Sunday 13 January 2019

PREHISTORIC BUGS: WANNERIA DUNNAE

Wanneria dunnae, an impressive trilobite from British Columbia's Eager Formation near Cranbrook. Trilobites were among the earliest fossils with hard skeletons. They were the dominant form of life at the beginning of the Cambrian Period. This specimen of Wanneria dunnae from the East Kootenay of British Columbia is typical of the group. Trilobite eyes were compound like those of modern crustaceans and insects. The eyes of these earliest trilobites are not well-known as the visual surface dropped away and was lost during molting long before they ever became fossils.

Saturday 12 January 2019

Friday 11 January 2019

IRIDESCENT EUHOPLITES

A beautiful Euhoplites ammonite from Folkstone, UK. Euhoplites is an extinct ammonoid cephalopod from the Lower Cretaceous, characterized by strongly ribbed, more or less evolute, compressed to inflated shells with flat or concave ribs, typically with a deep narrow groove running down the middle. In some, ribs seem to zigzag between umbilical tubercles and parallel ventrolateral clavi. In others, the ribs are flexious and curve forward from the umbilical shoulder and lap onto either side of the venter.

Its shell is covered in the lovely lumps and bumps we associate with the genus. The function of these adornments are unknown. They look to have been a source of hydrodynamic drag, preventing Euhoplites from swimming at high speeds. Studying them may give some insight into the lifestyle of this ancient marine predator. Euhoplites had shells ranging in size up to a few inches.
We find them in Lower Cretaceous, middle to upper Albian age strata. Euhoplites has been found in Middle and Upper Albian beds in France where it is associated respectively with Hoplites and Anahoplites, and Pleurohoplites, Puzosia, and Desmoceras; in the Middle Albian of Brazil with Anahoplites and Turrilites; and in the Cenomanian of Texas. It is the most common ammonite fossil of the Folkstone fossil beds in southeastern England where a variety of species are found, including this 37mm beauty from the collections of José Juárez Ruiz.

Thursday 10 January 2019

FIRE-KISSED ARTHROPOD

This fellow is Chengjiangocaris kunmingensis, a rather glorious fuxinhuiid arthropod. While he looks like he could be from the inside of the Lascaux Caves and their fire-kissed Palaeolithic paintings, albeit by a very ancient Picasso, he was found at a Cambian fossil site in southern China.

As his name indicates, he is from a fossil site in the Yunnan region near Kunming. He is unusual in many ways, both because of the remarkable level of preservation and the position in which he was found. This fellow was a bit of a tippy arthropod. His carapace had flipped over before fossilisation, allowing researchers to to examine this fuxianhuiid's head and legs in great detail without a carapace in the way.

The roughly 518-million-year-old site contains a dizzying abundance of beautifully preserved weird and wonderful life-forms, from jellyfish and comb jellies to arthropods and algae and is about 10 million years older than the Burgess Shale. Photo credit: Yie Jang (Yunnan University)

Wednesday 9 January 2019

Tuesday 8 January 2019

WASH ON, WASH OFF

If you were a fish living in the warm turquoise waters off the coast of Bonaire, you may not hear those words, but you'd see the shrimp sign language equivalent. It seems Periclimenes yucatanicus or Spotted Cleaner Shrimp is doing a booming business in the local reefs by setting up a fish washing service.

That's right, a Fish Wash. You'd be hard pressed to find a terrestrial Molly Maid with two opposable thumbs as studious and hardworking as this wee marine beauty.

This quiet marine mogul is turning out to be one of the ocean's top entrepreneurs. Keeping its host and diet clean and green, the spotted shrimp hooks up with the locals, in this case, local sea anemones and sets up a fish wash. Picture a car wash but without the noise and teenage boys. The signage posted is the shrimps' natural coloring which attracts fish from around the reefs.

Wash on, wash off.

Once within reach, the shrimp cleans the surface of the fish, giving the fish a buff and the shrimp its daily feed.

Monday 7 January 2019

FRATERCULA ARCTICA

This lovely fellow is a Puffin or "Sea Parrot" from Skomer Island near Pembrokshire in Wales. 

They live about 20 years making a living in our cold seas dining on herring, hake and sand eels.

They are good little swimmers as you might expect but surprisingly they are great flyers, too! Once they get some speed on board, they can fly up to 88 km an hour. 

The sexy orange beak (dead sexy, right?) shifts from a dull grey to bright orange when it is time to attract a mate. 

While not strictly monogamous, most Puffins will choose the same mate year upon year producing adorable chicks or pufflings (awe) from their mating efforts.

Sunday 6 January 2019

ICHTHYOSAURIA

Ichthyosaurus was an extinct marine reptile first described from fossil fragments found in 1699 in Wales. Shortly thereafter, fossil vertebrae were published in 1708 from the Lower Jurassic.

Saturday 5 January 2019

HOLCOPHYLLOCERAS MEDITERRANEUM

This lovely ammonite is Holcophylloceras mediterraneum (Neumayr 1871) from Late Jurassic (Oxfordian) deposits near Sokoja, Madagasgar.

Amazing suturing on this lovely ammonite and great detail, allowing us to see how he grew, adding to his size, chamber by chamber, building out his spiral shape.

Ammonite shells had many chambers divided by walls called septa. Nautiloids had simple septa with a single arc whereas ammonites developed septa with intricate folds, lobes and saddles. They also developed delicate feather-like or fern-like lacey patterns, called sutures, on the outer shell. You sometimes see them on polished or water worn specimens and in the photos of this fellow below.

The chambers were connected by a tube called a siphuncle which allowed for the control of buoyancy with the hollow inner chambers of the shell acting as air tanks to help them float. A bit like internal water wings you might use to learn how to swim as a kid.

We can see the edges of this specimen's shell where it would have continued out to the last chamber, the body-chamber, where the ammonite lived. Picture a squid or octopus, now add a shell. That's him!

Friday 4 January 2019

MEGALODON TOOTH

Carcharocles chubutensis, which roughly translates to the "glorious shark of Chubut," from the ancient Greek is an extinct species of prehistoric mega-toothed sharks in the genus Carcharocles.

These big beasties lived during Oligocene to Miocene. This fellow is considered to be a close relative of the famous prehistoric mega-toothed shark, C. megalodon, although the classification of this species is still disputed.

