Saturday 19 December 2015

Friday 20 November 2015

Tuesday 10 November 2015

Wednesday 4 November 2015

Thursday 15 October 2015

TYLOSTOME TUMIDUM

This lovely big fellow is Tylostoma tumidum, an epifaunal grazing Lower Cretaceous Gastropod from the Goodland Formation near Fort Worth, Texas, USA. (171.6 to 58.7 Ma)

Thursday 8 October 2015

PALM TRUNK MOULD

George Mustoe of the Burke Museum preparing to make a mould of a palm trunk that once gew in the wetlands that bordered an ancient river.

Sunday 20 September 2015

ERBENOCHILE ERBENI

A spectacular specimen of the trilobite Erbenochile erbeni. This impressive fossil arthropod shows unusual schizochroal eyes characteristic of the genus.

Family Odontopleuridae, Odontopleurid trilobite from the Lower Devonian, Emsian, 408 to 393 MYA, Bou Tiskaouine Formation, Hamar l”Aghdad Limestones, Taharajat, Oufaten, Djebel Issoumour

Saturday 22 August 2015

Sunday 2 August 2015

Sunday 26 July 2015

Thursday 16 July 2015

ICHTHYOSAUR EVOLUTION

During the early Triassic period, ichthyosaurs evolved from a group of unidentified land reptiles that returned to the sea.

They were particularly abundant in the later Triassic and early Jurassic periods before being replaced as a premier aquatic predator by another marine reptilian group, the Plesiosauria, in the later Jurassic and Cretaceous periods.

Tuesday 14 July 2015

Monday 29 June 2015

GULLS ON THE FORESHORE: T'SIK'WI

A gull cries in protest at not getting his share of a meal

Gulls, or colloquially seagulls, are seabirds of the family Laridae in the suborder Lari. 

The Laridae are known from not-yet-published fossil evidence from the Early Oligocene — 30–33 million years ago. 

Three gull-like species were described by Alphonse Milne-Edwards from the early Miocene of Saint-Gérand-le-Puy, France. 

Another fossil gull from the Middle to Late Miocene of Cherry County, Nebraska, USA, has been placed in the prehistoric genus Gaviota

These fossil gulls, along with undescribed Early Oligocene fossils are all tentatively assigned to the modern genus Larus. Among those of them that have been confirmed as gulls, Milne-Edwards' "Larus" elegans and "L." totanoides from the Late Oligocene/Early Miocene of southeast France have since been separated in Laricola.

Gulls are most closely related to the terns in the family Sternidae and only distantly related to auks, skimmers and distantly to waders. 

A historical name for gulls is mews, which is cognate with the German möwe, Danish måge, Swedish mås, Dutch meeuw, Norwegian måke/måse and French mouette. We still see mews blended into the lexicon of some regional dialects.

In the Kwak̓wala language of the Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest and my family, gulls are known as t̕sik̕wi. Most folk refer to gulls from any number of species as seagulls. This name is a local custom and does not exist in the scientific literature for their official naming. Even so, it is highly probable that it was the name you learned for them growing up.

If you have been to a coastal area nearly everywhere on the planet, you have likely encountered gulls. They are the elegantly plumed but rather noisy bunch on any beach. You will recognize them both by their size and colouring. 

Gulls are typically medium to large birds, usually grey or white, often with black markings on the head or wings. They typically have harsh shrill cries and long, yellow, curved bills. Their webbed feet are perfect for navigating the uneven landscape of the foreshore when they take most of their meals. 

Most gulls are ground-nesting carnivores that take live food or scavenge opportunistically, particularly the Larus species. Live food often includes crab, clams (which they pick up, fly high and drop to crack open), fish and small birds. Gulls have unhinging jaws which allow them to consume large prey which they do with gusto. 

Their preference is to generally live along the bountiful coastal regions where they can find food with relative ease. Some prefer to live more inland and all rarely venture far out to sea, except for the kittiwakes. 

The larger species take up to four years to attain full adult plumage, but two years is typical for small gulls. Large white-headed gulls are typically long-lived birds, with a maximum age of 49 years recorded for the herring gull.

Gulls nest in large, densely packed, noisy colonies. They lay two or three speckled eggs in nests composed of vegetation. The young are precocial, born with dark mottled down and mobile upon hatching. Gulls are resourceful, inquisitive, and intelligent, the larger species in particular, demonstrating complex methods of communication and a highly developed social structure. Many gull colonies display mobbing behaviour, attacking and harassing predators and other intruders. 

Certain species have exhibited tool-use behaviour, such as the herring gull, using pieces of bread as bait with which to catch goldfish. Many species of gulls have learned to coexist successfully with humans and have thrived in human habitats. Others rely on kleptoparasitism to get their food. Gulls have been observed preying on live whales, landing on the whale as it surfaces to peck out pieces of flesh. They are keen, clever and always hungry.

