Showing posts with label fossil. Show all posts
Showing posts with label fossil. Show all posts

Thursday, 2 October 2025

WEST COAST WOLVES: ATLA'NAMUX

Along the storm-lashed shores of Vancouver Island, the west coast wolves move like shadows—silent, salt-streaked, and born of the sea. 

Their paws leave fleeting prints on sand swept by tide, their eyes glint with the wild hunger of untamed rainforests. 

Hunters of both land and surf, they dive into kelp beds for seal and salmon, ghosts of cedar and mist, bound to the roar of waves and the deep solitude of the Pacific.

Wolves are among the most iconic predators of the northern hemisphere—intelligent, social, and adaptable creatures that have roamed the wilds of North America for hundreds of thousands of years. 

But their story begins long before that, deep in the fossil record, when canids first began to evolve. The ancestors of today’s wolves can be traced back more than 30 million years to the early canids of the Oligocene. 

One of the earliest known members of the dog family is Hesperocyon, a small, fox-like carnivore that lived in what is now North America. 

Over millions of years, these early canids diversified into various forms, including the dire wolf (Aenocyon dirus) and the gray wolf (Canis lupus), which appeared around 1 to 2 million years ago.

The gray wolf evolved in Eurasia and migrated into North America via the Bering land bridge during the Pleistocene. Once here, it quickly became a dominant predator across the continent, adapting to a wide range of environments—from the Arctic tundra to the deserts of Mexico.

Today, Canis lupus is still widely distributed across North America, although its range has contracted significantly due to human expansion, habitat loss, and historical persecution. Wolves are found in:

  • Alaska – home to the largest populations in North America.
  • The Rocky Mountains – including parts of Montana, Idaho, and Wyoming.
  • The Western Great Lakes – especially Minnesota and Wisconsin.
  • Canada – particularly British Columbia, Alberta, and the boreal forests of the northern provinces.
  • Vancouver Island – which hosts a distinct coastal population.
  • The Pacific Coast – small populations in Washington and Oregon are making a comeback.

Wolves are apex predators and essential for maintaining healthy ecosystems. They primarily prey on large ungulates such as deer, moose, elk, and caribou. 

In coastal regions, particularly on British Columbia’s Central Coast and Vancouver Island, wolves have adapted their diets to include salmon, intertidal invertebrates, and even seals. 

I have seen them eat their way along the tide line, scavenging whatever the sea has washed up for their breakfasts. 

These wolves have been observed swimming between islands in search of food, a behavior rarely seen in inland populations. 

If you explore the coast by boat, kayak or other means, you can see their footprints in the sand, telling you that you are not alone as you explore the rugged coast. The best time to try to catch a glimpse of these elusive beauties is early morning, though I did take a late afternoon nap one fine day on the warm sand of Vargus Island and woke to wolf tracks all around me. 

Wolves help control herbivore populations, which in turn benefits vegetation and can even influence river systems, as famously demonstrated in Yellowstone National Park after wolves were reintroduced in 1995.

Wolves on Vancouver Island

Vancouver Island is home to a small but resilient population of coastal wolves, often referred to as coastal sea wolves. These wolves are genetically and behaviorally distinct from their inland counterparts. While exact numbers fluctuate, current estimates suggest approximately 350 wolves live on Vancouver Island.

They are elusive and tend to avoid human interaction, making them difficult to study and count accurately. Much of what we know comes from the work of wildlife researchers and photographers such as Ian McAllister, whose documentation of coastal wolf behavior has been instrumental in raising awareness.

If you are looking to see more of these coastal predators, search out the work of photographers like Liron Gertsman, Ian Harland, and Sandy Sharkey, who have captured stunning images and footage of these elusive creatures in their natural habitat, along our beaches and old-growth forests. 

Despite their adaptability, wolves face a number of threats:

  • Habitat Loss and Human Encroachment: As logging and development continue to fragment wild areas on Vancouver Island, wolves are pushed into closer proximity with humans, increasing the likelihood of conflict.
  • Hunting and Trapping: Wolves are not protected under the Wildlife Act in much of British Columbia and can be hunted or trapped in many areas. Although controversial, some view wolf control as a means to support ungulate populations for hunting.
  • Poisoning and Culling: In parts of Canada, wolves have been poisoned or culled in misguided efforts to protect caribou herds, despite ecological evidence showing that habitat preservation is more critical to caribou survival.
  • Decline in Prey: As deer populations fluctuate due to climate change, human hunting pressure, and habitat alteration, wolves may face food scarcity.
  • Public Misunderstanding: Myths and negative stereotypes about wolves still persist, sometimes fueling unnecessary fear and policy decisions not based on science.
  • Wolves have been on this land longer than humans. Their long evolutionary journey has shaped them into highly specialized, intelligent animals with complex social structures. But their survival now depends on us.

On Vancouver Island and across the continent, conservation efforts, education, and science-based wildlife management are essential to ensuring wolves continue to howl in the wild for generations to come.

Vancouver Island local, Gary Allan, who runs the SWELL Wolf Education Centre in Nanaimo and is known for his extensive work in wolf advocacy and education is a good resource of up-to-date information on our coastal wolves. 

He has been educating the public about wolves since 2006, both through the Tundra Speaks Society and the education centre. Allan's work involves interacting with wolves, including his wolf-dog Tundra, and sharing his knowledge with schools, community groups, and First Nations organizations. 

Have you seen one of our coastal wolves up close and in person? It is a rare treat and for me, generally on an early morning walk. I hope we keep the balance so that the wolves live in peace and continue to thrive.

Further Reading and Resources

McAllister, Ian. The Last Wild Wolves: Ghosts of the Rain Forest. Greystone Books, 2007.

Mech, L. David, and Boitani, Luigi (eds.). Wolves: Behavior, Ecology, and Conservation. University of Chicago Press, 2003.

Fossil Canids Database – University of California Museum of Paleontology

Raincoast Conservation Foundation – https://www.raincoast.org

Wednesday, 1 October 2025

GRACEFUL, GLIMMERING ACROBATS OF THE SKIES: DRAGONFLIES

Dragonflies are graceful, glimmering fliers we see as sparkling bits of colour darting over ponds and streams, but these agile insects have a history that stretches deep into Earth's prehistoric past—far earlier than the first dinosaurs ever walked the land.

