Friday 13 December 2019

ANCIENT SWAMPS AND SOLAR FLARES

If fossil fuels are made from fossils, are oil, gas and coal made from dead dinosaurs? Well, no, but they are made from fossils. We do not heat our homes or run our cars on dead hadrosaurs. No mighty T-Rex burns up your chimney, instead, for the most part, we burn very humble dead algae. Yep, plants. Really old ones.

I know, right? It sounds much less exciting, but the process by which algae and other plant life soak up the Sun's energy, store it for millions of years, then give it all up for us to burn as fuel is a pretty fantastic tale!

Fossil fuel is a fuel formed by a natural process, the anaerobic decomposition of buried dead organisms who soaked up and stored energy from ancient photosynthesis. Picture ancient trees, algae and peat soaking up the sun, then storing that energy for us to use millions of years later. These organisms and their resulting fossil fuels are millions of years old, sometimes more than 650 million years. That's way back in the day when Earth's inhabitants were mostly viruses, bacteria and some early multi-cellular jelly-like critters.

Fossil fuels consist mainly of dead plants – coal from trees, and natural gas and oil from algae, a diverse group of aquatic photosynthetic eukaryotic organisms I like to think of as pond scum. These deposits are called fossil fuels because, like fossils, they are the remains of plants and animals that lived long ago.

If we could go back far enough, we'd find that our oil, gas, and coal deposits are really remnants of algal pools, peat bogs and ancient muddy swamps. Dead plants and algae accumulate and over time, then pressure turns the mud and dead plants into rock. Geologists call the once-living matter in the rock kerogen. If they haven't been cooked too badly, we call them fossils.

Kerogen is the solid, insoluble organic matter in sedimentary rocks and it is made from a mixture of ancient organic matter. A bit of this tree and that algae all mixed together to form a black, sticky, oily rock. The Earth’s internal heat cooks the kerogen. The hotter it gets, the faster it becomes oil, gas, or coal. If the heat continues after the oil is formed, all the oil turns to gas. The oil and gas then seep through cracks in the rocks. Much of it is lost. We find oil and gas today because some happened to become trapped in porous, sponge-like rock layers capped by non-porous rocks. We tap into these the way you might crack into a bottle of olive oil sealed with wax.

Fossil fuel experts call this arrangement a reservoir and places like Alberta, Iran and Qatar are full of them. A petroleum reservoir or oil and gas reservoir is a subsurface pool of hydrocarbons contained in porous or fractured rock formations. Petroleum reservoirs are broadly classified as conventional and unconventional reservoirs. In the case of conventional reservoirs, the naturally occurring hydrocarbons, such as crude oil or natural gas, are trapped by overlying rock formations with lower permeability. In unconventional reservoirs, the rocks have high porosity and low permeability which keeps the hydrocarbons trapped in place, so these unconventional reservoirs don't need a rock cap.

Coal is an important form of fossil fuel. Much of the early geologic mapping of Canada (and other countries) was done for the sole purpose of mapping the coal seams. You can use it to heat your home, run a coal engine or sell it for cold hard cash. It's a dirty fuel, but for a very long time, most of our industries used it as the sole means of energy. But what is so bad about burning coal and other fossil fuels? Well, many things...

Burning fossil fuels, like oil and coal, releases large amounts of carbon dioxide and other gases into the atmosphere. They get trapped as heat, which we call the greenhouse effect. This plays havoc with global weather patterns and our world does not do so well when that happens. The massive end-Permian extinction event, the worst natural disaster in Earth's history when 90% of all life on Earth died was caused by massive volcanic eruptions that spewed gas and lava, covering the Earth in volcanic dust, then acid rain. Picture Mordor times ten. This wasn't a culling of the herd, this was full-on decimation. I'll spare you the details, but the whole thing ended poorly.

Dirty or no, coal is still pretty cool. It is wild to think that a lump of coal has the same number of atoms in it as the algae or rainforest that formed it. Yep, all the same atoms, just heated and pressurized over time. When you burn a lump of coal, the same number of atoms are released when those atoms dissipate as particles of soot. You may wonder what makes a rock burn. It's not intuitive that it would be possible, and yet there it is. Coal is combustible, meaning it is able to catch fire and burn. Coal is made up mostly from carbon with some hydrogen, sulphur (smells like rotting eggs, stinky pew), oxygen and nitrogen thrown in.

It is just that the long-ago rainforest was far less dense than the coal you hold in your hand today, and so is the soot into which it dissipates once burned. The energy was captured by the algal pool or rainforest by way of photosynthesis, then that same energy is released when the coal is burnt. So the energy captured in gravity and released billions of years later when the intrinsic gravity of the coal is dissipated by burning. It's enough to bend your brain.

The Sun loses mass all the time because of its process of fusion of atomic content and radiating that energy as light. Our ancient rainforests and algal pools on Earth captured some of it. So maybe our energy transformations between the Earth and the Sun could be seen more like ping-pong matches, with energy, as the ball, passing back and forth.

As mass sucks light in (hello, photosynthesis), it becomes denser, and as mass radiates light out (hello, heat from coal), it becomes less dense. Ying, yang and the beat goes on.

Thursday 12 December 2019

FOSSIL FUELS AND THE EARTH'S MASS

A very bright, beautiful young mind asked the question, "does Earth's mass decrease when we burn fossil fuels? And if it does, is it measurable? Do we know how much of the Earth’s mass has been lost so far?"

Well, Melaina, the Earth’s mass does decrease when fossil fuels are burnt. But not in the sense you were probably imagining, and only to a very, very small degree.

There is no decrease in chemical mass. Burning fossil fuels rearranges atoms into different molecules, in the process releasing energy from chemical bonds, but in the end, the same particles — protons, neutrons, and electrons — remain, so there is no decrease in mass there.

But energy is released, and some of that energy is radiated out into space, escaping from the Earth entirely. Einstein's Theory of Relativity tells us that energy does have mass: E=mc^2, or m=E/c^2. When a chemical bond that stores energy is formed, the resulting molecule has a very tiny bit more mass than the sum of the masses of the atoms from which it was formed, so a net gain. Wait, what?

Again, this is an exceedingly tiny bit. In very rough numbers, worldwide energy consumption is about 160,000 terawatt-hours per year, and about 80% of that comes from fossil fuels. That is about 450,000,000 TJ/year (tera-joules/year). The speed of light is 300,000,000 meter/s; dividing 450,000,000 TJ by (300,000,000 m/s)^2 gives a decrease in mass of 5000 kilograms per year.

That is an exceedingly small fraction — 50 billionths of one percent — of the approximately 10,000,000,000,000 kilograms of fossil fuels consumed per year. And as far as making the Earth lighter, it’s a tenth of a billionth of a billionth of a percent of the Earth’s mass.

Of course, the energy in fossil fuels originally came from the Sun, and in absorbing that sunlight the Earth’s mass increases slightly. I picture the Earth expanding and contracting, taking a deep breath, then exhaling. We don't see this when we look, but it is a great visual for imaging this never-ending give and take process. I'm not sure how we'd measure the small changes to the Earth's net mass on any given day. The mass of the Earth may be determined using Newton's law of gravitation. It is given as the force (F), which is equal to the Gravitational constant multiplied by the mass of the planet and the mass of the object, divided by the square of the radius of the planet.