Swiss naturalist Louis Agassiz first identified this shark as a species of Carcharodon in 1843. In 1906, Ameghino renamed this shark as C. chubutensis. In 1964, shark researcher, L. S. Glikman recognized the transition of Otodus obliquus to C. auriculatus. In 1987, shark researcher, H. Cappetta reorganized the C. auriculatus - C. megalodon lineage and placed all related mega-toothed sharks along with this species in the genus Carcharocles.

At long last, the complete Otodus obliquus to C. megalodon progression began to look clear. Since then, C. chubutensis has been re-named into Otodus chubutensis, also the other chronospecies of the Otodus obliquus - O. megalodon lineage. Chubutensis appears at the frontier Upper Oligocene to Lowest Miocene (evolving from O. angustidens which has stronger side cusps) and turns into O. megalodon in the Lower to Middle Miocene, where the side cusps are already absent. Despite previous publications, there is no chubutensis in the Pliocene.

Victor Perez and his team published on the transition between Carcharocles chubutensis and Carcharocles megalodon (Otodontidae, Chondrichthyes): lateral cusplet loss through time in March of 2018. In their work, they look at the separation between all the teeth of Carcharocles chubutensis and Carcharocles megalodon and published that it is next to impossible to divide them up as a complex mosaic evolutionary continuum characterizes this transformation, particularly in the loss of lateral cusplets.

The cuspleted and uncuspleted teeth of Carcharocles spp. are designated as chronomorphs because there is wide overlap between them both morphologically and chronologically. In the lower Miocene Beds (Shattuck Zones) 2–9 of the Calvert Formation (representing approximately 3.2 million years, 20.2–17 Ma, Burdigalian) both cuspleted and uncuspleted teeth are present, but cuspleted teeth predominate, constituting approximately 87% of the Carcharocles spp. teeth represented in their samples.

In the middle Miocene Beds 10–16A of the Calvert Formation (representing approximately 2.4 million years, 16.4–14 Ma, Langhian), there is a steady increase in the proportion of uncuspleted Carcharocles teeth.

In the upper Miocene Beds 21–24 of the St. Marys Formation (representing approximately 2.8 million years, 10.4–7.6 Ma, Tortonian), lateral cusplets are nearly absent in Carcharocles teeth from our study area, with only a single specimen bearing lateral cusplets. The dental transition between Carcharocles chubutensis and Carcharocles megalodon occurs within the Miocene Chesapeake Group. Although their study helps to elucidate the timing of lateral cusplet loss in Carcharocles locally, the rationale for this prolonged evolutionary transition remains unclear.

The specimen you see here is in the Geological Museum in Lisbon. The photo credit goes to the deeply awesome Luis Lima who shared some wonderful photos of his recent visit to their collections.

If you'd like to read the paper from Perez, you can find it here:
https://www.tandfonline.com/doi/full/10.1080/02724634.2018.1546732

Thursday 3 January 2019

ICELAND: TORFAJOKULL

The Northern Lights over a sea of wildflowers in the marsh near Landmannalaugar, part of the Fjallabak Nature Reserve in the Highlands of Iceland.

Landmannalaugar is at the northern tip of the Laugavegur hiking trail that leads through natural geothermal hot springs and an austere yet poetically beautiful landscape. 

Here, you can see the Northern Lights play through the darkness of a night sky without light pollution and bask in the raw geology of this rugged land.

The Fjallabak region takes its name from the numerous wild and rugged mountains with deeply incised valleys, which are found there. The topography of the Torfajokull, a central volcano found within the Fjallabak Nature Reserve, is a direct result of the region being the largest rhyolite area in Iceland and the largest geothermal area (after Grimsvotn in Vatnajokull).

The Torfajokull central volcano is an active volcanic system but is now in a declining fumarolic stage as exemplified by numerous fumaroles and hot springs. The hot pools at Landmannalaugar are but one of many manifestations of geothermal activity in the area, which also tends to alter the minerals in the rocks, causing the beautiful colour variations from red and yellow to blue and green, a good example being Brennisteinsalda. Geologists believe that the Torfajokull central volcano is a caldera, the rim being Haalda, Suðurnamur, Norður-Barmur, Torfajokull, Kaldaklofsfjoll and Ljosartungur.

The bedrock of the Fjallabak Nature Reserve dates back 8-10 million years. At that time the area was on the Reykjanes – Langjokull ridge rift zone. The volcano has been most productive during the last 2 million years, that is during the last Ice Age Interglacial rhyolite lava (Brandsgil) and sub-glacial rhyolite (erupted under ice/water, examples being Blahnukur and Brennisteinsalda are characteristic formations in the area. To the north of the Torfajokull region sub-glacial volcanic activity produced the hyaloclastites (moberg) mountains, such as Lodmundur and Mogilshofdar.

Volcanic activity in recent times (last 10.000 years) has been restricted to a few northeast – southwest fissures, the most recent one, the Veidivotn fissure from 1480, formed Laugahraun (by the hut at Landmannalaugar), Namshraun, Nordurnamshraun, Ljotipollur and other craters which extend 30 km, further to the north Eruptions in the area tend to be explosive and occur every 500 – 800 years, previous known eruptions being around A. D 150 and 900.

MEGALOSAURUS BUCKLANDII

Oxford University Museum of Natural History was established in 1860 to draw together scientific studies from across the University of Oxford. Today, the award-winning Museum continues to be a place of scientific research, collecting and fieldwork and plays host to a number of programmes and exhibitions.

Notable collections include the world's first described dinosaur, Megalosaurus bucklandii, and the world-famous Oxford Dodo, the only soft tissue remains of the extinct dodo. Although fossils from other areas have been assigned to the genus, the only certain remains of Megalosaurus come from Oxfordshire and date to the late Middle Jurassic. In 1824, Megalosaurus was the first genus of non-avian dinosaur to be validly named. The type species is Megalosaurus bucklandii, named in 1827.

In 1842, Megalosaurus was one of three genera on which Richard Owen based his Dinosauria. On Owen's direction, a model was made as one of the Crystal Palace Dinosaurs, which greatly increased the public interest for prehistoric reptiles. Subsequently, over fifty other species would be classified under the genus, originally because dinosaurs were not well known, but even during the 20th century after many dinosaurs had been discovered. Today it is understood these additional species were not directly related to M. bucklandii, which is the only true Megalosaurus species. Because a complete skeleton of it has never been found, much is still unclear about its build.

