Saturday, 23 August 2025

DR. KIRK JOHNSON, PALEONTOLOGIST EXTRADORDINAIRE

Dr. Kirk Johnson, the Sant Director of the Smithsonian National Museum of Natural History, is a paleontologist, science communicator, and fossil enthusiast with a knack for making ancient life come alive—sometimes with a punchline. 

Known for his wide-ranging contributions to paleontology, his energetic public outreach, and his collaborative work with Alaskan artist Ray Troll, Johnson is a dynamic force in bringing prehistoric life into the public imagination.

Before taking the helm of one of the world’s premier natural history institutions, Johnson was a prolific field paleontologist. 

He earned his Ph.D. in geology and paleobotany from Yale University, but his fieldwork spans far beyond ivory towers and academic journals. 

His scientific contributions include extensive work on fossil plants and the reconstruction of ancient climates and ecosystems. Much of his research focuses on the time just before and after the Cretaceous–Paleogene (K-Pg) extinction event, offering insight into how life recovered after the asteroid impact that ended the age of the dinosaurs.

One of Johnson’s most notable research projects took place at the Hell Creek Formation in North Dakota, a hotspot for Late Cretaceous fossils. Here, he and colleagues studied the extinction horizon in unprecedented detail. Johnson helped reconstruct the rich ecosystems of the time, painting a vivid picture of a world teeming with dinosaurs, turtles, crocodiles, and flowering plants—right up until it was abruptly ended 66 million years ago.

The Troll-Johnson Dream Team

Science can be serious business, but it doesn’t have to be dry—and few partnerships prove this better than the one between Kirk Johnson and Ray Troll. Troll is a wildly imaginative Alaskan artist known for his “scientifically accurate yet deeply weird” art. 

Johnson and Troll first teamed up in the early 2000s, united by a shared love of fossils, fish, and the good old American road trip.

Together, they co-authored Cruisin’ the Fossil Freeway and its sequel Cruisin’ the Fossil Coastline, books that blend science, art, and humor in a joyful celebration of paleontology. These works chronicle their fossil-fueled road trips across North America, meeting eccentric collectors, legendary scientists, and discovering unexpected fossil treasures. 

The books are peppered with Troll’s surreal illustrations and Johnson’s breezy-yet-accurate scientific commentary.

One of the standout aspects of their collaboration is how it brings out the human side of paleontology. You get the science, sure, but also the obsessive collectors who can spot a trilobite from 20 yards away, and the museums tucked behind gas stations with dinosaur bones in the backyard. 

It’s a mix of deep time and roadside kitsch—a combination that’s both hilarious and oddly profound.

Humor in the Bone Pile

Despite his lofty position at the Smithsonian, Johnson hasn’t lost his sense of humor or sense of wonder. He’s been known to give lectures dressed in head-to-toe fossil-print suits and frequently drops fossil puns into conversations with a perfectly straight face. 

In one memorable public event, while discussing the deep-time perspective of human evolution, he paused and said, “We’ve been around for such a short amount of time that if the history of Earth were a calendar, all of human history would happen in the last few seconds of December 31. So yes, geologically speaking, you just got here—and you’re already rearranging the furniture.”

His blend of scholarship and showmanship has made him a staple on PBS programs such as NOVA, Making North America, and Polar Extremes, where he leads viewers on immersive journeys through time, across continents, and into prehistoric oceans. 

With the enthusiasm of a kid showing off their favorite rock, Johnson makes even the most complex paleoclimatic data feel like an adventure story.

Leading the Smithsonian into the Future

Since 2012, Johnson has served as the Sant Director of the Smithsonian National Museum of Natural History, one of the most visited science museums in the world. Under his leadership, the museum has revitalized its fossil halls, culminating in the stunning new David H. Koch Hall of Fossils – Deep Time, which reopened in 2019. 

This exhibit weaves 4.6 billion years of Earth’s history into a powerful narrative about evolution, extinction, and the role humans now play in shaping the planet’s future.

The exhibit doesn’t just show fossils—it tells stories. You’ll find dinosaur skeletons locked in combat, ancient mammal fossils displayed alongside their modern counterparts, and immersive displays that explain how everything from volcanoes to shifting continents has shaped life on Earth. 

It’s this kind of storytelling, infused with Johnson’s signature humor and clarity, that helps make Deep Time feel like our time. 

For a peek at the exhibits visit: https://www.si.edu/newsdesk/factsheets/david-h-koch-hall-fossils-deep-time

Whether he’s digging up a 55-million-year-old palm leaf in Wyoming, cruising for fossils with Ray Troll in a beat-up van, or explaining climate change to a packed theater with jokes and jawbones in equal measure, Dr. Kirk Johnson is a rare kind of scientist. He’s not just interested in what the past can teach us—he’s committed to making that knowledge engaging, memorable, and meaningful.

And, if you ever catch him at a fossil event, be sure to ask him about the “world’s oldest fish fart.” Odds are, he’ll have a story—and a Ray Troll illustration—to go with it.

Join in for Kirk Johnson's Keynote Lecture at the 15th BCPA Symposium

Kirk is the Keynote speaker at the 15th BCPA Symposium in Courtenay, August 22-25, 2025. For tickets, head to:  https://www.eventbrite.ca/e/15th-bc-paleontological-symposium-2025-keynote-speaker-kirk-johnson-tickets-1025014525037

Fancy some late night reading? Check out some of Johnson's publications:

Johnson, K. R. & Troll, R. (2007). Cruisin’ the Fossil Freeway: An Epoch Tale of a Scientist and an Artist on the Ultimate 5,000-Mile Paleo Road Trip. Fulcrum Publishing.

Johnson, K. R. & Troll, R. (2018). Cruisin’ the Fossil Coastline: The Travels of an Artist and a Scientist along the Shores of the Prehistoric Pacific. Fulcrum Publishing.