Newton's insight on the inverse-square property of gravitational force was from an intuition about the motion of the earth and the moon. The mathematical formula for gravitational force is F=GMmr2 F = G Mm r 2 where G is the gravitational constant. I know, Newton’s law could use some curb appeal but it is super useful when understanding what keeps the Earth and other planets in our solar system in orbit around the Sun and why the Moon orbits the Earth. We have Newton to thank for his formulas on the gravitational potential of water when we build hydroelectricity dams. Newton’s ideas work in most but not all scenarios. When things get very, very small, or cosmic, gravity gets weird... and we head on back to Einstein to make sense of it all.

There was a very cool paper published yesterday by King Yan Fong et al. in the journal Nature that looked at heat transferring in a previously unknown way — heat transferred across a vacuum by phonons — tiny, atomic vibrations. The effect joins conduction, convection and radiation as ways for heating to occur — but only across tiny distances. The heat is transferred by phonons — the energy-carrying particles of acoustic waves, taking advantage of the Casimir effect, in which the quantum fluctuations in the space between two objects that are really, really close together result in physical effects not predicted by classical physics. This is another excellent example of the universe not playing by conventional rules when things get small. Weird, but very cool!

But the question was specifically about the mass of the Earth and the burning of fossil fuels, and that process does decrease the mass.

So it is mostly true that the Earth’s mass does not decrease due to fossil fuel burning because the numbers are so low, but not entirely true. The fuel combines with oxygen from the atmosphere to produce carbon dioxide, water vapour, and soot or ash. The carbon dioxide and water vapour go back into the atmosphere along with some of the soot or ash, the rest of which is left as a solid residue. The weight of the carbon dioxide plus the water vapour and soot is exactly the same as the weight of the original fuel plus the weight of the oxygen consumed. In general, the products of any chemical reaction whatsoever weigh the same as the reactants.

There is only one known mechanism by which Earth’s mass decreases to any significant degree: molecules of gas in the upper atmosphere (primarily hydrogen and helium, because they are the lightest) escape from Earth’s gravity at a steady rate due to thermal energy. This is counterbalanced by a steady rain of meteors hitting Earth from outer space (if you ever want to hunt them, fly a helicopter over the frozen arctic, they really stand out), containing mostly rock, water, and nickel-iron. These two processes are happening all the time and will continue at a steady rate unchanged by anything we humans do. So, the net/net is about the same.

So, the answer is that the Earth's mass is variable, subject to both gain and loss due to the accretion of in-falling material (micrometeorites and cosmic dust), and the loss of hydrogen and helium gas, respectively. But, drumroll please, the end result is a net loss of material, roughly 5.5×107 kg (5.4×104 long tons) per year.

The burning of fossil fuels has an impact on that equation, albeit a very small one, but an excellent question to ponder. A thank you and respectful nod to Les Niles and Michael McClennen for their insights and help with the energy consumption figures.

Wednesday 11 December 2019

UK ROLLED TRILOBITE

Calymene blumenbachii, Theresa Paul Spink Dunn 
A lovely rolled trilobite, Calymene blumenbachii,  from outcrops in the UK. This wee beauty is in the collections of Theresa Paul Spink Dunn. This Silurian beauty is from the Homerian, Wenlock Series, Wrens Nest, Dudley, UK.

Calymene blumenbachii, sometimes erroneously spelled blumenbachi, is a species of trilobite found in the limestone quarries of the Wren's Nest in Dudley, England.

Nicknamed the Dudley Bug or Dudley Locust by an 18th-century quarryman, it became a symbol of the town and featured on the Dudley County Borough Council coat-of-arms. Calymene blumenbachii is commonly found in Silurian rocks (422.5-427.5 million years ago) and is thought to have lived in the shallow waters of the Silurian, in low energy reefs.

This particular species of Calymene (a fairly common genus in the Ordovician-Silurian) is unique to the Wenlock series in England and comes from the Wenlock Limestone Formation in Much Wenlock and the Wren's Nest in Dudley. These sites seem to yield trilobites more readily than any other areas on the Wenlock Edge, and the rock here is dark grey as opposed to yellowish or whitish as it appears on other parts of the Edge, just a few miles away, in Church Stretton and elsewhere. This suggests local changes in the environment in which the rock was deposited. The Wenlock Edge quarry is closed now to further collecting but may be open to future research projects. We shall have to see.

Monday 9 December 2019

DOUVILLEICERAS MAMMILLATUM

Some lovely examples of Douvilleiceras mammillatum (Schlotheim, 1813), ammonites from the Lower Cretaceous (Middle-Lower Albian) Douvilliceras inequinodum zone of Ambarimaninga, Mahajanga Province, Madagascar.

The genus Douvilleiceras range from Middle to Late Cretaceous and can be found in Asia, Africa, Europe and North and South America. We have beautiful examples in the early to mid-Albian from the archipelago of Haida Gwaii in British Columbia. Joseph F. Whiteaves was the first to recognize the genus from Haida Gwaii when he was looking over the early collections of James Richardson and George Dawson. The beauties you see here measure 6cm to 10cm.

Sunday 8 December 2019

MEGALOSAURUS SP

Megalosaurus sp. Lisbon Natural History Museum. Photo: Luis Lima

Saturday 7 December 2019

JURASSIC STARFISH


This beautiful fossil brittle star with his slender whip-like arms is from Jurassic outcrops of Portugal and hails from the collection of Vitor Miranda. I've also included some photos of his colourful modern relatives.

At a glance, sea stars and brittle stars look quite similar. These echinoderms generally have five radiating arms (or a multiple thereof) and creep along on the seafloor using their arms for locomotion. And they come in wonderful colours.

Sea stars and brittle stars look similar and are related but are actually quite different.

Both sea stars and brittle stars are in the phylum Echinodermata, which also includes sea cucumbers, sea urchins, sand dollars and sea lilies. The most common brittle star is the long-armed brittle star, Amphipholis squamata, a gray-blue, luminescent (glowing) species.

Echinoderms can be found making a living in our oceans and are known for their five-point radial symmetry and unique water vascular system. They typically have a tough, spiny surface, which inspired their name. In Greek, echinos means “spiny” and derma means “skin.”

A neat little evolutionary feature of these lovelies is their ability to regrow lost body parts, and sea stars and brittle stars can regrow arms if broken off or eaten.

Within the phylum, sea stars and brittle stars are in different classes. Sea stars are in the class Asteroidea, where brittle stars are in Ophiuroidea, which also includes basket stars.

To tell the two apart, first, look at their bodies. The modern brittle star you see to the right looks delicate, almost spindly. The sea stars you see below are more robust. Their fundamental structure is different, especially when you look at where the arms connect to the center of the body. Brittle stars have tube feet along their arms that sense light and scent.

Sea stars have thicker, triangular-shaped arms that are typically their widest at the point of connection to the center of the body. They can be found in blue, red, orange, purple, pink, white and a mixture of those same colours.

Brittle stars, on the other hand, have much thinner, more delicate arms that appear more snake-like. Their arms connect to a central disk but do not touch one another.

Sea stars rely on their water vascular system to move. The water vascular system includes a number of small tube feet that become stiff when water is pushed into them, allowing the sea star to move on a conveyor belt-like rotation of feet.

Although brittle stars also have a water vascular system, they twist and bend their long arms to move, instead. This means that they can move much more quickly than sea stars, especially when trying to escape a predator. Handy that!

Friday 6 December 2019

PSEUDOTHURMANNIA PICTETI

Pseudothurmannia picteti, Photo: Manuel Peña Nieto 
Pseudothurmannia is a genus of extinct cephalopods belonging to the subclass Ammonoidea and included in the family Crioceratitidae of the ammonitid superfamily Ancylocerataceae.