The Museum is as spectacular today as when it opened in 1860. As a striking example of Victorian neo-Gothic architecture, the building's style was strongly influenced by the ideas of 19th-century art critic John Ruskin. Ruskin believed that architecture should be shaped by the energies of the natural world, and thanks to his connections with a number of eminent Pre-Raphaelite artists, the Museum's design and decoration now stand as a prime example of the Pre-Raphaelite vision of science and art.

On 30 June 1860, the Museum hosted a clash of ideologies that has become known as the Great Debate. Even before the collections were fully installed, or the architectural decorations completed, the British Association for the Advancement of Science held its 30th annual meeting to mark the opening of the building, then known as the University Museum. It was at this event that Samuel Wilberforce, Bishop of Oxford, and Thomas Huxley, a biologist from London, went head-to-head in a debate about one of the most controversial ideas of the 19th century – Charles Darwin's theory of evolution by natural selection.

Wednesday 2 January 2019

ALSACE AMMONITE

A lovely example of the nautilus, Cératite Nodosus, from Shell Lime Superior deposits near Alsace in northeastern France on the Rhine River plain. Ammonite and nautilus shells are made up predominantly of calcium carbonate in the form of aragonite and proteinaceous organic matrix or conchiolin arranged in layers: a thin outer prismatic layer, a nacreous layer and an inner lining of prismatic habitat. While their outer shells are generally aragonite, aptychus are distinct as they are composed of calcite.


The aptychus we see here, hard anatomical structures or curved shelly plates now understood to be part of the body of an ammonite or nautilus, are often referred to as beaks. If you look closely at this specimen, you can see the beak of the nautilus, that wee pointed piece, near the centre. Collection of Ange Mirabet, Strasbourg, France.


Tuesday 1 January 2019

Monday 31 December 2018

JELLYFISH: GAGISAMA

These festive lovelies are jellyfish. Jellyfish are found all over the world, from surface waters to our deepest seas — and they are old. They are some of the oldest animals in the fossil record.

Sea jellies and jellyfish are the common names for the medusa-phase or adult phase of certain gelatinous members of the subphylum Medusozoa, a major part of the phylum Cnidaria — more closely related to anemones and corals.

Jellyfish are not fish at all. Jellyfish evolved millions of years before true fish. 

The oldest conulariid scyphozoans — picture an ice-cream cone with fourfold symmetry — appeared between 635 and 577 million years ago in the Neoproterozoic of the Lantian Formation a 150-meter-thick sequence of rocks deposited in southern China. 

Others are found in the youngest Ediacaran rocks of the Tamengo Formation of Brazil, c. 505 mya, through to the Triassic. Cubozoans and hydrozoans appeared in the Cambrian of the Marjum Formation in Utah, USA, c. 540 mya. Like other soft-bodied organisms, ctenophores (comb jellies), sea jellies and jellyfish only produce fossils only under exceptional taphonomic conditions — think rare.

I have seen all sorts of their brethren growing up on the west coast of Canada. I have seen them in tide pools, washed up on the beach and swam amongst thousands of Moon Jellyfish while scuba diving in the Salish Sea. Their movement in the water is marvellous.  

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, jellyfish are known as ǥaǥisama.

The watercolour ǥaǥisama you see here is a bit of fancy. While I chose blue, purple and pink for these lovelies, they also come in bright yellow, orange and relatively clear — and are often luminescent.

Jellyfish such as comb jellies produce bright flashes to startle a predator, others such as siphonophores can produce a chain of light or release thousands of glowing particles into the water as a mimic of small plankton to confuse the predator.

For most jellyfish bioluminescence is used for defence against predators — and about half of all jellyfish are bioluminescent. Some produce a glowing sticky slime that clings to predators making them vulnerable to other predators. Some jellyfish can release their tentacles as glowing decoys. So you see that there are many strategies for using bioluminescence by jellyfish.

All bioluminescence comes from energy released from a chemical reaction. This is very different from other sources of light, such as from the sun or a light bulb, where the energy comes from heat. In a luminescent reaction, two types of chemicals, called luciferin and luciferase, combine together. The luciferase acts as an enzyme, allowing the luciferin to release energy as it is oxidized. The colour of the light depends on the chemical structures of the chemicals. 

There are more than a dozen known chemical luminescent systems, indicating that bioluminescence evolved independently in different groups of organisms. One type of luciferin is called coelenterazine, found in jellyfish, shrimp, and fish. Dinoflagellates and krill share another class of unique luciferins, while ostracods (firefleas) and some fish have a completely different luciferin. The occurrence of identical luciferins for different types of organisms suggests a dietary source for some groups. Organisms such as bacteria and fireflies have unique luminescent chemistries. In many other groups, the chemistry is still unknown

Some of the most amazing deep-sea jellyfish are the comb jellies, which can get as large as a basketball, and are in some cases so fragile that they are almost impossible to collect intact.

Also spectacular are the siphonophores, some of which can reach several meters in length. Siphonophores deploy many tentacles like a gill net casting for small fish.

Saturday 29 December 2018

ORYGMASPIS OF THE TANGLEFOOT

This calcified beauty is Orygmaspis (Parabolinoides) spinula (Westrop, 1986) an Upper Cambrian trilobite from the McKay Group near Tanglefoot Mountain in the Kootenay Rockies. 

Orygmaspis is a genus of asaphid trilobite with an inverted egg-shaped outline, a wide headshield, small eyes, long genal spines, 12 spined thorax segments and a small, short tail shield, with four pairs of spines. 

Asaphida is comprised of six superfamilies found as marine fossils that date from the Middle Cambrian through to the Ordovician — Anomocaroidea, Asaphoidea, Cyclopygoidea, Dikelocephaloidea, Remopleuridoidea and Trinucleioidea. It was here, in the Ordovician, that five of the six lineages met their end along with 60% of all marine life at the time. They did leave us with some wonderful examples of their form and adaptations. The stubby eyed Asaphids evolved to give us Asaphus kowalewskii with delightfully long eyestalks. These specialized protrusions would have given that lovely species a much better field of view in which to hunt Ordovician seas — and avoid becoming the hunted.

