Wednesday, 7 December 2022

TEYLER, LINNAEUS AND A SWEET HELIANTHASTER

Exceptional fossil starfish Helianthaster preserved in minute detail in pyrite from the Devonian of Bundenbach, Germany.

Helianthaster rhenanus was first described in 1862 by Roemer, based on fossils found in the Bundenbach area in Germany, dating back to the lower Devonian. 

Helianthaster was variously attributed to Asteroidea, Ophiuroidea or to another group (Auluroidea ), but only recently this echinoderm and its close relatives (Helianthasteridae ) have been attributed with some certainty to Asteroidea (Blake, 2009). 

Other very similar starfish were the North Americans Arkonaster (Middle Devonian) and Lepidasterella ( Carboniferousmedium), the latter with 24 arms.

This animal, similar to modern starfish, had a diameter that could exceed 15 centimetres with extended arms. Helianthaster had 14 - 16 arms, elongated and thin, with an aboral surface with granular ossifications. The mouth was wide and composed of rather large oral plates; there were thorns on the adambulacrali, while the central disc was composed of small ossicles.

A study of the type specimen was examined with the use of X- rays. The result was images that seem to confirm the presence of large semicircular muscle flanges along the middle of the arms (Südkamp, ​​2011).

The second image you see here is a specimen from the Teylers Museum in Haarlem, the oldest museum in the Netherlands established in 1778. 

We have a cloth merchant turned banker to thank for both the building and this specimen. And, in a way, the beginnings of nomenclature. Pieter Teyler van der Hulst left us this legacy including many of the museum's specimens and the nest egg that would allow its expansion to the glory we enjoy today. 

Pieter lived next to George Clifford III, the financier of Swedish naturalist Carlo Linnaeus (1707-1778). Pieter's funds aided George in funding Linnaneus' work. In a bit of full circle scientific poetry, it was those dollars and this work that gave us the naming system that allowed us to attach a scientific name to this very specimen through Carl's binomial nomenclature. 

In taxonomy, binomial nomenclature ("two-term naming system"), or binary nomenclature, is a formal system of naming species of living things by giving each a name composed of two parts, both of which use Latin grammatical forms, although they can be based on words from other languages. Such a name is called a binomial name (which may be shortened to just "binomial"), a binomen, binominal name or a scientific name; more informally it is also historically called a Latin name. So, for this lovely specimen, Helianthaster rhenanus is this specimen's Latin name.

In his will, Pieter Teyler decided that his collection and part of his fortune should be used to create a foundation for their promotion, the Teylers Stichting (Teyler foundation). 

Teyler's legacy to the city of Haarlem was divided into two societies Teylers Eerste Genootschap (Dutch: Teyler's First Society ) or 'Godgeleerd Genootschap' ( Theological Society ), aimed at the study of religion, and the Teylers Tweede Genootschap ( Second Society ), dedicated to physics, poetry, history, drawing and numismatics.

The executors of Teyler's wishes, the first directors of Teylers Stichting, decided to establish a centre for study and education. Books, scientific instruments, drawings, fossils and minerals, would be housed under one roof. 

The concept was based on a revolutionary ideal derived from the Enlightenment: people could discover the world independently, without coercion from the church or the state. The example that guided the founders in creating the Teyler Museum was the Mouseion of classical antiquity: a "temple for the muses of the arts and sciences" which would also be a meeting place for scholars and host various collections.

This was a time when science and religion were still intermixed but beginning to divide into separate camps. The world was at war, expeditions were undertaken to secure new lands and trade routes—and the slave trade was slowly being abolished. 

In 1778, Russia controlled Alaska and would not sell to the USA, a country two years old in 1778, for another eighty-nine years in 1867. It was also the year that we lost Carl Linnaeus. He left his scientific work and his legacy of more than 1,600 books covering the literature of natural history from the 15th century to his death, a collection that would become the foundation of the Linnaeus Society, established in his name a decade later in 1788—and to which I am an elected fellow.

Here are some of the world events that happened in 1778, the year this museum was founded to give all of this a bit more context:

  • January 18 – Third voyage of James Cook: Captain James Cook, with ships HMS Resolution and HMS Discovery, first views Oahu then Kauai in the Hawaiian Islands of the Pacific Ocean, which he names the Sandwich Islands.
  • February 5 – South Carolina becomes the first state to ratify the Articles of Confederation. General John Cadwalader shoots and seriously wounds Major General Thomas Conway in a duel after a dispute between the two officers over Conway's continued criticism of General George Washington's leadership of the Continental Army.
  • February 6 – American Revolutionary War – In Paris, the Treaty of Alliance and the Treaty of Amity and Commerce are signed by the United States and France, signalling official French recognition of the new republic.
  • February 23 – American Revolutionary War – Friedrich Wilhelm von Steuben arrives at Valley Forge, Pennsylvania and begins to train the American troops.
  • March 6–October 24 – Captain Cook explores and maps the Pacific Northwest coast of North America, from Cape Foulweather (Oregon) to the Bering Strait.
  • March 10 – American Revolutionary War – George Washington approves the dishonourable discharge of Lieutenant Frederick Gotthold Enslin, for "attempting to commit sodomy, with John Monhort a soldier."
  • July 10 – Louis XVI of France declares war on the Kingdom of Great Britain.
  • July 27 – American Revolutionary War – First Battle of Ushant – British and French fleets fight to a standoff.
  • August 3 – The La Scala Opera House opens in Milan, with the première of Antonio Salieri's Europa riconosciuta.
Many more things happened, of course. Folk were born, fell in love, died—and some left legacies that we still enjoy to this day. 

Photo two by Ghedoghedo, CC BY-SA 4.0.

Tuesday, 6 December 2022

OYSTER: T'LOX'TLOX

One of the now rare species of oysters in the Pacific Northwest is the Olympia oyster, Ostrea lurida, (Carpenter, 1864).  

While rare today, these are British Columbia’s only native oyster. 

Had you been dining on their brethren in the 1800s or earlier, it would have been this species you were consuming. Middens from Port Hardy to California are built from Ostrea lurida.

These wonderful invertebrates bare their souls with every bite. Have they lived in cold water, deep beneath the sea, protected from the sun's rays and heat? Are they the rough and tumble beach denizens whose thick shells tell us of a life spent withstanding the relentless pounding of the sea? Is the oyster in your mouth thin and slimy having just done the nasty—spurred by the warming waters of Spring? 

Is this oyster a local or was it shipped to your current local and, if asked, would greet you with "Kon'nichiwa?" Not if the beauty on your plate is indeed Ostrea lurida

Oyster in Kwak'wala is t̕łox̱t̕łox̱
We have been cultivating, indeed maximizing the influx of invasive species to the cold waters of the Salish Sea for many years. 

But in the wild waters off the coast of British Columbia is the last natural abundant habitat of the tasty Ostrea lurida in the pristine waters of  Nootka Sound. 

The area is home to the Nuu-chah-nulth First Nations who have consumed this species boiled or steamed for thousands of years. Here these ancient oysters not only survive but thrive — building reefs and providing habitat for crab, anemones and small marine animals. 