These fast-moving nektonic carnivores lived in the Cretaceous period, from the Hauterivian to the Barremian.

Shells of Pseudothurmannia can reach a diameter of about 4–12 centimetres (1.6–4.7 in). They show flat or slightly convex sides, a surface with dense ribs and a subquadrate whorl section.

We find fossils of Pseudothurmannia in Cretaceous outcrops in Antarctica, Czechoslovakia, France, Hungary, Italy, Japan, Morocco, Spain, Russia and the United States. The specimen you see here is in the collection of Manuel Peña Nieto from Córdoba, Spain and is from the Lower Cretaceous of Mallorca.

Wednesday 4 December 2019

AMMONITES OF MOZAMBIQUE

Natural History Museum of Lisbon, Photo Luis Lima

Tuesday 3 December 2019

GAVIALOSUCHUS CROCODILE OF CHELAS

This well-preserved Miocene fossil crocodile is Gavialosuchus americanus lusitanicus, (Sellards, 1915) who lived in the area near Chelas, a locality near the airport in Lisbon, Portugal around 12 million years ago. When he was alive, that area of the world was flooded and home to Mastodons and other ancient animals.

This fellow was quite the beast. The complete crocodile would have been 8-9 meters in length. Crocodiles are reptiles, which means that they are cold-blooded, are covered in dry, scaly skin, and have a backbone. They are sometimes called ‘living fossils’ because they have been living on Earth since the time of the dinosaurs.

Although they have been around for millions of years, their bodies have not changed very much during that time because they are such successful predators. Unlike alligators, crocodiles have very pointed snouts, and their upper and lower jaws are the same size. Crocodiles have webbed feet, which makes them fast swimmers.

Their bodies are very streamlined, meaning they can slide quickly through the water to catch their prey. Their size depends on the crocodile species with some modern species growing to over 7 meters (23 feet) long and weighing about 1,000 kilograms or 2,200 pounds. This ancient specimen is now housed in the Geological Museum of Lisbon. He would have been bigger than his modern cousins and a formidable predator. Luis Lima recently had the pleasure of visiting their collections and shared this photo. The museum was built in 1857 and is home to beautiful paleontology, archaeology and mineral specimens. Should you find yourself in Lisbon, it is well worth a trip.

Monday 2 December 2019

MOZAMBIQUE AMMONITE

Natural History Museum of Lisbon. Photo: Luis Lima

Sunday 1 December 2019

AMMONITE OF THE RHÔNE

An exquisite specimen of the delicately ridged ammonite, Porpoceras verticosum, from Middle Toarcian outcrops adjacent the Rhône in southeastern France.

Porpoceras (Buchman, 1911) is a genus of ammonite that lived during the early and middle Toarcian stage of the Early Jurassic. We see members of this genus from the uppermost part of Serpentinum Zone to Variabilis Subzone. These beauties are found in Europe, Asia, North America and South America.

Ammonites belonging to this genus have evolute shells, with compressed to depressed whorl section. Flanks were slightly convex and venter has been low. The whorl section is sub-rectangular. The rib is pronounced and somewhat fibulate on inner whorls (just wee nodes here) and tuberculate to spined on the ventrolateral shoulder. It differs from Peronoceras by not having a compressed whorl section and regular nodes or fibulation. Catacoeloceras is also similar, but it has regular ventrolateral tubercules and is missing the classic nodes or fibulation of his cousins.

This specimen hails from southern France near the Rhône, one of the major rivers of Europe. It has twice the average water level of the Loire and is fed by the Rhône Glacier in the Swiss Alps at the far eastern end of the Swiss canton of Valais then passes through Lake Geneva before running through southeastern France. This 10 cm specimen was prepared by the supremely talented José Juárez Ruiz

Saturday 30 November 2019

CARIXIAN DOMERIEN

Carixian domerien, Upper Muschelkalk. Photo: Ange Mirabet

Friday 29 November 2019

T. REX: THE ULTIMATE PREDATOR

The first skeleton of Tyrannosaurus rex was discovered in 1902 in Hell Creek, Montana, by the Museum's famous fossil hunter Barnum Brown. Six years later, Brown discovered a nearly complete T. rex skeleton at Big Dry Creek, Montana.

The rock around it was blasted away with dynamite to reveal a “magnificent specimen” with a “perfect” skull. This skeleton, AMNH 5027, is on view in the American Museum of Natural History's Hall of Saurischian Dinosaurs. It's also reproduced in their new exhibition T. rex: The Ultimate Predator Exhibition should you find yourself lucky enough to be in New York.

Thursday 28 November 2019

NATURAL HISTORY MUSEUM LONDON

The Natural History Museum in London is a natural history museum that exhibits a vast range of specimens from various segments of natural history. It is one of three major museums on Exhibition Road in South Kensington, the others being the Science Museum and the Victoria and Albert Museum.

The museum is home to life and earth science specimens comprising some 80 million items within five main collections: botany, entomology, mineralogy, paleontology and zoology. The museum is also a centre of research specializing in taxonomy, identification and conservation. Given the age of the institution, many of the collections have great historical as well as scientific value, such as specimens collected by Charles Darwin and other darlings of paleontology.

The museum is particularly famous for its exhibition of dinosaur skeletons and ornate architecture, sometimes dubbed a cathedral of nature, both exemplified by the large Diplodocus cast that dominated the vaulted central hall before it was replaced in 2017 with the skeleton of a blue whale hanging from the ceiling. Here's a photo of the unveiling ceremony at the Reptiles Callery from 1905.

The Natural History Museum Library contains extensive books, journals, manuscripts, and artwork collections linked to the work and research of the scientific departments; access to the library is by appointment only. The museum is recognized as the pre-eminent centre of natural history and research of related fields in the world.

Although commonly referred to as the Natural History Museum, it was officially known as British Museum (Natural History) until 1992, despite legal separation from the British Museum itself in 1963. Originating from collections within the British Museum, the landmark Alfred Waterhouse building was built and opened by 1881 and later incorporated the Geological Museum. The Darwin Centre is a more recent addition, partly designed as a modern facility for storing valuable collections.

Like other publicly funded national museums in the United Kingdom, the Natural History Museum does not charge an admission fee. It did back in the day but was scrapped in 2001. The museum is an exempt charity and a non-departmental public body sponsored by the Department for Culture, Media and Sport. Catherine, Duchess of Cambridge, is a patron of the museum. Today, there are approximately 850 staff at the museum. It remains my favourite of all the museums I've visited as it presents our scientific history on a grande scale.

Wednesday 27 November 2019

PROSAUROLOPHUS MAXIMUS

Prosaurolophus maximus, Ottawa Museum of Nature
Prosaurolophus was a large-headed duckbill dinosaur. The most complete described specimen has a skull around 0.9 metres (3.0 ft) long on a skeleton about 8.5 metres (28 ft) long. It had a small, stout, triangular crest in front of the eyes; the sides of this crest were concave, forming depressions.

This crest grew isometrically (without changing in proportion) throughout the lifetime of the individual, leading to speculation that the species may have had a soft tissue display structure, such inflatable nasal sacs.

When originally described by Brown, Prosaurolophus maximus was known from a skull and jaw. Half of the skull was badly weathered at the time of examination, and the level of the parietal was distortedly crushed upwards to the side.

The different bones of the skull are easily defined with the exception of the parietals and nasal bones. Brown found that the skull of the already described genus Saurolophus is very similar overall but also smaller than the skull of P. maximus. The unique feature of a shortened frontal in lambeosaurines is also found in Prosaurolophus, and the other horned hadrosaurines Brachylophosaurus, Maiasaura, and Saurolophus. Although they lack a shorter frontal, the genera Edmontosaurus and Shantungosaurus share an elongated dentary structure.