These beauties are amongst the oldest groups of flying insects known to science. 

Their fossil record gives us an incredible glimpse into how flight evolved and how these remarkable predators have remained successful for over 300 million years.

From giant griffinflies soaring above Carboniferous swamps to the shimmering dragonflies zipping around your backyard pond, these insects have endured massive planetary changes and extinction events. 

I found my first dragonfly fossil up near Kamloops, British Columbia, Canada, at the McAbee Fossil Beds in the late 1990s. It was a thrilling moment that I remember well to this day.  

The origins of dragonflies date back to the Carboniferous, roughly 320 million years ago, when Earth was dominated by vast swampy forests filled with giant plants, amphibians, and weird yet wonderful arthropods.

The earliest known dragonfly relatives come from this time. But they weren’t quite like the dragonflies we know today. These ancient insects belonged to a now-extinct order called Protodonata, or "griffinflies," and some were true giants.

One of the most famous fossil dragonfly-like insects is Meganeura, a massive predator from around 300 million years ago. With a wingspan of up to 70 centimeters (28 inches), it’s often called the largest insect to have ever lived.

Meganeura looked and behaved much like modern dragonflies, with powerful wings, sharp mandibles, and excellent eyesight—perfect for catching prey mid-flight. But unlike modern dragonflies, Meganeura lacked some of the refined flight control structures and wing coupling mechanisms we see in living species.

One reason for their size likely comes down to oxygen levels. During the Carboniferous period, atmospheric oxygen was much higher than today—about 35%, compared to our current 21%. This allowed insects, which breathe through small tubes called tracheae, to grow much larger than they can now.

As oxygen levels decreased over time, the enormous sizes of insects like Meganeura became unsustainable, and dragonflies gradually evolved into smaller, more maneuverable forms.

By the Jurassic period (~200 million years ago), the ancestors of today’s dragonflies had begun to appear. These early representatives of the order Odonata had split into two main groups:
  • Anisoptera – what we now call true dragonflies
  • Zygoptera – damselflies, their more delicate cousins
These insects had developed more sophisticated wing structures and jointed flight muscles, giving them the remarkable agility we see today. Fossils from this time show dragonflies that look strikingly similar to modern species.

Dragonfly fossils have been found all over the world, preserved in ancient lake beds, fine-grained shales, and even amber. Some of the best specimens come from:
  • Germany’s Solnhofen Limestone (Late Jurassic) with its remarkable preservation
  • China’s Liaoning Province (Early Cretaceous)
  • Montana and Colorado, USA (Late Cretaceous to Paleogene)
These fossils often show remarkable detail, including wing veins and body segmentation, offering a rare glimpse into insect anatomy from millions of years ago.

They’re also key indicators of freshwater ecosystem health, which makes understanding their history even more relevant today.


Tuesday, 30 September 2025

TRICERATOPS: HORNED GIANT OF THE LATE CRETACEOUS

Imagine standing on the edge of a warm, subtropical floodplain 66 million years ago. 

The air hums with insects, dragonflies dart over shallow pools, and cicada-like calls echo through the dense stands of magnolias and cycads. 

A herd of Triceratops horridus moves slowly across the open landscape, their massive, parrot-like beaks tearing into low-growing ferns and palm fronds. Each step sinks slightly into the damp soil, leaving broad three-toed tracks. 

The ground vibrates with the low, resonant bellows they use to keep in contact with one another, a chorus of sound that carries across the plain.

You might catch glimpses of other giants sharing the same world. Herds of hadrosaurs—Edmontosaurus—graze nearby, their duck-billed snouts sweeping back and forth through the vegetation like living lawnmowers. 

Overhead, toothed seabirds wheel and cry, their calls mixing with the shrieks of distant pterosaurs. And lurking at the edges of the scene, half-hidden among the trees, the apex predator Tyrannosaurus rex waits, its presence felt more than seen, a reminder that this landscape is ruled by both plant-eaters and their formidable hunters.

Triceratops was one of the last and largest ceratopsians, measuring up to 9 meters (30 feet) long and weighing as much as 12 metric tons. Its most iconic features were the three horns—two long brow horns above the eyes and a shorter horn on the nose—backed by a broad bony frill. These structures were likely used for defense against predators like T. rex, but also for display within their own species, signaling dominance, maturity, or readiness to mate.

Its beak and shearing dental batteries made Triceratops a highly efficient plant-eater. Unlike many earlier ceratopsians, it possessed hundreds of teeth stacked in dental batteries, capable of slicing through tough, fibrous plants like cycads and palms that flourished in the Late Cretaceous.

Triceratops lived at the very end of the Cretaceous, in what is now western North America, within the region known as Laramidia, a long island continent separated from eastern North America by the Western Interior Seaway. 

Alongside Triceratops, this ecosystem hosted a staggering diversity of dinosaurs, including ankylosaurs (like Ankylosaurus magniventris), duck-billed hadrosaurs, pachycephalosaurs, and smaller predators like Dakotaraptor. Crocodilians, turtles, and mammals also thrived in the wetlands and forests.

Fossil evidence suggests that Triceratops may have lived in herds, though adults are often found alone, hinting at possible solitary behavior outside of mating or nesting seasons. Juveniles, on the other hand, may have grouped together for protection.

Triceratops was among the very last non-avian dinosaurs before the mass extinction event at the Cretaceous–Paleogene (K–Pg) boundary, 66 million years ago. Their fossils are found in the uppermost layers of the Hell Creek Formation, placing them just before the asteroid impact that ended the Mesozoic. Triceratops mark the end of an era, as it were, representing both the culmination of ceratopsian evolution and the twilight of the age of dinosaurs.

Today, Triceratops remains one of the most recognizable dinosaurs in the world and a personal fav—its horns and frill embodying the strange beauty and raw power of prehistoric life. Standing face-to-face with a Triceratops skeleton in a museum is awe-inspiring, but to truly imagine them alive, you must step back into their world: warm floodplains, buzzing insects, herds of plant-eaters, and the constant tension of predators in the shadows.