Only the hardy Superfamily Trinucleiodea pushed through. They were to meet their end in the final days of the Silurian where yet another cataclysmic event wiped out much of the life on Earth, including the last remains of Asaphida (Fortey & Chatterton, 1988).

The outline of the exoskeleton Orygmaspis is inverted egg-shaped, with a parabolic headshield — or cephalon less than twice as wide as long. Picture a 2-D egg where the head is wider than the tail.

The glabella, the well-defined central raised area excluding the backward occipital ring, is ¾× as wide as long, moderately convex, truncate-tapering, with 3 pairs of shallow to obsolete lateral furrows. 

The occipital ring is well defined. The distance between the glabella and the border (or preglabellar field) is ±¼× as long as the glabella. This fellow had small to medium-sized eyes, 12-20% of the length of the cephalon. These were positioned between the front and the middle of the glabella and about ⅓ as far out as the glabella is wide. 

The remaining parts of the cephalon, the fixed and free cheeks — or fixigenae and librigenae — are relatively flat. The fracture lines or sutures — that separate the librigenae from the fixigenae in moulting — are divergent just in front of the eyes. These become parallel near the border furrow and strongly convergent at the margin. 

From the back of the eyes, the sutures bend out, then in, diverging outward and backward at approximately 45°, cutting the posterior margin well within the inner bend of the spine — or opisthoparian sutures. 

The thorax or articulating middle part of the body has 12 segments. The anteriormost segment gradually narrows into a sideward directed point, while further to the back the spines are directed outward and the spine is of increasing length up until the ninth spine, while the spine on the tenth segment is abruptly smaller, and 11 and 12 even more so. 

This fellow has a wee pygidium or tail shield that is only about ⅓× as wide as the cephalon. It is narrowly transverse about 2× wider than long. Its axis is slightly wider than the pleural fields to each side, and has up to 4 axial rings and a terminal and almost reaches the margin. Up to 4 pleural segments with obsolete interpleural grooves and shallow pleural furrows. The posterior margin has 3 or 4 pairs of spines, getting smaller further to the back. 

References:

Chatterton, Brian D. E.; Gibb, Stacey (2016). Furongian (Upper Cambrian) Trilobites from the McKay Group, Bull River Valley, Near Cranbrook, Southeastern British Columbia, Canada; Issue 35 of Palaeontographica Canadiana; ISBN: 978-1-897095-79-9

Moore, R.C. (1959). Arthropoda I - Arthropoda General Features, Proarthropoda, Euarthropoda General Features, Trilobitomorpha. Treatise on Invertebrate Paleontology. Part O. Boulder, Colorado/Lawrence, Kansas: Geological Society of America/University of Kansas Press. pp. O272–O273. ISBN 0-8137-3015-5.

Friday 28 December 2018

KOURISODON PUNTLEDGENSIS

Kourisodon puntledgensis
Mosasaurs were large, globally distributed marine predators who dominated our Late Cretaceous oceans. Since the unearthing of the first mosasaur in 1766 (Mulder, 2003) we've discovered their fossil remains most everywhere around the globe — New Zealand, Antarctica, Africa, North and South America, Europe and Japan.

We've now found the fossil remains of an elasmosaur and two mosasaurs along the banks of the Puntledge River, says Dan Bowen, Chair of the Vancouver Island Palaeontological Society.

The first set of about 10 mosasaurs vertebrae (Platecarpus) was found by Tim O’Bear and unearthed by a team of VIPS and Museum enthusiasts led by Dr. Rolf Ludvigsen. Dan Bowen and Joe Morin of the VIPS prepped these specimens for the Museum.

In 1993, a new species of mosasaur, Kourisodon puntledgensis, a razor-toothed mosasaur, was found upstream from the elasmosaur site by Joe Zembiliwich on a fossil field trip led by Mike Trask. A replica of this specimen now calls The Canadian Fossil Discovery Centre in Morden home. What is significant about this specimen is that it is a new genus and species. At 4.5 meters, it is a bit smaller than most mosasaurs and similar to Clidastes, but just as mighty. It shared its environment with a variety of Elasmosaurids, turtles, and other mosasaurs, although it seems that no polycotylids were present in its Pacific environment.

Interestingly, this species has been found in this one locality in Canada and across the Pacific in the basal part of the Upper Cretaceous — middle Campanian to Maastrichtian — of the Izumi Group, Izumi Mountains and Awaji Island of southwestern Japan. We see an interesting correlation with the ammonite fauna from these two regions as well. What we do not see is a correlation between our Pacific fauna and those from our neighbouring province to the east. Betsy Nicholls and Dirk Meckert published on the marine reptiles from the Nanaimo Group (Upper Cretaceous) of Vancouver Island in the Canadian Journal of Earth Sciences in 2002. What we see in our faunal mix reinforces the provinciality of the Pacific faunas and their isolation from contemporaneous faunas in the Western Interior Seaway.

Thursday 27 December 2018

TOTEMS, SETTLER'S & HISTORY: STANLEY PARK

Totem, Welcome & Mortuary Poles at Stanley Park
If you visit Brockton Point in Stanley Park, there are many carved red cedar First Nation poles for you to admire.  

What you are viewing are replicas of First Nation welcome and totem poles that once stood in the park but have been returned to their homes within the province's diverse First Nation communities — or held within museum collections. 

Some of the original totems came from Alert Bay on Cormorant Island, near the Port McNeill on the north coast of Vancouver Island. Others came from communities in Haida Gwaii — and still more from the Wuikinuxv First Nations at Rivers Inlet on British Columbia's central west coast — home of the Great Bear Rainforest with her Spirit Bears.

The exception is the most recent addition carved by Robert Yelton in 2009. Robert is a First Nation carver from the Squamish Nation and his original welcome pole graces Brockton Point, the original settlement site of a group of Squamish-Portuguese settlers.  

If you look at the photo above, the lovely chocolate, red and turquoise pole on the right is a replica of the mortuary pole raised to honour the Raven Chief of Skedans or Gida'nsta, the Haida phrase for from his daughter, the title of respect used when addressing a person of high rank. Early fur traders often took the name of the local Chief and used it synonymously as the place names for the sites they visited — hence Skedans from Gida'nsta.

