Sunday 24 January 2021

FREE SCIENCE TEACHING TOOLS AND IMAGES

Hello you! Are you a teacher or student looking for information or images for an educational project? You are more than welcome to use any of the images on this site that have the Fossil Huntress logo on them. The only catch is that they must be for school projects and not be printed more than 500,000 times. 

In the past, I have found finding images that you need to complete a project can be a bit tricky. 

Short of purchasing or borrowing off the internet, teachers and students do not have that many interesting resources available. I have started to include the logo so you can know for sure it is okay to use. If I credit the photo to someone, you would need to ask them first before using it. 

I also post over on the Fossil Huntress Facebook page and will begin putting together teaching sets by album of related content. It is mostly palaeontology, earth history, earth science and natural history. Feel free to use what works best for you. Head on over to Fossil Huntress headquarters for links to all sorts of educational goodness. Good luck!

Saturday 23 January 2021

GIANT PACIFIC OCTOPUS

This delightful beauty with its colourful body is an octopus. Like ninety-seven percent of the world's animals, she lacks a backbone. 

To support their bodies, these spineless animals — invertebrates — have skeletons made of protein fibres. This flexibility can be a real advantage when slipping into nooks and crannies for protection and making a home in seemingly impossible places.

On the east side of Vancouver Island, British Columbia, Canada, there is an area called Madrona Point where beneath the surface of the sea many octopus have done just that. This is the home of the Giant Pacific Octopus, Enteroctopus dofleini, the largest known octopus species.

The land above is the home of the Snuneymuxw First Nation of the Coast Salish who live here, on the Gulf Islands, and along the Fraser River. They speak Hul'q'umin'um' — a living language that expresses their worldview and way of life. In Hul'q'umin'um' an octopus is sqi'mukw'

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, further north on Vancouver Island, octopus or devil fish are known as ta̱k̕wa. I have seen them off the coast of Port Hardy but most of my encounters have been around the mid-island while underwater myself. 

I have scuba dived at Madrone Point many times and visited the octopus who squeeze into the eroded sections of a sandstone ledge about 18 metres or 60 feet below the surface. After forty days of mating, the female Giant Pacific Octopus attaches strings of small fertilized eggs to the rocks within these crevices and calls it home for a time — generally five months or 160 days. When I visit, I sometimes bring crab or sea urchin for her to snack on as the mothers guarding these eggs do not leave to hunt, staying ever vigilante protecting their brood from predators.

Octopus are soft-bodied, eight-limbed molluscs of the order Octopoda. The order consists of some 300 species and is grouped within the class Cephalopoda with squids, cuttlefish, and nautiloids. 

The oldest fossil octopus at 300 million years old is Pohlsepia mazonensis from Carboniferous Mazon Creek fossil beds in Illinois. The only known specimen resembles modern octopuses with the exception of possessing eight arms and two tentacles (Kluessendorf and Doyle 2000).

Friday 22 January 2021

DESMOCERAS OF MAHAJANGA

This lovely dark rust chunky monkey is the ammonite Desmoceras (Pseudouhligella) latidorsatum from the Lower Cretaceous, Lower Albian, Douvilliceras inequinodum Zone, Ambarimaninga, Mahajanga Province, Madagascar.

Ammonites were predatory, squid-like creatures that lived inside coil-shaped shells. Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles. 

They used their tentacles to snare prey, — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunt today.

Thursday 21 January 2021

LOTUS FLOWER FRUIT

Lotus Flower Fruit, Nelumbo
This beauty is the fruit of the lotus, Nelumbo. This specimen was found by Green River Stone (GRS) in early Eocene outcrops of the Fossil Lake Member of the Green River Formation. 

The awesome possums from GRS are based out of North Logan, Utah, USA and have unearthed some world-class specimens. They've found Nelumbo leaves over the years but this is their first fossil specimen of the fruit.

And what a specimen it is! The spectacularly preserved fruit measures 6-1/2" round. Here you can see both the part and counterpart in fine detail. Doug Miller of Green River Stone sent copies to me this past summer and a copy to the deeply awesome Kirk Johnson, resident palaeontologist over at the Smithsonian Institute, to confirm the identification.

There is another spectacular specimen from Fossil Butte National Monument. They shared photos of a Nelumbo just yesterday. Nelumbo is a genus of aquatic plants in the order Proteales found living in freshwater ponds. You'll recognize them as the emblem of India, Vietnam and many wellness centres.

Nelumbo Fruit, Green River Formation
There is residual disagreement over which family the genus should be placed in. Traditional classification systems recognized Nelumbo as part of the Nymphaeaceae, but traditional taxonomists were likely misled by convergent evolution associated with an evolutionary shift from a terrestrial to an aquatic lifestyle. 

In the older classification systems, it was recognized under the biological order Nymphaeales or Nelumbonales. Nelumbo is currently recognized as the only living genus in Nelumbonaceae, one of several distinctive families in the eudicot order of the Proteales. Its closest living relatives, the (Proteaceae and Platanaceae), are shrubs or trees.

Interestingly, these lovelies can thermoregulate, producing heat. Nelumbo uses the alternative oxidase pathway (AOX) to exchange electrons. Instead of using the typical cytochrome complex pathway most plants use to power mitochondria, they instead use their cyanide-resistant alternative. 

This is perhaps to generate a wee bit more scent in their blooms and attract more pollinators. The use of this thermogenic feature would have also allowed thermo-sensitive pollinators to seek out the plants at night and possibly use the cover of darkness to linger and mate.

So they functioned a bit little like a romantic evening meeting spot for lovers and a wee bit like the scent diffuser in your home. This lovely has an old lineage with fossil species in Eurasia and North America going back to the Cretaceous and represented in the Paleogene and Neogene. Photo Two: Doug Miller of Green River Stone Company

Wednesday 20 January 2021

SAFFRON GOLD: CROCUS BLOSSOMS

Crocus — the plural of which is crocuses or croci — is a genus of flowering plants in the iris family comprising 90 species of perennials growing from corms. Many are cultivated for their flowers appearing in autumn, winter, or spring. The spice saffron is obtained from the stigmas of Crocus sativus, an autumn-blooming species.

Each crocus flower plucked gently by hand yields three vivid strands of saffron with an acre of laborious work producing only a few pounds.

The challenge of harvesting saffron from crocus and it's high market value dates back to 2100-1600 BC as the Egyptians, Greeks, and the Minoans of Crete all cultivated crocus not as a spice, but as a dye. Roman women used saffron to dye their hair and textiles yellow. The crocus corm has a history of trade throughout Europe that a few pounds of corms served as a loan of gold or jewels. It made it's way into the writing of the Greeks as early as 300 BC where it originated. The precious flower travelled to Turkey and then all the way to Great Britain in the 1500s before making it's way to the rest of the world.

Tuesday 19 January 2021

INDIGO: NATURAL DYES

Natural dyes are dyes or colourants derived from plants, invertebrates, or minerals. The majority of natural dyes are vegetable dyes from plant sources — roots, berries, bark, leaves, and wood — and other biological sources such as fungi and lichens.

Archaeologists have found evidence of textile dyeing dating back to the Neolithic period. In China, dyeing with plants, barks and insects has been traced back more than 5,000 years and looks to be our first attempt at the practice of chemistry.

The essential process of dyeing changed little over time. Typically, the dye material is put in a pot of water and then the textiles to be dyed are added to the pot, which is heated and stirred until the colour is transferred. Sometimes, we use workers with stout marching legs to mix this up.

Traditional dye works still operate in many parts of the world. There is a revival of using natural indigo in modern Egypt — although their indigo dye is mostly imported. The same is true further south in Sudan. They've been importing cloth from Upper Egypt as far back as we have written records and continue the practice of the cloth and dye imports today. Clean white cotton is more the style of western Sudan and Chad, but they still like to throw in a bit of colour.

Traditional Dye Vats
So do the folk living in North Africa. Years ago, I was travelling in Marrakesh and saw many men with noticeably orange, blueish or purplish legs. It wasn't one or two but dozens of men and I'd wondered why this was.