Thursday, 25 September 2025

LIVING FOSSILS: METASEQUOIA

Autumn is a wonderful time to explore Vancouver. It is a riot of yellow, orange and green. The fallen debris you crunch through send up wafts of earthy smells that whisper of decomposition, the journey from leaf to soil.

It is a wonderful time to be out and about. I do love the mountain trails but must confess to loving our cultivated gardens for their colour and variety. 

We have some lovely native plants and trees and more than a few exotics at Vancouver's arboreal trifecta — Van Dusen, Queen E Park and UBC Botanical Gardens. One of those exotics, at least exotic to me, is the lovely conifer you see here is Metasequoia glyptostroboides — the dawn redwood. 

Of this long lineage, this is the sole surviving species in the genus Metasequoia and one of three species of conifers known as redwoods. Metasequoia are the smaller cousins of the mighty Giant Sequoia, the most massive trees on Earth. 

As a group, the redwoods are impressive trees and very long-lived. The President, an ancient Giant Sequoia, Sequoiadendron giganteum, and granddaddy to them all has lived for more than 3,200 years. While this tree is named The President, a worthy name, it doesn't really cover the magnitude of this giant by half.   

This tree was a wee seedling making its way in the soils of the Sierra Nevada mountains of California before we invented writing. It had reached full height before any of the Seven Wonders of the Ancient World, those remarkable constructions of classical antiquity, were even an inkling of our budding human achievements. And it has outlasted them all save the Great Pyramid of Giza, the oldest and last of those seven still standing, though the tree has faired better. Giza still stands but the majority of the limestone façade is long gone.

Aside from their good looks (which can really only get you so far), they are resistant to fire and insects through a combined effort of bark over a foot thick, a high tannin content and minimal resin, a genius of evolutionary design. 

While individual Metasequoia live a long time, as a genus they have lived far longer. 

Like Phoenix from the Ashes, the Cretaceous (K-Pg) extinction event that wiped out the dinosaurs, ammonites and more than seventy-five percent of all species on the planet was their curtain call. The void left by that devastation saw the birth of this genus — and they have not changed all that much in the 65 million years since. Modern Metasequoia glyptostroboides looks pretty much identical to their late Cretaceous brethren.

Dawn Redwood Cones with scales paired in opposite rows
They are remarkably similar to and sometimes mistaken for Sequoia at first glance but are easily distinguishable if you look at their size (an obvious visual in a mature tree) or to their needles and cones in younger specimens. 

Metasequoia has paired needles that attach opposite to each other on the compound stem. Sequoia needles are offset and attached alternately. Think of the pattern as jumping versus walking with your two feet moving forward parallel to one another. 

Metasequoia needles are paired as if you were jumping forward, one print beside the other, while Sequoia needles have the one-in-front-of-the-other pattern of walking.

The seed-bearing cones of Metasequoia have a stalk at their base and the scales are arranged in paired opposite rows which you can see quite well in the visual above. Coast redwood cone scales are arranged in a spiral and lack a stalk at their base.

Although the least tall of the redwoods, it grows to an impressive sixty meters (200 feet) in height. It is sometimes called Shui-sa, or water fir by those who live in the secluded mountainous region of China where it was rediscovered.

Fossil Metasequoia, McAbee Fossil Beds
Metasequoia fossils are known from many areas in the Northern Hemisphere and were one of my first fossil finds as a teenager. 

And folk love naming them. More than twenty fossil species have been named over time —  some even identified as the genus Sequoia in error — but for all their collective efforts to beef up this genus there are just three species: Metasequoia foxii, Metasequoia milleri, and Metasequoia occidentalis.

During the Paleocene and Eocene, extensive forests of Metasequoia thrived as far north as Strathcona Fiord on Ellesmere Island and sites on Axel Heiberg Island in Canada's far north around 80° N latitude.

We find lovely examples of Metasequoia occidentalis in the Eocene outcrops at McAbee near Cache Creek, British Columbia, Canada. I shared a photo here of one of those specimens. Once this piece dries out a bit, I will take a dental pick to it to reveal some of the teaser fossils peeking out.

The McAbee Fossil Beds are known for their incredible abundance, diversity and quality of fossils including lovely plant, insect and fish species that lived in an old lake bed setting. While the Metasequoia and other fossils found here are 52-53 million years old, the genus is much older. It is quite remarkable that both their fossil and extant lineage were discovered in just a few years of one another. 

Metasequoia was first described as a new genus from a fossil specimen found in 1939 and published by Japanese paleobotanist Shigeru Miki in 1941. Remarkably, the living version of this new genus was discovered later that same year. 

Professor Zhan Wang, an official from the Bureau of Forest Research was recovering from malaria at an old school chum's home in central China. His friend told him of a stand of trees discovered in the winter of 1941 by Chinese botanist Toh Gan (干铎). The trees were not far away from where they were staying and Gan's winter visit meant he did not collect any specimen as the trees had lost their leaves. 

The locals called the trees Shui-sa, or water fir. As trees go, they were reportedly quite impressive with some growing as much as sixty feet tall. Wang was excited by the possibility of finding a new species and asked his friend to describe the trees and their needles in detail. Emboldened by the tale, Wang set off through the remote mountains to search for his mysterious trees and found them deep in the heart of  Modaoxi (磨刀溪; now renamed Moudao (谋道), in Lichuan County, in the central China province of Hubei. He found the trees and was able to collect living specimens but initially thought they were from Glyptostrobus pensilis (水松). 

A few years later, Wang showed the trees to botanist Wan-Chun Cheng and learned that these were not the leaves of s Glyptostrobus pensilis (水松 ) but belonged to a new species. 

While the find was exciting, it was overshadowed by China's ongoing conflict with the Japanese that was continuing to escalate. With war at hand, Wang's research funding and science focus needed to be set aside for another two years as he fled the bombing of Beijing. 

When you live in a world without war on home soil it is easy to forget the realities for those who grew up in it. 

Zhan Wang and his family lived to witness the 1931 invasion of Manchuria, then the 1937 clash between Chinese and Japanese troops at the Marco Polo Bridge, just outside Beijing. 

That clash sparked an all-out war that would grow in ferocity to become World War II. 