Oysters are in the family Ostreidae — the true oysters. Their lineage evolved in the Early Triassic — 251 - 247 million years ago. 

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest and my family, an oyster is known as t̕łox̱t̕łox̱

I am curious to learn if any of the Nuu-chah-nulth have a different word for an oyster. If you happen to know, I would be grateful to learn.

Monday, 5 December 2022

BRITISH COLUMBIA'S GIANT HIDDEN AMMONITE

Titanites occidentalis, Fernie Ammonite
The Fernie ammonite, Titanites occidentalis, from outcrops on Coal Mountain near Fernie, British Columbia, Canada. 

This beauty is the remains of a carnivorous cephalopod within the family Dorsoplanitidae that lived and died in a shallow sea some 150 million years ago.

If you would like to get off the beaten track and hike up to see this ancient beauty, you will want to head to the town of Fernie in British Columbia close to the Alberta border. 

This is the traditional territory of the the Yaq̓it ʔa·knuqⱡi ‘it First Nation who have lived here since time immemorial. There was some active logging along the hillside in 2021, so if you are looking at older directions on how to get to the site be mindful that many of the trailheads have been altered and a fair bit of bushwhacking will be necessary to get to the fossil site proper. That being said, the loggers from CanWel may have clear-cut large sections of the hillside but they did give the ammonite a wide berth and have left it intact.

Wildsight, a non-profit environmental group out of the Kimberly Cranbrook area has been trying to gain grant funding to open up the site as an educational hike with educational signage for folks visiting the Fernie area. It is likely the province of British Columbia would top up those funds if they are able to place the ammonite under the Heritage Conservation Act. CanWel would remain the owners of the land but the province could assume the liability for those visiting this iconic piece of British Columbia's palaeontological history. 

Driving to the trail base is along an easy access road just east of town along Fernie Coal Road. There are some nice exposures of Cretaceous plant material on the north side (left-hand side) of the road as you head from Fernie towards Coal Creek. I recently drove up to Fernie to look at Cretaceous plant material and locate the access point to the now infamous Late Jurassic (Tithonian) Titanites (S.S. Buckman, 1921) site. While the drive out of town is on an easy, well-maintained road, the slog up to the ammonite site is often a wet, steep push. This time of year, it is buried in a blanket of crisp, white snow.

Fernie, British Columbia, Canada
The first Titanites occidentalis was about one-third the size and was incorrectly identified as Lytoceras, a fast-moving nektonic carnivore. The specimen you see here is significantly larger at 1.4 metres (about four and a half feet) and rare in North America. 

Titanites occidentalis, the Western Giant, is the second known specimen of this extinct fossil species. 

The first was discovered in 1947 in nearby Coal Creek by a British Columbia Geophysical Society mapping team. When they first discovered this marine fossil high up on the hillside, they could not believe their eyes — both because it is clearly marine at the top of a mountain and the sheer size of this ancient beauty.

In the summer of 1947, on a warm summer's day, a field crew was mapping coal outcrops for the BC Geological Survey (GSC) east of Fernie. One of the students reported finding “a fossil truck tire.” Fair enough. The similarity of size and optics are pretty close to your average Goodridge. 

A few years later, GSC Paleontologist Hans Frebold described and named the fossil Titanites occidentalis after the large Jurassic ammonites from Dorset, England. The name comes from Greek mythology. Tithonus, as you may recall, was the Prince of Troy. He fell in love with Eos, the Greek Goddess of the Dawn. Eos begged Zeus to make her mortal lover immortal. Zeus granted her wish but did not grant Tithonus eternal youth. He did indeed live forever — ageing hideously. Ah, Zeus, you old trickster. It is a clever play on time placement. Dawn is the beginning of the day and the Tithonian being the latest age of the Late Jurassic. Clever Hans!

HIKING TO THE FERNIE AMMONITE

From the town of Fernie, British Columbia, head east along Coal Creek Road towards Coal Creek. The site is 3.81 km from the base of Coal Creek Road to the trailhead as the crow flies. I have mapped it here for you in yellow and added the wee purple GPS marker for the ammonite site proper. There is a nice, dark grey to black roadcut exposure of Cretaceous plants on the north side of the dirt road that is your cue to pull over and park.  

You access what is left of the trailhead on the south side of the road. You will need to cross the creek to begin your ascent. There is no easy way across the creek and you'll want to tackle this one with a friend when the water level is low. 

The beginning of the trail is not clear but a bit of searching will reveal the trailhead with its telltale signs of previous hikers. This is a moderate 6.3-kilometre hike up & back bushwhacking through scrub and fallen trees. Heading up, you will make about a 246-metre elevation gain. You will likely not have a cellular signal up here but if you download the Google Map to your mobile, you will have GPS to guide you. The area has been recently logged so much of the original trail has been destroyed. There may now be easier vehicle access up the logging roads but I have not driven them since the logging and new road construction.

If you are coming in from out of town, the closest airport is Cranbrook. Then it is about an hour and change to Fernie and another 15-minutes or so to park near the site.

You will want to leave your hammers with your vehicle (no need to carry the weight and this lovely should never be struck with anything more than a raindrop) as this site is best enjoyed with a camera. 

This is a site you will want to wear hiking boots to access. Know that these will get wet as you cross the creek. 

If you would like to see the ammonite but are not keen on the hike, a cast has been made by fossil preparator Rod Bartlett is on display at the Courtenay Museum in Courtenay, Vancouver Island, Canada. 

Respect for the Land / Leave No Trace

As your feet move up the hillside, you can imagine this land 10,000 years ago, rising above great glaciers. Where footfalls trace the steps of those that came before you. This land has been home to the Yaq̓it ʔa·knuqⱡi ‘it First Nation and Ktunaxa or Kukin ʔamakis First Nations whose oral history have them living here since time immemorial. Like them, take only what you need and no more than the land offers — packing out anything that you packed in. 

Fernie Ammonite Palaeo Coordinates: 49°29'04"N 115°00'49"W


Sunday, 4 December 2022

LATE HETTANGIAN FAUNA FROM TASAKO LAKES

The late Hettangian ammonite fauna from Taseko Lakes is diverse and relatively well‐preserved. Over three field seasons from 2001-2003, thirty-five taxa from the Mineralense and Rursicostatum zones were studied and three new species discovered and named: Fergusonites hendersonae, Eolytoceras constrictum and Pseudaetomoceras victoriense

This material is very important as it greatly expands our understanding of the fauna and ranges of ammonites currently included in the North American regional ammonite zonation. 

I had the very great honour of having the fellow below, Fergusonites hendersonae, a new species of nektonic carnivorous ammonite, named after me by palaeontologist Louse Longridge from the University of British Columbia. 

I'd met Louise as an undergrad and was pleased as punch to hear that she would be continuing the research by Dr. Howard Tipper, the authority on this area of the Chilcotins and Haida Gwaii — which he dearly loved. 