Chief Skedans Mortuary Pole
Chief Skedans, or Qa'gials qe'gawa-i, to his children, lived in Ḵ’uuna Llnagaay, or village at the edge, in Xaayda Kil — a village on the exposed coast of Louise Island — now a Haida Heritage Site.  

There are some paintings you may have seen by Emily Carr of her visits to the site in 1912, She used the phonetic Q'una from Q:o'na to describe both the place name and title of her work. 

Carr's paintings of the totems have always looked to me to be a mash-up — imagine if painter Tamara de Lempicka and photographer Edward Curtis had a baby — not pretty, but interesting.

Some called this area, Huadju-lanas or Xu'adji la'nas, which means Grizzly-Bear-Town, in reference to resident grizzly bear population and their adornment of many totems and artwork by the local artists.

Upon Chief Skedan's death, the mortuary pole was carved both to honour him and provide his final resting place. Dates are a bit fuzzy, but local accounts have this as sometime between 1870-1878 — and at a cost of 290 blankets or roughly $600 in today's currency. 

The great artistry of the pole was much admired by those in the community and those organizing the celebrations for the 1936 Vancouver Golden Jubilee — witnessed by  350,000 newly arrived residents.

Negotiations were pursued and the pole made its way down from Haida Gwaii to Stanley Park in time for the celebrations. The original totem graced Stanley Park for a little over twenty years before eventually making its way back to Haida Gwaii. It was returned to the community with bits of plaster and shoddy paint marring the original. These bits were scraped off and the pole welcomed back with due ceremony. 

In 1964, respected and renowned Northwest Coast master carver, Bill Reid, from the Kaadaas gaah Kiiguwaay, Raven/Wolf Clan of T'anuu, Haida Gwaii and Scottish-German descent, was asked to carve this colourful replica. 

Mountain Goat Detail, Skedans Mortuary Pole
Reid carved the totem onsite in Stanley Park with the help of German carver Werner True. Interestingly, though I looked at length for information on Werner True, all I can find is that he aided Bill Reid on the carving for a payment of $1000.

Don Yeomans, Haida master carver, meticulously recarved the moon crest in 1998. If you have admired the totem pole in the Vancouver Airport, you will have seen some of Yeoman's incredible work. 

The crest is Moon with the face, wings, legs and claws of a mighty and proud Thunderbird with a fairly smallish hooked beak in a split design. We have Moon to thank for the tides and illuminating our darkest nights. As a crest, Moon is associated with transformation and acting as both guardian and protector.

The original pole had a mortuary box that held the Chief's remains. The crest sits atop a very charming mountain goat. I have included a nice close-up here of the replica for you to enjoy. 

Mountain Goats live in the high peaks of British Columbia and being so close to the sky, they have the supernatural ability to cross over to the sky world. They are also credited as being spirit guardians and guides to First Nation shamans.

I love his horns and tucked in cloven hooves. There is another pole being carved on Vancouver Island that I hope to see during its creation that also depicts a Mountain Goat. With permission and in time, I hope to share some of those photos with you. 

Mountain Goat is sitting atop Grizzly Bear or Huaji or Xhuwaji’ with little human figures placed in his ears to represent the Chief's daughter and son-in-law, who raised the pole and held a potlatch in his honour. 

Beneath the great bear is Seal or Killer Whale in his grasp. The inscription in the park says it is a Killer Whale but I am not sure about that interpretation — both the look and lore make Seal more likely. Perhaps if Killer Whale were within Thunderbird's grasp — maybe

Though it is always a pleasure to see Killer Whale carved in red cedar, as the first whales came into being when they were carved in wood by a human — or by Raven — then magically infused with the gift of life.

Siwash Rock on the northern end of Third Beach, Stanley Park
The ground these totems sit upon is composed of plutonic, volcanic and sedimentary layers of rock and exhibits the profound influences of glaciation and glacial retreat from the last ice age. 

Glacial deposits sit atop as a mix of clay, sand, cobbles and larger boulders of glacial till. 

There are a few areas of exposed volcanics within the park that speak to the scraping of the glaciers as they retreated about 12,500 years ago. 

The iconic moss and lichen coated Siwash Rock on the northern end of Third Beach is one of the more picturesque of these. It is a basaltic and andesitic volcanic rock — a blend of black phenocrysts of augite cemented together with plagioclase, hornblende and volcanic glass.

Images not shown: 

Do check out the work of Emily Carr and her paintings of Q:o'na from the 1940s. I'll share a link here but do not have permission to post her works. http://www.emilycarr.org/totems/exhibit/haida/ssintro.htm

Wednesday 26 December 2018

PHOTONS: ELECTROMAGNETIC RADIATION

Light is a form of electromagnetic radiation, like radio or microwaves. Some aspects of light, such as its frequency (colour), are based on its wave properties. 

Light can also be considered a stream of particles called photons, each of which contains energy. This concept is called the quantum theory. 

So there are two ways to express how much light there is. One is based on energy (in units of watts, joules, or calories, and the other is based on the number of photons. 

For example, the wavelength of green light is less than 1 millionth of an inch, and the energy of one photon of green light is equivalent to 1 million billionths of a calorie! Even though photons are particles, they are particles of energy and are different from particles in a cell such as molecules.

Tuesday 25 December 2018

DANCERS OF THE DEEP: JELLYFISH

This lovely ocean dancer with her long delicate tentacles or lappets and thicker rouched oral arms is a jellyfish. 

Her brethren are playing in the waters of the deep all over the world, from surface waters to our deepest seas — and they are old. They are some of the oldest animals in the fossil record.

Jellyfish and sea jellies are the informal common names given to the medusa-phase or adult phase of certain gelatinous members of the subphylum Medusozoa, a major part of the phylum Cnidaria — more closely related to anemones and corals.

Jellyfish are not fish at all. They evolved millions of years before true fish. The oldest conulariid scyphozoans appeared between 635 and 577 million years ago in the Neoproterozoic of the Lantian Formation, a 150-meter-thick sequence of rocks deposited in southern China. 

Others are found in the youngest Ediacaran rocks of the Tamengo Formation of Brazil, c. 505 mya, through to the Triassic. Cubozoans and hydrozoans appeared in the Cambrian of the Marjum Formation in Utah, USA, c. 540 million years ago.