My guide took me to the top of a building so I could look down on rows and rows of coloured vats. In every other one was a man marching in place to work the dye into the wool. Their legs took on the colour from their daily march in place in huge tubs of liquid dye and sheared wool. This wool would be considered textile fibre dyed before spinning — dyed in the wool — but most textiles are yarn-dyed or piece-dyed after weaving.

Many natural dyes require the use of chemicals called mordants to bind the dye to the textile fibres; tannin from oak galls, salt, natural alum, vinegar, and ammonia from stale urine were staples of the early dyers.

Many mordants and some dyes themselves produce strong odours. Urine is a bit stinky. Not surprisingly, large-scale dyeworks were often isolated in their own districts.

Woad, Isatis tinctoria
Plant-based dyes such as Woad, Isatis tinctoria, indigo, saffron, and madder were raised commercially and were important trade goods in the economies of Asia and Europe. Across Asia and Africa, patterned fabrics were produced using resist dyeing techniques to control the absorption of colour in piece-dyed cloth.

Dyes such as cochineal and logwood, Haematoxylum campechianum, were brought to Europe by the Spanish treasure fleets, and the dyestuffs of Europe were carried by colonists to America.

Throughout history, people have dyed their textiles using common, locally available materials, but scarce dyestuffs that produced brilliant and permanent colours such as the natural invertebrate dyes. Crimson kermes became highly prized luxury items in the ancient and medieval world. Red, yellow and orange shades were fairly easy to procure as they exist as common colourants of plants. It was blue that people sought most of all and purple even more so.

Indigofera tinctoria, a member of the legume or bean family proved just the trick. This lovely plant —  named by the famous Swedish botanist Carl Linneaus, the father of formalized binomial nomenclature — grows in tropical to temperate Asia and subtropical regions, including parts of Africa.

The plants contain the glycoside indican, a molecule that contains a nitrogenous indoxyl molecule with some glucose playing piggyback. Indigo dye is a product of the reaction of indoxyl by a mild oxidizing agent, usually just good old oxygen.

To make the lovely blue and purple dyes, we harvest the plants and ferment them in vats with urine and ash. The fermentation splits off the glucose, a wee bit of oxygen mixes in with the air (with those sturdy legs helping) and we get indigotin — the happy luxury dye of royalty, emperors and kings.

While much of our early dye came from plants — now it is mostly synthesized — other critters played a role. Members of the large and varied taxonomic family of predatory sea snails, marine gastropod mollusks, commonly known as murex snails were harvested by the Phoenicians for the vivid dye known as Tyrian purple.

While the extant specimens maintained their royal lineage for quite some time; at least until we were able to manufacture synthetic dyes, it was their fossil brethren that first captured my attention. There are about 1,200 fossil species in the family Muricidae. They first appear in the fossil record during the Aptian of the Cretaceous.

Their ornate shells fossilize beautifully. I'd first read about them in Addicott's Miocene Gastropods and Biostratigraphy of the Kern River Area, California. It's a wonderful survey of 182 early and middle Miocene gastropod taxa.

References:

George E.Radwin and Anthony D'Attilio: The Murex shells of the World, Stanford University press, 1976, ISBN 0-8047-0897-5

Pappalardo P., Rodríguez-Serrano E. & Fernández M. (2014). "Correlated Evolution between Mode of Larval Development and Habitat in Muricid Gastropods". PLoS ONE 9(4): e94104. doi:10.1371/journal.pone.0094104

Miocene Gastropods and Biostratigraphy of the Kern River Area, California; United States Geological Survey Professional Paper 642  This article incorporates text from this source, which is in the public domain.

Sunday 17 January 2021

GONDWANA: DEEP TIME

550 million years ago, the relentless movement of the Earth's tectonic plates pushed the landmasses to come together in the supercontinent of Gondwana. 

Gondwana was a supercontinent that existed from the Neoproterozoic (about 550 million years ago) and began to break up during the Jurassic (about 180 million years ago), with the final stages of a breakup, including the opening of the Drake Passage separating South America and Antarctica occurring during the Eocene. 

Gondwana was not considered a supercontinent by the earliest definition, since the landmasses of Baltica, Laurentia, and Siberia were separated from it. Gondwana dominated the southern hemisphere for more than 400 million years. It took until 1861 for us to recognize the clues in our modern placement of rocks and fossils

Saturday 16 January 2021

OIL IN WATER BEAUTY

Sheer beauty — a beautiful Euhoplites ammonite from Folkstone, UK. I've been really enjoying looking at all oil-in-water colouring and chunkiness of these ammonites.

Euhoplites is an extinct ammonoid cephalopod from the Lower Cretaceous, characterized by strongly ribbed, more or less evolute, compressed to inflated shells with flat or concave ribs, typically with a deep narrow groove running down the middle.

In some, ribs seem to zigzag between umbilical tubercles and parallel ventrolateral clavi. In others, the ribs are flexious and curve forward from the umbilical shoulder and lap onto either side of the venter.

Its shell is covered in the lovely lumps and bumps we associate with the genus. The function of these adornments are unknown. I wonder if they gave them greater strength to go deeper into the ocean to hunt for food. 

They look to have been a source of hydrodynamic drag, likely preventing Euhoplites from swimming at speed. Studying them may give some insight into the lifestyle of this ancient marine predator. Euhoplites had shells ranging in size up to a 5-6cm. 

We find them in Lower Cretaceous, middle to upper Albian age strata. Euhoplites has been found in Middle and Upper Albian beds in France where it is associated respectively with Hoplites and Anahoplites, and Pleurohoplites, Puzosia, and Desmoceras; in the Middle Albian of Brazil with Anahoplites and Turrilites; and in the Cenomanian of Texas.

This species is the most common ammonite from the Folkstone Fossil Beds in southeastern England where a variety of species are found, including this 37mm beauty from the collections of José Juárez Ruiz.

Friday 15 January 2021

FOLKSTONE GAULT CLAY AMMONITES

This lovely wee 2.6 cm ammonite is Anahoplites planns from the Cretaceous Folkstone Gault Clay, county of Kent, southeast England. Joining him on this bit of matrix is a 3.2 cm section of Hamites sp

This matrix you see here is the Gault Clay, known locally as the Blue Slipper. This fine muddy clay was deposited 105-110 million years ago during the Lower Cretaceous (Upper and Middle Albian) in a calm, fairly deep-water continental shelf that covered what is now southern England and northern France.

Lack of brackish or freshwater fossils indicates that the gault was laid down in open marine environments away from estuaries. The maximum depth of the Gault is estimated 40-60m a figure which has been reached by the presence of Borings made by specialist Algal-grazing gastropods and supported by a study made by Khan in 1950 using Foraminifera. Estimates of the surface water temperatures in the Gault are between 20-22°c and 17-19°c on the seafloor. These estimates have been reached by bulk analysis of sediments which probably register the sea surface temperature for calcareous nanofossils.

It is responsible for many of the major landslides around Ventnor and Blackgang the Gault is famous for its diverse fossils, mainly from mainland sites such as Folkestone in Kent.

Folkestone, Kent is the type locality for the Gault clay yielding an abundance of ammonites, the same cannot be said for the Isle of Wight Gault, however, the south-east coast of the island has proved to be fossiliferous in a variety of ammonites, in particular, the Genus Hoplites, Paranahoplites and Beudanticeras.

While the Gault is less fossiliferous here on the island it can still produce lovely marine fossils, mainly ammonites and fish remains from these muddy mid-Cretaceous seas. The Gault clay marine fossils include the ammonites (such as Hoplites, Hamites, Euhoplites, Anahoplites, and Dimorphoplites), belemnites (such as Neohibolites), bivalves (notably Birostrina and Pectinucula), gastropods (including the lovely Anchura), solitary corals, fish remains (including shark teeth), scattered crinoid remains, and crustaceans (look for the crab Notopocorystes).