"Tip" was a renowned Jurassic ammonite palaeontologist and an excellent regional mapper who mapped large areas of the Cordillera. He made significant contributions to Jurassic paleobiogeography and taxonomy in collaboration with Dr. Paul Smith, Head of Earth and Ocean Science at the University of British Columbia. 

Tip’s regional mapping within BC has withstood the test of time and for many areas became the regions' base maps for future studies. The scope of Tip’s understanding of Cordilleran geology and Jurassic palaeontology will likely never be matched. He passed away on April 21, 2005. His humour, knowledge and leadership will be sorely missed. 

Fergusonites hendersonae
Before he left us, he shared that knowledge with many of whom who would help to secure his legacy for future generations. We did several trips over the years up to the Taseko Lake area of the Rockies joined by many wonderful researchers from Vancouver Island Palaeontological Society and Vancouver Paleontological Society, as well as the University of British Columbia. 

Both Dan Bowen and John Fam were instrumental in planning those expeditions and each of them benefited greatly from the knowledge of Dr. Howard Tipper. 

If not for Tipper's early work in the region, our shared understanding and much of what was accomplished in his last years and after his passing would not have been possible. 

Over the course of three field seasons, we endured elevation sickness, rain, snow, grizzly bears and very chilly nights  — we were sleeping right next to a glacier at one point — but were rewarded by the enthusiastic crew, helicopter rides — which really cut down the hiking time — excellent specimens including three new species of ammonites, along with a high-spired gastropod and lobster claw that have yet to be written up. This area of the world is wonderful to hike and explore — stunningly beautiful country. We were also blessed with access as the area is closed to all fossil collecting except with a permit.

This fauna understanding helps us to understand the correlations between different areas: (1) the Mineralense and Rursicostatum zones are present in Taseko Lakes and can be readily correlated with contemporaneous strata elsewhere in North America; (2) the Mineralense and Rursicostatum zones of North America are broadly equivalent to the Canadensis Zone and probably the Arcuatum horizon of the South American succession; (3) broad correlations are possible with middle–late Hettangian and earliest Sinemurian taxa in New Zealand; (4) the Mineralense and Rursicostatum zones are broadly equivalent to the circum‐Mediterranean Marmoreum Zone; (5) the Mineralense Zone and the lower to middle portion of the Rursicostatum Zone are probably equivalent to the Complanata Subzone whereas the upper portion of the Rursicostatum Zone may equate to the Depressa Subzone of the north‐west European succession.

Taseko Lake Area, BC
The Taseko Lakes area has yielded the best preserved and most diverse collection of late Hettangian ammonites yet discovered in British Columbia (BC). Early studies of the fauna were undertaken by Frebold (1951, 1967). At that time, eastern Pacific ammonite faunas were poorly understood and species were frequently shoehorned into established north‐west European taxa. 

Since then, knowledge of eastern Pacific Hettangian ammonite faunas has improved considerably. 

Detailed systematic studies have been completed on faunas from localities in other areas of BC, Alberta, Alaska, Oregon, Nevada, Mexico and South America (e.g. Guex 1980, 1995; Imlay 1981; Hillebrandt 1981, 1988, 1990, 1994, 2000a–d; Smith and Tipper 1986; Riccardi et al. 1991; Jakobs and Pálfy 1994; Pálfy et al. 1994, 1999; Taylor 1998; Hall et al. 2000; Taylor and Guex 2002; Hall and Pitaru 2004). 

These studies have demonstrated that Early Jurassic eastern Pacific ammonites had strong Tethyan affinities as well as a high degree of endemism (Guex 1980, 1995; Taylor et al. 1984; Smith et al. 1988; Jakobs et al. 1994; Pálfy et al. 1994). Frebold’s early studies were also hampered because they were based on small collections, which limited understanding of the diversity of the fauna and variation within populations. However, recent mapping has greatly improved our understanding of the geology of Taseko Lakes (Schiarizza et al. 1997; Smith et al. 1998; Umhoefer and Tipper 1998) and encouraged further collecting that has dramatically increased the size of the sample.

A study of the ammonite fauna from Taseko Lakes is of interest for several reasons. The data are important for increasing the precision of the late Hettangian portion of the North American Zonation. 

Owing to the principally Tethyan or endemic nature of Early Jurassic ammonites in the eastern Pacific, a separate zonation for the Hettangian and Sinemurian of the Western Cordillera of North America has been established by Taylor et al. (2001). Except for information available from the early studies by Frebold (1951, 1967), the only Taseko Lakes taxa included in the North American Zonation of Taylor et al. (2001) were species of Angulaticeras studied by Smith and Tipper (2000). 

Since then, Longridge et al. (2006) made significant changes to the zonation of the late Hettangian and early Sinemurian based on a detailed study of the Badouxia fauna from Taseko Lakes (Text‐fig. 2). An additional taxonomic study was recently completed on the late Hettangian ammonite Sunrisites (Longridge et al. 2008) and this information has not yet been included within the zonation. 

Hettangian Zonation
The systematics of the remaining ammonite fauna from Taseko Lakes are presented here. A comprehensive study of this material is important because the exceptional quality and diversity of the fauna provide important data for updating the North American Zonation, making it more comprehensive and more widely applicable, especially in Canada.

The Taseko Lakes fauna can improve Hettangian correlations within North America as well as between North America and the rest of the world. 

North‐west European ammonite successions (e.g. Dean et al. 1961; Mouterde and Corna 1997; Page 2003) are considered the primary standard for Early Jurassic biochronology (Callomon 1984). 

In north‐west Europe, the turnover from schlotheimiid dominated faunas in the late Hettangian to arietitid dominated faunas in the early Sinemurian was sharp (e.g. Dean et al. 1961; Bloos 1994; Bloos and Page 2002). In other areas, by contrast, these faunas were not so mutually exclusive and the transition was much more gradual. 

This makes correlations between north‐west Europe and other areas difficult (e.g. Bloos 1994; Bloos and Page 2000, 2002). Correlations are further impeded by endemism and provincialism. 

The Taseko Lakes fauna addresses these problems because it contains many taxa that are common throughout the eastern Pacific as well as several cosmopolitan taxa that make intercontinental correlation possible. Correlation between North America and other areas is of particular significance in that the interbedded volcanic and fossiliferous marine rocks in North America permit the calibration of geochronological and biochronological time scales (Pálfy et al. 1999, 2000). 

This correlation between the late Hettangian fauna in the Taseko Lakes area and contemporaneous faunas in other areas of North America, South America, New Zealand, western and eastern Tethys, and north‐west Europe is of particular interest to me — especially the correlation of the faunal sequences of Nevada, USA. 