Smithsonian Institution: https://naturalhistory.si.edu

PBS NOVA, Making North America and Polar Extremes (Available on PBS.org)

Friday, 22 August 2025

LOVE LANGUAGE OF THE FAR NORTH

Nunatsiarmiut Mother and Child, Baffin Island, Nunavut
Warm light bathes this lovely Nunatsiarmiut mother and child from Baffin Island, Nunavut. 

They speak Inuktitut, the mother tongue of the majority of the Nunatsiarmiut who call Baffin Island home. 

Baffin is the largest island in the Arctic Archipelago in the territory of Nunavut in Canada's far north—the chilliest region of Turtle Island. 

As part of the Qikiqtaaluk Region of Nunavut, Baffin Island is home to a constellation of remote Inuit communities each with a deep cultural connection to the land—Iqaluit, Pond Inlet, Pangnirtung, Clyde River, Arctic Bay, Kimmirut and Nanisivik. 

The ratio of Inuit to non-Inuit here is roughly three to one and perhaps the reason why the Inuktitut language has remained intact and serves as the mother tongue for more than 36,000 residents. Inuktitut has several subdialects—these, along with a myriad of other languages—are spoken across the north.  

If you look at the helpful visual below you begin to get a feel for the diversity of these many tongues. The languages vary by region. There is the Iñupiaq of the Inupiatun/Inupiat; Inuvialuktun of the Inuinnaqtun, Natsilingmiutut, Kivallirmiutut, Aivilingmiutut, Qikiqtaaluk Uannanganii and Siglitun. Kalaallisut is spoken by many Greenlandic peoples though, in northwest Greenland, Inuktun is the language of the Inughuit.

We use the word Inuktitut when referring to a specific dialect and inuktut when referring to all the dialects of Inuktitut and Inuinnaqtun.

Northern Language Map (Click to Enlarge)
Should you travel to the serene glacier-capped wilds and rolling tundra of our far north, you will want to dress for the weather and learn a few of the basics to put your best mukluk shod feet forward. 

The word for hello or welcome in Inuktitut is Atelihai—pronounced ahh-tee-lee-hi. And thank you is nakurmiik, pronounced na-kur-MIIK.  

Perhaps my favourite Inuktitut expression is Naglingniq qaikautigijunnaqtuq maannakautigi, pronounced NAG-ling-niq QAI-kau-ti-gi-jun-naqtuq MAAN-na-KAU-ti-gi. This tongue-twister is well worth the linguistic challenge as it translates to love can travel anywhere in an instant. Indeed it can. 

So much of our Indigenous culture is passed through stories, so language takes on special meaning in that context. It is true for all societies but especially true for the Inuit. Stories help connect the past to the present and future. They teach how to behave in society, engage with the world and how to survive in the environment. They also help to create a sense of belonging. 

You have likely seen or heard the word Eskimo used in older books to refer to the Inuit, Iñupiat, Kalaallit or Yupik. This misnomer is a colonial term derived from the Montagnais or Innu word ayas̆kimewnetter of snowshoes

It is a bit like meeting a whole new group of people who happen to wear shoes and referring to them all as cobblers—not as a nickname, but as a legal term to describe populations from diverse communities disregarding the way each self-refer. 

Inukshuk / Inuksuk Marker Cairn
For those who identify as Inupiaq or Yupik, the preferred term is Inuit meaning people—though some lingering use of the term Eskimo lives on. The Inuit as a group are made up of many smaller groups. 

The Inuit of Greenland self-refer as Kalaallit or Greenlanders when speaking Kalaallisut

The Tunumiit of Tunu (east Greenland), speak Tunumiit oraasiat ("East Greenlandic"); and the Inughuit of north Greenland, speak Inuktun "Polar Eskimo."

The Inupiat of Alaska, or real people, use Yupik as the singular for real person and yuk to simply mean person.

When taken all together, Inuit is used to mean all the peoples in reference to the Inuit, Iñupiat, Kalaallit and Yupik. Inuit is the plural of inuk or person

You likely recognize this word from inuksuk or inukshuk, pronounced ih-nook-suuk — the human-shaped stone cairns built by the Inuit, Iñupiat, Kalaallit, Yupik, and other peoples of the Arctic regions of northern Canada, Greenland, and Alaska—as helpful reference markers for hunters and navigation. 

The word inuksuk means that which acts in the capacity of a human, combining inuk or person and suk, as a human substitute

A World of Confusion

You may be disappointed to learn that our northern friends do not live in igloos. I remember answering the phone as a child and the fellow calling was hoping to speak to my parents about some wonderful new invention perfect for use in an igloo. 

The call came while I was in the kitchen of our family home in Port Hardy. He was disappointed to hear that I was standing in a wooden house with the standard four walls to a room and a handy roof topping it off. 

I also had my own room with Scooby-Doo wallpaper, but he was having nothing of it.

"Well, what about your neighbours? Surely, a few of them live in igloos..." 

It seems that some atlases in circulation at the time, and certainly the one he was looking at, simply blanketed everything north of the 49th parallel in a snowy white. His clearly showed an igloo sitting proudly in the centre of the province.

Interestingly, I only learned this morning (thank you, Jen) that that type of playful map is called a Counter Map and can be used in delightful ways to draw the reader in to the mapping of a landscape, region, people or culture—often out of scale and with many wonderful images added to give you a beautiful sense of the people, plants, animals and topography of a place.

My cousin Shawn brought one such simplified book back from his elementary school in California. British Columbia had a nice image of a grizzly bear and a wee bit further up, a polar bear grinned smugly. 

British Columbia's beaver population would be sad to know that they did not inhabit the province though there were two chipper beavers with big bright smiles—one in Ontario and another gracing the province of Quebec. Further north, where folk do build igloos, their icy domes were curiously lacking. 