Occasional fragments of fossil wood may also be found. The lovely ammonite you see here is from the Gault Clays of Folkstone. Not all who name her would split the genus Euhoplites. There’s a reasonable argument for viewing this beauty as a very thick form of E. loricatus with Proeuhoplites being a synonym of Euhoplites

Jack Wonfor shared a wealth of information on the Gault and has many lovely examples of the ammonites found here in his collections. If you wish to know more about the Gault clay a publication by the Palaeontological Association called 'Fossils of the Gault clay' by Andrew S. Gale is available in Dinosaur Isle's gift shop.

There is a very good website maintained by Fred Clouter you can look at for reference. It also contains many handy links to some of the best fossil books on the Gault Clay and Folkstone Fossil Beds. Check it out here: http://www.gaultammonite.co.uk/

Thursday 14 January 2021

NAOMICHELYS SPECIOSA OF THE HASLAM

Naomichelys speciosa, a new Helochelydrid turtle from the Trent River
The Trent River near Courtenay, British Columbia is a hotbed of 85-million-year-old fossil fauna immortalized in stone. 

What is even more remarkable is that we find both marine and terrestrial specimens mere feet from one another.  

Helochelydrids are a group of poorly known turtles from Late Jurassic to Late Cretaceous deposits in North America and Europe. It is the only known North American member of Helochelydridae.

Naomichelys is known from numerous specimens throughout western North America, most notably the holotype partial shell from the Early Cretaceous Cloverly Formation of Montana and a complete skeleton from the Antlers Formation of Texas.

The Cloverly Formation includes a number of vertebrate fossils including a diverse assemblage of dinosaur fossils. the site was designated as a National Natural Landmark by the National Park Service in 1973.

Naomichelys is a member of the family Helochelydridae. We find their fossilized remains in Late Jurassic to Late Cretaceous deposits in North America and Europe. Within North America, only the species Naomichelys speciosa is known from relatively complete material which makes comparisons between specimens from other localities challenging. Phil Currie along with co-authors Matthew J. Vavrek, Derek W. Larson, Donald B. Brinkman and Joe Morin described a new species of Helochelydrid terrestrial turtle found on the Trent River near Courtenay, British Columbia.

The new genus and species of helochelydrid turtle were based on a relatively complete shell from the marine Haslam Formation (Santonian) of Vancouver Island, British Columbia, Canada.

The new species is characterized by several distinctive shell features, notably a forward curving process on the anterior portion of the hyoplastra, strongly distinguishing it from N. speciosa. The shell is relatively small but does appear to be from a fully grown individual, suggesting that the species was generally much smaller than other known helochelydrids.

Previously most records of helochelydrids in North America had been assigned to N. speciosa, regardless of actual diagnosable characters. The presence of an additional species of helochelydrid from North America indicates that a greater diversity of the taxon was present than was previously recognized. While the interspecific relationships of helochelydrids remain difficult to fully assess, due to the lack of well-preserved specimens, this new species provides additional geographic and phylogenetic data that aids our understanding of this enigmatic group.

Monday 11 January 2021

Sunday 10 January 2021

SWIMMING TRIASSIC SEAS: ALBERTONIA

Triassic Fossil Fish, Albertonia sp. 
Just look at these fabulous fins. I can picture this lovely sailing through Early Triassic seas with her graceful sail-like fins. She is a ganoid fish, Albertonia sp., an extinct bony fish from the East Kootenay Rockies of British Columbia, Canada.

Specimens of this beauty have been found in the Vega-Phroso Siltstone Member of the Sulphur Mountain Formation near Wapiti Lake in British Columbia and the Lower Triassic Montney Formation of Alberta.

Early Triassic fish have been described from several outcrops in the Western Canada Sedimentary Basin of the Rocky Mountains. The best known and most prolific of these are from sites near Wapiti Lake in northeastern British Columbia. Here specimens of bony fish with their heavy ganoid and cosmoid scales are beautifully preserved. Four genera of Early Triassic fishes — the ray-finned actinopterygians Albertonia, Bobasatrania, Boreosomus, and the lobe-finned coelacanth (sarcopterygian), Whiteia — are found in abundance in the Wapiti Lake exposures.

This particular species is one of my favourites. Albertonia is a member of the ganoid fish family Parasemionotidae, which is amongst the most advanced and abundant of Triassic subholostean families of fish. The preservation here really shows the beauty of form of this species who likely died and was preserved in sediment at the bottom of an ocean with an anoxic environment.

These fellows lived in deep marine waters, dining on plankton & other small organisms. Most specimens are 35-40cm in length. They have a large, sail-shaped dorsal fin and rather smallish ventral fins. Their pectoral fins were incredibly long compared to the rest of the body, and they too resembled sails. The preservation here is quite remarkable with each square-shaped scale preserved in minute detail.

Richard Carr, a grad student at Fort Hays State University mentioned to me that there is a great fish taphonomy paper based on these specimens. The Sulphur Mountain Formation also has some other incredible fish fossils including 3-D articulated hybodont and eugeneodont skeletons. The latter are also among the youngest members of their order. 

Friday 8 January 2021

Thursday 7 January 2021

NORTH SEA DOLPHIN VERT

A lovely 12 cm creamy orange Bottlenose Dolphin, Tursiops sp. lumbar vertebrae found in the Brown Bank area of the North Sea, one of the busiest seaways in the world.

Bottlenose dolphins first appeared during the Miocene and swam the shallow seas of this region. We still find them today in warm and temperate seas worldwide though unlike narwhal, beluga and bowhead whales, Bottlenose dolphins avoid the Arctic and Antarctic Circle regions. 

Their name derives from the Latin tursio (dolphin) and truncatus for their characteristic truncated teeth

We find their remains in the sediments of the North Sea. There are two known fossil species from Italy that include Tursiops osennae (late Miocene to early Pliocene) from the Piacenzian coastal mudstone, and Tursiops miocaenus (Miocene) from the Burdigalian marine sandstone.

Many waterworn vertebrae from the Harbour Porpoise Phocoena sp., (Cuvier, 1816), Bottlenose dolphin Tursiops sp. (Gervais, 1855), and Beluga Whale, Delphinapterus sp. (Lacépède‎, 1804‎) are found by fishermen as they dredge the bottom of the Brown Bank, one of the deepest sections of the North Sea.  

The North Sea is a sea of the Atlantic Ocean located between the United Kingdom, Denmark, Norway, Germany, the Netherlands, Belgium and France. An epeiric sea on the European continental shelf, it connects to the ocean through the English Channel in the south and the Norwegian Sea in the north.

The fishermen use small mesh trawl nets that tend to scoop up harder bits from the bottom. This technique is one of the only ways this Pleistocene and other more recent material is recovered from the seabed, making them relatively uncommon. The most profitable region for fossil mammal material is in the Brown Bank area of the North Sea. I've circled this area on the map below to give you an idea of the region.

Brown Bank, North Sea, Pleistocene Dredging Area
In May 2019, an 11-day expedition by European scientists from Belgium and the United Kingdom was undertaken to explore three sites of potential geologic and archaeologic interest in the southern North Sea. 

It has long been suspected that the southern North Sea plain may have been home to thousands of people, and chance finds by fishermen over many decades support this theory. 

A concentration of archaeological material, including worked bone, stone and human remains, has been found within the area around the Brown Bank, roughly 100 km due east from Great Yarmouth and 80 km west of the Dutch coast. The quantities of material strongly suggest the presence of a prehistoric settlement. As such the Brown Bank provides archaeologists with a unique opportunity to locate a prehistoric settlement in the deeper and more remote areas of the North Sea, known today as Doggerland.

Until sea levels rose at the end of the last Ice Age, between 8-10,000 years ago, an area of land connected Great Britain to Scandinavia and the continent.  It has long been suspected that the southern North Sea plain was home to thousands of people, and chance finds by fishermen over many decades support this theory. 

Over the past decades a concentration of archaeological material, including worked bone, stone and human remains, has been found within the area around the Brown Bank, roughly 100 km due east from Great Yarmouth and 80 km west of the Dutch coast. 