Wednesday 3 June 2015

Monday 25 May 2015

Saturday 23 May 2015

CRETACEOUS CAPILANO RIVER

If you are looking for a wee fossil day trip, then a stroll down to the Capilano River is just the thing.

From downtown Vancouver, drive through Stanley Park heading north over the Lion’s Gate Bridge. Take the North Vancouver exit toward the ferries. Turn right onto Taylor Way and then right again at Clyde Avenue. Look for the Park Royal Hotel. Park anywhere along Clyde Avenue.

From Clyde Avenue walk down the path to your left towards the Capilano River. Watch the water level and tread cautiously as it can be slippery if there has been any recent rain. Look for beds of sandstone about 200 meters north of the private bridge and just south of the Highway bridge. The fossil beds are just below the Whytecliff Apartment high rises.

You will see some exposed shale in the area. It does not contain fossil material. The fossils occur only in the sandstone. Interesting, but again, not fossiliferous are the many granitic boulders and large boulders of limestone which may have been brought down by glaciers from as far away as Texada Island. Cretaceous plant material (and modern material) found here include Poplar (cottonwood) Populus sp. Bigleaf Maple, Acer machphyllum, Alder, Alnus rubra, Buttercup Ranvuculus sp., Epilobrium, Red cedar, Blackberry and Sword fern.

Monday 11 May 2015

LINGULA ANATINA: PRIMATIVE BRACHIOPOD

Lingula anatina — a primitive brachiopod 
One of the most primitive brachiopods is this caramel and cream fellow, Lingula anatina

Brachiopods are marine invertebrates with a stalk and two shells connected along a hinge. They are often confused with bivalves such as clams. 

Bivalves have shells on the sides of their bodies. Brachiopods have shells on the top and bottom. As a result, the plane of symmetry in a bivalve runs along the hinge while it runs perpendicular to the hinge in brachiopods. 

Lingula forms are regarded as the most primitive brachiopods and represent the first certain appearance of brachiopods in the fossil records dating back 530 million years. 

Their shells do not have any locking mechanisms. Instead, they rely on complex musculature to move their shells. They are the first known examples of animal biomineralisation — a process whereby living organisms stiffen or harden tissues with minerals. Their shells are composed of calcium phosphate and collagen fibres, characters shared only by evolutionarily distant vertebrates.

Lingulid brachiopods had changed so little in appearance since the Silurian, 443-419 million years ago, they are referred to as living fossils — a term bestowed upon them by Charles Darwin himself.

Photo: Wilson44691 - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=8624418

Tuesday 5 May 2015

PLANNING YOUR NEXT STAYCATION: HORNBY ISLAND

Hornby is so many things to so many people. I have avid pottery afficianato friends who go to look through the talented work of local potters. Others swear by the pie. It is off the beaten track and pure heaven.

Sunday 19 April 2015

TAKING IN THE VIEW

One of the most satisfying moments is taking in a sunset after a long days hike. Pure visual poetry. Peaceful, meditative and well-earned. It is a time for reflection on the day, your world, fresh blisters - the gamut!

Have you ever wondered about the colors you see in these moments? What sunlight actually is? Yes, it's light from the Sun but so much more than that. Sunlight is both light and energy. Once it reaches Earth, we call this energy, "insolation," a fancy term for solar radiation. The amount of energy the Sun gives off changes over time in a never ending cycle. Solar flares (hotter) and sunspots (cooler) on the Sun's surface impact the amount of radiation headed to Earth. These periods of extra heat or extra cold (well, colder by Sun standards...) can last for weeks, sometimes months.

The beams that reach us and warm our skin are electromagnetic waves that bring with them heat and radiation, by-products of the nuclear fusion happening as hydrogen nuclei shift form to helium. Our bodies convert the ultraviolet rays to Vitamin D. Plants use the rays for photosynthesis, a process of converting carbon dioxide to sugar and using it to power their growth (and clean our atmosphere!) That process looks something like this: carbon dioxide + water + light energy -->glucose + oxygen = 6 CO2(g) + 6 H2O + photons → C6H12O6(aq) + 6 O2(g) Photosynthetic organisms convert about 100–115 thousand million metric tonnes of carbon to biomass each year, about six times more power than used my us hoomins.

We've yet to truly get a handle on the duality between light as waves and light as photons. Light fills not just our wee bit of the Universe but the cosmos as well, bathing it in the form of cosmic background radiation that is the signature of the Big Bang.