I have seen all sorts of their brethren growing up on the west coast of Canada. I have seen them in tide pools, washed up on the beach and swam amongst thousands of Moon Jellyfish while scuba diving in the Salish Sea. Their movement in the water is marvellous.  

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, jellyfish are known as ǥaǥisama.

The watercolour ǥaǥisama you see here in dreamy pink and white is but one colour variation. They come in blue, purple, orange, yellow and clear — and are often luminescent. They produce light by the oxidation of a substrate molecule, luciferin, in a reaction catalyzed by a protein, luciferase.

Monday 24 December 2018

EAGLES, THUNDERBIRDS AND TALES OF THE SQUAMISH AREA

Squamish Valley / Mother of Wind
Eagles, bears and breathtakingly beautiful scenery await those who travel north of Vancouver, British Columbia to the town of Squamish.

Nestled at the head of Howe Sound and surrounded by mountains, Squamish is cradled in natural beauty as only a West Coast community can be. 

Growing in fame as the Outdoor Recreation Capital of Canada, visitors enjoy the breathtaking scenery while hiking, climbing, kicking back or participating in the growing number of attractions to explore in this wilderness community.

The area is home to the Squamish First Nation, the Sk̲wx̲wú7mesh Úxumixw and Lil’wat7ul Nations, both descendants of the Coast Salish First Nations. 

Before Europeans came to the Squamish Valley, the area was inhabited by the local First Nations. One of the first contact they had with European outsiders was in 1792, when Captain George Vancouver came to Squamish to trade near the residential area of Brackendale. At the time, the territory of the Sk̲wx̲wú7mesh Úxumixw Nation and Lil’wat7ul Nation extended from present day Greater Vancouver, past Squamish and Brackendale all the way to Gibson's landing, some 6732 square kilometers.

During the 1850s gold miners came in search of gold and an easier gold route to the Interior. Settlers began arriving in the area in 1889, with the majority of them being farmers relocating to the Squamish Valley. The first school was built in 1893 and the first hotel opened in 1902, on the old dock in Squamish.

Squamish means Mother of the Wind in Coast Salish, an homage to the winds that rise from the north before noon and blow steadily until dusk, making Squamish a top wind surfing destination and host to the annual PRO-AM sailboard races.

Stawamus Chief, Squamish
The Stawamus Chief, the second largest free standing piece of granite in the world at a staggering 2,297 feet or over 700 metres. 

It has made Squamish one of the top rock climbing destinations in North America and been the source of inspiration for climbing legends like Peter Croft, Hamish Fraser and Greg Foweraker. 

The Stawamus Chief was formed in the early Cretaceous, 100 million years ago, as a pool of molten magma cooled deep in the Earth's belly.

This majestic peak is said to have been one of the last areas of dry ground during a time of tremendous flooding in the Squamish area. Many cultures have a flood myth in their oral history and the Sk̲wx̲wú7mesh Úxumixw are no exception. They tell of a time when all the world save the highest peaks were submerged and only one of their nation survived. Warned in a vision, a fierce and clever warrior escaped to safety atop Mount Chuckigh — the inactive volcano now called Mount Garibaldi — as the flood waters rose.

An Eagle soars near Squamish, BC
After the flood, Eagle, a spiritual messenger from the Creator, came to him with a gift of salmon and told him that the world below was again hospitable and ready for his return. He climbed down the mountain to find his village covered by a layer of silt. 

All his people had perished, but his gods gave him another gift, a second survivor of the flood, a beautiful woman who became his wife. The couple shared the story of the Eagle's gift. Today, eagle feathers are given as sacred gifts to symbolize courage, wisdom and honour the commitment of relationships as eagles mate for life.  

If you look to the local mountains, you can see another peak that holds the nesting place of another legend. The Sk̲wx̲wú7mesh Úxumixw and Lil’wat7ul Nations share the story of Thunderbird, a supernatural being that causes thunder and lightning, who roosts atop Black Tusk, a volcanic mountain in the local range.

If you love eagles as much as I do, head to Squamish on the first Sunday after New Year's day, you can honour the eagles by participating in the Annual Brackendale Winter Eagle Count.

Sunday 23 December 2018

LINKING TIME: AMMONITE INDEX FOSSIL

Ammonites were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish.

They filled our world's oceans back in the day.  We find ammonite fossils (and plenty of them) in sedimentary rock from all over the world. In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past.

For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. Generally, deeper is older, so we use the sedimentary layers of rock to match up to specific geologic time periods, rather the way we use tree rings to date trees.

Saturday 22 December 2018

PHASIANUS CHOLCHICUS

Common Pheasant, Phasianus Cholchicus
These playful lovelies with the gorgeous gold and green plumage are beautiful examples of the Common Pheasant, Phasianus Cholchicus

We associate them with tweet shorn English aristocrats jauntily going about the hunt on horseback. 

Pheasants build their nests on the ground and can fly for short distances. They spend their days searching through fields and around streams looking for tasty insects, seeds and grain.

Friday 21 December 2018

COUGARS CONCOLOR: BADI

Cougars are meat-eating mammals, preferring to dine on deer. 

They are impressive athletes, able to leap 18 feet or more straight upward from a sitting position.

They are the most widely distributed land mammal in the Western hemisphere and yet we never seem to see them. They lead solitary lives and are excellent at avoiding humans. They see us far more often than we see them — boasting a field of vision spanning 130 degrees.

Cougars have a massive range that runs from the mountainous Canadian Rockies in northwestern Canada all the way down to Patagonia in South America. These cats make their dens in mountain crags, along rocky ledges, in dense woodland areas and under uprooted trees and debris. 

In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest — or Kwakwaka'wakw, speakers of Kwak'wala — a cougar or mountain lion is known as ba̱di — with an emphasis on the b.

Tuesday 18 December 2018

BOAS, YALIS AND THE RAVEN GWA'WINA CYCLE

On his first night in Alert Bay, after dinner with Stephen Allen Spencer and his two brothers-in-law, each, like Spencer, was married to a sister of Hunt and daughter of Anisalaga — Boas spent some hours in conversation with Annie Spencer (1856-1924), the younger sister to George (1864-1932) and William (1866-1952) Hunt, who regaled him with First Nation tales from her home in 'yalis, Alert Bay, British Columbia. 