The quantities of material strongly suggest the presence of a prehistoric settlement. 

As such the Brown Bank provides archaeologists with a unique opportunity to locate a prehistoric settlement in the deeper and more remote areas of the North Sea, known today as Doggerland.

Prospecting for such a settlement within the North Sea is a challenging activity.  Multiple utilities cross the area, bad weather is frequent, and visibility underwater is often limited.  Given these challenging conditions, researchers on the Belgian vessel, RV Belgica, used acoustic techniques and physical sampling of the seabed to unravel the topography and history of the areas chosen for the survey.  

During the survey, the team used a novel parametric echosounder from the Flanders Marine Institute (VLIZ). This uses sonar technology to obtain images of the sub-bottom with the highest possible resolution and was combined with the more traditional “sparker” seismic source to explore deeper sediments.  On the Brown Bank, the Belgica also deployed a grab and a Gilson dredge for sampling near-surface stratigraphy. Video footage was collated using VLIZ’s dedicated video frame and a simpler GoPro mounted on the Gilson dredge. A video showing the equipment in operation on the expedition can be seen at https://youtu.be/sGKfyrDCtmw

Additional reading: http://www.vliz.be/en/press-release/update-research-prehistoric-settlements-North-Sea

Wednesday 6 January 2021

PREDATORY OLIGOCENE DOLPHIN

Back in the 1880s, a large fragmentary skull of an ancient toothed dolphin was described that would later be known as Ankylorhiza tiedemani

The newly named genus Ankylorhiza is derived from the Greek word "ankylo" meaning bound, stiff, or fused, and "rhiza", meaning root — meaning fused roots, and referring to the mostly single-rooted condition of the teeth — a surprisingly toothy grin for an early dolphin. 

We think of dolphins as the gentle, squeaky darlings of the ocean but back in the Oligocene, they were formidable predators. Picture a mug full of sharp teeth and a body designed for speed. Ankylorhiza tiedemani was the largest member of the Odontoceti, a parvorder or suborder of cetaceans that includes dolphins, porpoise and our toothed whale friends and includes all the whales which eat prey larger than plankton. This toothy group includes sperm whales, beaked whales, river and oceanic dolphins, pilot whales and their cetacean brethren with teeth rather than the baleens we find in Mysticeti whales.

More bits and pieces of this brute were unearthed in the 1970s and 1990s. We usually find just the skulls of our aquatic friends but the nearly complete skeleton that found its way to the Mace Brown Museum of Natural History at the College of Charleston included a well-preserved skull, the ribcage, most of the vertebral column and a lone flipper. These additional bits of the skeleton provided the information necessary to truly tease out this ancient tale. Together, the bones tell the story of a 4.8 m predator who would have diverged from baleen whales — but continued to evolve convergent similarities — about 35-36 million years ago. 

This beast of a dolphin hunted our ancient seas some 24 million years ago. He was a fast swimmer with a narrow tailstock, some added tail vertebra and a shorter humorous — upper arm bone — in his flippers. Some dolphins can exceed speeds of 50 km/h, a feat accomplished by thrusting the flukes while adjusting attack angle with their flippers. These movements are driven by robust axial musculature anchored to a relatively rigid torso consisting of numerous short vertebrae and controlled by hydrofoil-like flippers. 

Eocene skeletons of whales illustrate the transition from semiaquatic to aquatic locomotion, including the development of a fusiform body and reduction of hindlimbs, but the rarity of Oligocene whale skeletons has hampered efforts to understand the evolution of fluke-powered, but forelimb-controlled, locomotion. Modern whales and dolphins are superbly adapted for marine life, with tail flukes being a key innovation shared by all extant species. Did ancient dolphins have these modifications for speed? Most thought not. We have the benefit of modern species to make tentative comparisons but need ancient specimens to confirm the hypothesis. 

Kudos to Robert Boessnecker and team for their paper in the journal Current Biology. In it, they report a nearly complete skeleton of the extinct large dolphin Ankylorhiza tiedemani comb. n. from the Oligocene of South Carolina, previously known only from a partial rostrum. Its forelimb is intermediate in morphology between stem cetaceans and extant taxa, whereas its axial skeleton displays incipient rigidity at the base of the tail with a flexible lumbar region. 

The position of Ankylorhiza near the base of the odontocete radiation implies that several postcranial specializations of extant cetaceans, including a shortened humerus, narrow peduncle, and loss of radial tuberosity, evolved convergently in odontocetes and mysticetes. Craniodental morphology, tooth wear, torso vertebral morphology, and body size all suggest that Ankylorhiza was a macrophagous predator that could swim relatively fast, indicating that it was one of the few extinct cetaceans to occupy a niche similar to that of killer whales.

If you fancy a read, here's the reference:

Robert W. Boessenecker et al. Convergent Evolution of Swimming Adaptations in Modern Whales Revealed by a Large Macrophagous Dolphin from the Oligocene of South Carolina. Current Biology, published online July 9, 2020; doi: 10.1016/j.cub.2020.06.012

Saturday 2 January 2021

WEE BEAVERS AND POCKET MICE

This teeny, tiny skull belongs to an adorable wee early beaver, Microtheriomys brevirhinus, from the John Day Formation. His teeny skull measures an adorable 16 mm. Yeah, he's pretty cute!

Palaeontologists Dr William Korth of Rochester Institute of Vertebrate Paleontology and Dr Joshua Samuels of John Day Fossil Beds National Monument are pretty chuffed about some new fossil finds. 

They have described four new genera and ten new species of prehistoric rodents that lived in what is now Oregon during the Oligocene -- 30- 22 million years ago.

The newly-discovered genera include this wee fellow, the early beaver, Microtheriomys brevirhinus, a dwarf tree squirrel, Miosciurus covensis, a primitive pocket mouse, Bursagnathus aterosseusm the birch mouse Plesiosminthus fremdi, an early relative of beavers, Allotypomys pictus along with bits and pieces of Proapeomys condoni; Apeomys whistleri; Neoadjidaumo arctozophus, Proheteromys latidens & Trogomys oregonensis.

Of these ten new species, four represent completely new genera: Allotypomys, Microtheriomys, Proapeomys, and Bursagnathus. The study fills some substantial gaps in our knowledge of past faunas, specifically smaller mammals. Some of the new species are really interesting in their own right, and will ultimately help improve our understanding of the evolution of beavers and pocket mice. These new rodents were collected through decades of collaborative work throughout the John Day Formation, Oregon.

Thursday 31 December 2020

BACK IN THE USSR: BEADANTICERAS

This lovely oil in water coloured ammonite is the beauty Beudanticeras sp. from the Lower Cretaceous (Upper Aptian), Krasnodar region, Northern Caucasus, southern Russia. 

This area of the world has beautiful fossil specimens with their distinct colouring. The geology and paleontological history of the region are fascinating as is its more recent history. 

The territory of present Krasnodar Krai was inhabited as early as the Paleolithic, about 2 million years ago. It was inhabited by various tribes and peoples since ancient times. There were several Greek colonies on the Black Sea coast, which later became part of the Kingdom of the Bosporus. In 631, the Great Bulgaria state was founded in the Kuban. In the 8th-10th centuries, the territory was part of Khazaria.

In 965, the Kievan Prince Svyatoslav defeated the Khazar Khanate and this region came under the power of Kievan Rus, Tmutarakan principality was formed. At the end of the 11th century, in connection with the strengthening of the Polovtsy and claims of Byzantium, Tmutarakan principality came under the authority of the Byzantine emperors (until 1204).

In 1243-1438, this land was part of the Golden Horde. After its collapse, Kuban was divided between the Crimean Khanate, Circassia, and the Ottoman Empire, which dominated in the region. Russia began to challenge the protectorate over the territory during the Russian-Turkish wars.

In 1783, by decree of Catherine II, the right-bank Kuban and Taman Peninsula became part of the Russian Empire after the liquidation of the Crimean Khanate. In 1792-1793, Zaporozhye (Black Sea) Cossacks resettled here to protect new borders of the country along the Kuban River. 

