y time to walk the beachfront.

As well as amazing west coast scenery, the beach site outcrop has a lovely soft matrix with well-preserved fossil molluscs, often with the shell material preserved (Clark and Arnold, 1923).

By the Oligocene ocean temperatures had cooled to near modern levels and the taxa preserved here as fossils bear a strong resemblance to those found living beneath the Strait of Juan de Fuca today. Gastropods, bivalves, echinoids, coral, chitin and limpets are common-ish — and on rare occasions, fossil marine mammals, cetacean and bird bones are discovered.

Fossil Bird Bones 

Back in 2013, Steve Suntok and his family found fossilized bones from a 25-million-year-old wing-propelled flightless diving bird while out strolling the shoreline near Sooke. Not knowing what they had found but recognizing it as significant, the bones were brought to the Royal British Columbia Museum to identify.

The bones found their way into the hands of Gary Kaiser. Kaiser worked as a biologist for Environment Canada and the Nature Conservatory of Canada. After retirement, he turned his eye from our extant avian friends to their fossil lineage. The thing about passion is it never retires. Gary is now a research associate with the Royal British Columbia Museum, published author and continues his research on birds and their paleontological past.

Kaiser identified the well-preserved coracoid bones as the first example from Canada of a Plotopteridae, an extinct family that lived in the North Pacific from the late Eocene to the early Miocene. In honour of the First Nations who have lived in the area since time immemorial and Steve Suntok who found the fossil, Kaiser named the new genus and species Stemec suntokum.

Magellanic Penguin Chick, Spheniscus magellanicus
This is a very special find. Avian fossils from the Sooke Formation are rare. We are especially lucky that the bird bone was fossilized at all.  These are delicate bones and tasty. Scavengers often get to them well before they have a chance and the right conditions to fossilize.

Doubly lucky is that the find was of a coracoid, a bone from the shoulder that provides information on how this bird moved and dove through the water similar to a penguin. It's the wee bit that flexes as the bird moves his wing up and down.

Picture a penguin doing a little waddle and flapping their flipper-like wings getting ready to hop near and dive into the water. Now imagine them expertly porpoising —  gracefully jumping out of the sea and zigzagging through the ocean to avoid predators. It is likely that the Sooke find did some if not all of these activities.

When preservation conditions are kind and we are lucky enough to find the forelimbs of our plotopterid friends, their bones tell us that these water birds used wing-propelled propulsion to move through the water similar to penguins (Hasegawa et al., 1979; Olson and Hasegawa, 1979, 1996; Olson, 1980; Kimura et al., 1998; Mayr, 2005; Sakurai et al., 2008; Dyke et al., 2011).

Kaiser published on the find, along with Junya Watanabe, and Marji Johns. Their work: "A new member of the family Plotopteridae (Aves) from the late Oligocene of British Columbia, Canada," can be found in the November 2015 edition of Palaeontologia Electronica. If you fancy a read, I've included the link below.

The paper shares insights into what we have learned from the coracoid bone from the holotype Stemec suntokum specimen. It has an unusually narrow, conical shaft, much more gracile than the broad, flattened coracoids of other avian groups. This observation has led some to question if it is, in fact, a proto-cormorant of some kind. We'll need to find more of their fossilized lineage to make any additional comparisons.

Sooke, British Columbia and Juan de Fuca Strait
Today, fossils from these flightless birds have been found in outcrops in the United States and Japan (Olson and Hasegawa, 1996). They are bigger than the Sooke specimens, often growing up to two metres.

While we'll never know for sure, the wee fellow from the Sooke Formation was likely about 50-65 cm long and weighed in around 1.72-2.2 kg — so roughly the length of a duck and weight of a small Magellanic Penguin, Spheniscus magellanicus, chick. 

To give you a visual, I have included a photo of one of these cuties here showing off his full range of motion and calling common in so many young.

The first fossil described as a Plotopteridae was from a wee piece of the omal end of a coracoid from Oligocene outcrops of the Pyramid Hill Sand Member, Jewett Sand Formation of California (LACM 8927). Hildegarde Howard (1969) an American avian palaeontologist described it as Plotopterum joaquinensis. Hildegarde also did some fine work in the La Brea Tar Pits, particularly her work on the Rancho La Brea eagles.

In 1894, a portion of a pelagornithid tarsometatarsus, a lower leg bone from Cyphornis magnus (Cope, 1894) was found in Carmanah Group on southwestern Vancouver Island (Wetmore, 1928) and is now in the collections of the National Museum of Canada as P-189401/6323. This is the wee bone we find in the lower leg of birds and some dinosaurs. We also see this same bony feature in our Heterodontosauridae, a family of early and adorably tiny ornithischian dinosaurs — a lovely example of parallel evolution.