“Mrs. Spencer was very gracious and told me many stories,” Boas wrote to Krackowizer, “which I recorded later in the evening.”

Four days later, Boas mentioned in a new note to his fiancée that he had visited Annie Spencer again and asked her to tell more tales. “She relates well and is very gracious,” he emphasized.
 “Unfortunately she is not well or I should really bother her.”

Nevertheless, Boas trod back to the Spencers’ home the same day. There he found Hunt’s sister either improved or doubly gracious, for she was “kind enough to tell me all I wanted to know. . . . The information I obtained from her was the most valuable I received in Alert Bay.”

The stories of Annie Hunt Spencer (1856-1924) daughter to Mrs. Mary Ebbits, Anisalaga, opened a vista on a narrative legacy linking all the peoples from Yakutat Bay to the Columbia River, who, though divided by physical and linguistic differences and by histories of conflict, held in common a heritage of thought. 

The Raven Cycle

A centerpiece of this heritage was the Raven Cycle, one of the oldest and largest bodies of oral literature in the Americas. In the bards who performed the Raven tales, and who daily altered them, were members not of a single school but of a living tradition whose members had innovated a stance toward the world in response to cycles of change from the Ice Age to the smallpox apocalypse. They had created a body of thought about people’s relationships to one another and to the cosmos, the beings within it, and the capacity of humans to right those relationships.

The star of the drama was Raven, scheming, ravenous, bumbling in his arrogance toward ever-greater disgrace, yet always surviving, evolving, and through his accidents and exploits establishing the present state of affairs.

Born before the earth had acquired its form, it was Raven—Old One, Great Inventor, Chief of the Ancients, Heaven Maker, Giving to the End, Going Around—who established the tools and forms of existence.

With the world veiled in darkness, Raven stole the box that held the sun and opened it, lighting the world by his ingenuity. 

He made man from grass and elderberry bushes, brought salmon to the people, fed the rivers with eulachon. He established the shapes and traits of his fellow animals and gave them their present powers and appearances. And though affairs could hardly change as radically in contemporary times as in the days of beginning, by his actions and infractions Raven pointed toward a way of being human. “So many stories are told about him,” Boas remarked during his first visit to the coast, “that they have a saying that human life is not long enough to tell all of them.”

Every First Nation of the Northwest Coast was woven into the fabric of the Raven Cycle through the warp and weft of a storytelling practice that linked speakers and listeners—messengers and mediums—within a pattern of call and response. There were no galleries around the fire, no lines dictating who paid and who performed. There were no observers, no outsiders, no Others. People did not merely listen to the Raven Cycle; they took part, asking questions, repeating refrains, goading the storyteller toward feats of ingenuity.

There was saltiness and sport in the Raven tales, sex and waste, greed and hate. The bards were like Raven: they begged, borrowed, stole, and in doing so created. They were origin poets who fostered possibilities by defying the rules of the system they had made.

The stories they told, often ending in just-so pronouncements—explaining, say, how wolves had come to behave so diffidently around humans (“they really became wolves after this,” one storyteller put it)—wove a fabric of thought that embraced every notable rock, tree, and stream in the neighbourhood, encompassing the human community within an animate cosmos. 

"I remember with the greatest pleasure many trips in colourful canoes with Indian guides who did not stop telling tales,” Boas wrote in one account of this storytelling culture for a German audience. 

“It was that mountain peak which alone reached above the waters during the great flood, and from this peak, the earth was populated again. Here, the battle took place in which the stone giants were outwitted and killed by the brave Indians. A dangerous rapid, formed in prehistoric times in a narrow strait, reminds us of the Son of God, who killed and sank a dangerous sea monster into the ocean at that place. Each strange place is woven into a legend.”

Sunday 16 December 2018

MOON RAVEN TOTEM AT SAXMAN TOTEM PARK

Moon Raven Pole at Saxman Totem Park
Ketchikan is truly the totem capital of the world, and if you want to see the most standing totems in one location, a visit to Saxman Village’s Totem Park is in order. 

The 25 totems here are authentic replicas of the original poles that were left standing in abandoned villages as the villagers moved into more populated cities.

The art of totem pole carving was a luxury that experienced its heyday in the mid-1700s to the late 1800s. 

The fur trade had provided the Tlingit, Haida and Tsimshian peoples with a renewed source of wealth – and time to focus on the artistry of the totem. 

These poles were symbols of cultural and economic wealth that told glorious, comprehensive stories about the First Nations people and legends of the land.

In the late 1800s, Tlingits from the old villages of Cape Fox and Tongass searched out the Saxman site as a place where they could build a school and a church. 

The site (just one square mile) was incorporated in 1929 and has a population of just over 400 today, mostly Native Alaskans. Thousands of people visit Saxman each year to witness the artistic craftsmanship and stand in the presence of history—both deeply moving and proud.


Saturday 15 December 2018

TRIASSIC OF NORTH AMERICA

In the early 1980s, Tim Tozer, Geological Survey of Canada, looked at the distribution of marine invertebrate fauna in the Triassic of North America.

Tozer's interest in our marine invert friends was their distribution and what those occurrences could tell us. How and when did certain species migrate, cluster, evolve — and for those that were prolific, how could their occurrence — and therefore significance — aide in an assessment of plate and terrane movements that would help us to determine paleolatitudinal significance.

In the western terranes of the Cordillera, marine faunas from southern Alaska and Yukon to Mexico are known from the parts that are obviously allochthonous with regard to the North American plates. Lower and upper Triadic faunas of these areas, as well as some that are today up to 63 ° North, have the characteristics of the lower paleo latitudes. As far as is known, Middle Triadic faunas in these zones do not provide any significant data. In the western Cordillera, the faunas of the lower paleo latitudes can be found up to 3000 km north of their counterparts on the American plate. This indicates a tectonic shift of this magnitude.

There are marine triads on the North American plate over 46 latitudes from California to Ellesmere Island. For some periods, two to three different fauna provinces can be distinguished from one another. The differences in fauna are obviously linked to the paleolatitude. They are called LPL, MPL, HPL (lower, middle, higher paleolatitude). Nevada provides the diagnostic features of the lower; northeastern British Columbia that of the middle and Sverdrup Basin that of the higher paleolatitude. A distinction between the provinces of the middle and the higher paleo-situations can not be made for the lower Triassic and lower Middle Triassic (anise). However, all three provinces can be seen in the deposits of Ladin, Kam and Nor.