Within a year, the Chinese military situation was dire. Most of eastern China lay in Japanese hands: Shanghai, Nanjing, Beijing, Wuhan. As the Japanese advanced, they left a devastated population in their path where atrocity after atrocity was the norm. Many outside observers assumed that China could not hold out, and the most likely scenario was a Japanese victory over China.

Yet the Chinese hung on, and after the horrors of Pearl Harbor, the war became genuinely global. The western Allies and China were now united in their war against Japan, a conflict that would finally end on September 2, 1945, after Allied naval forces blockaded Japan and subjected the island nation to intensive bombing, including the utter devastation that was the Enola Gay's atomic payload over Hiroshima. 

With World War II behind them, the Chinese researchers were able to re-focus their energies on the sciences. Sadly, Wang was not able to join them. Instead, two of his colleagues, Wan Chun Cheng and Hu Hsen Hsu, the director of Fan Memorial Institute of Biology would continue the work. Wan-Chun Cheng sent specimens to Hu Hsen Hsu and upon examination realised they were the living version of the trees Miki had published upon in 1941. 

Hu and Cheng published a paper describing a new living species of Metasequoia in May 1948 in the Bulletin of Fan Memorial Institute of Biology.

That same year, Arnold Arboretum of Harvard University sent an expedition to collect seeds and, soon after, seedling trees were distributed to various universities and arboreta worldwide. 

Today, Metasequoia grow around the globe. When I see them, I think of Wang and all he went through. He survived the conflict and went on to teach other bright, young minds about the bountiful flora in China. I think of Wan Chun Cheng collaborating with Hu Hsen Hsu in a time of war and of Hu keeping up to date on scientific research, even published works from colleagues from countries with whom his country was at war. Deep in my belly, I ache for the huge cost to science, research and all the species impacted on the planet from our human conflicts. Each year in April, I plant more Metasequoia to celebrate Earth Day and all that means for every living thing on this big blue orb.  

References: 

  • https://web.stanford.edu/group/humbioresearch/cgi-bin/wordpress/?p=297
  • https://humboldtredwoods.org/redwoods

Wednesday, 24 September 2025

LOWER LIAS LYTOCERAS AMMONITE

A superbly prepped and extremely rare Lytoceras (Suess, 1865) ammonite found as a green ammonite nodule by Matt Cape in the Lower Lias of Dorset. 

Lytoceras are rare in the Lower Lias of Dorset — apart from the Belemnite Stone horizon — so much so that Paul Davis, whose skilled prep work you see here, initially thought it might be a Becheiceras hidden within the large, lumpy nodule. 

One of the reasons these lovelies are rarely found from here is that they are a Mediterranean Tethyian genus. The fossil fauna we find in the United Kingdom are dominated by Boreal Tethyian genera. 

We do find Lytoceras sp. in the Luridum subzone of the Pliensbachian showing that there was an influx of species from the Mediterranean realm during this time. This is the first occurrence of a Lytoceras that he has ever seen in a green nodule and Paul's seen quite a few. 

This absolutely cracking specimen was found and is in the collections of the awesome Matt Cape. Matt recognized that whatever was hidden in the nodule would take skilled and careful preparation using air scribes. Indeed it did. It took more than five hours of time and skill to unveil the lovely museum-worthy specimen you see here. 

We find Lytoceras in more than 1,000 outcrops around the globe ranging from the Jurassic through to the Cretaceous, some 189.6 to 109.00 million years ago. Once this specimen is fully prepped with the nodule material cut or scraped away, you can see the detailed crinkly growth lines or riblets on the shell and none of the expected coarse ribbing. 

Lytoceras sp. Photo: Craig Chivers
If you imagine running your finger along these, you would be tracing the work of decades of growth of these cephalopods. 

While we cannot know their actual lifespans, but we can make a healthy guess. 

The nautilus, their closest living cousins live upwards of 20 years — gods be good — and less than three years if conditions are poor.

The flanges, projecting flat ribs or collars, develop at the edge of the mouth border on the animal's mantle as they grow each new chamber. 

Each delicate flange grows over the course of the ammonites life, marking various points in time and life stages as the ammonite grew. There is a large variation within Lytoceras with regards to flanges. They provide both ornamentation and strength to the shell to protect it from water pressure as they moved into deeper seas.

The concretion prior to prep
This distinctive genus with its evolute shells are found in the Cretaceous marine deposits of: 

Antarctica (5 collections), Austria (19), Colombia (1), the Czech Republic (3), Egypt (2), France (194), Greenland (16), Hungary (25), Italy (11), Madagascar (2), Mexico (1), Morocco (4), Mozambique (1), Poland (2), Portugal (1), Romania (1), the Russian Federation (2), Slovakia (3), South Africa (1), Spain (24), Tanzania (1), Trinidad and Tobago (1), Tunisia (25); and the United States of America (17: Alaska, California, North Carolina, Oregon).

We also find them in Jurassic marine outcrops in:

Austria (15), Canada (9: British Columbia), Chile (6), France (181), Germany (11), Greenland (1), Hungary (189), India (1), Indonesia (1), Iran (1), Italy (50), Japan (14), Kenya (2), Luxembourg (4), Madagascar (2), Mexico (1), Morocco (43), New Zealand (15), Portugal (1), Romania (5), the Russian Federation (1), Slovakia (1), Spain (6), Switzerland (2), Tunisia (11), Turkey (12), Turkmenistan (1), Ukraine (5), the United Kingdom (12), United States (11: Alaska, California) — in at least 977 known collections. 

References:

Sepkoski, Jack (2002). "A compendium of fossil marine animal genera (Cephalopoda entry)". Bulletins of American Paleontology. 363: 1–560. Archived from the original on 2008-05-07. Retrieved 2017-10-18.

Paleobiology Database - Lytoceras. 2017-10-19.

Systematic descriptions, Mesozoic Ammonoidea, by W.J Arkell, Bernhard Kummel, and C.W. Wright. 1957. Treatise on Invertebrate Paleontology, Part L. Geological Society of America and University of Kansas press.

Friday, 19 September 2025

MIGWAT: SLEEK, PLAYFUL SEALS

Seals—those sleek, playful creatures that glide through our oceans and lounge on rocky shores—are part of a remarkable evolutionary story stretching back millions of years. 