During the military campaign to establish control over the North Caucasus (Caucasian War of 1763-1864), in the 1830s, the Ottoman Empire for forced out of the region and Russia gained access to the Black Sea coast.

Prior to the revolutionary events of 1917, most of the territory of present Krasnodar Krai was occupied by the Kuban region, founded in 1860. In 1900, the population of the region was about 2 million people. In 1913, it ranked 2nd by the gross harvest of grain, 1st place for the production of bread in the Russian Empire.

The Kuban was one of the centres of resistance after the Bolshevik revolution of 1917. In 1918-1920, there was a non-Bolshevik Kuban People’s Republic. In 1924, North-Caucasian krai was founded with the centre in Rostov-on-Don. In 1934, it was divided into Azov-Black Sea krai (Rostov-on-Don) and North Caucasus krai (Stavropol).

September 13, 1937, the Azov-Black Sea region was divided into the Rostov region and Krasnodar Krai that included Adygei autonomous oblast. During the Second World War, the region was captured by the Germans. After the battle for the Caucasus, it was liberated. There are about 1,500 monuments and memorials commemorating heroes of the war on the territory of Krasnodar Krai.

The lovely block you see here is in the collections of the awesome John Fam, Vice-Chair of the Vancouver Paleontological Society in British Columbia, Canada.

Wednesday 30 December 2020

MIDDLE TRIASSIC PAPER CLAMS & AMMONOIDS

Paper clams or "flat clams" were widespread in the Triassic. They often dominate the rocks in which they are found, as in these specimens from the Daonella dubia zone of the West Humboldt Range and the Desatoya Range of Nevada where they are associated with Ceratities trinodosus, Nevadites Whitney, Daonella lindstomi, D. moussoni and other species.

This designation was coined by J. P. Smith in the early 1900s for specific localities in the Humboldt Mountain Range. Because of their widespread distribution and very high species turnover rates, they make for excellent biochronological macrofossils, helping us to correlate biological events through time.

We see the "cousins" of these Nevada specimens up in  Pine Pass near Chetwynd, British Columbia.

Pine Pass is part of the Pardonet Formation. Just a short hike from the road we were able to easily find the abundant outcroppings of the paper clam Monotis subcircularis, perfectly preserved and cemented in this strata from the Late Triassic.

Monday 28 December 2020

BACK IN THE USSR: KEPPLERITES

This glorious chocolate block contains the creamy grey ammonite Kepplerites gowerianus (Sowerby 1827) with a few invertebrate friends, including two brachiopods: Ivanoviella sp., Zeilleria sp. and the deep brown gastropod Bathrotomaria sp. There is also a wee bit of petrified wood on the backside.

These beauties hail from Jurassic, Lower Callovian outcrops in the Quarry of Kursk Magnetic Anomaly (51.25361,37.66944), Kursk region, Russia. Diameter ammonite 70мм. 

Back in the USSR — in the mid-1980s — during the expansion and development of one of the quarries, an unusual geological formation was found. This area had been part of the seafloor around an ancient island surrounded by Jurassic Seas. 

The outcrops of this geological formation turned out to be very rich in marine fossils. This ammonite block was found there years ago by the deeply awesome Emil Black. Sadly, he has not been able to collect there for some time. In more recent years, the site has been closed to fossil collecting and is in use solely for the processing and extraction of iron ore deposits.

Sunday 27 December 2020

MEGALODON: APEX PREDATOR OF THE DEEP

Otodos megalodon with Cam Muskelly in scuba for scale
23-million-years ago to just over 3-million-years ago, the apex predator of the seas was the hulking cousin to today's Great White Shark. Otodus megalodon was the largest shark ever to grace our oceans and the largest fish as well. 

This big boy swam in at a whopping fifty-tonnes and grew to 18 metres or 60 feet in length — twice the size of an ankylosaur or triceratops and larger than a Tyrannosaurs rex but a wee bit smaller than a brontosaurus. 

From our modern oceans and their modern cousins, that is a full three times larger Deep Blue, the 2.5 tonne, 6-metre long shark found off Oahu's south shore in 2019. Deep Blue weighed the equivalent of two Stonehenge Sarsen stones or half a house. Picture your house, now add another half and that is the size of Otodus megalodon. It truly puts their size in perspective. 

We often estimate the size of animals and what they ate by the size and shape of their teeth. Megalodon had large serrated teeth up to 18 centimetres long — perfect for dining on dolphins and humpback whales — and they had loads of them. Their mouths were lined with up to 276 teeth and these packed a punch with one of the most powerful bites on record. We have a rather paltry bite force of around 1,317 Newtons (N) when we chomp down with gusto. 

In 2012, we learned that the most powerful bite recorded from a living animal belongs to the saltwater crocodile. Gregory Erickson of Florida State University in Tallahassee compared 23 crocodilian species and discovered that the largest saltwater crocodiles can bite with an impressive 16,414N. That is more than 3.5 times the crushing force of the previous record-holder, the spotted hyena. Still, our aquatic friends beat that, if only slightly. A great white shark does indeed have a mightier bite than a crocodile.

We have known the estimated bite force of a great white a while longer. In 2008, Stephen Wroe of the University of New England in Australia and his colleagues used computer simulations to estimate the chomping pressure of a great white. Not surprisingly, great white sharks chomp in at an impressive 18,216N — greater than a saltwater crocodile but a full ten times less than Otodus

But all those bites pale in comparison to Otodus megalodon — this beastie takes the cake — or the whale — with a bite force of 182,201N.  

It is amazing to think of something as large and majestic as a whale being on any creatures menu but feast they did. Megalodon could open their toothy jaws 3.4 metres wide — that is wide enough to make a meal of a whale or swallow you and a friend whole. 

I added a brave and deeply awesome human, Cam Muskelly, award-winning Avocational Paleontologist & Geologist in Georgia, USA, Science Writer, Fossil Hunter, ASD in the image above to give you a sense of scale. Cam is five feet, five inches tall or 1.65 metres tall. Our dear Otodus megalodon is more than ten times longer. Now, Cam is a brave man and reached his hand out as an act of solidarity, but fortunately for him, there is 20-million-years separating his hand and those chompers.

Otodus megalodon was a bit blunt-nosed in comparison to a great white. They hail from a different lineage that broke off deeper in their hereditary history around 55-million-years ago. We now know that Otodus megalodon was the last of their lineage and the great grandbaby of Otodus obliquus and possibly Cretalamina appendiculata, who cruised our ancient seas 105 million years ago.           

We sometimes see Otodus megalodon referred to as Carcharodon or Carcharocles megalodon, particularly in the labels from older fossil collections but those names have fallen out of favour. 

If you would like to check out a talk by the award-winning Cam Muskelly, visit: https://youtu.be/I-pXdzeLAMI

Cameron Muskelly is an award-winning avocational palaeontologist from Georgia who is a fantastic science communicator. Join him for a fun, short chat about two important Permian fossils from his personal collection, which he uses for education and outreach across his home state. He shared this talk as part of the Discovery Day: National Fossil Day for the KU Natural History Museum.

Cam Muskelly Paleo 101 YouTube: https://www.youtube.com/channel/UCq-68CrGM398gd3NFXfX87w

Cam Muskelly on Twitter: @PaleoCameron. He's a good man that Cam. You should follow him. I do and love his posts!

Scuba vs Shark Image: Fossil Huntress. Scuba Model: Cam Muskelly, Georgia, USA 


Saturday 26 December 2020

AMMONITE OF THE RHÔNE

An exquisite specimen of the delicately ridged ammonite, Porpoceras verticosum, from Middle Toarcian outcrops adjacent the Rhône in southeastern France.

Porpoceras (Buchman, 1911) is a genus of ammonite that lived during the early and middle Toarcian stage of the Early Jurassic. We see members of this genus from the uppermost part of Serpentinum Zone to Variabilis Subzone. These beauties are found in Europe, Asia, North America and South America.