While rare, more bird bones have been found in the Sooke Formation over the past decade. In 2013, three avian bones were found in a single year. The first two were identified as possibly being from a cormorant and tentatively identified as Phalacrocoracidae tibiotarsi, the large bone between the femur and the tarsometatarsus in the leg of a bird.

They are now in the collections of the Royal BC Museum as (RBCM.EH2013.033.0001.001 and RBCM.EH2013.035.0001.001). These bones do have the look of our extant cormorant friends but the specimens themselves were not very well-preserved so a positive ID is tricky.

The third (and clearly not last) bone, is a well-preserved coracoid bone now in the collection at the RBCM as (RBCM.EH2014.032.0001.001).

The fossil bird find was the first significant find by the Suntok family but not their last. Just last year, they found part of a fish dental plate was studied by Russian researcher Evgeny Popov who named this new genus and species of prehistoric fish Canadodus suntoki, which translates to the "Tooth from Canada." Perhaps not quite as inspired as Kaiser, but a lovely homage to these Citizen Scientists.

Sooke Fossil Fauna

Along with these rare bird bones, the Paleogene sedimentary deposits of the Carmanah Group on southwestern Vancouver Island have a wonderful diversity of delicate fossil molluscs (Clark and Arnold, 1923). Walking along the beach, look for boulders with white shelly material in them. You'll want to collect from the large fossiliferous blocks and avoid the cliffs. The lines of fossils you see in those cliffs tell the story of deposition along a strandline. Collecting from them is both unsafe and poor form as it disturbs nearby neighbours and is discouraged.

Sooke Formation Gastropods, Photo: John Fam
We find nearshore and intertidal genera such as Mytilus (mussels) and barnacles, as well as more typically subtidal predatory globular moon snails (my personal favourite), surf clams (Spisula, Macoma), and thin, flattened Tellin clams.

The preservation here formed masses of shell coquinas that cemented together but are easily worked with a hammer and chisel. Remember your eye protection and I'd choose wellies or rubber boots over runners or hikers.

You may be especially lucky on your day out. Look for the larger fossil bones of marine mammals and whales that lived along the North American Pacific Coast in the Early Oligocene (Chattian).

Concretions and coquinas on the beach have yielded desmostylid, an extinct herbivorous marine mammal, Cornwallius sookensis (Cornwall, 1922) and 40 cm. skull of a cetacean Chonecetus sookensis (Russell, 1968), and a funnel whale, a primitive ancestor of our Baleen whales. 

A partial lower jaw and molar possibly from a large, bear-like beach-dwelling carnivore, Kolponomos, was also found here. A lovely skull from a specimen of Kolponomos clallamensis (Stirton, 1960) was found 60 km southwest across the Strait of Juan de Fuca in the early Miocene Clallam Formation and published by Lawrence Barnes and James Goedert. That specimen now calls the Natural History Museum of Los Angeles County home and is in their collections as #131148.

Directions to Muir Creek Fossil Site at Sooke: 

From the town of Sooke west of Victoria, follow Highway 14 for about 14 kilometres. Just past the spot where the highway crosses Muir Creek, you will see a gravel parking area on your left. Pull in and park here. 

From the barrier, walk out to the beach and turn right (west) and walk until you see the low yellow-brown sandstone cliffs about 400 metres ahead. 

Look at the grey sandstone boulders on the beach with bits of white flecks in them. The fossil material here will most often be a whitish cream colour. Check for low tide before heading out and choose rubber boots for this beach adventure.

References: 

L. S. Russell. 1968. A new cetacean from the Oligocene Sooke Formation of Vancouver Island, British Colombia. Canadian Journal of Earth Science 5:929-933
Barnes, Lawrence & Goedert, James. (1996). Marine vertebrate palaeontology on the Olympic Peninsula. Washington Geology, 24(3):17-25.

Fancy a read? Here's the link to Gary Kaiser's paper: https://palaeo-electronica.org/content/2015/1359-plotopterid-in-canada. If you'd like to head to the beach site, head to: 48.4°N 123.9°W, paleo-coordinates 48.0°N 115.0°W.

Thursday, 27 February 2025

ANCIENT OCTOPUS: KEUPPIA

A sweet as you please example of Keuppia levante (Fuchs, Bracchi & Weis, 2009), an extinct genus of octopus that swam our ancient seas back in the Cretaceous. 

This particular lovely adorns a special place in my heart and my office. His forever home will be within the collections of a local museum but we spend time together—me taking in the remarkable detail and preservation of this specimen and him enjoying a pretty good looking view and regular dustings. Win, win.