Reference: PaleoDB 157367 M. Clapham GSC C-208992, Section A 09, Castle Pass Angulata - Jurassic 1 - Canada, Longridge et al. (2008)

L. M. Longridge, P. L. Smith, and H. W. Tipper. 2008. Late Hettangian (Early Jurassic) ammonites from Taseko Lakes, British Columbia, Canada. Palaeontology 51:367-404

PaleoDB taxon number: 297415; Cephalopoda - Ammonoidea - Juraphyllitidae; Fergusonites hendersonae Longridge et al. 2008 (ammonite); Average measurements (in mm): shell width 9.88, shell diameter 28.2; Age range: 201.6 to 196.5 Ma. Locality info: British Columbia, Canada (51.1° N, 123.0° W: paleo coordinates 22.1° N, 66.1° W)

Photo One: Hettangian Ammonites and Gastropods, Taseko Lakes. Photo Two: Fergusonites hendersonae, a Late Hettangian (Early Jurassic) ammonite from the Taseko Lakes area of British Columbia, Canadian Rockies, named by Dr. Louise Longridge after Heidi Henderson, Chair, Vancouver Paleontological Society who collected and subsequently donated many Hettangian specimens from Taseko Lakes to the GSC collections. Holotype. GSC 127423 from the Rursicostatum Zone, Castle Pass section A, level 06, Taseko Lakes.

Map: Localities of sections and isolated outcrops bearing late Hettangian ammonites in the Taseko Lakes map area. Figure Two: Zonation for the Hettangian showing correlation of North American zones with South America, north‐west Europe, western Tethys (circum‐Mediterranean), eastern Tethys and New Zealand. Only approximate correlations are implied. 

Friday, 2 December 2022

FOSSIL WHALE BONE OF WASHINGTON STATE

Oligocene Fossil Whale Vertebrae, Olympic Peninsula
These lovely water-worn specimens are difficult to ID to species with certainty but they likely hail from an early baleen whale.

Found amongst the beach pebbles on the Olympic Peninsula, they are definitely cetacean and very likely baleen as this area is home to some of the earliest baleen whales in the Pacific Northwest.

In 1993, a twenty-seven million-year-old specimen was discovered in deposits nearby that represents a new species of early baleen whale. It is especially interesting as it is from a stage in the group’s evolutionary history when baleen whales transitioned from having teeth to filtering food with baleen bristles. Visiting researcher Carlos Mauricio Peredo studied the fossil whale remains, publishing his research to solidify Sitsqwayk cornishorum (pronounced sits-quake) in the annals of history.

Baby Gray Whale, Eschrichtius robustus, showing his baleen
The earliest baleen whales clearly had teeth, and clearly still used them. Modern baleen whales have no teeth and have instead evolved baleen plates for filter feeding. I've included a rather good close-up of a baby Gray Whale here that shows the baleen to good effect.

The baleen is the comb-like strainer that sits on the upper jaw of baleen whales and is used to filter food.

We have to ponder when this evolutionary change —moving from teeth to baleen — occurred and what factors might have caused it. Traditionally, we have sought answers about the evolution of baleen whales by turning to two extinct groups: the aetiocetids and the eomysticetids.

The aetiocetids are small baleen whales that still have teeth, but they are very small, and it remains uncertain whether or not they used their teeth. In contrast, the eomysticetids are about the size of an adult Minke Whale and seem to have been much more akin to modern baleen whales; though it’s not certain if they had baleen. Baleen typically does not preserve in the fossil record being soft tissue; generally, only hard tissue, bones & teeth, are fossilized.

Photo: Oligocene Fossil Whale vertebrae from Majestic Beach, Olympic Peninsula, Washington State, USA.

BEHIND THE SCENES WITH RIZWAAN ABBAS

Rizwaan Abbas, Palaeoanthropologist
Meet Rizwaan Abbas—palaeoanthropologist and archaeologist working with the Semiahmoo First Nation. 

He is all kinds of awesome. I had the great pleasure of learning more about his work and research this past week on the set of BC's Fossil Bounty.

I have shared some of the Behind the Scenes moments with you including Riz holding a rather fetching mosasaur.

Rizwaan ensures that First Nation issues are addressed within multiple levels of government and that the people of the Semiahmoo First Nation always have a seat at the table. 

Semiahmoo First Nation (/ˌsɛmiˈɑːmuː/ SEM-ee-AH-moo) is the band government of the Semiahmoo people, a Coast Salish subgroup who inhabited an extensive territory across Washington state, the Strait of Georgia (now known as the Salish Sea) and the Lower Mainland of British Columbia for thousands of years.

The band's main community and offices are located on the 312 acres (1.3 km2) Semiahmoo Indian Reserve which is sandwiched between the boundary of White Rock, British Columbia and the Canada–United States boundary and Peace Arch Provincial Park.

Before 1850, they primarily spent their winters at Drayton Harbour, Birch Bay, Crescent Beach and Semiahmoo Bay. Summers were spent a few kilometres west across the shallow waters of Boundary Bay in what is now known as Tsawwassen—derived from the Halkomelem word sc̓əwaθən, meaning "land facing the sea"— and Point Roberts.

Rizwaan Abbas and Eva Svobodova on set
Point Roberts is a pene-exclave of Washington on the southernmost tip of the Tsawwassen peninsula, south of Vancouver, Canada. Point Roberts was created when the United Kingdom and the United States settled the Pacific Northwest American-Canadian border dispute in the mid-19th century with the Oregon Treaty. 

The two parties agreed that the 49th parallel would define the boundary between their respective territories, and the small area that incorporates Point Roberts is south of the 49th parallel. 

Questions about ceding the territory to the United Kingdom and later to Canada have been raised since its creation but its status has remained unchanged. Returning the land to its original Coast Salish inhabitants has not been an active topic of discussion. 

The Coast Salish are ethnically and linguistically related Indigenous peoples of the Pacific Northwest Coast, living in the Canadian province of British Columbia and the U.S. states of Washington and Oregon.

The area around the southern Tsawwassen Peninsula was a favoured fishing spot for several Coast Salish groups, who named the peninsula "q̓ʷulƛ̕əl̕". 

The first Europeans to see Point Roberts were members of the 1791 expedition of Francisco de Eliza. The maps produced from Eliza's explorations depicted Point Roberts as "Isla de Cepeda" or "Isla de Zepeda."

In 1792, the British expedition of George Vancouver and the Spanish expedition of Dionisio Alcalá Galiano encountered one another near Point Roberts. 

Hair & Makeup Artist Eva Svobodova preps Rizwaan for camera
On the morning of June 13, 1792, the two ships under Galiano sailed into Boundary Bay and verified Point Roberts was not an island, which was thus renamed Punta Cepeda. 

They then sailed around Point Roberts and immediately encountered HMS Chatham, the second ship of Vancouver's expedition. The two parties made contact and agreed to share information and work together in mapping the Strait of Georgia.

Point Roberts acquired its present name from Captain Vancouver, who named it after his friend Henry Roberts, who had originally been given command of the expedition.

In 1790, Europeans estimated the Semiahmoo population at 300. By 1854, the band's numbers were reduced to 250 from smallpox and warfare. Contact with Turtle Island’s residents proved devastating. By 1909, when the Canadian Pacific Railway's Spiral Tunnels are opened in British Columbia's Kicking Horse Pass, there were 38 band members in British Columbia. 