Ammonites belonging to this genus have evolute shells, with compressed to depressed whorl section. Flanks were slightly convex and venter has been low. The whorl section is sub-rectangular. 

The rib is pronounced and somewhat fibulate on the inner whorls — just wee nodes here — and tuberculate to spined on the ventrolateral shoulder. It differs from Peronoceras by not having a compressed whorl section and regular nodes or fibulation. Catacoeloceras is also similar, but it has regular ventrolateral tubercules and is missing the classic nodes or fibulation of his cousins.

This specimen hails from southern France near the Rhône, one of the major rivers of Europe. It has twice the average water level of the Loire and is fed by the Rhône Glacier in the Swiss Alps at the far eastern end of the Swiss canton of Valais then passes through Lake Geneva before running through southeastern France. This 10 cm specimen was prepared by the supremely talented José Juárez Ruiz

Friday 25 December 2020

GOD JUL / MERRY HO HO

God Jul & the Very Best of the Holiday Season to You & Yours. 

However you celebrate, sending you love and light for a wonderful holiday season with family and friends. Merry Ho Ho. Joyeux Noël. Chag Urim Sameach. Seku Kulu. Vrolijk Kerstfeest. Prettige Kerst. Wesołych Świąt. Nadelik Lowen. Glædelig Jul. Hyvää joulua. Bon Natale. Feliz Natal. Frohe Weihnachten. Mele Kalikimaka. Gleðileg jól. Christmas MobArak. Buon Natale. Meri Kuri. Felicem Diem Nativitatis.  Среќен Божик. Quvianagli Anaiyyuniqpaliqsi. Gledelig Jul. Maligayang Pasko. Crăciun Fericit. Blithe Yule. Veselé Vianoce. Hanukkah Sameach. Nollaig Chridheil. Счастливого рождества. Cualli netlācatilizpan. חג מולד שמח. Nollaig Shona Dhuit. Śubh krisamas (शुभ क्रिसमस). Prabhu Ka Naya Din Aapko Mubarak Ho. And Ho Ho Ho!

Thursday 24 December 2020

ALCIDS AUKS

Puffins are any of three small species of alcids or auks in the bird genus Fratercula with a brightly coloured beak during the breeding season.

Their sexy orange beaks shift from a dull grey to bright orange when it is time to attract a mate. While not strictly monogamous, most Puffins choose the same mate year upon year producing adorable chicks or pufflings (awe) from their mating efforts.

Female Puffins produce one single white egg which the parents take turns to incubate over a course of about six weeks. Their dutiful parents share the honour of feeding the wee pufflings five to eight times a day until the chick is ready to fly. Towards the end of July, the fledgeling Puffins begin to venture from the safety of their parents and dry land. Once they take to the seas, mom and dad are released from duty and the newest members of the colony are left to hunt and survive on their own.

These are pelagic seabirds that feed primarily by diving in the water. They breed in large colonies on coastal cliffs or offshore islands, nesting in crevices among rocks or in burrows in the soil. Two species, the tufted puffin and horned puffin are found in the North Pacific Ocean, while the Atlantic puffin is found in the North Atlantic Ocean. This lovely fellow, with his distinctive colouring, is an Atlantic Puffin or "Sea Parrot" from Skomer Island near Pembrokeshire in the southwest of Wales. Wales is bordered by Camarthenshire to the east and Ceredigion to the northeast with the sea bordering everything else. It is a fine place to do some birding if it's seabirds you're after.

These Atlantic Puffins are one of the most famous of all the seabirds and form the largest colony in Southern Britain. They live about 25 years making a living in our cold seas dining on herring, hake and sand eels. Some have been known to live to almost 40 years of age. They are good little swimmers as you might expect, but surprisingly they are great flyers, too! They are hindered by short wings, which makes flight challenging but still possible with effort. Once they get some speed on board, they can fly up to 88 km an hour.

The oldest alcid fossil is Hydrotherikornis from Oregon dating to the Late Eocene while fossils of Aethia and Uria go back to the Late Miocene. Molecular clocks have been used to suggest an origin in the Pacific in the Paleocene. Fossils from North Carolina were originally thought to have been of two Fratercula species but were later reassigned to one Fratercula, the tufted puffin, and a Cerorhinca species. Another extinct species, Dow's puffin, Fratercula dowi,  was found on the Channel Islands of California until the Late Pleistocene or early Holocene.

The Fraterculini are thought to have originated in the Pacific primarily because of their greater diversity in the region. There is only one extant species in the Atlantic, compared to two in the Pacific. The Fraterculini fossil record in the Pacific extends at least as far back as the middle Miocene, with three fossil species of Cerorhinca, and material tentatively referred to that genus, in the middle Miocene to late Pliocene of southern California and northern Mexico.

Although there no records from the Miocene in the Atlantic, a re-examination of the North Carolina material indicated that the diversity of puffins in the early Pliocene was as great in the Atlantic as it is in the Pacific today. This diversity was achieved through influxes of puffins from the Pacific; the later loss of species was due to major oceanographic changes in the late Pliocene due to closure of the Panamanian Seaway and the onset of severe glacial cycles in the North Atlantic.

Wednesday 23 December 2020

KAZAKHSTAN ANAHOPLITES

This tasty block of Semenovites (Anahoplites) cf. michalskii ammonites hails from Cretaceous, Albian deposits that outcrop on the Tupqaraghan — Mangyshlak Peninsula on the eastern coast of the Caspian Sea, Kazakhstan. 

Present-day Kazakhstan is made up of several micro continental blocks that were broken up in the Cambrian and then crushed back together then smashed up against Siberia and came to rest where we find them today. 

Mangyshlak or Mangghyshlaq Peninsula is a large peninsula located in western Kazakhstan. It borders on the Caspian Sea in the west and with the Buzachi Peninsula, a marshy sub-feature of the main peninsula, in the northeast. The Tyuleniy Archipelago lies off the northern shores of the peninsula.

Lowlands make up one-third of Kazakhstan’s huge expanse, hilly plateaus and plains account for nearly half, and low mountainous regions about one-fifth. Kazakhstan’s highest point, Mount Khan-Tengri (Han-t’eng-ko-li Peak) at 22,949 feet (6,995 metres), in the Tien Shan range on the border between Kazakhstan, Kyrgyzstan, and China, contrasts with the flat or rolling terrain of most of the republic. 

The western and southwestern parts of Kazakhstan are dominated by the low-lying Caspian Depression, which at its lowest point lies some 95 feet below sea level. South of the Caspian Depression are the Ustyurt Plateau and the Tupqaraghan (formerly Mangyshlak) Peninsula jutting into the Caspian Sea. 

Vast amounts of sand formed the Greater Barsuki and Aral Karakum deserts near the Aral Sea, the broad Betpaqdala Desert of the interior, and the Muyunkum and Kyzylkum deserts in the south. Most of these desert regions have slight vegetative cover eeking out a slim existence fed by subterranean groundwater.

Depressions filled by salt lakes — whose water has largely evaporated — dot the undulating uplands of central Kazakhstan. 

In the north, the mountains reach about 5,000 feet, and there are similar high areas among the Ulutau Mountains in the west and the Chingiz-Tau Range in the east. In the east and southeast, massifs — enormous blocks of crystalline rock — are furrowed by valleys. 

The Altai mountain complex to the east sends three ridges into the republic, and, farther south, the Tarbagatay Range is an offshoot of the Naryn-Kolbin complex. Another range, the Dzungarian Alatau, penetrates the country to the south of the depression containing the icy waters of Lake Balkhash. The beautiful Tien Shan peaks rise along the southern frontier with Kyrgyzstan. 

As well as lovely ammonite outcrops, dinosaurian material and pterosaur remains are also found in Kazakhstan. The ammonites you see here are in the collections of the deeply awesome Emil Black.

Paleo Coordinates: 44 ° 35'46 ″ 51 ° 52'53″ 

Tuesday 22 December 2020

AMMONITES IN PYRITE

We sometimes find fossils preserved by pyrite. They are prized as much for their pleasing gold colouring as they are for their scientific value as windows into the past. 