I say, he, but we cannot know for sure. 

The dark black and brown area you see here is his ink sac which has been preserved for a remarkable 95 million years.

This cutie is in the family Palaeoctopodidae, and one of the earliest representatives of the order Octopoda — and perhaps my favourite fossil. It was this perfect specimen that inspired the logo for the Fossil Huntress brand.  

These ancient marine beauties are in the class Cephalopoda making them relatives of our modern octopus, squid and cuttlefish.

There are two species of Keuppia, Keuppia hyperbolaris and Keuppia levante, both of which we find as fossils. We find their remains, along with those of the genus Styletoctopus, in Cretaceous-age Hâqel and Hjoula localities in Lebanon. 

For many years, Palaeoctopus newboldi (Woodward, 1896) from the Santonian limestones at Sâhel Aalma, Lebanon, was the only known pre‐Cenozoic coleoid cephalopod believed to have an unambiguous stem‐lineage representative of Octobrachia fioroni

With the unearthing of some extraordinary specimens with exquisite soft‐part preservation in the Lebanon limestones, our understanding of ancient octopus morphology has blossomed. The specimens are from the sub‐lithographical limestones of Hâqel and Hâdjoula, in northwestern Lebanon. The localities are about 15 km apart, 45 km away from Beirut and 15 km away from the coastal city of Jbail. Fuchs et al. put a nice little map in their 2009 paper that I have included and referenced here.

Palaeoctopus newboldi had a spherical mantle sac, a head‐mantle fusion, eight equal arms armed with suckers, an ink sac, a medially isolated shell vestige, and a pair of (sub‐) terminal fins. The bipartite shell vestige suggests that Palaeoctopus belongs to the octopod stem‐lineage, as the sister taxon of the Octopoda, the Cirroctopoda, is characterized by an unpaired clasp‐like shell vestige (Engeser 1988; Haas 2002; Bizikov 2004).

It is from the comparisons of Canadian fauna combined with those from Lebanon and Japan that things really started to get interesting with Octobrachia. Working with fossil specimens from the Campanian of Canada, Fuchs et al. (2007a ) published on the first record of an unpaired, saddle‐shaped shell vestige that might have belonged to a cirroctopod. 

Again from the Santonian–Campanian of Canada and Japan, Tanabe et al. (2008) reported on at least four different jaw morphotypes. Two of them — Paleocirroteuthis haggarti (Tanabe et al., 2008) and Paleocirroteuthis Pacifica  (Tanabe et al ., 2008) — have been interpreted as being of cirroctopod type, one of octopod type, and one of uncertain octobrachiate type. 

Interestingly Fuchs et al. have gone on to describe the second species of Palaeoctopus, the Turonian Palaeoctopus pelagicus from limestones at Vallecillo, Mexico. While more of this fauna will likely be recovered in time, their work is based solely on a medially isolated shell vestige.

Five new specimens have been found in the well-known Upper Cenomanian limestones at Hâqel and Hâdjoula in Lebanon that can be reliably placed within the Octopoda. Fuchs et al. described these exceptionally well‐preserved specimens and discuss their morphology in the context of phylogeny and evolution in their 2008 paper (2009 publishing) in the Palaeontology Association Journal, Volume 51, Issue 1.

The presence of a gladius vestige in this genus shows a transition from squid to octopus in which the inner shell has divided into two parts in early forms to eventually be reduced to lateralized stylets, as can be seen in Styletoctopus.

The adorable fellow you see here with his remarkable soft-bodied preservation and inks sack and beak clearly visible is Keuppia levante. He hails from Late Cretaceous (Upper Cenomanian) limestone deposits near Hâdjoula, northwestern Lebanon. The vampyropod coleoid, Glyphiteuthis abisaadiorum n. sp. is also found at this locality. This specimen is about 5 cm long.

Fuchs, D.; Bracchi, G.; Weis, R. (2009). "New octopods (Cephalopoda: Coleoidea) from the Late Cretaceous (Upper Cenomanian) of Hâkel and Hâdjoula, Lebanon". Palaeontology. 52: 65–81. doi:10.1111/j.1475-4983.2008.00828.x.

Photo one: Fossil Huntress. Figure Two: Topographic map of north‐western Lebanon with the outcrop area in the upper right-hand corner. Fuchs et al, 2009.  

Monday, 24 February 2025

15TH BCPA SYMPOSIUM: AUG 22-25, 2025 IN COURTENAY

You are cordially invited to the 15th BCPA Symposium, August 22-25, 2025 at the Florence Filberg Centre in Courtenay in the Comox Valley, Vancouver Island, British Columbia.