Igloos are used for winter hunting trips much the same way we use tents for camping. The Inuit do not have fifty words for snow—you can thank the ethnographer Franz Boas for that wee fabrication—but within the collective languages of the frozen north there are more than fifty words to describe it. And kisses are not nose-to-nose. To give a tender kiss or kunik to a loved one, you press your nose and upper lip to their forehead or cheek and rub gently. 

Fancy trying a wee bit of Inuktitut yourself? This link will bring you to a great place to start: https://inhabitmedia.com/inuitnipingit/

Inuit Language Map:  By Noahedits - Own work, CC BY-SA 4.0. If you want to the image full size, head to this link: https://commons.wikimedia.org/w/index.php?curid=85587388

Monday, 18 August 2025

FOSSIL RHINOS AND THE GREAT DEPRESSION

The Miocene pillow basalts from the Lake Roosevelt National Recreation Area of central Washington hold an unlikely fossil. 

What looks to be a rather unremarkable ballooning at the top of a cave is actually the mould of a small rhinoceros, preserved by sheer chance as its bloated carcass sunk to the bottom of a shallow lake just prior to a volcanic explosion.

We have known about this gem for a long while now. The fossil was discovered by hikers back in 1935 and later cast by the University of California palaeontologists in 1948. 

The Dirty Thirties & The Great Depression

These were the Dirty Thirties and those living in Washington state were experiencing the Great Depression along with the rest of the country and the world. Franklin D. Roosevelt was President of the United States, navigating the States away from laissez-faire economics. 

Charmingly, Roosevelt would have his good name honoured by this same park in April of 1946, a few years before researchers at Berkeley would rekindle interest in the site.

Both hiking and fossil collecting was a fine answer to these hard economic times and came with all the delights of discovery with no cost for natural entertainment. And so it was that two fossil enthusiast couples were out looking for petrified wood just south of Dry Falls on Blue Lake in Washington State. 

While searching the pillow basalt, the Frieles and Peabodys came across a large hole high up in a cave that had the distinctive shape of an upside-down rhinoceros.

This fossil is interesting in all sorts of ways. First, we so rarely see fossils in igneous rocks. As you might suspect, both magma and lava are very hot. Magma, or molten rock, glows a bright red/orange as it simmers at a toasty 700 °C to 1300 °C (or 1300 °F to 2400 °F) beneath the Earth's surface.

A Rhinoceros Frozen in Lava

During the late Miocene and early Pliocene, repeated basaltic lava floods engulfed about 63,000 square miles of the Pacific Northwest over a period of ten to fifteen million years. After these repeated bathings the residual lava accumulated to more than 6,000 feet.

As magma pushes up to the surface becoming lava, it cools to a nice deep black. In the case of our rhino friend, this is how this unlikely fellow became a fossil. Instead of vaporizing his remains, the lava cooled relatively quickly preserving his outline as a trace fossil and remarkably, a few of his teeth, jaw and bones. The lava was eventually buried then waters from the Spokane Floods eroded enough of the overburden to reveal the remains once more.

Diceratherium tridactylum (Marsh, 1875)
Diceratherium (Marsh, 1875) is known from over a hundred paleontological occurrences from eighty-seven collections.

While there are likely many more, we have found fossil remains of Diceratherium, an extinct genus of rhinoceros, in the Miocene of Canada in Saskatchewan, China, France, Portugal, Switzerland, and multiple sites in the United States.

He has also been found in the Oligocene of Canada in Saskatchewan, and twenty-five localities in the United States — in Arizona, Colorado, Florida, Nebraska, North Dakota, Oregon, South Dakota, Washington and Wyoming.  

Diceratherium was a scansorial insectivore with two horns and a fair bit of girth. He was a chunky fellow, weighing in at about one tonne (or 2,200 lbs). That is about the size of a baby Humpback Whale or a walrus.

Back in the Day: Washington State 15 Million-Years Ago

He roamed a much cooler Washington state some 15 million years ago. Ice dams blocked large waterways in the northern half of the state, creating reservoirs. Floodwaters scoured the eastern side of the state, leaving scablands we still see today. In what would become Idaho, volcanic eruptions pushed through the Snake River, the lava cooling instantly as it burst to the surface in a cloud of steam. 

By then, the Cascades had arrived and we had yet to see the volcanic eruptions that would entomb whole forests up near Vantage in the Takama Canyon of Washington state. 

Know Before You Go

You are welcome to go see his final resting site beside the lake but it is difficult to reach and comes with its own risks. Head to the north end of Blue Lake in Washington. Take a boat and search for openings in the cliff face. You will know you are in the right place if you see a white "R" a couple hundred feet up inside the cliff. Inside the cave, look for a cache left by those who've explored here before you. Once you find the cache, look straight up. That hole above you is the outline of the rhino.

If you don't relish the thought of basalt caving, you can visit a cast of the rhino at the Burke Museum in Seattle, Washington. They have a great museum and are pretty sporting as they have built the cast sturdy enough for folk to climb inside. 

The Burke Museum 

The Burke Museum recently underwent a rather massive facelift and has re-opened its doors to the public. You can now explore their collections in the New Burke, a 113,000 sq. ft. building at 4300 15th Ave NE, Seattle, WA 98105, United States. Or visit them virtually, at https://www.burkemuseum.org/

Photo: Robert Bruce Horsfall - https://archive.org/details/ahistorylandmam00scotgoog, Public Domain, https://commons.wikimedia.org/w/index.php?curid=12805514

Reference: Prothero, Donald R. (2005). The Evolution of North American Rhinoceroses. Cambridge University Press. p. 228. ISBN 9780521832403.

Reference: O. C. Marsh. 1875. Notice of new Tertiary mammals, IV. American Journal of Science 9(51):239-250

Lincoln, Roosevelt and Recovery from The Great Depression

Rural Tennessee has electricity for the same reason Southeast Alaska has totem parks. In order to help the nation recover from The Great Depression, President Franklin D. Roosevelt, created a number of federal agencies to put people to work. From 1938-1942 more than 200 Tlingit and Haida men carved totem poles and cleared land for the Civilian Conservation Corps in an effort to create “totem parks” the federal government hoped would draw travelers to Alaska.