Once those electromagnetic waves leave the Sun headed for Earth, they reach us in a surprising eight minutes. We experience them as light mixed with the prism of beautiful colors. But what we see is actually a trick of the light. As rays of white sunlight travel through the atmosphere they collide with airborne particles and water droplets causing the rays to scatter. We see mostly the yellow, orange and red hues (the longer wavelengths) as the blues and greens (the shorter wavelengths) scatter more easily and get bounced out of the game rather early.

Tuesday 14 April 2015

Monday 16 March 2015

Sunday 15 March 2015

Sunday 22 February 2015

Saturday 7 February 2015

EOCENE FOSSIL FIELD TRIP

There was a large downpour of rain that hit Washington State. It resulted in a huge slide at Sumas Mountain that revealed several large exposures of fossil plants, shorebird trackways and the trackways of the large flightless bird Diatryma.

Many of these finds can now be seen at museums in Washington State. While less abundant, evidence of the animals that called this ancient swamp home are also found here. Rare bird, reptile, and mammal tracks have been immortalized in the soft muds along ancient riverways.

Wednesday 4 February 2015

Monday 19 January 2015

FERGUSONITES HENDERSONAE




















A few years ago, I had the very great honour of having a new species of ammonite named after me by paleontologist, Louse Longridge.

Meet Fergusonites hendersonae, a Late Hettangian ammonite from the Taseko Lake area of British Columbia, high up in the Canadian Rockies.

He looks a wee bit like the Cadoceras comma we find in the Mysterious Lake Formation at Harrison Lake but a wee bit thinner and smaller.

Tuesday 6 January 2015

CAPILANO RIVER FOSSIL TRIP

There are many fossil sites around Vancouver, British Columbia. Sadly, the volume and preservation of these fossils is far from ideal.

Still, if you are looking for a wee day trip, then a trip to the Capilano River is just the thing. From downtown Vancouver, drive through Stanley Park up and over the Lion’s Gate Bridge. Take the North Vancouver exit toward the ferries. Turn right onto Taylor Way and then right again at Clyde Avenue. Look for the Park Royal Hotel. Park anywhere along Clyde Avenue.

From Clyde Avenue walk down the path to your left towards the Capilano River.  Watch the water level and treat cautiously as it can be slippery. 

Look for beds of sandstone about 200 meters north of the private bridge and just south of the Hwy bridge.  The fossil beds are just below the Whytecliff Apartment high rises.

You will see some exposed shale in the area. It does not contain fossil material. The fossils occur only in the sandstone. Interesting, but again, not fossiliferous are the many granitic boulders and large boulders of limestone which may have been brought down by glaziers from as far away as Texada Island.

Cretaceous plant material found:
  • Alder
  • Unidentified Bark
What you see on your visit:
  • Poplar (cottonwood)  Populus sp.
  • Bigleaf maple  Acer machphyllum
  • Alder  Alnus rubra
  • Buttercup  Ranvuculus sp.
  • Epilobrium
  • Red cedar
  • Blackberry
  • Sword fern

Monday 5 January 2015

Sunday 4 January 2015

Tuesday 30 December 2014

HAIDA GWAII: ISLANDS OF MIST

Steeped in mist and mythology, the islands of the Queen Charlottes abound in local lore that surrounds their beginnings.

Today, the Hecate Strait is a tempestuous 40-mile wide channel that separates the mist-shrouded archipelago of Haida Gwaii from the BC mainland. Haida oral tradition tells of a time when the strait was mostly dry, dotted here and there with lakes. During the last ice age, glaciers locked up so much water that the sea level was hundreds of feet lower than it is today. Soil samples from the sea floor contain wood, pollen, and other terrestrial plant materials that tell of a tundra-like environment.

The court is still out on whether or not the strait was ever completely dry during these times, but it certainly contained a series of stepping-stone islands and bridges that remained free of ice.

An ancient Haida tale, recorded in the late 1800s by a Hudson’s Bay Company trader, records the island's glacial history. Scannah-gan-nuncus, a boy who lived in the village now called Skidegate, had canoed up the Hunnah, a once roaring tributary to Skidegate Channel that is now a rocky creek, seldom deep enough to navigate.

The Haida the legend accurately records that it used to be several times deeper. Tired from paddling upstream, Scannah-gan-nuncus landed to take a nap. “In those days at the place where he went ashore were large boulders in the bed of the stream, while on both sides of the river were many trees. While resting by the river, he heard a dreadful noise upstream. Looking to see what it was, he was surprised to behold all the stones in the river coming toward him. … all the trees were cracking and groaning … he went to see what was crushing the stones and breaking the trees. On reaching them, he found that a large body of ice was coming down, pushing everything before it.”

Scannah-gan-nuncus’ experience with the glacier would have been familiar to the inhabitants of the Queen Charlottes. In recent years, the highest peaks are often bare of vegetation and snow-covered during most of the year, but back in the time of the glaciers, these same local mountains were the birthplace of advancing ice.