Patches of preserved skin are known from two juvenile specimens, TMP 1998.50.1 and TMP 2016.37.1; these pertain to the ventral extremity of the ninth through fourteenth dorsal ribs, the caudal margin of the scapular blade, and the pelvic region. Small basement scales (scales which make up the majority of the skin surface), 3–7 millimetres (0.12–0.28 in) in diameter, are preserved on these patches - this is similar to the condition seen in other saurolophine hadrosaurs.

More uniquely, feature scales (larger, less numerous scales which are interspersed within the basement scales) around 5 millimetres (0.20 in) wide and 29 millimetres (1.1 in) long are found interspersed in the smaller scales in the patches from the ribs and scapula (they are absent from the pelvic patches). Similar scales are known from the tail of the related Saurolophus angustirostris (on which they have been speculated to indicate pattern), and it is considered likely adult Prosaurolophus would've retained the feature scales on their flanks like the juveniles.

Tuesday 26 November 2019

DELGADOCRINUS OPORTOVINUM

Delgadocrinus oportovinum
This exceptionally well-preserved crinoid, Delgadocrinus oportovinum, was found on October 11, 1905, by Nery Delgado during his work mapping the geology and paleontology of Portugal.

His find resulted in the creation of a new family, Delgadocrinoinidae, a new genus and a new species.

Ausich et al. published on New and Revised Occurrences of Ordovician Crinoids from Southwestern Europe in the Journal of Paleontology, November 2007. In their work, they honour Delgado. His find was the first record of an Ordovician crinoid from Portugal, Delgadocrinus oportovinum, marking it as the oldest known crinoid from the Iberian Peninsula (Arenigian/Oretanian boundary, early Darriwilian).

The team took a comprehensive look at the Ordovician crinoids of southwestern Europe, including taxa based on articulated crowns and stems. This summary incorporates new material, new localities, and a revision of some southwestern Europe occurrences and is well worth a read. The Type Specimen you see here is now housed in the Natural History Museum of Lisbon. Luis Lima shared a photo of his recent visit to their beautiful collections and kindly granted permission to share the photo here.

Reference: Ausich, William & Sá, Artur & Gutiérrez-Marco, Juan. (2007). New and revised occurrences of Ordovician crinoids from southwestern Europe. Journal of Paleontology - J PALEONTOL. 81. 1374-1383. 10.1666/05-038.1.

Monday 25 November 2019

ZENASPIS PODOLICA HEAD SHIELD

A Devonian bony fish mortality plate showing a lower shield of Zenaspis podolica (Lankester, 1869) from Lower Devonian deposits of Podolia, Ukraine.

Podolia or Podilia is a historic region in Eastern Europe, located in the west-central and south-western parts of Ukraine, in northeastern Moldova. Podolia is the only region in Ukraine where 420 million-year-old remains of ichthyofauna can be found near the surface, making them accessible to collection and study. Zenaspis is an extinct genus of jawless fish which thrived during the early Devonian. Being jawless, Zenaspis was probably a bottom feeder, snicking on debris from the seafloor similar to how flounder, groupers, bass and other bottom-feeding fish make a living.

For the past 150 years, vertebrate fossils have been found in more than 90 localities situated in outcrops along banks of the Dniester River and its northern tributaries, and in sandstone quarries. At present, the faunal list of Early Devonian agnathans and fishes from Podolia number seventy-two species, including 8 Thelodonti, 39 Heterostraci, 19 Osteostraci, 4 Placodermi, 1 Acanthodii, and 1 Holocephali (Voichyshyn 2001a).

In Podolia, Lower Devonian redbeds strata (the Old Red Formation or Dniester Series) are up to 1800 m thick and range from Lochkovian to Eifelian in age (Narbutas 1984; Drygant 2000, 2003).

In their lower part (Ustechko and Khmeleva members of the Dniester Series) they consist of lovely multicoloured, mainly red, fine-grained cross-bedded massive quartz sandstones and siltstones with seams of argillites (Drygant 2000).

We see fossils of Zenaspis in the early Devonian of Western Europe. Both Zenaspis pagei and Zenaspis poweri can be found up to 25 centimetres long in Devonian outcrops of Scotland.

Reference: Voichyshyn, V. 2006. New osteostracans from the Lower Devonian terrigenous deposits of Podolia, Ukraine. Acta Palaeontologica Polonica 51 (1): 131–142. Photo care of the awesome Fossilero Fisherman.

Sunday 24 November 2019

RAPA NUI SENTINELS

Rapa Nui (Easter Island) is famous for its rows of moai, towering figures of deified ancestors that were carved from volcanic tuff rock in quarries then moved to a platform on the water's edge. This plaster cast was made from a mould secured during a 1934-1935 Museum expedition to Rapa Nui, 2,000 miles west of the Chilean coast.

There are 887 moai on Rapa Nui, where they are revered, considered by islanders to be sacred. There is an excellent moai cast on exhibit at the American Natural History Museum in New York.

Saturday 23 November 2019

CARCHARODON MEGALODON CHUBUTENSIS

Carcharodon chubutensis. Photo: Luis Lima
Carcharocles chubutensis, which roughly translates to the "glorious shark of Chubut," from the ancient Greek is an extinct species of prehistoric mega-toothed sharks in the genus Carcharocles.

These big beasties lived during Oligocene to Miocene. This fellow is considered to be a close relative of the famous prehistoric mega-toothed shark, C. megalodon, although the classification of this species is still disputed.

Swiss naturalist Louis Agassiz first identified this shark as a species of Carcharodon in 1843. In 1906, Ameghino renamed this shark as C. chubutensis. In 1964, shark researcher, L. S. Glikman recognized the transition of Otodus obliquus to C. auriculatus. In 1987, shark researcher, H. Cappetta reorganized the C. auriculatus - C. megalodon lineage and placed all related mega-toothed sharks along with this species in the genus Carcharocles.

At long last, the complete Otodus obliquus to C. megalodon progression began to look clear. Since then, C. chubutensis has been re-named into Otodus chubutensis, also the other chronospecies of the Otodus obliquus - O. megalodon lineage. Chubutensis appears at the frontier Upper Oligocene to Lowest Miocene (evolving from O. angustidens which has stronger side cusps) and turns into O. megalodon in the Lower to Middle Miocene, where the side cusps are already absent. Despite previous publications, there is no chubutensis in the Pliocene.

Victor Perez and his team published on the transition between Carcharocles chubutensis and Carcharocles megalodon (Otodontidae, Chondrichthyes): lateral cusplet loss through time in March of 2018. In their work, they look at the separation between all the teeth of Carcharocles chubutensis and Carcharocles megalodon and published that it is next to impossible to divide them up as a complex mosaic evolutionary continuum characterizes this transformation, particularly in the loss of lateral cusplets.

The cuspleted and uncuspleted teeth of Carcharocles spp. are designated as chronomorphs because there is wide overlap between them both morphologically and chronologically. In the lower Miocene Beds (Shattuck Zones) 2–9 of the Calvert Formation (representing approximately 3.2 million years, 20.2–17 Ma, Burdigalian) both cuspleted and uncuspleted teeth are present, but cuspleted teeth predominate, constituting approximately 87% of the Carcharocles spp. teeth represented in their samples.