Though we often see them today basking on beaches or popping their heads above the waves, their journey through the fossil record reveals a dramatic tale of land-to-sea adaptation and ancient global wanderings.

Seals belong to a group of marine mammals called pinnipeds, which also includes sea lions and walruses. All pinnipeds share a common ancestry with terrestrial carnivores, and their closest living relatives today are bears and mustelids (like otters and weasels). Their ancestors walked on land before evolving to thrive in marine environments.

The fossil record suggests that pinnipeds first emerged during the Oligocene epoch, around 33 to 23 million years ago. These early proto-seals likely lived along coastal environments, where they gradually adapted to life in the water. Over time, their limbs transformed into flippers, their bodies streamlined, and their reliance on the sea for food and movement became complete.

In Kwak'wala, the language of the Kwakwaka'wakw of the Pacific Northwest, seals are known as migwat, and fur seals are referred to as xa'wa.

Tuesday, 16 September 2025

SHAGGY TITANS OF THE GRASSLANDS: BISON

Bison move across the prairie like living storms, vast and steady, with the weight of centuries in their stride. 

Their dark eyes hold a quiet, unwavering depth—as if they’ve looked into the heart of time itself and carry its secrets in silence. Look into the eyes of this fellow and tell me you do not see his deep intelligence as he gives the camera a knowing look.

Shaggy fur ripples in the wind, rich and earthy, brushed by sun and shadow, a cloak woven from wilderness. When they breathe, clouds rise in the cold air, soft and ephemeral, like whispered promises that vanish but leave warmth behind.

There is something profoundly romantic in their presence: strength wrapped in gentleness, endurance softened by grace.  To watch them is to feel the wild itself lean closer, reminding us of a love as vast as the horizon, as eternal as the ground beneath our feet.

When we think of bison today, images of great herds roaming the North American plains come to mind—dark, shaggy shapes against sweeping prairies. But the story of bison goes back far deeper in time. 

These massive grazers are part of a lineage that stretches millions of years into the past, their fossil record preserving the tale of their rise, spread, and survival.

Bison belong to the genus Bison, within the cattle family (Bovidae). Their story begins in Eurasia during the late Pliocene, around 2.6 million years ago, when the first true bison evolved from earlier wild cattle (Bos-like ancestors). 

Fossils suggest they descended from large bovids that roamed open grasslands of Eurasia as forests retreated and cooler, drier climates expanded.

The earliest known species, Bison priscus, or the Steppe Bison, was a giant compared to modern bison, sporting long horns that could span over six feet tip to tip. These animals thrived across Europe, Asia, and eventually crossed into North America via the Bering Land Bridge during the Pleistocene Ice Age.

The fossil record of bison stretches back about 2 million years in Eurasia and at least 200,000 years in North America, where they became one of the most successful large herbivores of the Ice Age. Fossil evidence shows that at least seven different species of bison once lived in North America, including the iconic Bison latifrons with its massive horns, and Bison antiquus, which is considered the direct ancestor of the modern American bison (Bison bison).

Some of the richest fossil bison deposits come from Siberia and Eastern Europe – home to abundant Bison priscus fossils, often preserved in permafrost with soft tissues intact. They are also found in Alaska, USA and in Canada's Yukon region – where Ice Age bison fossils are found alongside mammoth, horse, and muskox remains.

The Great Plains of the United States and Canada are rich in Bison antiquus and later species, often in mass bone beds where entire herds perished. We also find their remains in California and the American Southwest at sites like the La Brea Tar Pits. La Brea preserves bison remains from the Late Pleistocene and their museum of the same name has a truly wonderful display of Pleistocene wolves. Definitely worthy of a trip!

One particularly famous fossil site is the Hudson-Meng Bison Kill Site in Nebraska, where remains of over 600 Bison antiquus dating to about 10,000 years ago provide a window into Ice Age hunting practices and herd behavior.

By the end of the Ice Age, many megafauna species disappeared, but bison endured. Bison antiquus gradually gave rise to the modern American bison (Bison bison), which still carries echoes of its Ice Age ancestors. Though smaller than their Pleistocene relatives, today’s bison remain the largest land mammals in North America.

Saturday, 13 September 2025

ATURIA ANGUSTATA: MIOCENE NAUTILOID

Aturia angustata, Lower Miocene, WA
This lovely Lower Miocene nautiloid is Aturia angustata collected on the foreshore near Clallam Bay, Olympic Peninsula, northwestern Washington. 

Aturia is an extinct genus of Paleocene to Miocene nautiloid within Aturiidae, a monotypic family, established by Campman in 1857 for Aturia (Bronn, 1838), and is included in the superfamily Nautilaceae (Kümmel,  1964).

There are seven living nautiloid species in two genera: Nautilus pompilius, N. macromphalus, N. stenomphalus, N. belauensis, and the three new species being described from Samoa, Fiji, and Vanuatu (Ward et al.). 

We have specimens of fossil nautiloids dating to the Turonian of California, and possibly the Cenomanian of Australia. There has also been a discovery of what might be the only known fossil of Allonautilus (Ward and Saunders, 1997), from the Nanaimo Group of British Columbia, Canada.

Aturia in the Collection of Rick Ross, VIPS
The exquisite shell preservation of many Nanaimo nautilids has opened up a lens into paleotemperatures and accurate Nitrogen isotope analyses. 

Nautilus and all other known Cretaceous through Paleogene nautiloids were shallow water carnivores. We may see their shells as beautiful bits of art and science today, but they were seen in our ancient oceans as small yet mighty predators. Preferring to dine on shrimp, crab, fish and on occasion, a friendly cousin nautiloid to two.

Aturia lived in cooler water in the Cenozoic, preferring it over the warmer waters chosen by their cousins. Aturia, are commonly found as fossils from Eocene and Miocene outcrops. 

That record ends with their extinction in the late Miocene. This was a fierce little beast with jaws packed with piranha-like teeth. They grew at least twice that of the largest known Nautilus living today. 

Aturia is characterized by a smooth, highly involute, discoidal shell with a complex suture and subdorsal siphuncle. The shell of Aturia is rounded ventrally and flattened laterally; the dorsum is deeply impressed. The suture is one of the most complex within the subclass Nautiloidea. Of all the nautiloids, he may have been able to go deeper than his brethren.