Diatoms / Microalgae dominant components of phytoplankton
If one looks at the fauna and the type of sediment, the paleogeography of the Triassic can be interpreted as follows: a tectonically calm west coast of the North American plate that bordered on an open sea; in the area far from the coast, a series of volcanic archipelagos delivered sediment to the adjacent basins. Some were lined or temporarily covered with coral wadding and carbonate banks.

Deeper pools were in between. The islands were probably within 30 degrees of the triadic equator. They moved away from the coast up to about 5000 km from the forerunner of the East Pacific Ridge. The geographical situation west of the back was probably similar.

Jurassic and later generations of the crust from near the back have brought some of the islands to the North American plate; some likely to South America; others have drifted west, to Asia. There are indications that New Guinea, New Caledonia and New Zealand were at a northern latitude of 30 ° or more during the Triassic period. The terranes that now form the western Cordillera were probably welded together and reached the North American plate before the end of the Jurassic period.

Tozer, ET (Tim): Marine Triassic faunas of North America: Their significance for assessing plate and terrane movements. Geol Rundsch 71, 1077-1104 (1982). https://doi.org/10.1007/BF01821119

Danner, W. (Ted): Limestone resources of southwestern British Columbia. Montana Bur. Mines & Geol., Special publ. 74: 171-185, 1976.

Davis, G., Monger, JWH & Burchfiel, BC: Mesozoic construction of the Cordilleran “collage”, central British Columbia to central California. Pacific Coast Paleography symposium 2, Soc. Economic Paleontologists and Mineralogists, Los Angeles: 1-32, 1978.

Gibson, DW: Triassic rocks of the Rocky Mountain foothills and front ranges of northeastern British Columbia and west-central Alberta. Geol. Surv. Canada Bull. 247, 1975.

Friday 14 December 2018

OYSTER: TLOXTLOX

One of the now rare species of oysters in the Pacific Northwest is the Olympia oyster, Ostrea lurida, (Carpenter, 1864).  

While rare today, these are British Columbia’s only native oyster. Had you been dining on their brethren in the 1800s or earlier, it would have been this species you were consuming. Middens from Port Hardy to California are built from Ostrea lurida.

These wonderful invertebrates bare their souls with every bite. Have they lived in cold water, deep beneath the sea away from the suns rays and heat? Are they the rough and tumbled beach denizens whose thick shells have formed to withstand the pounding of the sea? 

Is the oyster in your mouth thin and slimy having just done the nasty spurred by the warming waters of Spring? Is this oyster a local or was it shipped to your current local and if asked would greet you with "Kon'nichiwa?" Not if the beauty on your plate is indeed Ostrea lurida

We have been cultivating, indeed maximizing the influx of invasive species to the cold waters of the Salish Sea. But in the wild waters off the coast of British Columbia is the last natural abundant habitat of the tasty Ostrea lurida in the pristine waters of  Nootka Sound. The area is home to the Nuu-chah-nulth First Nations who have consumed this species boiled or steamed for thousands of years. Here these ancient oysters not only survive but thrive — building reefs and providing habitat for crab, anemones and small marine animals. 

Oysters are in the family Ostreidae — the true oysters. Their lineage evolved in the Early Triassic — 251 - 247 million years ago. 

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, an oyster is known as t̕łox̱t̕łox̱. I am curious to learn if any of the Nuu-chah-nulth have a different word for an oyster. If you happen to know, I would be grateful to learn.

Sunday 2 December 2018

HOLCOPHYLLOCERAS

Amazing suturing on this lovely ammonite, Holcophylloceras mediterraneum, (Neumayr 1871) from Late Jurassic (Oxfordian) deposits near Sokoja, Madagasgar.

The shells had many chambers divided by walls called septa. The chambers were connected by a tube called a siphuncle which allowed for the control of buoyancy with the hollow inner chambers of the shell acting as air tanks to help them float.

They were a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs, commonly referred to as ammonites, are more closely related to living coleoids — octopuses, squid, and cuttlefish) then they are to shelled nautiloids such as the living Nautilus species.

We can see the edges of this specimen's shell where it would have continued out to the last chamber, the body-chamber, where the ammonite lived. Picture a squid or octopus, now add a shell and a ton of water. That's him!


Saturday 1 December 2018

AMMONITES OF THE CAUCAUS MOUNTAINS

A very pleasing example of the Ammonite Acanthohoplites bigoureti (Seunes, 1887). Lower Cretaceous, Upper Aptian, from a riverbed concretion, Kurdzhips River, North Caucasus Mountains, Republic of Adygea, Russia. 

Geologically, the Caucasus Mountains belong to a system that extends from southeastern Europe into Asia and is considered a border between them. The Greater Caucasus Mountains are mainly composed of Cretaceous and Jurassic rocks with the Paleozoic and Precambrian rocks in the higher regions. 

Some volcanic formations are found throughout the range. On the other hand, the Lesser Caucasus Mountains are formed predominantly of the Paleogene rocks with a much smaller portion of the Jurassic and Cretaceous rocks. 

The evolution of the Caucasus began from the Late Triassic to the Late Jurassic during the Cimmerian orogeny at the active margin of the Tethys Ocean while the uplift of the Greater Caucasus is dated to the Miocene during the Alpine orogeny.

The Caucasus Mountains formed largely as the result of a tectonic plate collision between the Arabian plate moving northwards with respect to the Eurasian plate. As the Tethys Sea was closed and the Arabian Plate collided with the Iranian Plate and was pushed against it and with the clockwise movement of the Eurasian Plate towards the Iranian Plate and their final collision, the Iranian Plate was pressed against the Eurasian Plate. 

As this happened, the entire rocks that had been deposited in this basin from the Jurassic to the Miocene were folded to form the Greater Caucasus Mountains. This collision also caused the uplift and the Cenozoic volcanic activity in the Lesser Caucasus Mountains.

The preservation of this Russian specimen is outstanding. Acanthohoplites bigoureti are also found in Madagascar, Mozambique, in the Rhone-Alps of France and the Western High Atlas Mountains and near Marrakech in Morocco. This specimen measures 55mm and is in the collection of the deeply awesome Emil Black.