We have the honour of having Kirk Johnson, Sant Director of the Smithsonian's National Museum of Natural History where he oversees the world's largest natural history collection as our Keynote Speaker and artist Ray Troll as our dinner speaker. 

KEYNOTE SPEAKER: KIRK JOHNSON

Kirk became the Sant Director of the Smithsonian National Museum of Natural History in 2012, hot on the heels of his stint as a paleontologist at the Denver Museum of Nature & Science. During his time there he led expeditions in eighteen US states and eleven countries — including Ellesmere Island in the Arctic to the far reaches of the Amur-Heilongjiang region of China on the Chinese-Russian border and back again to find some of the first fossil plants in the badlands near Drumheller.

Kirk is often asked why he studies plants and not something more spectacular. It is important that you know that plants are THE MOST SPECTACULAR fossils and his fossil plants would throw any theropod remains to the mat. He's found many exciting fossil finds (including some spectacular very un-plant-ish) Canadian fossils. 

DINNER SPEAKER: RAY TROLL

​Ray Troll is an American artist based in Ketchikan, Alaska. Ray Troll, draws inspiration from the fossil record and pays homage to the familiar and bizarre in stunning portrayals of lost worlds.  He is best known for his scientifically accurate and often humorous artwork. His most well-known design, "Spawn Till You Die," pops up in the most unexpected places—including the film Superbad worn by actor Daniel Radcliffe. 

BCPA SYMPOSIUM SOCIAL MEET & GREET
  • Friday, August 22nd at the Courtenay and District Museum and Paleontological Centre, 207 - 4th Street, Courtenay, British Columbia including a Museum Tour with Pat Trask
BCPA SYMPOSIUM PALEO-BANQUET
  • Saturday, August 23rd, 6 PM - 9:30 PM at the Florence Filberg Centre featuring Ray Troll as the Dinner Speaker
BCPA SYMPOSIUM PRESENTATIONS
  • Saturday, August 23rd, 9 AM - 4:30 PM
  • Sunday, August 24th, 9 AM to 12:30 PM
  • All presentations and poster sessions are at the Florence Filberg Centre at 411 Anderton Avenue in downtown Courtenay, Vancouver Island, British Columbia. The Florence Filberg Centre is 1/2 block from the Courtenay Museum, close to shops and restaurants
BCPA SYMPOSIUM FOSSIL FIELD TRIPS
  • Friday, August 22nd: Shelter Point
  • Sunday, August 24th: Trent River
  • Monday, August 25th: Hornby Island, Collishaw Point
FOSSIL PREPARATION WORKSHOP
  • Sunday, August 25, 2025, 1:30 PM - 4:00 PM: Fossil Preparation Workshop with James Wood, Jay Hawley and Dan Bowen
BCPA SYMPOSIUM REGISTRATION
Registration is open. To register, head to www.fossiltalksandfieldtrips.com. There is a registration link there for ease of access. Early Bird pricing ends May 30, 2025 so register early to save! 

Saturday, 15 February 2025

AVES: LIVING DINOSAURS

Cassowary, Casuariiformes
Wherever you are in the world, it is likely that you know your local birds. True, you may call them des Oiseaux, pássaros or uccelli — but you'll know their common names by heart.

You will also likely know their sounds. The tweets, chirps, hoots and caws of the species living in your backyard.

Birds come in all shapes and sizes and their brethren blanket the globe. It is amazing to think that they all sprang from the same lineage given the sheer variety. 

If you picture them, we have such a variety on the planet — parrots, finches, wee hummingbirds, long-legged waterbirds, waddling penguins and showy toucans. 

But whether they are a gull, hawk, cuckoo, hornbill, potoo or albatross, they are all cousins in the warm-blooded vertebrate class Aves. The defining features of the Aves are feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweight skeleton. The best features, their ability to dance, bounce and sing, are not listed, but it is how I see them in the world.

These modern dinosaurs live worldwide and range in size from the 5 cm (2 in) bee hummingbird to the 2.75 m (9 ft) ostrich. 

There are about ten thousand living species, more than half of which are passerine, or "perching" birds. Birds have wings whose development varies according to species; the only known groups without wings are the extinct moa and elephant birds.

Wings evolved from forelimbs giving birds the ability to fly
Wings, which evolved from forelimbs, gave birds the ability to fly, although further evolution has led to the loss of flight in some birds, including ratites, penguins, and diverse endemic island species. 

The digestive and respiratory systems of birds are also uniquely adapted for flight. Some bird species of aquatic environments, particularly seabirds and some waterbirds, have further evolved for swimming.

