Tuesday 10 May 2016
Sunday 8 May 2016
Tuesday 3 May 2016
STAWAMUS CHIEF: GRANITE SENTINEL
Sunday 1 May 2016
Tuesday 26 April 2016
Thursday 21 April 2016
WASHINGTON RISING
Two hundred million years ago, Washington was two large islands, bits of continent on the move westward, eventually bumping up against the North American continent and calling it home.
This dynamic movement has created the landscape we see today and helped form the fossil record that tells much of Washington’s relatively recent history – the past 50 million years. Chuckanut Drive is much younger than other parts of Washington. The fossils found there lived and died some 40-55 million years ago, very close to where they are now, but in a much warmer, swampy setting. The exposures of the Chuckanut Formation were once part of a vast river delta; imagine, if you will, the bayou country of the Lower Mississippi.
Tracks of a type of archaic mammal of the Orders Pantodonta or Dinocerata (blunt foot herbivores), footprints from a small shorebird, and tracks from an early equid or webbed bird track give evidence to the vertebrates that inhabited the swamps, lakes and river ways of the Pacific Northwest 50 million years ago.
Monday 11 April 2016
CETACEA: HUMPBACK WHALE
Thursday 31 March 2016
Wednesday 30 March 2016
Tuesday 29 March 2016
MCABEE: SOLVING MYSTERIES IN THE EOCENE
While the area is referred to as the Okanagan, the term is used in a slightly misleading fashion to describe an arc of Eocene lakebed sites that extend from Smithers in the north, down to the fossil site of Republic Washington, in the south.
The grouping includes the fossil sites of Driftwood Canyon, Quilchena, Allenby, Tranquille, McAbee, Princeton and Republic.
These fossil sites range in time from Early to Middle Eocene, and the fossil they contain give us a snapshot of what was happening in this part of the world because of the varied plant fossils they contain.
While the area around the Interior of British Columbia was affected, McAbee, near the town of Cache Creek, was not as warm as some of the other Middle Eocene sites, a fact inferred by what we see and what is conspicuously missing.
In looking at the plant species, it has been suggested that the area of McAbee had a more temperate climate, slightly cooler and wetter than other Eocene sites to the south at Princeton, British Columbia and Republic and Chuckanut, Washington.
We see ginko, a variety of insects and fish remains, the rare feather and a boatload of deciduous evidence. Missing are the tropical Sabal (palm), seen at Princeton and the impressive Ensete (banana) and Zamiaceae (cycad) found at Republic and Chuckanut, Washington.
Wednesday 23 March 2016
DRAGONFLIES: ANCIENT PREDATORS
Monday 21 March 2016
Wednesday 16 March 2016
Sunday 13 March 2016
PALTECHIOCERAS OF WRANGELLIA
By the time these ammonites were being buried in sediment, Wrangellia, the predominately volcanic terrane that now forms Vancouver Island and the Queen Charlotte Islands, had made its way to the northern mid-laditudes.
This detail of the Jurassic ammonite, Paltechioceras sp. shot with an ultra-low f-stop, is from an all but inaccessible site in Sayward, Bonanza Group, Vancouver Island.
We did a fossil field trip up there a few years ago with the Courtenay & Qualicum beach crew. The drive up the mountain was thrilling as the road narrowed until it was barely the width of our wheel base. Thrilling to say the least.
Friday 19 February 2016
Tuesday 16 February 2016
Tuesday 2 February 2016
Saturday 23 January 2016
LINCOLN CREEK FORMATION: EOCENE-OLIGOCENE BORDER
It is a site I return to each year to see the erosion and what new specimens have worked their way to the surface.
The whitish strata consists of tuffaceous siltstone and sandstone with concretionary beds throughout. They are slightly older than originally thought, coming in around 37 million-years, straddling the Eocene-Oligocene border. Here a lovely crab, Pulalius vulgaris, sits in the sand. He would be in good company at the site amongst the more common scaphodpod shells and other wee gastropods.
The whitish aragonitic shells of scaphopods are conical and curved with a planispiral curve, looking a bit like an elephant's tusk, hence their common name. They prefer to live on soft substrates in subtidal zones so they are not as abundant or readily visible on our beaches as their gastropods and bivalves compatriots. Tusk shells and their fossil relatives, however, are found commonly in the sediments at Porter and other localities throughout the Pacific Northwest while crabs are found, but more rare.
Thursday 31 December 2015
TUSKS AND BONE: TANGIERS
During the Miocene and Pliocene, 12-1.6 million years ago, a diverse group of extinct proboscideans, elephant-like animals walked the Earth.
Most of these large beasts had four tusks and likely a trunk similar to modern elephants. They were creatures of legend, inspiring myths and stories of fanciful creatures to the first humans to encounter them.
Beyond our neanderthal friends, one such fellow was Quintus Sertorius, a Roman statesman come general, who grew up in Umbria. Born into a world at war just two years before the Romans sacked Corinth to bring Greece under Roman rule, Quintus lived much of his life as a military man far from his native Norcia. Around 81 BC, he travelled to Morocco, the land of opium, massive trilobites and the birthplace of Antaeus, the legendary North African ogre who was killed by the Greek hero Heracles.
The locals tell a tale that Quintus requested proof of Antaeus, hard evidence he could bring back to Rome to support their tales so they took him to a mound at Tingis, Morocco, where they unearthed the bones of a Neogene elephant, Tetralophodon.
Tetralophodon bones are large and skeletons singularly impressive. Impressive enough to be taken for something else entirely. By all accounts these proboscidean remains were that of the mythical ogre Antaeus and were thus reported back to Rome as such. It was hundreds of years later before their true heritage was known.