This odd intersection of federal relief, Alaska Native art and marketing is the subject of Emily L. Moore’s book “Proud Raven, Panting Wolf: Carving Alaska’s New Deal Totem Parks.”

This effort to bring poles out of abandoned villages includes the Lincoln Pole being moved to Saxman Totem Park by the Civilian Conservation Corps (CCC), who established the Saxman Totem Park in 1938.  

The top carving on the Lincoln Pole bears a great likeness of Abraham Lincoln. According to the teachings of many Tlingit elders, this carving was meant to represent the first white man seen in Tlingit territory in the 18th century.  

A century later, in the 1880s, one of my ancestors from the Gaanax.ádi Raven clan of the Tongass Tlingit commissioned the pole to commemorate our ancestor's pride to have seen this first white man—which has become a Gaanax.ádi crest—using a photograph of Abraham Lincoln as the model. 

It is important not only for these various readings of the crests but also because it claims Gaanax.ádi clan territory before the first Europeans and budding Americans came to these shores—territory that Tlingit carvers who were re-carving the pole in the 1940s were trying to assert to the U.S. government as sovereign land.

Interestingly, another pole in that same park is the Dogfish Pole, carved for Chief Ebbits Andáa, Teikweidi, Valley House. The Chief Ebbits Memorial Pole—the Dogfish Kootéeyaa Pole—was raised in 1892 in Old Tongass Village in honour of a great man, Head Chief of the Tongass and my ancestor. It was then moved, re-carved and re-painted at Saxman Totem Park in 1938 as part of Roosevelt's program—and it due to be re-carved again this year. 

It tells the story of his life and the curious way he became Ebbits as he was born Neokoots. He met and traded with some early American fur traders. One of those traders was a Mister Ebbits. The two became friends and sealed that friendship with the exchanging of names.  

If you would like to read more about that pole and others, I recommend, The Wolf and the Raven, by anthropologist Viola Garfield and architect Linn Forrest (my talented cousin), published in 1961 and still in print as I ordered a copy for a friend just this year.

Sunday, 17 August 2025

AVES: LIVING DINOSAURS

Cassowary, Casuariiformes
Wherever you are in the world, it is likely that you know your local birds. True, you may call them des Oiseaux, pássaros or uccelli — but you'll know their common names by heart.

You will also likely know their sounds. The tweets, chirps, hoots and caws of the species living in your backyard.

Birds come in all shapes and sizes and their brethren blanket the globe. It is amazing to think that they all sprang from the same lineage given the sheer variety. 

If you picture them, we have such a variety on the planet — parrots, finches, wee hummingbirds, long-legged waterbirds, waddling penguins and showy toucans. 

But whether they are a gull, hawk, cuckoo, hornbill, potoo or albatross, they are all cousins in the warm-blooded vertebrate class Aves. The defining features of the Aves are feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweight skeleton. The best features, their ability to dance, bounce and sing, are not listed, but it is how I see them in the world.

These modern dinosaurs live worldwide and range in size from the 5 cm (2 in) bee hummingbird to the 2.75 m (9 ft) ostrich. 

There are about ten thousand living species, more than half of which are passerine, or "perching" birds. Birds have wings whose development varies according to species; the only known groups without wings are the extinct moa and elephant birds.

Wings evolved from forelimbs giving birds the ability to fly
Wings, which evolved from forelimbs, gave birds the ability to fly, although further evolution has led to the loss of flight in some birds, including ratites, penguins, and diverse endemic island species. 

The digestive and respiratory systems of birds are also uniquely adapted for flight. Some bird species of aquatic environments, particularly seabirds and some waterbirds, have further evolved for swimming.

Wee Feathered Theropod Dinosaurs

We now know from fossil and biological evidence that birds are a specialized subgroup of theropod dinosaurs, and more specifically, they are members of Maniraptora, a group of theropods that includes dromaeosaurs and oviraptorids, amongst others. As palaeontologists discover more theropods closely related to birds, the previously clear distinction between non-birds and birds has become a bit muddy.

Recent discoveries in the Liaoning Province of northeast China, which include many small theropod feathered dinosaurs — and some excellent arty reproductions — contribute to this ambiguity. 

Still, other fossil specimens found here shed a light on the evolution of Aves. Confuciusornis sanctus, an Early Cretaceous bird from the Yixian and Jiufotang Formations of China is the oldest known bird to have a beak.

Like modern birds, Confuciusornis had a toothless beak, but close relatives of modern birds such as Hesperornis and Ichthyornis were toothed, telling us that the loss of teeth occurred convergently in Confuciusornis and living birds.

The consensus view in contemporary palaeontology is that the flying theropods, or avialans, are the closest relatives of the deinonychosaurs, which include dromaeosaurids and troodontids.

Together, these form a group called Paraves. Some basal members of this group, such as Microraptor, have features that may have enabled them to glide or fly. 

The most basal deinonychosaurs were wee little things. This raises the possibility that the ancestor of all paravians may have been arboreal, have been able to glide, or both. Unlike Archaeopteryx and the non-avialan feathered dinosaurs, who primarily ate meat, tummy contents from recent avialan studies suggest that the first avialans were omnivores. Even more intriguing...

Avialae, which translates to bird wings, are a clade of flying dinosaurs containing the only living dinosaurs, the birds. It is usually defined as all theropod dinosaurs more closely related to modern birds — Aves — than to deinonychosaurs, though alternative definitions are occasionally bantered back and forth.

The Earliest Avialan: Archaeopteryx lithographica

Archaeopteryx, bird-like dinosaur from the Late Jurassic
Archaeopteryx lithographica, from the late Jurassic Period Solnhofen Formation of Germany, is the earliest known avialan that may have had the capability of powered flight. 