In the middle Miocene Beds 10–16A of the Calvert Formation (representing approximately 2.4 million years, 16.4–14 Ma, Langhian), there is a steady increase in the proportion of uncuspleted Carcharocles teeth.

In the upper Miocene Beds 21–24 of the St. Marys Formation (approx. 2.8 million years, 10.4–7.6 Ma, Tortonian), lateral cusplets are nearly absent in Carcharocles teeth from our study area, with only a single specimen bearing lateral cusplets. The dental transition between Carcharocles chubutensis and Carcharocles megalodon occurs within the Miocene Chesapeake Group. Although their study helps to elucidate the timing of lateral cusplet loss in Carcharocles locally, the rationale for this prolonged evolutionary transition remains unclear.

The specimen you see here is in the Geological Museum in Lisbon. The photo credit goes to the deeply awesome Luis Lima who shared some wonderful photos of his recent visit to their collections.
If you'd like to read the paper from Perez, you can find it here:
https://www.tandfonline.com/doi/full/10.1080/02724634.2018.1546732

Friday 22 November 2019

HOPLOSCAPHITES NEBRASCENSIS

This sweet beauty with lovely colouring is a Hoploscaphites nebrascensis (Owen, 1852) macroconch. This is the female form of the ammonite that has a larger shell than the male, or microconch.

Hoploscaphites nebrascensis is an upper Maastrichtian species and index fossil. It marks the top of ammonite zonation for the Western Interior. This species has been recorded from Fox Hills Formation in North and South Dakota as well as the Pierre Shale in southeastern South Dakota and northeastern Nebraska.

It is unknown from Montana, Wyoming, and Colorado due to the deposition of coeval terrestrial units. It has possibly been recorded in glacial deposits in Saskatchewan and northern North Dakota, but that is hearsay. Outside the Western Interior, this species has been found in Maryland and possibly Texas in the Discoscaphites Conrad zone. This lovely one is in the collection of the deeply awesome (and enviable) José Juárez Ruiz. A big thank you to Joshua DrSlattmaster J Slattery for his insights on this species.

Thursday 21 November 2019

Wednesday 20 November 2019

EARLY PREDATORY DINOSAURS

Predatory dinosaurs were an important ecological component of terrestrial Mesozoic ecosystems.

Though theropod dinosaurs carried this role during the Jurassic and Cretaceous Periods (and probably the post-Carnian portion of the Triassic), it is difficult to depict the Carnian scenario, due to the scarcity of fossils.

Until now, knowledge on the earliest predatory dinosaurs mostly relies on herrerasaurids recorded in the Carnian strata of South America. Phylogenetic investigations recovered the clade in different positions within Dinosauria, whereas fewer studies challenged its monophyly.

Although herrerasaurid fossils are much better recorded in present-day Argentina than in Brazil, Argentinean strata so far yielded no fairly complete skeleton representing a single individual.

Here, the authors describe Gnathovorax cabreirai, a new herrerasaurid based on an exquisite specimen found as part of a multi-taxic association form southern Brazil. The type specimen comprises a complete and well-preserved articulated skeleton, preserved in close association (side by side) with rhynchosaur and cynodont remains.

Given its superb state of preservation and completeness, the new specimen sheds light on poorly understood aspects of the herrerasaurid anatomy, including endocranial soft tissues.

The specimen also reinforces the monophyletic status of the group and provides clues on the ecomorphology of the early carnivorous dinosaurs. Indeed, an ecomorphological analysis employing dental traits indicates that herrerasaurids occupy a particular area in the morphospace of faunivorous dinosaurs, which partially overlaps the area occupied by post-Carnian theropods. This indicates that herrerasaurid dinosaurs preceded the ecological role that later would be occupied by large to medium-sized theropods. Link to the paper: https://peerj.com/articles/7963/

Monday 18 November 2019

OXFORD UNIVERSITY MUSEUM OF NATURAL HISTORY

Oxford University Museum of Natural History was established in 1860 to draw together scientific studies from across the University of Oxford. Today, the award-winning Museum continues to be a place of scientific research, collecting and fieldwork and plays host to a number of programmes and exhibitions.

Notable collections include the world's first described dinosaur,  Megalosaurus bucklandii, and the world-famous Oxford Dodo, the only soft tissue remains of the extinct dodo. Although fossils from other areas have been assigned to the genus, the only certain remains of Megalosaurus come from Oxfordshire and date to the late Middle Jurassic. In 1824, Megalosaurus was the first genus of non-avian dinosaur to be validly named. The type species is Megalosaurus bucklandii, named in 1827.

In 1842, Megalosaurus was one of three genera on which Richard Owen based his Dinosauria. On Owen's direction, a model was made as one of the Crystal Palace Dinosaurs, which greatly increased the public interest for prehistoric reptiles. Subsequently, over fifty other species would be classified under the genus, originally because dinosaurs were not well known, but even during the 20th century after many dinosaurs had been discovered. Today it is understood these additional species were not directly related to M. bucklandii, which is the only true Megalosaurus species. Because a complete skeleton of it has never been found, much is still unclear about its build.

The Museum is as spectacular today as when it opened in 1860. As a striking example of Victorian neo-Gothic architecture, the building's style was strongly influenced by the ideas of 19th-century art critic John Ruskin. Ruskin believed that architecture should be shaped by the energies of the natural world, and thanks to his connections with a number of eminent Pre-Raphaelite artists, the Museum's design and decoration now stand as a prime example of the Pre-Raphaelite vision of science and art.

On 30 June 1860, the Museum hosted a clash of ideologies that has become known as the Great Debate. Even before the collections were fully installed, or the architectural decorations completed, the British Association for the Advancement of Science held its 30th annual meeting to mark the opening of the building, then known as the University Museum. It was at this event that Samuel Wilberforce, Bishop of Oxford, and Thomas Huxley, a biologist from London, went head-to-head in a debate about one of the most controversial ideas of the 19th century – Charles Darwin's theory of evolution by natural selection.

Sunday 17 November 2019

TURTLES: LIVING FOSSILS

Turtle ribs fuse together with some of their vertebrae so they have to pump air in and out of the lungs with their leg muscles instead?

Another unusual feature in turtles is their limb girdles (pectoral and pelvic) have come to lie 'within' their rib cage, a feature that allows some turtles to pull its limbs inside the shell for protection. Sea turtles didn't develop this behaviour (or ability) and do not retract into their shells like other turtles.

Turtle shells are different from the armoured “shells” we see on dinosaurs like the ankylosaurs. Turtles are covered by a special bony or cartilaginous shell developed from their ribs that acts as a shield. It is fundamentally different from the armour seen on our other vertebrate pals. Turtle armour is made of dermal bone and endochondral bones of the vertebrae and rib cage.

Armadillos have armour formed by plates of dermal bone covered in relatively small, overlapping epidermal scales called "scutes," composed of bone with a covering of horn. In crocodiles, their exoskeletons form their armour. It is made of protective dermal and epidermal components that begin as rete Malpighii: a single layer of short, cylindrical cells that lose their nuclei over time as they transform into a horny layer.

Depending on the species and age of the turtle, turtles eat all kinds of food including seagrass, seaweed, crabs, jellyfish, and shrimp,. That tasty diet shows up in the composition of their armour as they have oodles of great nutrients to work with. The lovely example you see here is from the Oxford Museum collections.

Friday 15 November 2019

CRETACEOUS HADROSAUR TOOTH

A rare and very beautifully preserved Cretaceous Hadrosaur Tooth. This lovely specimen is from one of our beloved herbivorous "Duck-Billed" dinosaurs from 68 million-year-old outcrops near Drumheller, Alberta, Canada — and is likely from an Edmontosaurus.