Nautiloids are known for their simple suturing in comparison to their ammonite cousins. This simplicity of design limited their abilities in terms of withstanding the water pressure experienced when several atmospheres below the sea. Nautiloids were not able to compete with their ammonite cousins in this regard. 

Instead of elaborate and complex sutures capable of withstanding the pressures of the deep, nautiloids have simpler sutures that would have them enfold on themselves and crush at depth.  

Aturia angustata; Rick Ross Collection
It has a broad flattened ventral saddle, narrow pointed lateral lobes, broad rounded lateral saddles, broad lobes on the dorso-umbilical slopes, and a broad dorsal saddle divided by a deep, narrow median lobe. 

The siphuncle is moderate in size and located subdorsally in the adapical dorsal flexure of the septum. Based on the feeding and hunting behaviours of living nautiluses, Aturia most likely preyed upon small fish and crustaceans. 

I have found a few of these specimens along the beaches of Clallam Bay and nearby in a local clay quarry. I've also seen calcified and chalcedony — microcrystalline quartz — agatized beauties of this species collected from river sites within the Olympic Peninsula range. In the bottom photos, you can see Aturia from Washington state and one (on the stand on the left) from Oregon, USA. These beauties are in the collections of the deeply awesome Rick Ross, Vancouver Island Palaeontological Society.

References: Ward, P; Haggart, J; Ross, R; Trask, P; Beard, G; Nautilus and Allonautilus in the Nanaimo Group, and in the modern oceans; 12th British Columbia Paleontological Symposium, 2018, Courtenay, abstracts; 2018 p. 10-11

Wednesday, 3 September 2025

GIANT SLOTH: MEGATHERIUM

In 1788, a remarkable specimen of Megatherium americanum, one of the largest known terrestrial sloths, was shipped from the Viceroyalty of the Río de la Plata (present-day Argentina and Uruguay) to the Royal Cabinet of Natural History in Madrid, Spain. 

This fossil would become the type specimen for the species and a cornerstone in the early study of extinct megafauna.

Megatherium belonged to the order Pilosa within the superorder Xenarthra—a group that includes modern sloths, anteaters, and armadillos. 

These colossal herbivores thrived in South America from the Pliocene to the end of the Pleistocene, approximately 2 million to 10,000 years ago. Megatherium, whose name means "great beast," could grow up to 6 meters (20 feet) in length and weigh over 4 tons, rivaling modern elephants in size.

This sloth's immense skeletal structure, including robust pelvic and femoral bones, suggests it could rear up on its hind limbs, using its tail as a supportive tripod. This stance allowed it to browse high vegetation, possibly stripping branches and reaching tree canopies with its elongated forelimbs and curved claws. Such a feeding adaptation was critical, as an adult Megatherium required vast quantities of plant matter to sustain its bulk.

Intriguingly, the Megatherium may have played a key role in the dispersal of large-fruited plants like Persea americana—the avocado. Its gut was capable of processing such large fruits, and it likely defecated the intact pits over great distances, contributing to the avocado’s prehistoric range. Modern ecological studies support the idea that many now-domesticated fruit species evolved in tandem with megafaunal seed dispersers (Guimarães et al., 2008).

The specimen sent to Spain was assembled and illustrated by Spanish artist and anatomist Juan Bautista Bru de Ramón. Though Bru’s reconstruction, completed in 1788, was not anatomically correct by today’s standards—it depicts the sloth standing upright with straight legs and a curved spine—it was a pioneering attempt at skeletal reconstruction. 

The mount remains on display at the Museo Nacional de Ciencias Naturales in Madrid in its original form, preserving its historical and scientific significance.

French naturalist Georges Cuvier, often regarded as the father of paleontology, later studied Bru’s illustrations and used them to describe Megatherium scientifically in 1796. Cuvier recognized the sloth’s herbivorous nature and its relation to modern tree sloths, a conclusion that helped shape early theories of extinction and comparative anatomy (Cuvier, 1796).

Today, the Megatherium skeleton in Madrid stands not only as a monument to a vanished giant but also as a testament to international collaboration in the early days of paleontology—where artists, anatomists, and naturalists together unveiled the grandeur of life’s ancient past.

If you look closely, you'll see it is not anatomically correct. But all good paleontology is teamwork. Based upon the drawings of Juan Bautista Bru, George Cuvier used this specimen to describe the species for the very first time.

References:
Cuvier, G. (1796). Mémoire sur le squelette d’une très grande espèce de quadrupède inconnue jusqu’à présent. Mémoires de l’Institut National des Sciences et Arts.

Fariña, R. A., Vizcaíno, S. F., & Bargo, M. S. (1998). Body mass estimations in Lujanian (late Pleistocene–early Holocene of South America) mammal megafauna. Mastozoología Neotropical, 5(2), 87–108.

Guimarães Jr, P. R., Galetti, M., & Jordano, P. (2008). Seed dispersal anachronisms: Rethinking the fruits extinct megafauna ate. PLoS ONE, 3(3), e1745. https://doi.org/10.1371/journal.pone.0001745

McDonald, H. G. (2005). Paleoecology of extinct xenarthrans and the Great American Biotic Interchange. Bulletin of the Florida Museum of Natural History, 45, 313–333.

Tuesday, 2 September 2025

HIGHLANDS OF ICELAND

The Northern Lights over a sea of wildflowers in the marsh near Landmannalaugar, part of the Fjallabak Nature Reserve in the Highlands of Iceland.

Landmannalaugar is at the northern tip of the Laugavegur hiking trail that leads through natural geothermal hot springs and an austere yet poetically beautiful landscape. 

Here, you can see the Northern Lights play through the darkness of a night sky without light pollution and bask in the raw geology of this rugged land.

The Fjallabak region takes its name from the numerous wild and rugged mountains with deeply incised valleys, which are found there. 

The topography of the Torfajokull, a central volcano found within the Fjallabak Nature Reserve, is a direct result of the region being the largest rhyolite area in Iceland and the largest geothermal area (after Grimsvotn in Vatnajokull).