Sometimes folk add a coating of brass to increase the aesthetic appeal — a practice is frowned upon in paleontological communities.

Pyrite, sometimes called Fool's Gold, is a brass-yellow mineral with a bright metallic lustre. I popped a photo of some pyrite below so you can see the characteristic shape of its cubic crystal system.

Fool's Gold has a chemical composition of iron sulfide (FeS2) and is the most common sulfide mineral. It forms at high and low temperatures usually in small quantities, in igneous, metamorphic, and sedimentary rocks. If these sulfide minerals are close at hand when a fossil is forming, they can infuse specimens, replacing their mineral content to beautiful effect.

When we find a fossil preserved with pyrite, it tells us a lot about the conditions on the seabed where the organism died. Pyrite forms when there is a lot of organic carbon and not much oxygen in the vicinity. 

The reason for this is that bacteria in sediment usually respire aerobically (using oxygen), however, when there is no oxygen, they respire without oxygen (anaerobic) typically using sulphate. 

Sulphate is a polyatomic anion with the empirical formula SO2−4. It is generally highly soluble in water. Sulfate-reducing bacteria, some anaerobic microorganisms, such as those living in sediment or near deep-sea thermal vents, use the reduction of sulfates coupled with the oxidation of organic compounds or hydrogen as an energy source for chemosynthesis.

The sulfide mineral Pyrite, FeS2
High quantities of organic carbon in the sediment form a barrier to oxygen in the water. This also works to encourage anaerobic respiration. Anaerobic respiration using sulphate releases hydrogen sulphide, which is one of the major components in pyrite. 

So, when we find a fossil preserved in pyrite, we know that it died and was buried in sediment with low quantities of oxygen and high quantities of organic carbon. 

If you have pyrite specimens and want to stop them from decaying, you can give them a 'quick' soak in water (hour max) then wash them off, dry thoroughly in a warm oven. 

Cool, then soak in pure acetone for a couple of days. Then soak in paraloid, a thermoplastic resin surface coating or acetone for a couple of days. Keep in a sealed container with a desiccant pack afterwards to keep them dry — or leave them out on display to enjoy knowing that the decay will come in time. We do this with cut flowers so why not fossils sometimes.

I have a friend who gives her pyrite fossils on display a quick thumb wipe with vasoline or petroleum jelly. I'm not sure if the hydrocarbons there will play nice over time but it will act as a protective barrier.  

Monday 21 December 2020

BALEARITES OF MOROCCO

This beautifully prepped specimen of a Balearites cf. balearis (Nolan, 1984) ammonite is from Upper Hauterivian deposits near Tamri, a small seaside town and rural commune in Agadir-Ida Ou Tanane Prefecture, Souss-Massa, Morocco. Aside from wonderful fossil localities, this area of Morocco has some of the most amazing surfing and banana plantations.

Balearites, with their planispiral shell or conch and compressed whorls, is an extinct ancyloceratin genus ammonite in the family Crioceratitidae, suborder Ancyloceratina.

We find fossils of this genera in Romania, Slovakia, Austria, France, Spain, Switzerland, Hungary, Italy, Russia, Bulgaria and Morocco. 

This specimen is in the collection of José Juárez Ruiz and is roughly 202 mm. If you find this lovely interesting, you'll enjoy reading more on this genus and others in Arkell, W. J. et al., 1957. Mesozoic Ammonoidea, Treatise on Invertebrate Paleontology Part L, Mollusca 4. 1957.

Sunday 20 December 2020

AMMONOIDS, BIVALVES AND POLAR BEARS OF SVALBARD

 This marvellous block is filled with Aristoptychites (syn=Arctoptychites) euglyphus (Mojsisovics, 1886) and Daonella sp., oyster-like saltwater clams or bivalves from the Middle Triassic (Ladinian) outcrops in the Botneheia Formation of Spitzbergen, in Edgeøya and Barentsøya, eastern Svalbard, Norway. 

Daonella and Monotis are important species for our understanding of biostratigraphy in the Triassic and are useful as an index fossil. Daonellids preferred soft, soupy substrates and we tend to find them in massive shell beds.

Svalbard is a Norwegian archipelago between mainland Norway and the North Pole. One of the world’s northernmost inhabited areas, it's known for its rugged, remote terrain of glaciers and frozen tundra sheltering polar bears, reindeer and Arctic fox. The Northern Lights are visible during winter, and summer brings the “midnight sun”—sunlight 24 hours a day.

The Botneheia Formation is made up of dark grey, laminated shales coarsening upwards to laminated siltstones and sandstones. South of the type area, the formation shows several (up to four) coarsening-upward units. 

The formation is named for Botneheia Mountain, a mountain in Nordenskiöld Land at Spitsbergen, Svalbard. It has a height of 522 m.a.s.l., and is located south of Sassenfjorden, east of the valley of De Geerdalen. 

Polar Bears, Ursus maritimus
As well as lovely ammonoids and bivalves, we've found ichthyosaur remains here. We had been expecting too, but it was not until the early 2000s that the first bones were found.

Two specimens have of ichthyosaur have been recovered. They comprise part of the trunk and the caudal vertebral column respectively. 

Some features, such as the very high and narrow caudal and posterior thoracic neural spines, the relatively elongate posterior thoracic vertebrae and the long and slender haemapophyses indicate that they probably represent a member of the family Toretocnemidae. 

Numerous ichthyosaur finds are known from the underlying Lower Triassic Vikinghøgda Formation and the overlying Middle to Upper Triassic Tschermakfjellet Formation, the new specimens help to close a huge gap in the fossil record of the Triassic ichthyosaurs from Svalbard.

There is a resident research group working on the Triassic ichthyosaur fauna, the Spitsbergen Mesozoic Research Group. Lucky for them, they often find the fossil remains fully articulated — the bones having retained their spacial relationship to one another. Most of their finds are of the tail sections of primitive Triassic ichthyosaurs. In later ichthyosaurs, the tail vertebrae bend steeply downwards and have more of a fish-like look. In these primitive ancestors, the tail looks more eel-like — bending slightly so that the spines on the vertebrae form more of the tail.

Maisch, Michael W. and Blomeier, Dierk published on these finds back in 2009: Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen Band 254 Heft 3 (2009), p. 379 - 384. Nov 1, 2009

The lovely block you see here is in the collections of the deeply awesome John Fam. The image of the Polar Bears, Ursus maritimus, is courtesy of the Fossil Huntress. 

Saturday 19 December 2020

INDEX FOSSILS: PALAEONTOLOGICAL TIME

Ammonites were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish.

They were prolific back in the day, living, and sometimes dying, in schools in oceans around the globe.  We find ammonite fossils in sedimentary rock from all over the world. In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past.

For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. Generally, deeper is older, so we use the sedimentary layers of rock to match up to specific geologic time periods, rather like the way we use tree rings to date trees.

Friday 18 December 2020

CRETACEOUS EXTINCTION EVENT

66 million years ago, dinosaur still roamed the Earth. We know from abundant fossil bones, teeth and trackways that their reign lasted an impressive 230 million years. But a massive extinction event at the end of the Cretaceous wiped out three-quarters of the Earth's species — dinosaurs included. 

Our planet also lost the ammonites and our mighty marine reptiles — mosasaurs, ichthyosaurs and plesiosaurs. 

Never again would pterosaurs, flying reptiles, cruise our skies. Their departure gave rise to the age of mammals and the diversity we see today. 

One of the most well-known theories for the death of the dinosaurs is the Alvarez hypothesis, named after the father-and-son duo Luis and Walter Alvarez. In 1980, these two scientists proposed the notion that a meteor the size of a mountain slammed into Earth 66 million years ago, filling the atmosphere with gas, dust, and debris that drastically altered the climate.

Their key piece of evidence is an oddly high amount of the metal iridium in what’s known as the Cretaceous-Paleogene, or K-Pg, layer—the geologic boundary zone that seems to cap any known rock layers containing dinosaur fossils. 