Monday 21 December 2015
Saturday 19 December 2015
Friday 20 November 2015
Tuesday 10 November 2015
Wednesday 4 November 2015
Thursday 15 October 2015
TYLOSTOME TUMIDUM
Thursday 8 October 2015
PALM TRUNK MOULD
Sunday 20 September 2015
ERBENOCHILE ERBENI
Family Odontopleuridae, Odontopleurid trilobite from the Lower Devonian, Emsian, 408 to 393 MYA, Bou Tiskaouine Formation, Hamar l”Aghdad Limestones, Taharajat, Oufaten, Djebel Issoumour
Saturday 22 August 2015
Sunday 2 August 2015
Sunday 26 July 2015
Wednesday 22 July 2015
Thursday 16 July 2015
ICHTHYOSAUR EVOLUTION
They were particularly abundant in the later Triassic and early Jurassic periods before being replaced as a premier aquatic predator by another marine reptilian group, the Plesiosauria, in the later Jurassic and Cretaceous periods.
Tuesday 14 July 2015
Monday 29 June 2015
GULLS ON THE FORESHORE: T'SIK'WI
A gull cries in protest at not getting his share of a meal |
Wednesday 3 June 2015
Monday 25 May 2015
Saturday 23 May 2015
CRETACEOUS CAPILANO RIVER
From downtown Vancouver, drive through Stanley Park heading north over the Lion’s Gate Bridge. Take the North Vancouver exit toward the ferries. Turn right onto Taylor Way and then right again at Clyde Avenue. Look for the Park Royal Hotel. Park anywhere along Clyde Avenue.
From Clyde Avenue walk down the path to your left towards the Capilano River. Watch the water level and tread cautiously as it can be slippery if there has been any recent rain. Look for beds of sandstone about 200 meters north of the private bridge and just south of the Highway bridge. The fossil beds are just below the Whytecliff Apartment high rises.
You will see some exposed shale in the area. It does not contain fossil material. The fossils occur only in the sandstone. Interesting, but again, not fossiliferous are the many granitic boulders and large boulders of limestone which may have been brought down by glaciers from as far away as Texada Island. Cretaceous plant material (and modern material) found here include Poplar (cottonwood) Populus sp. Bigleaf Maple, Acer machphyllum, Alder, Alnus rubra, Buttercup Ranvuculus sp., Epilobrium, Red cedar, Blackberry and Sword fern.
Monday 11 May 2015
LINGULA ANATINA: PRIMATIVE BRACHIOPOD
Lingula anatina — a primitive brachiopod |
Brachiopods are marine invertebrates with a stalk and two shells connected along a hinge. They are often confused with bivalves such as clams.
Bivalves have shells on the sides of their bodies. Brachiopods have shells on the top and bottom. As a result, the plane of symmetry in a bivalve runs along the hinge while it runs perpendicular to the hinge in brachiopods.
Lingula forms are regarded as the most primitive brachiopods and represent the first certain appearance of brachiopods in the fossil records dating back 530 million years.
Their shells do not have any locking mechanisms. Instead, they rely on complex musculature to move their shells. They are the first known examples of animal biomineralisation — a process whereby living organisms stiffen or harden tissues with minerals. Their shells are composed of calcium phosphate and collagen fibres, characters shared only by evolutionarily distant vertebrates.
Lingulid brachiopods had changed so little in appearance since the Silurian, 443-419 million years ago, they are referred to as living fossils — a term bestowed upon them by Charles Darwin himself.
Photo: Wilson44691 - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=8624418
Tuesday 5 May 2015
PLANNING YOUR NEXT STAYCATION: HORNBY ISLAND
Sunday 19 April 2015
TAKING IN THE VIEW
Have you ever wondered about the colors you see in these moments? What sunlight actually is? Yes, it's light from the Sun but so much more than that. Sunlight is both light and energy. Once it reaches Earth, we call this energy, "insolation," a fancy term for solar radiation. The amount of energy the Sun gives off changes over time in a never ending cycle. Solar flares (hotter) and sunspots (cooler) on the Sun's surface impact the amount of radiation headed to Earth. These periods of extra heat or extra cold (well, colder by Sun standards...) can last for weeks, sometimes months.
The beams that reach us and warm our skin are electromagnetic waves that bring with them heat and radiation, by-products of the nuclear fusion happening as hydrogen nuclei shift form to helium. Our bodies convert the ultraviolet rays to Vitamin D. Plants use the rays for photosynthesis, a process of converting carbon dioxide to sugar and using it to power their growth (and clean our atmosphere!) That process looks something like this: carbon dioxide + water + light energy -->glucose + oxygen = 6 CO2(g) + 6 H2O + photons → C6H12O6(aq) + 6 O2(g) Photosynthetic organisms convert about 100–115 thousand million metric tonnes of carbon to biomass each year, about six times more power than used my us hoomins.
We've yet to truly get a handle on the duality between light as waves and light as photons. Light fills not just our wee bit of the Universe but the cosmos as well, bathing it in the form of cosmic background radiation that is the signature of the Big Bang.
Once those electromagnetic waves leave the Sun headed for Earth, they reach us in a surprising eight minutes. We experience them as light mixed with the prism of beautiful colors. But what we see is actually a trick of the light. As rays of white sunlight travel through the atmosphere they collide with airborne particles and water droplets causing the rays to scatter. We see mostly the yellow, orange and red hues (the longer wavelengths) as the blues and greens (the shorter wavelengths) scatter more easily and get bounced out of the game rather early.