Wednesday, 31 December 2014

FOSSIL BEES AND FIRST NATIONS HISTORY

Welcome to the world of bees. This fuzzy yellow and black striped fellow is a bumblebee in the genus Bombus sp., family Apidae. 

We know him from our gardens where we see them busily lapping up nectar and pollen from flowers with their long hairy tongues.

My Norwegian cousins on my mother's side call them humle. Norway is a wonderful place to be something wild as the wild places have not been disturbed by our hands. Head out for a walk in the wild flowers and the sounds you will hear are the wind and the bees en masse amongst the flowers.   

There are an impressive thirty-five species of bumblebee species that call Norway hjem (home), and one, Bombus consobrinus, boasts the longest tongue that they use to feast solely on Monkshood, genus Aconitum, you may know by the name Wolf's-bane.

In the Kwak̓wala language of the Kwakwaka'wakw, speakers of Kwak'wala, and my family on my father's side in the Pacific Northwest, bumblebees are known as ha̱mdzalat̕si — though I wonder if this is actually the word for a honey bee, Apis mellifera, as ha̱mdzat̕si is the word for a beehive.

I have a special fondness for all bees and look for them both in the garden and in First Nation art.

Bumblebees' habit of rolling around in flowers gives us a sense that these industrious insects are also playful. In First Nation art they provide levity — comic relief along with their cousins the mosquitoes and wasps — as First Nation dancers wear masks made to mimic their round faces, big round eyes and pointy stingers. 

A bit of artistic license is taken with their forms as each mask may have up to six stingers. The dancers weave amongst the watchful audience and swoop down to playfully give many of the guests a good, albeit gentle, poke. 

Honey bees actually do a little dance when they get back to the nest with news of an exciting new place to forage — truly they do. Bumblebees do not do a wee bee dance when they come home pleased with themselves from a successful foraging mission, but they do rush around excitedly, running to and fro to share their excitement. They are social learners, so this behaviour can signal those heading out to join them as they return to the perfect patch of wildflowers. 

Bumblebees are quite passive and usually sting in defense of their nest or if they feel threatened. Female bumblebees can sting several times and live on afterwards — unlike honeybees who hold back on their single sting as its barbs hook in once used and their exit shears it off, marking their demise.

They are important buzz pollinators both for our food crops and our wildflowers. Their wings beat at 130 times or more per second, literally shaking the pollen off the flowers with their vibration. 

And they truly are busy bees, spending their days fully focused on their work. Bumblebees collect and carry pollen and nectar back to the nest which may be as much as 25% to 75% of their body weight. 

And they are courteous — as they harvest each flower, they mark them with a particular scent to help others in their group know that the nectar is gone. 

The food they bring back to the nest is eaten to keep the hive healthy but is not used to make honey as each new season's queen bees hibernate over the winter and emerge reinvigorated to seek a new hive each Spring. She will choose a new site, primarily underground depending on the bumblebee species, and then set to work building wax cells for each of her fertilized eggs. 

Bumblebees are quite hardy. The plentiful hairs on their bodies are coated in oils that provide them with natural waterproofing. They can also generate more heat than their smaller, slender honey bee cousins, so they remain productive workers in cooler weather.    

We see the first bumblebees arise in the fossil record 100 million years ago and diversify alongside the earliest flowering plants. Their evolution is an entangled dance with the pollen and varied array of flowers that colour our world. 

We have found many wonderful examples within the fossil record, including a rather famous Eocene fossil bee found by a dear friend and naturalist who has left this Earth, Rene Savenye.

His namesake, H. Savenyei, is a lovely fossil halictine bee from Early Eocene deposits near Quilchena, British Columbia — and the first bee body-fossil known from the Okanagan Highlands — and indeed from Canada. 

It is a fitting homage, as bees symbolize honesty, playfulness and willingness to serve the community in our local First Nation lore and around the world — something Rene did his whole life.

Tuesday, 30 December 2014

HAIDA GWAII: ISLANDS OF MIST

Steeped in mist and mythology, the islands of the Queen Charlottes abound in local lore that surrounds their beginnings.

Today, the Hecate Strait is a tempestuous 40-mile wide channel that separates the mist-shrouded archipelago of Haida Gwaii from the BC mainland. Haida oral tradition tells of a time when the strait was mostly dry, dotted here and there with lakes. During the last ice age, glaciers locked up so much water that the sea level was hundreds of feet lower than it is today. Soil samples from the sea floor contain wood, pollen, and other terrestrial plant materials that tell of a tundra-like environment.

The court is still out on whether or not the strait was ever completely dry during these times, but it certainly contained a series of stepping-stone islands and bridges that remained free of ice.

An ancient Haida tale, recorded in the late 1800s by a Hudson’s Bay Company trader, records the island's glacial history. Scannah-gan-nuncus, a boy who lived in the village now called Skidegate, had canoed up the Hunnah, a once roaring tributary to Skidegate Channel that is now a rocky creek, seldom deep enough to navigate.