In 1963, that number dropped to 28 and then just 25 by 1971. Today, there are 98 registered members and 53 members who live on-site. It is a time of resurgence for the nation and Rizwaan’s working to support that endeavour.

Rizwaan Abbas on the set of BC's Fossil Bounty
Rizwaan is of Indo-Fijian descent, a descendant of Girmitiyas, and a First Generation Canadian. His heritage fuels his passion for researching, preserving and perpetuating the Indo-Fijian Culture (in Canada) for the benefit of future generations. 

Indo-Fijians are Fijian citizens of Indian descent, including people who trace their ancestry to various regions of the Indian subcontinent. Although they hailed from various regions in the Indian subcontinent, the vast majority of Indo-Fijians trace their origins to the Awadh and Bhojpur regions of the Hindi Belt in northern India.

Many of the Muslim Indo-Fijians also came from Sindh and Balochistan and various other parts of South Asia. Fiji's British colonial rulers brought Indian people to the Colony of Fiji as indentured labourers between 1879 and 1916 to work on Fiji's sugar-cane plantations. 

The Indo-Fijian community has a complex history and heritage. Coming to the Fiji Islands as indentured labourers from India between 1879 and 1920, these Girmitiyas were forced to reevaluate their place in the world while simultaneously rebuilding their culture and maintaining their traditional and religious practices in a harsh colonial environment. 

Finding no place in India, Girmitiyas created a unique Indo-Fijian culture in the Tropical South Pacific through their shared struggle for respect and acceptance. Some stayed in Fiji and others pushed further afield and found their way to our shores.

Nestled within British Columbia’s population, lies a unique Indo-Fijian culture born from the tropical paradise of the Fiji Islands. Explore the shared history of these Voyager People who left India in search of a future but found hardship in Fiji before finally finding a home.

Piltdown Skull being examined
Rizwaan's family share that lived history. He grew up in British Columbia hearing those stories firsthand. 

It is because of that sharing of lived history that he chose to study archaeology at Simon Fraser University. Archaeology is the study of how people lived in the past—all people, no matter when in the past or where in the world.

Wanting to delve deeper into both archaeology and palaeoanthropology, he continued his studies, this time in Europe. Rizwaan undertook his Masters in Paleoanthropology and Paleolithic Archaeology at the prestigious University College London where he graduated with distinction. 

The UCL Institute of Archaeology and Department of Anthropology have considerable staff expertise in the fields of palaeoanthropology and palaeolithic archaeology. Staff and research students are currently involved in field projects as well as museum-based studies in Britain, various parts of Europe, the Middle East, and eastern and southern Africa.

His research focus was on the Geometric and Morphometrics Analysis of Molars. His work led to a remarkable discovery which he published in the Royal Society Open Science in 2016, “New genetic and morphological evidence suggests a single hoaxer created Piltdown man.“’

In 1912, palaeontologist Arthur Smith Woodward and amateur antiquarian and solicitor Charles Dawson announced the discovery of a fossil that supposedly provided a link between apes and humans: Eoanthropus dawsoni meaning Dawson's Dawn Man. 

Museum of Surrey - The Indo-Fijians: Surrey's Pocket of Paradise

The publication generated huge interest from scientists and the general public. Piltdown man's initial celebrity has long been overshadowed by its subsequent infamy as one of the most famous scientific frauds in history. 

His re-evaluation of the Piltdown fossils using the latest scientific methods (DNA analyses, high-precision measurements, spectroscopy and virtual anthropology) shows that it is highly likely that a single orang-utan specimen and at least two human specimens were used to create the fake fossils.

The modus operandi was found consistent throughout the assemblage (specimens are stained brown, loaded with gravel fragments and restored using filling materials), linking all specimens from the Piltdown I and Piltdown II sites to a single forger—Charles Dawson.

Whether Dawson acted alone is uncertain, but his hunger for acclaim may have driven him to risk his reputation and misdirect the course of anthropology for decades. The Piltdown hoax stands as a cautionary tale to scientists not to be led by preconceived ideas but to use scientific integrity and rigour in the face of novel discoveries.

Rizwaan's Exhibit at the Museum of Surrey is now closed but you can still take the virtual tour through the link below: 

https://www.surrey.ca/arts-culture/museum-of-surrey/exhibitions/indo-fijians-surreys-pocket-of-paradise

You can also read his Chapter about Indo-Fijians printed in the "Social History of South Asians in British Columbia" published by the University of the Fraser Valley (Chapter 9): 

https://saclp.southasiancanadianheritage.ca/social-history-book/?fbclid=IwAR0vucbU2T9Ibp3zNCBRYodR35VkE5ilCBelqXG2w7IRG5714GJ8HXMMFfE

Image: Piltdown Man. (2022, December 2). In Wikipedia. https://en.wikipedia.org/wiki/Piltdown_Man. Group portrait of the Piltdown skull being examined. Back row (from left): F. O. Barlow, G. Elliot Smith, Charles Dawson, Arthur Smith Woodward. Front row: A. S. Underwood, Arthur Keith, W. P. Pycraft, and Ray Lankester. Note the portrait of Charles Darwin on the wall. Painting by John Cooke, 1915.


Thursday, 1 December 2022

BC'S FOSSIL BOUNTY: BEHIND THE SCENES WITH JOHN FAM

Meet John Fam, Vice Chair of the Vancouver Paleontological Society. 

The awesome folk in the Vancouver Paleontological Society and Vancouver Island Palaeontological Society have been collecting with John for many years, some exciting local trips — and some epic trips of a lifetime. 

Visiting the fossil outcrops at Tyaughton in the Taseko Lakes area of British Columbia takes months of planning. Remote, dangerous and difficult to reach, these sites are epic and each of those field trips definitely count as trips of a lifetime.

John shares Tales of Tyaughton in his episode of BC's Fossil Bounty.

"For the longest time, a handful of BCPA members have known about the wonderful Triassic-Jurassic fossils of the Tyaughton Creek area. Some of us had been even fortunate to see the spectacular collection of Jurassic ammonites stored in the basement of the Geological Survey of Canada.

I still remember purchasing a copy of Hettangian Ammonoid Faunas of the Taseko Lakes Area by Hans Frebold and wondering if I would even get a chance to visit such a remote locality. If you picture a squid living inside a sea shell floating and hunting in the ocean, these were the ancient creatures we’d be looking for.

As Karen Lund, one of the Directors of the Vancouver Paleontological Society (VanPS), told me, "Tyaughton is kind of like the Eldorado for the VanPS.”

We had heard so many stories that this site was becoming somewhat legendary in our minds. Thus, I made it a personal goal of mine to visit the remote fossil beds.

I began researching all possible sources related to Tyaughton Creek. I dug up many old GSC reports by Hans Frebold, Howard Tipper and George Jeletzky along with more recent material by Paul-Smith and his grad students.

All this literature was very helpful in understanding not only the fossil localities but also the complex geology of the region. I also paid a couple of visits to Dr. Howard Tipper of Geological Survey of Canada. 