The Torfajokull central volcano is an active volcanic system but is now in a declining fumarolic stage as exemplified by numerous fumaroles and hot springs. The hot pools at Landmannalaugar are but one of many manifestations of geothermal activity in the area, which also tends to alter the minerals in the rocks, causing the beautiful colour variations from red and yellow to blue and green, a good example being Brennisteinsalda. Geologists believe that the Torfajokull central volcano is a caldera, the rim being Haalda, Suðurnamur, Norður-Barmur, Torfajokull, Kaldaklofsfjoll and Ljosartungur.

The bedrock of the Fjallabak Nature Reserve dates back 8-10 million years. At that time the area was on the Reykjanes – Langjokull ridge rift zone. 

The volcano has been most productive during the last 2 million years, that is during the last Ice Age Interglacial rhyolite lava (Brandsgil) and sub-glacial rhyolite (erupted under ice/water, examples being Blahnukur and Brennisteinsalda are characteristic formations in the area. 

To the north of the Torfajokull region, sub-glacial volcanic activity produced the hyaloclastites (Moberg) mountains, such as Lodmundur and Mogilshofdar.

On March 19, 2021, a volcanic eruption started in the Geldingadalir valley at the Fagradalsfjall mountain on the Reykjanes peninsula, South-West Iceland. The volcano is situated approximately 30 km from the country’s capital city, Reykjavík. The eruption is ongoing and the landscape in the valley and its surrounding area is constantly changing as a result.

Prior to the eruptive display earlier this year, volcanic activity over the past 10.000 years has been restricted to a few northeast-southwest fissures, the most recent one, the Veidivotn fissure from 1480, formed Laugahraun (by the hut at Landmannalaugar), Namshraun, Nordurnamshraun, Ljotipollur and other craters which extend 30 km, further to the north Eruptions in the area tend to be explosive and occur every 500 – 800 years, previous known eruptions being around AD 150 and 900.

Thursday, 28 August 2025

FOSSILS WHALES FROM SOUTHERN VANCOUVER ISLAND

Modern Whale Vertebrae
The air is heavy with salt spray at Muir Creek, just west of Sooke on southern Vancouver Island. Waves tumble over barnacle-crusted boulders, and eagles wheel overhead. 

Thick layers of sandstone and conglomerate preserve a rich assemblage of marine fossils. Local collectors have long explored these beaches, spotting fossilized ribs and vertebrae protruding from the cliffs. 

My first trip here was back in the mid 1990s with the Vancouver Paleontological Society. It is a regular haunt for the Victoria Paleontological Society and other regional fossil collecting groups.

It’s a place where the modern Pacific feels timeless—but buried in the cliffs are the remains of creatures that swam here more than 25 million years ago. 

They are whales, yes, but not quite the whales we know today. Their bones tell the story of an ocean in transition and of whales caught mid-evolution—halfway between toothed predators and the filter-feeders that now dominate the seas.

Southern Vancouver Island’s fossil-bearing rocks belong largely to the Sooke Formation, a marine deposit dating to the late Oligocene (around 25–23 million years ago). At that time, much of the region lay beneath shallow coastal waters. Sediments settled over the remains of sea creatures, entombing shells, bird bones, shark teeth, and occasionally the massive bones of early whales.

These are not fossils of the gigantic blue whales or humpbacks we know today, but their ancestors—smaller, stranger, and crucial to the story of whale evolution.

One of the most remarkable finds from Vancouver Island is Aetiocetus, a small whale that lived during the late Oligocene. Aetiocetus is a classic “transitional fossil”—a whale that still had teeth, yet also shows evidence of developing baleen. This makes it a key player in understanding how modern filter-feeding whales (like gray whales and blue whales) evolved from their toothed ancestors.

Imagine a creature about 3–4 meters long, sleek like a dolphin but with a skull showing both sharp teeth and grooves that hint at primitive baleen plates. It likely hunted fish and squid but may have supplemented its diet by gulping in small prey from the water column. 

Fossils of Aetiocetus have been found in Oregon and Japan, but southern Vancouver Island provides some of the northernmost evidence of this important lineage.

Alongside these early baleen whales, researchers have also found evidence of primitive odontocetes—the group that includes dolphins, porpoises, and sperm whales. These small, agile predators were experimenting with echolocation, the same sonar-like ability modern toothed whales use to hunt in dark or murky waters.

The whales preserved on southern Vancouver Island belong to a lineage with an extraordinary backstory. Around 50 million years ago, in what is now Pakistan and India, the ancestors of whales were land-dwelling, hoofed mammals (related to early hippos). Over millions of years, these animals waded into rivers and seas, evolving into the fully aquatic forms we recognize as whales.

By the time the Sooke Formation was laid down, whales had already colonized oceans worldwide. But the fossils here capture them in the middle of another transformation—the split between toothed whales (odontocetes) and baleen whales (mysticetes). Vancouver Island’s cliffs are, in a sense, a library shelf containing one of evolution’s most important chapters.

Fossil Gastropods, Photo: John Fam

Standing at Muir Creek today, it’s hard not to draw parallels between past and present. Offshore, humpback whales spout on their summer migration. Orcas patrol the Strait of Juan de Fuca, hunting salmon with precision. Gray whales feed along kelp beds in shallow waters. These are the direct descendants of the fossil whales entombed in the cliffs.

That continuity of life—millions of years stretching unbroken from fossil Aetiocetus to the humpback breaching offshore—gives southern Vancouver Island a special place in the story of the Pacific.

The cliffs of Muir Creek and other fossil sites are constantly eroding, revealing new fossils—but also destroying them. Without careful collection and preservation, many specimens are lost to the sea. 

It is for this reason that we encourage citizen scientists to report significant finds rather than attempt to remove them — and in the case of the Muir Creek fossil site, to avoid collecting from the cliffs. 

Fossils are protected under British Columbia’s Heritage Conservation Act, meaning they belong to the province and its people.

Next time you stand on those windswept cliffs, watching an orca’s dorsal fin slice through the surf, remember: you are standing on an ancient whale highway. Beneath your feet, locked in stone, are the bones of their ancestors—whales that swam here long before the Salish Sea had a name.