However, several older avialans are known from the Late Jurassic Tiaojishan Formation of China, dating to about 160 million years ago.

The Late Jurassic Archaeopteryx is well-known as one of the first transitional fossils to be found, and it provided support for the theory of evolution in the late 19th century. 

Archaeopteryx was the first fossil to clearly display both traditional reptilian characteristics — teeth, clawed fingers, and a long, lizard-like tail—as well as wings with flight feathers similar to those of modern birds. It is not considered a direct ancestor of birds, though it is possibly closely related to the true ancestor.

Unlikely yet true, the closest living relatives of birds are the crocodilians. Birds are descendants of the primitive avialans — whose members include Archaeopteryx — which first appeared about 160 million years ago in China.

DNA evidence tells us that modern birds — Neornithes — evolved in the Middle to Late Cretaceous, and diversified dramatically around the time of the Cretaceous–Paleogene extinction event 66 mya, which killed off the pterosaurs and all non-avian dinosaurs.

In birds, the brain, especially the telencephalon, is remarkably developed, both in relative volume and complexity. Unlike most early‐branching sauropsids, the adults of birds and other archosaurs have a well‐ossified neurocranium. In contrast to most of their reptilian relatives, but similar to what we see in mammals, bird brains fit closely to the endocranial cavity so that major external features are reflected in the endocasts. What you see on the inside is what you see on the outside.

This makes birds an excellent group for palaeoneurological investigations. The first observation of the brain in a long‐extinct bird was made in the first quarter of the 19th century. However, it was not until the 2000s and the application of modern imaging technologies that avian palaeoneurology really took off.

Understanding how the mode of life is reflected in the external morphology of the brains of birds is but one of several future directions in which avian palaeoneurological research may extend.

Although the number of fossil specimens suitable for palaeoneurological explorations is considerably smaller in birds than in mammals and will very likely remain so, the coming years will certainly witness a momentous strengthening of this rapidly growing field of research at the overlap between ornithology, palaeontology, evolutionary biology and the neurosciences.

Reference: Cau, Andrea; Brougham, Tom; Naish, Darren (2015). "The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc (Dinosauria, Maniraptora): Dromaeosaurid or flightless bird?". PeerJ. 3: e1032. doi:10.7717/peerj.1032. PMC 4476167. PMID 26157616.

Reference: Ivanov, M., Hrdlickova, S. & Gregorova, R. (2001) The Complete Encyclopedia of Fossils. Rebo Publishers, Netherlands. p. 312

Friday, 15 August 2025

WARRIOR CRABS: KU'MIS

Look how epic this little guy is! 

He is a crab — and if you asked him, the fiercest warrior that ever lived. While that may not be strictly true, crabs do have the heart of a warrior and will raise their claws, sometimes only millimetres into the air, to assert dominance over their world. 

Crabs are decapod crustaceans of the Phylum Arthropoda. 

In the Kwak'wala language of the Kwakwaka'wakw of the Pacific Northwest, this brave fellow is ḵ̓u'mis — both a tasty snack and familiar to the supernatural deity Tuxw'id, a female warrior spirit. Given their natural armour and clear bravery, it is a fitting role.

They inhabit all the world's oceans, sandy beaches, many of our freshwater lakes and streams. Some few prefer to live in forests.

Crabs build their shells from highly mineralized chitin — and chitin gets around. It is the main structural component of the exoskeletons of many of our crustacean and insect friends. Shrimp, crab, and lobster all use it to build their exoskeletons.

Chitin is a polysaccharide — a large molecule made of many smaller monosaccharides or simple sugars, like glucose. 

It is handy stuff, forming crystalline nanofibrils or whiskers. Chitin is actually the second most abundant polysaccharide after cellulose. It is interesting as we usually think of these molecules in the context of their sugary context but they build many other very useful things in nature — not the least of these are the hard shells or exoskeletons of our crustacean friends.

Crabs in the Fossil Record

The earliest unambiguous crab fossils date from the Early Jurassic, with the oldest being Eocarcinus from the early Pliensbachian of Britain, which likely represents a stem-group lineage, as it lacks several key morphological features that define modern crabs. 

Most Jurassic crabs are only known from dorsal — or top half of the body — carapaces, making it difficult to determine their relationships. Crabs radiated in the Late Jurassic, corresponding with an increase in reef habitats, though they would decline at the end of the Jurassic as the result of the decline of reef ecosystems. Crabs increased in diversity through the Cretaceous and represented the dominant group of decapods by the end.

We find wonderful fossil crab specimens on Vancouver Island. The first I ever collected was at Shelter Point, then again on Hornby Island, down on the Olympic Peninsula and along Vancouver Island's west coast near Nootka Sound. They are, of course, found globally and are one of the most pleasing fossils to find and aggravating to prep of all the specimens you will ever have in your collection. Bless them.


Thursday, 14 August 2025

CHIEF EBBITS POLE. FATHER OF ANISALAGA

The Dogfish Kootéeyaa Pole in Saxman Totem Park
Rural Tennessee has electricity for the same reason Southeast Alaska has Totem Parks—to help the nation recover from The Great Depression. 

President Franklin D. Roosevelt, created several federal agencies to put people to work and work they did. 

From 1938-1942 more than 200 Tlingit and Haida First Nation carved totem poles and cleared land for the Civilian Conservation Corps to create “totem parks” the federal government hoped would draw travelers to Alaska.

This odd intersection of federal relief, Alaska Native art and marketing is the subject of Emily L. Moore’s book “Proud Raven, Panting Wolf: Carving Alaska’s New Deal Totem Parks.”