Dr. Tipper was very supportive and helpful in providing valuable information regarding the fossil sites. He also shared with me his extensive knowledge of Jurassic palaeontology.

Armed with this information, I met up with Heidi Henderson, then Chair of the Vancouver Palaeontological Society, who you’ll know as the Fossil Huntress, to plan the first of four expeditions.

We had to figure out how to access such a rugged and remote locality. The fossil beds are 16 km from the nearest logging road, several hundred kilometres from Vancouver and 7,500 feet above sea level.

We would be sharing territory with a healthy Grizzly bear population and likely be a food source for the not as large but equally daunting horsefly population. 

We were keen to access this elusive site, but hiking in 16 km and gaining about a thousand feet or more of elevation would be a challenge. Hiking back out with 50 kg of rock would be impossible. 

We finally decided that it would be best that we fly in by helicopter. That, too, provided its own challenges. In the end, we did four trips over many field seasons. 

We met many Grizzly bears, horseflies, we were snowed in but came away with many wonderful fossils including new species. The undergrad we brought on the first trip did her PhD over that time and now teaches at the University of British Columbia."

Here's John Fam Behind the Scene prepping for that episode and Eva Svobodova doing her magic with Hair and Makeup on the set at Shoreline Studios in Vancouver. 


Wednesday, 30 November 2022

BC'S FOSSIL BOUNTY: BEHIND THE SCENES

Eugene, Gavin, Julius & Eva BTS on BC's Fossil Bounty — Season Two
We have started filming Season Two of BC's Fossil Bounty. Here is a sneak peek of Eva Svobodova doing her last bit of hair & makeup magic to prep Dr. Julius Csotonyi for his interview for BC's Fossil Bounty.

What you are seeing here is Studio One at Shoreline Studios in Vancouver with some of the cast and crew. 

To the left are the profiles of Gavin Hamilton, Production and Camera Assistant along with Eugene Ko, our awesome Location Sound Mixer for both Season One and Two. 

We had three cameras in place to capture the best of Julius and the glorious painting he brought to life. Just to the right outside of this photograph, we have D'Arcy Hamilton, Cinematographer and Andrew de Villiers, Director from Film Vancouver Productions. 

We did a deep dive in Season One of the career of Dr. Julius Csotonyi, a Vancouver-based scientific illustrator and natural history fine artist. We wanted to have him back (you asked and we answered) to share a particular story of how he fills the walls of museums with murals and what goes into that process. 

Julius has a scientific background in ecology (MSc) and microbiology (PhD) which has taken him to study sensitive ecosystems, from sand dunes in the Rocky Mountain parks to hydrothermal vents at the bottom of the Pacific Ocean.

Eugene Ko, Location Sound Mixer, BC's Fossil Bounty
These experiences have fuelled his strong resolve to work toward preserving our Earth’s biota. Painting biological subjects is one means that he uses to both enhance public awareness of biological diversity and to motivate concern for its welfare. 

For Season Two, along with the tale of how the Smithsonian's Deep Time Exhibit unfolded, we also show you how he creates art — live!

We chose a particular arthropod that is long extinct. You'll learn which palaeo creature he chose and see it come to life when his episode airs in 2023. 

To see his episode in Season One, you can watch it on TELUS Optik TV or visit the STORYHIVE YouTube link here: https://www.youtube.com/channel/UCUerL9urNX8fHb6nHc_vrBQ

Thank you to all the awesome possums who made this production possible — cast, crew and sponsors. You truly delivered something amazing in Season One and we are tracking to do the same in Season Two. Funding is supported by TELUS STORYHIVE, DINO LAB INC. & DINOSTY FOSSILS. 

BC'S FOSSIL BOUNTY — SEASON TWO airs on TELUS Optik TV and the ARCHEA & TELUS YouTube Channels Summer 2023. 

Tuesday, 29 November 2022

DINOSAUR DUO: MARK TURNER AND JACKIE BATES

Mark Turner & Jackie Bates, Associate Producers, BC's Fossil Bounty
Back in 2000, when he was just 11 years old, Mark Turner was tubing down a river in northern British Columbia near Tumbler Ridge and literally fell onto a Dinosaur Trackway. 

The rapids he and his friend Daniel Helm, then 8, were playing in had tossed them into the water. 

When they reached the shore, they looked down to see dinosaur tracks. 

Finding evidence of dinosaurs is the dream for many, kids and adults included. 

While the boys knew what they saw, the adults were not convinced. Daniel had the clever idea to rub baby powder into the dips, nooks and crannies to reveal wide, rounded footprints. 

They were diagnostic and clearly showed dinosaur footprints about 95 to 97 million years old — they showed the clear impression of marks from a four-toed back foot and front feet shaped like crescents, with five bumps for toes — strolling along the creek. 

Mark Turner, DINOSTY, Associate Producer, BC's Fossil Bounty

That discovery launched a community brought to life through palaeontology in Tumbler Ridge and rocked the world with new discoveries.

It is an exciting tale and you will hear it directly from the source as Mark Dale Turner, DINOSTY joins us for Season Two of BC's Fossil Bounty. He is a natural in front of the lens and tells a great tale! 

Mark was an Associate Producer and his talented fiance Jacklynn (Jackie) Joyce Bates was our Locations Manager and Production Assistant for BC's Fossil Bounty — Season One. 

We were thrilled to have this dynamic duo on set with us this week. We welcome them both back as Associate Producers for Season Two.

We are excited to have them both in front of and behind the lens for the show to talk fossils, dinosaur finds and more about their lives together hunting Red Blazers — ammolite ammonites! 

You will love this episode. Look for it SUMMER 2023 on TELUS Optik TV and on the STORYHIVE and ARCHEA YouTube Channels! Funding supported by TELUS STORYHIVE, DINO LAB INC. and DINOSTY.

Monday, 28 November 2022

BC'S FOSSIL BOUNTY ON TELUS OPTIK TV

Melissa Kay, Fossil Restoration Technician, Dino Lab Inc.
Cue the confetti! BC's Fossil Bounty begins filming Season Two today. For those of you waiting on Season One, it was released this past week. Each of our interviewees are wonderfully engaging and share their stories to much delight.

A huge thank you to everyone for participating and making this show possible. You can look for Season One on TELUS Optik TV or on YouTube. You can also find links to the series on the BC's Fossil Bounty page on Facebook.

Join the Fossil Huntress as we explore the rich fossil bounty of fossil plants, dinosaurs to mighty marine reptiles and the people who unearth them.

Discover British Columbia's violent past — how plate tectonics, volcanoes and glaciers shaped the land and why we find plant fossils along the Kitsilano foreshore and marine fossils beneath False Creek.

Did you know that some female dinosaurs have distinctive bone material that tells us they are just about to give birth or just became new mammas? What are some of the fossils you can find in the Vancouver area and around British Columbia? What makes for environmentally and socially responsible mining? Where IS Waldo?

Dr. Catherine Hickson & Dr. John Clague
Did you know there is a place you can visit where they encourage you to touch the fossils? Yep, Dino Lab is your go-to for the full touch-and-feel dino experience!