When you scour the badlands of southern Alberta, most of the dinosaur material you'll find are from hadrosaurs. These lovely tree-less valleys make for excellent-searching grounds and have led us to know more about hadrosaur anatomy, evolution, and paleobiology than for most other dinosaurs. 

We have oodles of very tasty specimens and data to work with. We've got great skin impressions and scale patterns from at least ten species and interesting pathological specimens that provide valuable insights into hadrosaur behaviour. These herbivorous beauties are also found in Europe, South America, Mexico, Mongolia, China and Russian. Together, this abundance of specimens has provided great insight into their evolution, dining habits and social preferences. We know they liked to live in herds. They were terrestrial but also water babies — paddling around in freshwater pools to snack on the tasty greenery that lined its sides. They had adapted webbing in their feet to be as nimble on land as they were in the water. 

There are papers on all aspects of hadrosaurian life and not surprisingly — given the ideal collecting grounds — many of those papers focus on our Canadian finds. Hadrosaurs had teeth arranged in stacks designed for grinding and crushing, similar to how you might picture a cow munching away on the grass in a field. These complex rows of "dental batteries" contained up to 300 individual teeth in each jaw ramus. But even with this great number, we rarely see them as individual specimens.

They didn't appear to shed them all that often. Older teeth that are normally shed in our general understanding of vertebrate dentition, were resorped, meaning that their wee osteoclasts broke down the tooth tissue and reabsorbed the yummy minerals and calcium.

As the deeply awesome Mike Boyd notes, "this is an especially lucky find as hadrosaurs did not normally shed so much as a tooth, except as the result of an accident when feeding or after death. Typically, these fascinating dinosaurs ground away their teeth... almost to nothing."

In hadrosaurs, the root of the tooth formed part of the grinding surface as opposed to a crown covering over the core of the tooth. And curiously, they developed this dental arrangement from their embryonic state, through to hatchling then full adult.

There's some great research being done by Aaron LeBlanc, Robert R. Reisz, David C. Evans and Alida M. Bailleul. They published in BMC Evolutionary Biology on work that looks at the histology of hadrosaurid teeth analyzing them through cross-sections. Jon Tennant did a nice summary of their research. I've included both a link to the original journal article and Jon Tennant's blog below.

LeBlanc et al. are one of the first teams to look at the development of the tissues making up hadrosaur teeth, analyzing the tissue and growth series (like rings of a tree) to see just how these complex tooth batteries formed.

They undertook the first comprehensive, tissue-level study of dental ontogeny in hadrosaurids using several intact maxillary and dentary batteries and compared them to sections of other archosaurs and mammals. They used these comparisons to pinpoint shifts in the ancestral reptilian pattern of tooth ontogeny that allowed hadrosaurids to form complex dental batteries.

References:

LeBlanc et al. (2016) Ontogeny reveals function and evolution of the hadrosaurid dinosaur dental battery, BMC Evolutionary Biology. 16:152, DOI 10.1186/s12862-016-0721-1 (OA link)

To read more from Jon Tennant, visit: https://blogs.plos.org/paleocomm/2016/09/14/all-the-better-to-chew-you-with-my-dear/

Photo credit: Derrick Kersey. For more awesome fossil photos like this from Derrick, visit his page: https://www.facebook.com/prehistoricexpedition/

Thursday 14 November 2019

ZENAPSIS MORTALITY PLATE

A Devonian fish mortality plate showing all lower shields of Zenaspis podolica (Lankester, 1869) and Stensiopelta pustulata (or Victoraspis longicornualis) from Lower Devonian deposits of Podolia, Ukraine.

Zenaspis is an extinct genus of jawless fish which existed during the early Devonian period. Due to it being jawless, Zenaspis was probably a bottom feeder.

The lovely 420 million-year-old plate you see here is from Podolia or Podilia, a historic region in Eastern Europe, located in the west-central and south-western parts of Ukraine, in northeastern Moldova. Podolia is the only region in Ukraine where Lower Devonian remains of ichthyofauna can be found near the surface.

For the past 150 years, vertebrate fossils have been found in more than 90 localities situated in outcrops along banks of the Dniester River and its northern tributaries, and in sandstone quarries. At present faunal list of Early Devonian agnathans and fishes from Podolia number 72 species, including 8 Thelodonti, 39 Heterostraci, 19 Osteostraci, 4 Placodermi, 1 Acanthodii, and 1 Holocephali (Voichyshyn 2001a, modified).

In Podolia, Lower Devonian redbeds strata (the Old Red Formation or Dniester Series) can be found up to 1800 m thick and range from Lochkovian to Eifelian in age (Narbutas 1984; Drygant 2000, 2003). In the lower part (Ustechko and Khmeleva members of the Dniester Series) they consist of multicoloured, mainly red, fine-grained cross-bedded massive quartz sandstones and siltstones with seams of argillites (Drygant 2000).

We see fossils beds of Zenaspis in the early Devonian of Western Europe. Both Zenaspis pagei and Zenaspis poweri can be found up to 25 centimetres long in Devonian outcrops of Scotland.

Reference: Voichyshyn, V. 2006. New osteostracans from the Lower Devonian terrigenous deposits of Podolia, Ukraine. Acta Palaeontologica Polonica 51 (1): 131–142. Photo care of Fossilero Fisherman.

Wednesday 13 November 2019

HADROSAURUS OF THE UPPER CRETACEOUS NANAIMO GROUP

Hadrosaurus, also known as the "duck-billed" dinosaurs, were a very successful group of plant-eaters that thrived throughout western Canada during the late Cretaceous, some 70 to 84 million years ago. Hadrosaurs may have lived as part of a herd, dining on pine needles, twigs and flowering plants.

There are two main groups of Hadrosaurs, crested and non-crested. The bony crest on the top of the head of the hadrosaurs was hollow and attached to the nasal passages. It is thought that the hollow crest was used to make different sounds. These sounds may have signalled distress or been the mating calls used to attract mates. Given their size it would have made for quite the trumpeting sound.

This beautiful specimen graces the back galleries of the Courtenay and District Museum on Vancouver Island, British Columbia, Canada. I was very fortunate to have a tour this past summer with the deeply awesome Mike Trask joined by the lovely Lori Vesper. The museum houses an extensive collection of palaeontological and archaeological material found on Vancouver Island, many of which have been donated by the Vancouver Island Palaeontological Society.

Dan Bowen, Chair of the Vancouver Island Palaeontological Society, shared a photo of the first partly articulated dinosaur from Vancouver Island ever found. The research efforts of the VIPS run deep in British Columbia and this new very significant find is no exception. A Hadrosauroid dinosaur is a rare occurrence and further evidence of the terrestrial influence in the Upper Cretaceous, Nanaimo Group, Vancouver Island.

This fossil bone material was found years ago by Mike Trask of the Vancouver Island Palaeontological Society. You may recall that he was the same fellow who found the Courtenay elasmosaur. The bone was initially thought to be a plesiosaur but turned out to be a hadrosauroid. The find was confirmed by hadrosaur authority Dr. David Evans, senior curator of the Royal Ontario Museum.
You can see the articulated Hadrodauriod fossil bone Mike found now prepped fully prepped.

This fellow has kissing cousins over in the state of New Jersey where this species is the official state fossil. The first of his kind was found by John Estaugh Hopkins in New Jersey back in 1838.

Tuesday 12 November 2019

EDIBLE MYTILUS EDULIS

Blue mussels live in intertidal areas and inlets attached to rocks and other hard substrates by strong, stretchy thread-like structures called byssal threads.