This effort to bring poles out of abandoned villages includes the Lincoln Pole being moved to Saxman Totem Park by the Civilian Conservation Corps (CCC), who established the Saxman Totem Park in 1938.  Though it has been impossible to establish the exact year it was dedicated, the carving of President Lincoln was raised in Old Tongass Village in the late 1870s or the early 1880s, ten to fifteen years after the events it commemorated.

The top carving on the Lincoln Pole bears a great likeness of Abraham Lincoln. According to the teachings of many Tlingit elders, this carving was meant to represent the first white man seen in Tlingit territory in the 18th century.  

A century later, in the 1880s, one of my ancestors from the Gaanax.ádi Raven clan of the Tongass Tlingit commissioned the pole to commemorate our ancestor's pride to have seen this first white man—which has become a Gaanax.ádi crest—using a photograph of Abraham Lincoln as the model. 

It is important not only for these various readings of the crests but also because it claims Gaanax.ádi clan territory before the first Europeans and budding Americans came to these shores—territory that Tlingit carvers who were re-carving the pole in the 1940s were trying to assert to the U.S. government as sovereign land.

Interestingly, another pole in that same park is the Dogfish Pole, carved for Chief Ebbits Andáa, Teikweidi, Valley House. 

The Chief Ebbits Memorial Pole—the Dogfish Kootéeyaa Pole—was raised in 1892 in Old Tongass Village in honour of the Head Chief of the Tongass—a great man and my ancestor. 

Inscribed on the back is, "In Memory of Ebbits, Head Chief of Tongass, January 11, 1892."  

While the Memorial Pole was originally erected in Tongass, it was moved, re-carved and re-painted at Saxman Totem Park in 1938 as part of Roosevelt's program—and was refurbished again just a few years ago. 

The Pole shows the crests of our Clan and tells the story of his life. At his death, he was Chief Ebbits but he had been born Neokoots and became Chief Sheiks, after his father—Chief of Chiefs of all Tlingit in what would become to be known as Alaska. 

The changing of names is not unusual in our culture, or at least the acquiring of names. This happens throughout ones lifetime. What is unusual is the exchanging of names and that is just what happened for Chief Sheiks to become Chief Ebbits.

Later in life, he met and traded with some early American fur traders sailing aboard Commander John Jacob Astor's ship. One of those traders, a Mister Ebbits, became his great friend and the two sealed that friendship with the exchanging of names.  

Chief Ebbit's wife was Aanseet, Chief-of-All-Women, Drifted Ashore House.

Together, they had six children, including Anisalaga Mary Ebbits (Ebbetts) Hunt (the All-Mother), Yaashút' (their son who died in 1876, shot and killed by Kaltcheh), their daughter Gaachnéin who married Kucheesh III, their daughter Abbie (Atk'géigee) who married W. H. Bond, their son Keenanúk who married Xanséek and their daughter Kéilsháawat who married Xaashgáaksh II.

Aanseet drowned on the Nass River in 1870. Two memorial poles were raised in her honour — one in Alaska, Princess-Shining-Copper (that was taken to Seattle and raised in Pioneer Square) and one in Tsaxis/T'sakis, Fort Rupert, raised by Anisalaga.

If you would like to read more about the Dogfish pole and others, I recommend, The Wolf and the Raven, by anthropologist Viola Garfield and architect Linn Forrest—another talented cousin—published in 1948 and reprinted in 1961.

The paint you see on the pole in these photographs is from the 1938 restoration. The pole had weathered to a silver grey and all paint had been stripped by wind and time. In 2022, an RFP was issued for a local carver to freshen up the paint and stabilize this ancient memorial pole to bring it back to some of its original luster so that the pole can be enjoyed for generations to come.

Jeff Whyte Photography of the Saxman Totem Park

Photos: Jeff Whyte kindly sent me these photos earlier this year from his last trip to the Saxman Totem Park. Jeff is a wonderful photographer from Calgary, Alberta, whose work captures the gorgeous landscape and people of the Pacific Northwest and western Canada.

You can visit his work showcasing amazing landscapes, cityscapes and prairie vistas at www.jeffwhytephotography.com

Letter from Chief Ebbits to Anisalaga Mary Ebbits Hunt

I found a letter from Chief Ebbits to my great-great-great grandmother Anisalaga Mary Ebbits-Hunt from 1876 telling her of her brother's death at the hands of Kaltcheh. 

Here, Chief Ebbits spells his name Abbits in the signature line. You will see Ebbetts, Ebbits and many variations on Anisalaga in the early recorded histories. 

Anisalaga / Anis'laga / Ansnaq / Anain / Anéin / A'naeesla'ga / Mary Ebbits Ebbetts (Abbits) Hunt (1823-1919) held many names. Her name has become famous for her beautiful Chilkat weavings. Her given Kwagu'ł name was Musgemxàala which she received when she moved down from Tongass to marry Robert Hunt. 

She belonged to the Raven/Yéil phratry of the Gigalgam Kyinanuk Tlingit of Tongass. Anisalaga is the blood that binds all the Cadwalladers, Spencers, Lyons, Hunts and Hendersons on the West Coast of British Columbia. It is to her and Robert that this Huntress owes heartfelt appreciation for so many cousins!


Sunday, 3 August 2025

FOSSIL CRABS OF SHELTER POINT

This lovely fossil crab is Longusorbis cuniculosus from the Upper Cretaceous ) Late Campanian, Northumberland Formation near Campbell River, British Columbia. This photo was featured in the 2004 BCPA Calendar.

Shelter Point on northern Vancouver Island is a lovely beach site where clastic strata are exposed in the intertidal platform of Oyster Bay. 

The site is located just off the Island Highway, about 10 km south of downtown Campbell River and 4 km farther south along the lower Oyster River. Haggart et al. presented an abstract on this locality at the 12th British Columbia Paleontological Symposium, 2018, Courtenay, abstracts; 2018 p. 28-30. I'll pop a link below if you'd like to give it a read. 