Wee Feathered Theropod Dinosaurs

We now know from fossil and biological evidence that birds are a specialized subgroup of theropod dinosaurs, and more specifically, they are members of Maniraptora, a group of theropods that includes dromaeosaurs and oviraptorids, amongst others. As palaeontologists discover more theropods closely related to birds, the previously clear distinction between non-birds and birds has become a bit muddy.

Recent discoveries in the Liaoning Province of northeast China, which include many small theropod feathered dinosaurs — and some excellent arty reproductions — contribute to this ambiguity. 

Still, other fossil specimens found here shed a light on the evolution of Aves. Confuciusornis sanctus, an Early Cretaceous bird from the Yixian and Jiufotang Formations of China is the oldest known bird to have a beak.

Like modern birds, Confuciusornis had a toothless beak, but close relatives of modern birds such as Hesperornis and Ichthyornis were toothed, telling us that the loss of teeth occurred convergently in Confuciusornis and living birds.

The consensus view in contemporary palaeontology is that the flying theropods, or avialans, are the closest relatives of the deinonychosaurs, which include dromaeosaurids and troodontids.

Together, these form a group called Paraves. Some basal members of this group, such as Microraptor, have features that may have enabled them to glide or fly. 

The most basal deinonychosaurs were wee little things. This raises the possibility that the ancestor of all paravians may have been arboreal, have been able to glide, or both. Unlike Archaeopteryx and the non-avialan feathered dinosaurs, who primarily ate meat, tummy contents from recent avialan studies suggest that the first avialans were omnivores. Even more intriguing...

Avialae, which translates to bird wings, are a clade of flying dinosaurs containing the only living dinosaurs, the birds. It is usually defined as all theropod dinosaurs more closely related to modern birds — Aves — than to deinonychosaurs, though alternative definitions are occasionally bantered back and forth.

The Earliest Avialan: Archaeopteryx lithographica

Archaeopteryx, bird-like dinosaur from the Late Jurassic
Archaeopteryx lithographica, from the late Jurassic Period Solnhofen Formation of Germany, is the earliest known avialan that may have had the capability of powered flight. 

However, several older avialans are known from the Late Jurassic Tiaojishan Formation of China, dating to about 160 million years ago.

The Late Jurassic Archaeopteryx is well-known as one of the first transitional fossils to be found, and it provided support for the theory of evolution in the late 19th century. 

Archaeopteryx was the first fossil to clearly display both traditional reptilian characteristics — teeth, clawed fingers, and a long, lizard-like tail—as well as wings with flight feathers similar to those of modern birds. It is not considered a direct ancestor of birds, though it is possibly closely related to the true ancestor.

Unlikely yet true, the closest living relatives of birds are the crocodilians. Birds are descendants of the primitive avialans — whose members include Archaeopteryx — which first appeared about 160 million years ago in China.

DNA evidence tells us that modern birds — Neornithes — evolved in the Middle to Late Cretaceous, and diversified dramatically around the time of the Cretaceous–Paleogene extinction event 66 mya, which killed off the pterosaurs and all non-avian dinosaurs.

In birds, the brain, especially the telencephalon, is remarkably developed, both in relative volume and complexity. Unlike most early‐branching sauropsids, the adults of birds and other archosaurs have a well‐ossified neurocranium. In contrast to most of their reptilian relatives, but similar to what we see in mammals, bird brains fit closely to the endocranial cavity so that major external features are reflected in the endocasts. What you see on the inside is what you see on the outside.

This makes birds an excellent group for palaeoneurological investigations. The first observation of the brain in a long‐extinct bird was made in the first quarter of the 19th century. However, it was not until the 2000s and the application of modern imaging technologies that avian palaeoneurology really took off.

Understanding how the mode of life is reflected in the external morphology of the brains of birds is but one of several future directions in which avian palaeoneurological research may extend.

Although the number of fossil specimens suitable for palaeoneurological explorations is considerably smaller in birds than in mammals and will very likely remain so, the coming years will certainly witness a momentous strengthening of this rapidly growing field of research at the overlap between ornithology, palaeontology, evolutionary biology and the neurosciences.

Reference: Cau, Andrea; Brougham, Tom; Naish, Darren (2015). "The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc (Dinosauria, Maniraptora): Dromaeosaurid or flightless bird?". PeerJ. 3: e1032. doi:10.7717/peerj.1032. PMC 4476167. PMID 26157616.

Reference: Ivanov, M., Hrdlickova, S. & Gregorova, R. (2001) The Complete Encyclopedia of Fossils. Rebo Publishers, Netherlands. p. 312