They are tasty, edible marine bivalves, molluscs, in the family Mytilidae and they've done well for themselves. Mussels have a range of over 4000 km in waters around the world.

Temperature, salinity and food supply are key factors in how mussels grow and have a huge impact on their shape. Environmental stressors cause curvatures to show up in mussel populations and can help us understand environmental changes happening in our local waters.

Monday 11 November 2019

BEAKS AND FRILLY SADDLES

A lovely example of the ammonite, Cératites Nodosus, an extinct genus of nektonic marine carnivore from shell limestone superior deposits near Alsace on the Rhine River plain of northeastern France.

You can see the nice ceratitic suture pattern on this specimen with his smooth lobes and frilly saddles. The sutures would have increased the strength of the shell and allowed Ceratites (de Haan, 1825) to dive deeper, bearing the additional pressure of the sea in search of food.

Ammonite shells are made up predominantly of calcium carbonate in the form of aragonite and proteinaceous organic matrix or conchiolin arranged in layers: a thin outer prismatic layer, a nacreous layer and an inner lining of prismatic habitat. While their outer shells are generally aragonite, aptychus are distinct as they are composed of calcite.

The aptychus we see here, hard anatomical structures or curved shelly plates now understood to be part of the body of an ammonite, are often referred to as beaks. If you look closely at this specimen, you can see the beak of the ammonite, that wee pointed piece, near the centre.

These ammonites lived in open shallow, to subtidal and basinal environments some 247 to 221 million years ago. We've found them, thus far, in just over forty collections from nearly ninety fossil deposits around the globe. Fossils of species have been found in the Triassic of Austria, Canada, China, France, Germany, Hungary, India, Israel, Italy, Pakistan, Poland, Russia, Thailand, Turkey and the United States.

The parent taxon is Ceratitinae according to E. T. Tozer 1981. That's our own Tim Tozer, one of the great knights-errant of the Triassic timescale. It was Tim Tozer and Norm Silberling who published the classic milestones of the Triassic timescale, "Biostratigraphic Classification of the Marine Triassic in North America, Geological Society of America, Special Paper 110." The Global Triassic: Bulletin 41 from the New Mexico Museum of Natural History and Science by Lucas and Spielmann honours them in their work. Collection of Ange Mirabet, Strasbourg, France.

Sunday 10 November 2019

SKOMER ISLAND PUFFIN

This lovely fellow with his distinctive colouring is an Atlantic Puffin or "Sea Parrot" from Skomer Island near Pembrokeshire in the southwest of Wales. Wales is bordered by Camarthenshire to the east and Ceredigion to the northeast with the sea bordering everything else. It is a fine place to do some birding if it's seabirds you are interested in.

These Atlantic Puffins are one of the most famous of all the seabirds and form the largest colony in Southern Britain. They live about 25 years making a living in our cold seas dining on herring, hake and sand eels. Some have been known to live to almost 40 years of age. They are good little swimmers as you might expect, but surprisingly they are great flyers, too! They are hindered by short wings, which makes flight challenging but still possible with effort. Once they get some speed on board, they can fly up to 88 km an hour.

Their sexy orange beaks (dead sexy, right?) shift from a dull grey to bright orange when it is time to attract a mate. While not strictly monogamous, most Puffins choose the same mate year upon year producing adorable chicks or pufflings (awe) from their mating efforts. Female Puffins produce one single white egg which the parents take turns to incubate over a course of about six weeks. Their dutiful parents share the honour of feeding the wee pufflings five to eight times a day until the chick is ready to fly. Towards the end of July, the fledgling Puffins begin to venture from the safety of their parents and dry land. Once they take to the seas, mom and dad are released from duty and the newest members of the colony are left to hunt and survive on their own.

Friday 8 November 2019

YORKSHIRE ANDROGYNOCERAS

A stunning example of the ammonite Androgynoceras from the Yorkshire Coast, England.

The Geology of Yorkshire in northern England shows a very close relationship between the major topographical areas and the geological period in which their rocks were formed. The rocks of the Pennine chain of hills in the west are of Carboniferous origin whilst those of the central vale are Permo-Triassic.

The North York Moors in the north-east of the county are Jurassic in age while the Yorkshire Wolds to the southeast are Cretaceous chalk uplands. The plain of Holderness and the Humberhead levels both owe their present form to the Quaternary ice ages. The strata become gradually younger from west to east. Much of Yorkshire presents heavily glaciated scenery as few places escaped the direct or indirect impact of the great ice sheets as they first advanced and then retreated during the last ice age. This beauty is in the collection of the deeply awesome Harry Tabiner.

Thursday 7 November 2019

OH MIGHTY CHORDATE

You and I are vertebrates, we have backbones. Having a backbone or spinal column is what sets apart you, me and almost 70,000 species on this big blue planet.

So which lucky ducks evolved one? Well, ducks for one. Warm-blooded birds and mammals cheerfully claim those bragging rights. They're joined by our cold-blooded, ectothermic friends, the fish, amphibians and reptiles. All these diverse lovelies share this characteristic.

And whether they now live at sea or on land, all of these lineages evolved from a marine organism somewhere down the line, then went on to develop a notochord and spinal column. Notochords are flexible rods that run down the length of chordates and vertebrates. They are handy adaptations for muscle attachment, helping with signalling and coordinating the development of the embryonic stage. The cells from the notochord play a key role in the development of the central nervous system and the formation of motor neurons and sensory cells. Alas, we often take our evolution for granted.

Let's take a moment to appreciate just how marvellous this evolutionary gift is and what it allows us to do. Your backbone gives your body structure, holds up that heavy skull of yours and connects your tasty brain to your body and organs. Eating, walking, fishing, hunting, your morning yoga class, are all made possible because of this adaptation. Pick pretty near anything you love to do and it is only possible because of your blessed spine.

And it sets us apart from our invertebrate friends.

While seventy thousand may seem like a large number, it represents less than three to five percent of all described animal species. The rest is made up of the whopping 97%'ers, our dear invertebrates who include the arthropods (insects, arachnids, crustaceans, and myriapods), mollusks (our dear chitons, snails, bivalves, squid, and octopus), annelids (the often misunderstood earthworms and leeches), and cnidarians (our beautiful hydras, jellyfish, sea anemones, and corals).

You'll notice that many of our invertebrate friends occur as tasty snacks. Having a backbone provides a supreme advantage to your placement in the food chain. Not always, as you may include fish and game on your menu. But generally, having a backbone means you're more likely to be holding the menu versus being listed as an appetizer. So, enjoy your morning 'downward dog' and thank your backbone for the magical gift it is.

Wednesday 6 November 2019

VIPS RESEARCH FROM THE FIELD

Meet Fergusonites hendersonae, a Late Hettangian (Early Jurassic) ammonite from the Taseko Lakes area of British Columbia, Canadian Rockies.

I had the very great honour of having this fellow, a new species of nektonic carnivorous ammonite, named after me by paleontologist Louse Longridge from the University of British Columbia. I'd met Louise as an undergrad and was pleased as punch to hear that she would be continuing the research by Dr. Howard Tipper.

We did several expeditions over three field seasons to the Taseko Lake area of the Rockies. We were joined by many wonderful researchers from Vancouver Island Palaeontological Society and Vancouver Paleontological Society, as well as the University of British Columbia.

The fossils found here are from the Lower Jurassic, Lower Sinemurian, Little Paradise Member of the Last Creek formation. Several ammonites species can be found here including Arnioceras semicostatum and Arnioceras miserable.