The Haida the legend accurately records that it used to be several times deeper. Tired from paddling upstream, Scannah-gan-nuncus landed to take a nap. “In those days at the place where he went ashore were large boulders in the bed of the stream, while on both sides of the river were many trees. While resting by the river, he heard a dreadful noise upstream. Looking to see what it was, he was surprised to behold all the stones in the river coming toward him. … all the trees were cracking and groaning … he went to see what was crushing the stones and breaking the trees. On reaching them, he found that a large body of ice was coming down, pushing everything before it.”

Scannah-gan-nuncus’ experience with the glacier would have been familiar to the inhabitants of the Queen Charlottes. In recent years, the highest peaks are often bare of vegetation and snow-covered during most of the year, but back in the time of the glaciers, these same local mountains were the birthplace of advancing ice.

Precipitation and a significant drop in temperature gave rise to the Queen Charlottes ice-sheet, a thick mass of flowing ice that ran tandem with the Cordilleran sheet in the Hecate Lowlands.

Strolling around you can see where the glaciers left their mark on the Islands’ U-shape valleys, once a steep V-shape, now scoured smooth by glaciers that also deposited the erratic boulders can been seen sitting like sentinels on the beach.

CRETACEOUS NANAIMO GROUP

The strata near Nanaimo and much of eastern Vancouver Island is underlain by sedimentary rocks of the Cretaceous Nanaimo Group. These mudstones, sandstones and conglomerates were deposited in deltas, rivers and marine environments between 95 and 65 million years ago. While there is a mix, almost all of the great fossil exposures are marine.

Monday, 29 December 2014

CAMBRIAN TRILOBITES


The Cambrian was a time of expansion for the Earth's complex animal forms. Molluscs and arthropods and their friends with hard shells and exoskeletons dominated the seas. The specimen you see here is of a Wanneria dunnae trilobite from the Eager Formation, Rifle Range site near Cranbrook, British Columbia.

Thursday, 25 December 2014

Saturday, 20 December 2014

PLAYFUL SEALS: MIGWAT

Seals—those sleek, playful creatures that glide through our oceans and lounge on rocky shores—are part of a remarkable evolutionary story stretching back millions of years. 

Though we often see them today basking on beaches or popping their heads above the waves, their journey through the fossil record reveals a dramatic tale of land-to-sea adaptation and ancient global wanderings.

Seals belong to a group of marine mammals called pinnipeds, which also includes sea lions and walruses. 

All pinnipeds share a common ancestry with terrestrial carnivores, and their closest living relatives today are bears and mustelids (like otters and weasels). 

While it may seem unlikely, their ancestors walked on land before evolving to thrive in marine environments. It takes many adaptations for life at sea and these lovelies have adapted well. 

The fossil record suggests that pinnipeds first emerged during the Oligocene, around 33 to 23 million years ago. 

These early proto-seals likely lived along coastal environments, where they gradually adapted to life in the water. Over time, their limbs transformed into flippers, their bodies streamlined, and their reliance on the sea for food and movement became complete.

In Kwak'wala, the language of the Kwakwaka'wakw First Nations of the Pacific Northwest, seals are known as migwat, and fur seals are referred to as xa'wa.

Friday, 19 December 2014

JELLYFISH: DANCERS OF THE DEEP

This lovely ocean dancer with her long delicate tentacles or lappets and thicker rouched oral arms is a jellyfish. 

Her brethren are playing in the waters of the deep all over the world, from surface waters to our deepest seas — and they are old. They are some of the oldest animals in the fossil record.

Jellyfish and sea jellies are the informal common names given to the medusa-phase or adult phase of certain gelatinous members of the subphylum Medusozoa, a major part of the phylum Cnidaria — more closely related to anemones and corals.

Jellyfish are not fish at all. They evolved millions of years before true fish. The oldest conulariid scyphozoans appeared between 635 and 577 million years ago in the Neoproterozoic of the Lantian Formation, a 150-meter-thick sequence of rocks deposited in southern China. 

Others are found in the youngest Ediacaran rocks of the Tamengo Formation of Brazil, c. 505 mya, through to the Triassic. Cubozoans and hydrozoans appeared in the Cambrian of the Marjum Formation in Utah, USA, c. 540 million years ago.

I have seen all sorts of their brethren growing up on the west coast of Canada. I have seen them in tide pools, washed up on the beach and swam amongst thousands of Moon Jellyfish while scuba diving in the Salish Sea. Their movement in the water is marvellous.  

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, jellyfish are known as ǥaǥisama.

The watercolour ǥaǥisama you see here in dreamy pink and white is but one colour variation. They come in blue, purple, orange, yellow and clear — and are often luminescent. They produce light by the oxidation of a substrate molecule, luciferin, in a reaction catalyzed by a protein, luciferase.

Wednesday, 17 December 2014