Precipitation and a significant drop in temperature gave rise to the Queen Charlottes ice-sheet, a thick mass of flowing ice that ran tandem with the Cordilleran sheet in the Hecate Lowlands.

Strolling around you can see where the glaciers left their mark on the Islands’ U-shape valleys, once a steep V-shape, now scoured smooth by glaciers that also deposited the erratic boulders can been seen sitting like sentinels on the beach.

CRETACEOUS NANAIMO GROUP

The strata near Nanaimo and much of eastern Vancouver Island is underlain by sedimentary rocks of the Cretaceous Nanaimo Group. These mudstones, sandstones and conglomerates were deposited in deltas, rivers and marine environments between 95 and 65 million years ago. While there is a mix, almost all of the great fossil exposures are marine.

Monday 29 December 2014

CAMBRIAN TRILOBITES


The Cambrian was a time of expansion for the Earth's complex animal forms. Molluscs and arthropods and their friends with hard shells and exoskeletons dominated the seas. The specimen you see here is of a Wanneria dunnae trilobite from the Eager Formation, Rifle Range site near Cranbrook, British Columbia.

Thursday 25 December 2014

Friday 19 December 2014

JELLYFISH: DANCERS OF THE DEEP

This lovely ocean dancer with her long delicate tentacles or lappets and thicker rouched oral arms is a jellyfish. 

Her brethren are playing in the waters of the deep all over the world, from surface waters to our deepest seas — and they are old. They are some of the oldest animals in the fossil record.

Jellyfish and sea jellies are the informal common names given to the medusa-phase or adult phase of certain gelatinous members of the subphylum Medusozoa, a major part of the phylum Cnidaria — more closely related to anemones and corals.

Jellyfish are not fish at all. They evolved millions of years before true fish. The oldest conulariid scyphozoans appeared between 635 and 577 million years ago in the Neoproterozoic of the Lantian Formation, a 150-meter-thick sequence of rocks deposited in southern China. 

Others are found in the youngest Ediacaran rocks of the Tamengo Formation of Brazil, c. 505 mya, through to the Triassic. Cubozoans and hydrozoans appeared in the Cambrian of the Marjum Formation in Utah, USA, c. 540 million years ago.

I have seen all sorts of their brethren growing up on the west coast of Canada. I have seen them in tide pools, washed up on the beach and swam amongst thousands of Moon Jellyfish while scuba diving in the Salish Sea. Their movement in the water is marvellous.  

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, jellyfish are known as ǥaǥisama.

The watercolour ǥaǥisama you see here in dreamy pink and white is but one colour variation. They come in blue, purple, orange, yellow and clear — and are often luminescent. They produce light by the oxidation of a substrate molecule, luciferin, in a reaction catalyzed by a protein, luciferase.

Wednesday 17 December 2014

Monday 17 November 2014

Thursday 30 October 2014

KOALA: BABY JOEY

Koala, Phasscolarctos cinereus, are truly adorable marsupials native to Australia. These cuddly "teddy bears" are not bears at all. Koalas belong to a group of mammals known as marsupials. 

Fossil remains of Koala-like animals have been found dating back 25 million years. Some of the relatives of modern koalas were much larger, including the Giant Koala, Phascolarctos stirtoni

It should likely have been named the Robust Koala, instead of Giant, but this big boy was larger than modern koalas by about a third. Phascolarctos yorkensis, from the Miocene, was twice the size of the modern koalas we know today. Both our modern koalas and their larger relatives co-existed during the Pleistocene, sharing trees and enjoying the tasty vegetation surrounding them.

Tuesday 23 September 2014

TRACKING THEROPODS

Toe to Toe with a Theropod — In the outcrops around Clarens, South Africa.

We get a bird's eye view (or Theropod's eye view) of life back in the Late Triassic and Early Jurassic. Both here and at Elliott we see dinosaur remains tracks and dino eggs!

Thursday 18 September 2014

PETRIFIED WOOD

Petrified wood is amazing to behold in person. The original tree or branch is sometimes subjected to such a high degree of replacement that it is impossible to tell from the original at first glance. But fossilized it is. All of the original cells are replaced one by one with minerals, often a silicate such as quartz, leaving the original cell structure intact.



And while there is often amazing preservation of the big woody bits, the telltale leaves that help us identify that wood to species are often lost. If this is the case, we add our best guess at the genus and add xlon. So, Palmoxylon is the indeterminate wood of a palm, though we may never know which palm. If you have an interest in botany and fossils, you may want to consider making a career of it. The study of fossil wood is called palaeoxylology. And a palaeoxylologist is someone who studies fossil wood.

Thursday 21 August 2014

Tuesday 29 July 2014