Both Dan Bowen, VIPS and John Fam, VanPS, were instrumental in planning those fossil field trips. The VIPS has been especially active in planning and executing excellent research expeditions that have brought many new fossil species to light. These trips were no exception. They were to yield many new species and help mint out a new Ph.D. We endured elevation sickness, rain, snow, grizzly bears and very chilly nights (we were sleeping next to a glacier at one point) but were rewarded by the enthusiastic crew, helicopter rides (which really cuts down the hiking time) excellent specimens and stunningly beautiful country. We were also blessed with excellent access as the area is closed to collecting except via permit.

Building on the work of Dr. Howard Tipper and Dr. Louise Longridge, along with Taylor et al from 2001, Pengfei Hou did a Master's thesis through UBC in 2014 on Sinemurian (Early Jurassic) stratigraphy at Last Creek, British Columbia and Five Card Draw, Nevada, looking at the paleontological and environmental implications of the assemblages.

As part of that work, he collected over 400 ammonite specimens from the Last Creek Formation in Last Creek, British Columbia and the Sunrise Formation in Five Card Draw, Nevada. The research led to three new species: Tipperoceras n. sp. A, Tmaegoceras obesus n. sp., Arnioceras n. sp.

Reference: PaleoDB 157367 M. Clapham GSC C-208992, Section A 09, Castle Pass Angulata - Jurassic 1 - Canada, Longridge et al. (2008)

Full reference: L. M. Longridge, P. L. Smith, and H. W. Tipper. 2008. Late Hettangian (Early Jurassic) ammonites from Taseko Lakes, British Columbia, Canada. Palaeontology 51:367-404
PaleoDB taxon number: 297415; Cephalopoda - Ammonoidea - Juraphyllitidae; Fergusonites hendersonae Longridge et al. 2008 (ammonite); Average measurements (in mm): shell width 9.88, shell diameter 28.2; Age range: 201.6 to 196.5 Ma. Locality info: British Columbia, Canada (51.1° N, 123.0° W: paleo coordinates 22.1° N, 66.1° W)

Tuesday 5 November 2019

WEE SNOUT LION: CURCULIONIDAE

Wee Eocene Snout Weevil / Photo: Jim Barkley
A lovely fossil Snout Weevil, family Curculionidae, from the Green River Formation of Western Colorado, USA.

This fellow is from the collection of the deeply awesome Jim Barkley. He gets credit for the lovely photography, too, which shows the exquisite detail on this specimen.

Fossil weevil specimens can be found in the Eocene Green River Formation that outcrops in Wyoming, Colorado and Utah. The Formation is famous for its diverse faunal and floral assemblage of fossils and its fish in particular.

The site boasts beautifully preserved fossil stromatolites, plants, invertebrates and vertebrates. Specimens include reptiles, a broad selection of mammals and, surprise, even primates!

Weevils are herbivorous beetles. They're what your Mamma would call, "good little eaters." And there are plenty of them. The Curculionidae is the family of the "true" weevils and is one of the largest animal families. We likely still haven't met them all. A family reunion would include 6,800 genera and 83,000 species at last count. But don't place your final catering order just yet. If we include all the closely related weevil-type beetles in the superfamily Curculionoidea, we'd have to include an additional ten families. Quadruple that catering menu.

Weevils look like little tiny anteaters with a long 'snout' or rostrum, at the front of their head. Some of the members of this family have rather poor reputations as they make a living by damaging plants of interest to us humans.

Topping the hugely unpopular list is the boll weevil, Anthonomus grandis, a native of Mexico (until it's US invasion in 1892) and famous destroyer of cotton crops.

The Ips genus, feeding on Ponderosa pine, introduces a fungus to the tree. The fungus blocks resin canals, which leaves the weevil free to eat. Resin would normally wash the insects out; it is a defence mechanism. The fungus often kills the tree, and groups of dead trees are a focus for forest fires. In this way the insect is indirectly responsible for serious fires. The maize weevil, Sitophilus zeamais, is a major pest. It attacks both standing crops and stored cereal products, including wheat, rice, sorghum, oats, barley, rye, buckwheat, peas, and cottonseed.

Monday 4 November 2019

ERINACEUS EUROPAUS

This little cutie is a Western European hedgehog, Erinaceus europaus, in the subfamily Erinaceinae (Fischer, 1814). They are native to western Europe, Asia, Africa and have been introduced (oops!) to New Zealand.

There are seventeen species of hedgehog in five genera. They share distant ancestry with the family Soricidae (shrews) and the gymnures.

Hedgehogs are considered "Living Fossils" as they have changed very little over the past 15 million years. These small mammals are loners with their own kind but live in close proximity to our human population. They dwell in inhabited areas, farmland, deciduous forests and desert. You'll know them by their distinctive spiny look (which may remind you of very tasty chocolates from Purdy's in Canada) and their adorable piglike snorts and grunts as they make their way through the underbrush looking for tasty snacks.

Look for them in the evening in hedgerows and undergrowth as they hunt for frogs, toads, snails, bird eggs, grassroots, berries, insects, worms and snakes. They fatten themselves up in preparation for hibernation. They'll find a nice burrow or built a nest in leaves or compost heaps. In Europe, they generally hibernate by October or November and become active again in March to mid-April once temperatures reach over 15 degrees.

Sunday 3 November 2019

MAASTRICHTIAN CLUPEIFORMES

A stunning example of the Late Cretaceous fish, Gasteroclupea branisai, from Bolivia. This beauty is housed in the Natural History Museum Alcide d'Orbignay of Cochabamba.

Gasteroclupea is a genus of prehistoric clupeiform fish related to modern anchovies and herrings.

Clupeiformes are physostomes, which means that the gas bladder has a pneumatic duct connecting it to the gut. This handy little evolutionary feature lets them fill or empty the gas bladder via their mouth. They typically lack lateral lines but have nicely defined eyes, fins and scales. They are generally silvery fish with streamlined, spindle-shaped, bodies, and often found in schools. Most species eat plankton which they filter from the water with their gills.

Gasteroclupea date back to the Maastrichtian of the Late Cretaceous. We find fossils of the genus in the Yacoraite Formation of Argentina and in the El Molino Formation of Bolivia, as you see here. Photo credit: Gilberto Juárez Huarachi‎.

Saturday 2 November 2019

PHEASANT PHASIANUS

These playful lovelies are beautiful examples of the Common Pheasant, Phasianus Cholchicus.

We associate them with tweet shorn English aristocrats jauntily going about the hunt on horseback. 

Pheasants build their nests on the ground and can fly for short distances. They spend their days searching the scrub in fields and around streams looking for tasty insects, seeds and grain.

Friday 1 November 2019

ARMOURED AGNATHA

This lovely specimen, showing both the positive and negative of the fossil, is an armoured agnatha jawless bony fish, Victoraspis longicornualis, from Lower Devonian deposits of Podolia, Ukraine.

Victoraspis longicornualis was named by Anders Carlsson and Henning Bloom back in 2008. The new osteostracan genus and species were described based on material from Rakovets' present-day Ukraine. This new taxon shares characteristics with the two genera Stensiopelta (Denison, 1951) and Zychaspis (Javier, 1985).

Agnatha is a superclass of vertebrates. This fellow looks quite different from our modern Agnatha, which includes lamprey and hagfish. Ironically, hagfish are vertebrates that do not have vertebrae. Sometime in their evolution, they lost them as they adapted to their environment. Photo: Fossilero Fisherman