How do you get a job prepping dinosaurs or creating larger-than-life murals for museums of our ancient world? You will love this show if you are thinking of becoming a palaeontologist or working with fossils.

​Hear from palaeontologists, geologists, geochemists, science organizations, dinosaur docents, palaeoartists and fossil preparators whose work brings our ancient world to life.

View Season One on TELUS Optik TV or the STORYHIVE and ARCHEA YouTube Channels: https://www.youtube.com/channel/UCUerL9urNX8fHb6nHc_vrBQ

Sunday, 27 November 2022

ANCIENT OCTOPUS: KEUPPIA

A sweet as you please example of Keuppia levante (Fuchs, Bracchi & Weis, 2009), an extinct genus of octopus that swam our ancient seas back in the Cretaceous. 

The dark black and brown area you see here is his ink sac which has been preserved for a remarkable 95 million years.

This cutie is in the family Palaeoctopodidae, and one of the earliest representatives of the order Octopoda — and perhaps my favourite fossil. It was this perfect specimen that inspired the logo for the Fossil Huntress brand.  

These ancient marine beauties are in the class Cephalopoda making them relatives of our modern octopus, squid and cuttlefish.

There are two species of Keuppia, Keuppia hyperbolaris and Keuppia levante, both of which we find as fossils. We find their remains, along with those of the genus Styletoctopus, in Cretaceous-age Hâqel and Hjoula localities in Lebanon. 

For many years, Palaeoctopus newboldi (Woodward, 1896) from the Santonian limestones at Sâhel Aalma, Lebanon, was the only known pre‐Cenozoic coleoid cephalopod believed to have an unambiguous stem‐lineage representative of Octobrachia fioroni

With the unearthing of some extraordinary specimens with exquisite soft‐part preservation in the Lebanon limestones, our understanding of ancient octopus morphology has blossomed. The specimens are from the sub‐lithographical limestones of Hâqel and Hâdjoula, in northwestern Lebanon. These localities are about 15 km apart, 45 km away from Beirut and 15 km away from the coastal city of Jbail. Fuchs et al. put a nice little map in their 2009 paper that I've included and referenced here.

Palaeoctopus newboldi had a spherical mantle sac, a head‐mantle fusion, eight equal arms armed with suckers, an ink sac, a medially isolated shell vestige, and a pair of (sub‐) terminal fins. The bipartite shell vestige suggests that Palaeoctopus belongs to the octopod stem‐lineage, as the sister taxon of the Octopoda, the Cirroctopoda, is characterized by an unpaired clasp‐like shell vestige (Engeser 1988; Haas 2002; Bizikov 2004).

It is from the comparisons of Canadian fauna combined with those from Lebanon and Japan that things really started to get interesting with Octobrachia. Working with fossil specimens from the Campanian of Canada, Fuchs et al. (2007a ) published on the first record of an unpaired, saddle‐shaped shell vestige that might have belonged to a cirroctopod. 

Again from the Santonian–Campanian of Canada and Japan, Tanabe et al. (2008) reported on at least four different jaw morphotypes. Two of them — Paleocirroteuthis haggarti (Tanabe et al., 2008) and Paleocirroteuthis Pacifica  (Tanabe et al ., 2008) — have been interpreted as being of cirroctopod type, one of octopod type, and one of uncertain octobrachiate type. 

Interestingly Fuchs et al. have gone on to describe the second species of Palaeoctopus, the Turonian Palaeoctopus pelagicus from limestones at Vallecillo, Mexico. While more of this fauna will likely be recovered in time, their work is based solely on a medially isolated shell vestige.

Five new specimens have been found in the well-known Upper Cenomanian limestones at Hâqel and Hâdjoula in Lebanon that can be reliably placed within the Octopoda. Fuchs et al. described these exceptionally well‐preserved specimens and discuss their morphology in the context of phylogeny and evolution in their 2008 paper (2009 publishing) in the Palaeontology Association Journal, Volume 51, Issue 1.

The presence of a gladius vestige in this genus shows a transition from squid to octopus in which the inner shell has divided into two parts in early forms to eventually be reduced to lateralized stylets, as can be seen in Styletoctopus.

The adorable fellow you see here with his remarkable soft-bodied preservation and inks sack and beak clearly visible is Keuppia levante. He hails from Late Cretaceous (Upper Cenomanian) limestone deposits near Hâdjoula, northwestern Lebanon. The vampyropod coleoid, Glyphiteuthis abisaadiorum n. sp. is also found at this locality. This specimen is about 5 cm long.

Fuchs, D.; Bracchi, G.; Weis, R. (2009). "New octopods (Cephalopoda: Coleoidea) from the Late Cretaceous (Upper Cenomanian) of Hâkel and Hâdjoula, Lebanon". Palaeontology. 52: 65–81. doi:10.1111/j.1475-4983.2008.00828.x.

Photo one: Fossil Huntress. Figure Two: Topographic map of north‐western Lebanon with the outcrop area in the upper right-hand corner. Fuchs et al, 2009.  

Friday, 25 November 2022

UNESCOCERATOPS KOPPELHUSAE BY JULIUS CSOTONYI

Unescoceratops koppelhusae, Julius Csotonyi
A very sweet small leptoceratopsid dinosaur, Unescoceratops koppelhusae — a new species in the collections of the Royal Tyrrell Museum of Palaeontology in Drumheller, Alberta.

The colourful and beautifully detailed painting you see here is by the very talented Julius Csotonyi who captured the magnificence of form, texture and palette to bring this small leptoceratopsid dinosaur to life.

The Royal Tyrrell Museum of Palaeontology, named in honour of Joseph Burr Tyrrell, is a palaeontology museum and research facility in Drumheller, Alberta, Canada. 

This jaw is the holotype specimen of this small leptoceratopsid dinosaur. Only a handful of isolated fossils have been found from this species, including a jaw that is the holotype specimen now in collections at the Royal Tyrell. 

The Royal Tyrrell Museum of Palaeontology, named in honour of Joseph Burr Tyrrell, is a palaeontology museum and research facility in Drumheller, Alberta, Canada. 

Unescoceratops koppelhusae, RTMP Collections
The rusty chocolate jaw bone you see here is the puzzle piece that helped all of the research come together and help us to better understand more about the diminutive leptoceratopsid dinosaurs from Alberta. 

The Cleveland Museum of Natural History's Michael Ryan and David Evans of the Royal Ontario Museum in Toronto recently determined that the specimen was a new genus and species. 

Unescoceratops is a genus of leptoceratopsid ceratopsian dinosaurs known from the Late Cretaceous (about 76.5-75 million years ago) of Alberta, Canada. Unescoceratops is thought to have been between one and two meters long and less than 91 kilograms. A plant-eater, its teeth were the roundest of all Leptocertopsids.

Dinosaur Provincial Park, Alberta, Canada
The genus name acknowledges the UNESCO  World Heritage Site, Dinosaur Provincial Park, where the fossil was found. 