Shelter Point has been collected since the 1970s. No pre-glacial strata were recognized in this area by Muller and Jeletzky (1970). Richards (1975) described an abundant fauna in the beds at Shelter Point, approximately 2 km north of the Oyster Bay exposures, including the crab Longusorbis and associated ammonites and inoceramid bivalves, and he assigned these beds to the Spray Formation of the Nanaimo Group. This information, combined with the very low dip of the Oyster Bay strata and their general lithological similarity with the coarse clastic strata found commonly in the Nanaimo Group, suggested a Late Cretaceous (Campanian) age of the Oyster Bay strata.

Beginning in the 1980s, fossil collectors from the Vancouver Island Palaeontological Society began amassing significant collections of fossils from the strata of southern Oyster Bay that are found several hundred metres southeast of the local road called Appian Way, thus providing the informal moniker Appian Way Beds for these localized exposures. 

While these collections included a great diversity of gastropod, bivalve, nautiloid, scaphopod, echinoderm, and coral specimens, as well as impressive collections of plant materials, much previously undescribed, no taxa found commonly in Campanian strata of the Nanaimo Group were noted in these collections; particularly lacking were ammonites and inoceramid bivalves. For this reason, the hypothesis began to emerge that the Appian Way Beds of Oyster Bay were of younger, post-Cretaceous, age than thought previously. 

Just how young, however, has been a source of some controversy, with different parties continuing to favour the traditional Campanian age — based on lithostratigraphy — others a Paleocene age, and still others an Eocene age — based on plant macrofossils.

Fossil Collecting at Shelter Point:

Fossil Collecting at Shelter Point
At the northern end of Shelter Bay, turn east onto Heard Road, which ends at a public access to Shelter Point. 

Low tide is necessary in order to collect from these shales. Some friends are looking to explore this site over the next week. If you see some keen beans on the beach, check to see if they are the New family, Chris and Bonnie. Welcome them — they are lovely folk!

Industrious collectors unwilling to wait for the tide have employed rubber boots to wade through knee-deep water — rubber boots are highly recommended in any case — and even headlamps to capitalize on low tides during the night. 

Bring eye protection, rain and sun appropriate clothing, hardy footwear and sunscreen to safely enjoy this lovely family trip.   

The fossils, mainly the crab, Longusorbis and the straight ammonite Baculites, occur only in the gritty concretions that weather out of the shale. You'll need a rock hammer to see the lovelies preserved inside. Best to hold the concretion in your hand and give it one good tap. Aside from the fossils, check out the local tide pools and sea life in the area. Those less interested in the fossils can look for seals and playful otters basking on the beaches.

References:

Haggart, J. et al. 58 million and 25 years in the making: stratigraphy, fauna, age, and correlation of the Paleocene/Eocene sedimentary strata at Oyster Bay and adjacent areas, southeast Vancouver Island, British Columbia; https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=308471

Saturday, 2 August 2025

15TH BCPA SYMPOSIUM, COURTENAY, BRITISH COLUMBIA

SAVE THE DATE: 15th British Columbia Paleontological Symposium

Florence Filberg Centre, 411 Anderton Avenue, Courtenay, British Columbia, on the Traditional Territory of the K’ómoks First Nation, August 22-25, 2025

CELEBRATING THE PALEONTOLOGICAL BOUNTY OF THE COMOX VALLEY

The conference features over a dozen speakers in paleontology from Vancouver Island, mainland British Columbia, and beyond. 

This year, we’re celebrating Courtenay’s own Traskasaura sandrae—a 12-metre-long marine elasmosaur discovered by Mike Trask along the Puntledge River. The fossil was recently named in the Journal of Systematic Paleontology, earning international recognition.

Traskasaura sandrae is a newly identified genus and species of elasmosaurid plesiosaur, a long-necked marine reptile, discovered in British Columbia, Canada. 

The fossil, found along the Puntledge River on Vancouver Island, are from the Late Cretaceous (Santonian age), roughly 86 to 84 million years ago. Traskasaura sandrae is notable for its robust teeth, potentially adapted for crushing ammonites, and a unique mix of primitive and derived skeletal features, suggesting it was a powerful predator adapted for diving. 

As well as highlighting this significant find and honouring the amazing life of Mike Trask, the symposium has an exciting lineup of scientific presentations, hands-on workshops, a paleontology-themed art exhibition, poster presentations, and guided field trips. 

These events provide exciting opportunities to explore and celebrate the rich geological and paleontological history of Vancouver Island, bringing together world-renowned paleontologists, citizen scientists, fossil enthusiasts, researchers, artists, and the public in a vibrant exchange of ideas and inspiration.

Our Keynote Speaker is Dr. Kirk Johnson, Sant Director of the Smithsonian’s National Museum of Natural History, where he oversees the world's largest natural history collection. 

As a field paleontologist, he has led expeditions in eighteen US states and eleven countries with a research focus on fossil plants and the extinction of the dinosaurs. He is known for his scientific articles, popular books, museum exhibitions, documentaries, and collaborations with artists.

BRITISH COLUMBIA PALEONTOLOGICAL ALLIANCE (BCPA)

The British Columbia Paleontological Alliance (BCPA) is a collaborative network of organisations led by professional and citizen scientists, working to advance the science of paleontology in the province. 

Together, they promote fossil research and discovery through public education, responsible scientific collecting, and open communication among paleontologists, citizen scientists, fossil enthusiasts, researchers, and educators.

Every two years, the BCPA hosts a Paleontological Symposium, bringing together experts and the public from across Canada, North America, and beyond to share the latest research and discoveries related to British Columbia's fossil heritage.  To learn more, visit www.bcfossils.ca.

VANCOUVER ISLAND PALEONTOLOGICAL SOCIETY (HOST ORGANIZATION):

This year, the Vancouver Island Paleontological Society (VIPS) is proud to host the 15th BCPA Symposium in Courtenay, in partnership with the Courtenay and District Museum & Palaeontology Centre. 