Iridium is relatively rare in Earth's crust but is more abundant in stony meteorites, which led the Alvarezs to conclude that the mass extinction was caused by an extraterrestrial object. The theory gained even more steam when scientists were able to link the extinction event to a huge impact crater along the coast of Mexico’s Yucatán Peninsula. At about 93 miles wide, the Chicxulub crater seems to be the right size and age to account for the dino die-off.

In 2016, scientists drilled a rock core inside the underwater part of Chicxulub, pulling up a sample stretching deep beneath the seabed. This rare peek inside the guts of the crater showed that the impact would have been powerful enough to send deadly amounts of vaporized rock and gases into the atmosphere and that the effects would have persisted for years. 

And in 2019, palaeontologists digging in North Dakota found a treasure trove of fossils extremely close to the K-Pg boundary, essentially capturing the remains of an entire ecosystem that existed shortly before the mass extinction. Tellingly, the fossil-bearing layers contain loads of tiny glass bits called tektites—likely blobs of melted rock kicked up by the impact that solidified in the atmosphere and then rained down over Earth.

Thursday 17 December 2020

DEINOTHERIUM GIGANTEUM

This partial specimen of Deinotherium giganteum hails from Middle-Upper Miocene, c. 15.97-5.33 Million Years outcrops near Cerecinos de Campos, Zamora Castile and León, northwestern Spain.

Deinotherium  means "terrible beast," which feels a bit unkind to this vegetarian — though he was one of the largest elephants to walk this Earth. 

are relatively recent in the evolutionary story of the Earth. They first appeared 17 million years ago, had a short run of it and became extinct relatively recently — just 1.6 million years ago. This fellow's cousin, Deinotherium bozasi would likely have interacted with some of our oldest relatives. Australopithecus, Homo habilis and Homo ergaster likely laid eyes on one of these big beasties.

One of the distinguishing features of Deinotherium is their curved tusks inserted only in the jaw. One of the tusks from this fellow, on display at the Museo Nacional De Ciencias Naturales in Madrid, Spain, while incomplete, was preserved rather nicely and shows the detail of where the tusk meets the jaw.

Deinotherium could reach a height of over 3.5 meters. Its structure and size are similar to those of the present-day elephant. 


Wednesday 16 December 2020

PALAEONTOLOGIST EARL DOUGLASS: THE CARNEGIE QUARRY

Palaeontologist Earl Douglass, 1909
About 150 million years ago, a severe drought ravaged the western interior of North America. In eastern Utah, malnourished dinosaurs gathered near a dwindling river to live out their last days. 

Today, this site is known as the Carnegie Quarry at Dinosaur National Monument, and it is one of the most incredible fossil sites in the world.

The celebrated fossil quarry at what is now recognized as Dinosaur National Monument in Utah was discovered in 1909 by Carnegie Museum field collector Earl Douglass.

“I saw eight of the tail bones of a Brontosaurus in exact position. It was a beautiful sight.”  — Earl Douglass in his diary on August 17, 1909, recounting the moment he found the first dinosaur remains of a Brontosaurus at the Carnegie Quarry. Those vertebrae were part of a fully articulated skeleton that became the type for a new species, Apatosaurus louisae, (Gilmore, 1936), published a detailed quarry map showing the skeleton, with "outcrop" identifying the discovery bones. The specimen is now mounted in the Carnegie Museum and those eight tail bones, freed from their sandstone tomb. 

From 1909–1923, Douglass and his crews collected more than 350 tons (700,000 pounds) of fossils from that site alone. Several dinosaur skeletons discovered by Douglass at this quarry are featured in our core exhibition hall, Dinosaurs in Their Time.

Others grace the exhibit halls of other prominent North American museums, such as the American Museum of Natural History in New York, the Smithsonian Institution’s National Museum of Natural History in Washington, DC, the Denver Museum of Nature and Science, and the Royal Ontario Museum in Toronto.

If you would like to visit Dinosaur National Monument, you can explore extensive outcrops of the Morrison at the Dinosaur Quarry, on the Fossil Discovery Trail, the Sounds of Silence Trail, and other areas in the park.

To learn more about this fossil site, visit: https://carnegiemnh.org/celebrated-fossil-quarry/

Tuesday 15 December 2020

OCTOPUS: TAK'WA

This lovely with her colourful body is an octopus. Like ninety-seven percent of the world's animals, she lacks a backbone. 

To support their bodies, these spineless animals — invertebrates — have skeletons made of protein fibres. This flexibility can be a real advantage when slipping into nooks and crannies for protection and making a home in seemingly impossible places.

On the east side of Vancouver Island, British Columbia, Canada, there is an area called Madrona Point where beneath the surface of the sea many octopus have done just that. This is the home of the Giant Pacific Octopus, Enteroctopus dofleini, the largest known octopus species.

The land above is the home of the Snuneymuxw First Nation of the Coast Salish who live here, on the Gulf Islands, and along the Fraser River. They speak Hul'q'umin'um' — a living language that expresses their worldview and way of life. In Hul'q'umin'um' an octopus is sqi'mukw'. In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, further north on Vancouver Island, octopus or devil fish are known as ta̱k̕wa.

I have gone scuba diving at Madrona Point many times and visited the octopus who squeeze into the eroded sections of a sandstone ledge about 18 metres or 60 feet below the surface. 

On one of those trips, my friend Suzanne Groulx ran into one of the larger males swimming just offshore. I was surfacing as I heard her shriek clear as a bell. Sound moves through water about four times faster than it does through the air — faster than a jet plane. 

On that day, I suspect Suzanne was neck and neck both in sound and motion. Seconds later, she popped up a good three feet above the surf, still screaming. I have never seen anyone surface quite so quickly — dangerous and impressive in equal measure. It was on another of those trips that I met Philip Torrens, with whom I would later co-author, In Search of Ancient BC.     

While the entire coastline is beautiful to explore, it was visiting the octopus that drew me back time and time again. I have seen wee octopus the size of the palm of your hand, large males swimming and feeding and the lovely females tucked into their nursery homes.

After forty days of mating, the female Giant Pacific Octopus attach strings of small fertilized eggs to the rocks within these crevices and call it home for a time — generally five months or 160 days. When I visit, I sometimes bring crab or sea urchin for her to snack on as the mothers guarding these eggs do not leave to hunt, staying ever vigilante protecting their brood from predators. All the while she is here, she gently blows fresh water over the eggs.

And sadly, this will be her only brood. Octopus breed once in their too-short lives. Males die directly after mating and females die once their young have hatched. They live in all the world's oceans and no matter the species, their lifespans are a brief one to five years. I rather hope they evolve to live longer and one day outcompete the humans who like to snack on them.

Octopus are soft-bodied, eight-limbed molluscs of the order Octopoda. They have one hard part, their beaks, which they use to crack open clams, crab and crustaceans. 

They are ninja-level skilled at squeezing through very tight holes, particularly if it means accessing a tasty snack. The size of their beaks determines exactly how small a hole they can fit through. 

Looking, you would likely guess it could not be done, but they are amazing — and mesmerizing!

At the Vancouver Aquarium, they have been known to unscrew lids, sneak out of one tank to feed in another then slip back so you do not notice, open simple hooks and latches — burglars of the sea. They can also change the colour and texture of their skin to blend perfectly into their surroundings. You can look for them around reefs and rocky shores. There are 300 species of octopus grouped within the class Cephalopoda, along with squid, cuttlefish, and nautiloids. 

The oldest fossil octopus at 300 million years old is Pohlsepia mazonensis from Carboniferous Mazon Creek fossil beds in Illinois. The only known specimen resembles modern octopuses with the exception of possessing eight arms and two tentacles (Kluessendorf and Doyle 2000).

My favourite fossil octopus is the darling Keuppia levante (Fuchs, Bracchi & Weis, 2009), an extinct genus of octopus that swam our ancient seas back in the Cretaceous.