In addition to its particularly beautiful scenery, Dinosaur Provincial Park – located at the heart of the province of Alberta's badlands – is unmatched in terms of the number and variety of high-quality specimens.

To date, they represent more than 44 species, 34 genera and 10 families of dinosaurs, dating back 75-77 million years. This provides us with remarkable insight into life millions of years ago.

The park contains exceptional riparian habitat features as well as badlands of outstanding aesthetic value.

The creamy honey, beige and rust coloured hills around the fossil locality are outstanding examples of major geological processes and fluvial erosion patterns in semi-arid steppes — think glorious! 

The scenic badlands stretch along 26 kilometres of high quality and virtually undisturbed riparian habitat, presenting a landscape of stark but exceptional natural beauty.

The species name honours Dr. Eva Koppelhus, who has made significant contributions to vertebrate palaeontology and palynology. 

The genus is named to honour the UNESCO World Heritage Site designation for the locality where the specimen was found and from the Greek “ceratops,” which means 'horned face'. 

Dr Michael Ryan explained that he meant to honour UNESCO's efforts to increase understanding of natural history sites around the world.

© Julius T. Csotonyi An illustration of Unescoceratops koppelhusae, a plant-eating dinosaur from the Late Cretaceous period that lived approximately 75 million years ago shared with his gracious permission. 

ABOUT THE ARTIST

Dr. Julius Csotonyi is a Vancouver-based scientific illustrator and natural history fine artist. He is a featured paleoartist on Season One of BC's Fossil Bounty. Julius has a scientific background in ecology (MSc) and microbiology (PhD) which has taken him to study sensitive ecosystems, from sand dunes in the Rocky Mountain parks to hydrothermal vents at the bottom of the Pacific Ocean. 

These experiences have fuelled his strong resolve to work toward preserving our Earth’s biota. Painting biological subjects is one means that he uses to both enhance public awareness of biological diversity and to motivate concern for its welfare.   

He paints murals and panels that have appeared in numerous museums including the Smithsonian’s National Museum of Natural History, press release images for scientific publications, books, stamp sets — including the outstanding 2018 “Sharks of Canada” set for Canada Post — and coins for the Royal Canadian Mint. To view more of Julius Csotonyi's exquisite work visit: https://csotonyi.com/

Thursday, 24 November 2022

YORKSHIRE HISTORY: TEXTILES, FOSSILS AND URINE

Yorkshire Coast
You may recall the eight-metre Type Specimen of the ichthyosaur, Temnodontosaurus crassimanus, found in an alum quarry in Yorkshire, northern England.

The Yorkshire Museum was given this important ichthyosaur fossil back in 1857 when alum production was still a necessary staple of the textile industry. Without that industry, many wonderful specimens would likely never have been unearthed.

These quarries are an interesting bit of British history as they helped shape the Yorkshire Coast, created an entirely new industry and gave us more than a fixative for dyes. With them came the discovery of many remarkable fossil specimens and, oddly, local employment in the collection of urine.

In the 16th century, alum was essential in the textile industry as a fixative for dyes. 

By the first half of the 16th century, the clothing of the Low Countries, German states, and Scandinavia had developed in a different direction than that of England, France, and Italy, although all absorbed the sobering and formal influence of Spanish dress after the mid-1520s. Those fashions held true until the Inquisition when religious persecution, politics and fashion underwent a much-needed overhaul to something lighter.

Fashion in Medieval Livonia (1521): Albrecht Dürer
Elaborate slashing was popular, especially in Germany. In the depiction you see here, an artist pokes a bit of fun at Germanic fashion from the time. Bobbin lace arose from passementerie in the mid-16th century in Flanders, the Flemish Dutch-speaking northern portion of Belgium. Black was increasingly worn for the most formal occasions.

This century saw the rise of the ruff, which grew from a mere ruffle at the neckline to immense, slightly silly, cartwheel shapes. They adorned the necklines of the ultra-wealthy and uber-stylish men and women of the age.

At their most extravagant, ruffs required wire supports and were made of fine Italian reticella, a cutwork linen lace. You can imagine the many hours of skill and patience that would have gone into each piece to create the artful framework of these showy lace collars.

16th Century Fashion / Ruff Collars and Finery
In contrast to all that ruff, lace and cutwork linen, folk needed dyed fabrics. And to fix those dyes, they needed Alum. For a time, Italy was the source of that alum.

The Pope held a tidy monopoly on the industry, supplying both alum and the best dyes. He also did a nice trade in colourful and rare pigments for painting. And for a time, all was well with dandy's strutting their finery to the local fops in Britain.

All that changed during the Reformation. Great Britain, heathens as they were, were cut off from their Papal source and needed to fend for themselves.

The good Thomas Challoner took up the charge and set up Britain's first Alum works in Guisborough. Challoner looked to palaeontology for inspiration. Noticing that the fossils found on the Yorkshire coast were very similar to those found in the Alum quarries in Europe, he hatched a plan to set-up an alum industry on home soil. 

As the industry grew, sites along the coast were favoured as access to the shales and subsequent transportation was much easier.

Alum House, Photo: Joyce Dobson and Keith Bowers
Alum was extracted from quarried shales through a large scale and complicated process which took months to complete. 

The process involved extracting then burning huge piles of shale for 9 months, before transferring it to leaching pits to extract an aluminium sulphate liquor. This was sent along channels to the alum works where human urine was added.

At the peak of alum production, the industry required 200 tonnes of urine every year. That's the equivalent of all the potty visits of more than 1,000 people. Yes, strange but true.

The steady demand was hard to keep up with and urine became an imported resource from markets as far away as London and Newcastle upon Tyne in the northeast of England. Wooden buckets were left on street corners for folk to do their business then carted back to the south to complete the alum extraction process. The urine and alum would be mixed into a thick liquid. Once mixed, the aromatic slosh was left to settle and then the alum crystals were removed.

I'm not sure if this is a folktale or plain truth, but as the story goes, one knows when the optimum amount of alum had been extracted as you can pop an egg in the bucket and it floats on its own.

Alum House. Photo: Ann Wedgewood and Keith Bowers
The last Alum works on the Yorkshire Coast closed in 1871. This was due to the invention of manufacturing synthetic alum in 1855, then subsequently the creation of aniline dyes that contained their own fixative.

Many sites along the Yorkshire Coast bear evidence of the alum industry. These include Loftus Alum Quarries where the cliff profile is drastically changed by extraction and huge shale tips remain.

Further South are the Ravenscar Alum Works, which are well-preserved and enable visitors to visualize the processes which took place. The photos you see here are of Alum House at Hummersea. The first shows the ruin of Alum House printed on a postcard from 1906. The second (bottom) image shows the same ruin from on high with Cattersty Point in the background.

The good folk at the National Trust in Swindon are to thank for much of the background shared here. If you'd like to learn more about the Yorkshire area or donate to a very worthy charity, follow their link below.

Reference: https://www.nationaltrust.org.uk/yorkshire-coast/features/how-alum-shaped-the-yorkshire-coast