Founded in 1992 and based in the Comox Valley, VIPS is a nonprofit society with charitable status in good standing dedicated to fostering public engagement with the natural world through field trips, workshops, symposia, and public lectures that bring science to life for the community. 

COMMUNITY SPONSORSHIP, SILENT AUCTION ITEMS & WELCOME BAGS: 

As host, the VIPS is currently welcoming sponsorship contributions and donations for the symposium's silent auction to help us offset conference costs, including printing, venue rental, catering, insurance, and participant support. We are also seeking items to include in our Welcome Bags for conference attendees, offering an excellent opportunity to showcase local businesses and community spirit. 

Sponsors will be publicly recognised at the conference, within the Courtenay and District Museum, and across our social media platforms. Tax receipts are available for eligible donations.

Sponsorship cheques made out to the Vancouver Island Paleontological Society can be mailed to 930 Sandpines Drive, Comox, BC, V9M 3V3. Attn: 15th BCPA Symposium 2025.

We would be honoured to have your support—your contribution would bring meaningful value to this exciting scientific event. If you have an item to donate to our silent auction or to include in our Welcome Bags, we would be sincerely grateful and can arrange for convenient pickup. 

To get involved or learn more, please contact us at bcpaleo.events@gmail.com—we’d love to hear from you! 

Warm regards on behalf of the 15th BCPA Organising Committee.

Friday, 1 August 2025

PALEONTOLOGY OF HAIDA GWAII

Misty shores, moss-covered forests, dappled light, and the smell of salt air—these are my memories of Haida Gwaii, a land where ancient stories are written in stone.

Formerly known as the Queen Charlotte Islands, the archipelago of Haida Gwaii lies at the far western edge of Canada, where the Pacific Ocean meets the continental shelf. These islands—steeped in the rich culture of the Haida Nation—are not only a cultural treasure but a geologic and paleontological wonderland.

Geologically, Haida Gwaii is part of Wrangellia, an exotic tectonostratigraphic terrane that also includes parts of Vancouver Island, western British Columbia, and Alaska. The region's complex geological history spans hundreds of millions of years and includes volcanic arcs, seafloor spreading, and the accretion of entire landmasses.

The Geological Survey of Canada (GSC) has long been fascinated with these remote islands. Their geologists and paleontologists have led numerous expeditions over the past century, documenting the diverse sedimentary formations and fossiliferous beds. Much of the foundation for this work was laid by Joseph Frederick Whiteaves, the GSC’s chief paleontologist in Ottawa during the late 19th century.

In 1876, Whiteaves published a pioneering paper on the Jurassic and Cretaceous faunas of Skidegate Inlet. This work firmly established the paleontological significance of the archipelago and cemented Whiteaves’ reputation as a global authority in the field. His paper, "On the Fossils of the Cretaceous Rocks of British Columbia" (GSC Report of Progress for 1876–77), remains a key early reference for West Coast palaeontology.

Later, Whiteaves would go on to describe Anomalocaris canadensis from the Burgess Shale—an “unlike other shrimp” fossil that would later be recognized as one of the most extraordinary creatures of the Cambrian explosion.

Whiteaves' early work on the fossil faunas of Haida Gwaii, particularly in the Haida Formation, created a foundation for generations of researchers to follow.

One of our most memorable fossil field trips was to the Cretaceous exposures of Lina Island, part of the Haida Formation. We considered it one of our “trips of a lifetime.” 

With great sandstone beach exposures and fossil-rich outcrops dating from the Albian to Cenomanian, Lina Island offered both scientific riches and stunning natural beauty.

Our expedition was supported and organized by John Fam, Vice Chair of the Vancouver Paleontological Society, and Dan Bowen, Chair of the British Columbia Paleontological Alliance and the Vancouver Island Palaeontological Society. 

Their dedication to fostering collaborative research and building relationships with local Haida communities was key. We were warmly welcomed, and field trips to fossil sites were arranged in partnership with community members and cultural stewards.

The Haida Formation yielded beautifully preserved specimens embedded both in bedding planes and in concretions—hard, rounded nodules that often house exceptionally preserved fossils. Among our finds were:

  • Douvilleiceras spiniferum
  • Brewericeras hulenense
  • Cleoniceras perezianum
  • Fossil cycads, evidence of rich Cretaceous plant life

These fossils offered a rare glimpse into an ancient marine ecosystem that once teemed with life. Douvilleiceras, a spiny ammonite, is particularly striking. This genus, first identified by Whiteaves from Haida Gwaii, ranges from the Middle to Late Cretaceous and has been found across Asia, Africa, Europe, and the Americas.  The Haida specimens, from the early to mid-Albian, remain among the most beautiful. It is one of my favourite ammonites of all time and I was blessed to find several good examples of that species.

All of the fossils I collected from Haida Gwaii have been skillfully prepped and donated to the Haida Gwaii Museum in Skidegate, British Columbia. It is a privilege to contribute in a small way to the scientific and cultural understanding of these extraordinary islands.

References and Further Reading:

Whiteaves, J.F. (1876). On the Fossils of the Cretaceous Rocks of British Columbia. Geological Survey of Canada, Report of Progress.

Jeletzky, J.A. (1970). Paleontology of the Cretaceous rocks of Haida Gwaii. Geological Survey of Canada, Bulletin 175.

Haggart, J.W. (1991). New Albian (Early Cretaceous) ammonites from Haida Gwaii. Canadian Journal of Earth Sciences, 28(1), 45–56.

Haggart, J.W. & Smith, P.L. (1993). Paleontology and stratigraphy of the Cretaceous Queen Charlotte Group. Geological Survey of Canada Paper 93-1A.

Carter, E.S., Haggart, J.W., & Mustard, P.S. (1988). Early Cretaceous radiolarians from Haida Gwaii and implications for tectonic setting. Micropaleontology, 34(1), 1–14.