Tuesday, 26 August 2025

OUR GREAT BEARS: URSAVUS TO NAN

GREAT BEAR NA̱N
Hiking in BC, both grizzly and black bear sightings are common. Nearly half the world's population, some 25,000 Grizzly Bears, roam the Canadian wilderness — of those, 14,000 or more call British Columbia home. 

These highly intelligent omnivores spend their days lumbering along our coastlines, mountains and forests.

Both bear families descend from a common ancestor, Ursavus, a bear-dog the size of a raccoon who lived more than 20 million years ago. Seems an implausible lineage given the size of their very large descendants. 

An average Grizzly weighs in around 800 lbs (363 kg), but a recent find in Alaska tops the charts at 1600 lbs (726 kg). 

This mighty beast stood 12' 6' high at the shoulder, 14' to the top of his head and is one of the largest grizzlies ever recorded — a na̱ndzi.

Adult bears tend to live solo except during mating season. Those looking for love congregate from May to July in the hopes of finding a mate. Through adaptation to shifting seasons, the females' reproductive system delays the implantation of fertilized eggs — blastocysts —until November or December to ensure her healthy pups arrive during hibernation. If food resources were slim that year, the newly formed embryo will not catch or attach itself to her uterine wall and she'll try again next year. 

Females reach mating maturity at 4-5 years of age. They give birth to a single or up to four cubs (though usually just two) in January or February. The newborn cubs are cute little nuggets — tiny, hairless, and helpless — weighing in at 2-3 kilograms or 4-8 pounds. They feast on their mother’s nutrient-dense milk for the first two months of life. The cubs stay with their mamma for 18 months or more. Once fully grown, they can run 56 km an hour, are good at climbing trees and swimming and live 20-25 years in the wild. 

A Grizzly bear encounter inspires a humbling appreciation of just how remarkable these massive beasts are. Knowing their level of intelligence, keen memory and that they have a bite force of over 8,000,000 pascals — enough to crush a bowling ball — inspires awe and caution in equal measure. 

They have an indescribable presence. It is likely because of this that these majestic bears show up often in the superb carvings and work of First Nations artists. I have had close encounters with many bears growing up in the Pacific Northwest, meeting them up close and personal in the South Chilcotins and along our many shorelines. 

First Nation Lore and Language

In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest — or Kwakwaka'wakw, speakers of Kwak'wala — a Grizzly bear is known as na̱n

The ornamental carved Grizzly bear headdress was worn by the comic Dluwalakha Grizzly Bear Dancers, Once more from Heaven, in the Grizzly Bear Dance or Gaga̱lalał, is known as na̱ng̱a̱mł

The Dluwalakha dancers were given supernatural treasures or dloogwi which they passed down from generation to generation. 

In the Hamat'sa Grizzly bear dance, Nanes Bakbakwalanooksiwae, no mask was worn. Instead, the dancers painted their faces red and wore a costume of bearskin or t̓ła̱ntsa̱m and long wooden claws attached to their hands. You can imagine how impressive that sight is lit by the warm flickering flames of firelight during a Winter Dance ceremony.

Smoke of the World / Speaking of the Ancestors — Na̱wiła

Kwaguʼł Winter Dancers — Qagyuhl
Should you encounter a black bear and wish to greet them in Kwak'wala, you would call them t̕ła'yi. Kwakiutl First Nations, Smoke of the World, count Grizzly Bears as an ancestor — along with Seagull, Sun and Thunderbird. 

To tell stories of the ancestors is na̱wiła. Each of these ancestors took off their masks to become human and founded the many groups that are now bound together by language and culture as Kwakwaka’wakw. 

The four First Nations who collectively make up the Kwakiutl are the Kwakiutl (Kwágu7lh), K’umk’utis/Komkiutis, Kwixa/Kweeha (Komoyoi) and Walas Kwakiutl (Lakwilala) First Nations. 

There is likely blood of the Lawit’sis in there, too, as they inhabited the village site at Tsax̱is/T'sakis, Fort Rupert before the Kwakiutl First Nations made it a permanent home. It was here that I grew up and learned to greet my ancestors. 

Not all Kwakwaka'wakw dance the Gaga̱lalał, but their ancestors likely attended feasts where the great bear was celebrated. To speak or tell stories of the ancestors is na̱wiła — and Grizzly bear as an ancestor is na̱n helus.

Visiting British Columbia's Great Bears

If you are interested in viewing British Columbia's Great Bears, do check out Indigenous Tourism BC's wonderfully informative website and the culturally-rich wildlife experiences on offer. You will discover travel ideas and resources to plan your next soul-powered adventure. To learn more about British Columbia's Great Bears and the continuing legacy of First Nation stewardship, visit: 

Indigenous Tourism BC: https://www.indigenousbc.com

Great Bear Lodge has been offering tours to view the majestic animals of the Pacific Northwest. They keep both the guests' and the animals' comfort and protection in mind. I highly recommend their hospitality and expertise. To see their offerings, visit: www.greatbeartours.com

Image: Group of Winter Dancers--Qagyuhl; Curtis, Edward S., 1868-1952, https://lccn.loc.gov/2003652753. 

Note: The Qagyuhl in the title of this photograph refers to the First Nation group, not the dancers themselves. I think our dear Edward was trying to spell Kwaguʼł and came as close as he was able. In Kwak'wala, the language of the Kwaguʼł or Kwakwakaʼwakw, speakers of Kwak'wala, the Head Winter Dancer is called t̕seḵa̱me' — and to call someone a really good dancer, you would use ya̱'winux̱w

Charmingly, when Edward S. Curtis was visiting Tsaxis/T'sakis, he was challenged to a wrestling competition with a Giant Pacific Octopus, Enteroctopus dofleini. George Hunt (1854-1933) my great great grandfather's elder brother had issued the challenge and laughed himself senseless when Edward got himself completely wrapped up in tentacles and was unable to move. Edward was soon untangled and went on to take many more photos of the First Nations of the Pacific Northwest. Things did not go as well for the octopus or ta̱ḵ̕wa. It was later served for dinner or dzaḵwax̱stala, as it seemed calamari was destined for that night's menu.  


Monday, 25 August 2025

CANADA'S WESTERN SHORES: HORNBY ISLAND FOSSILS

Diplomoceras sp.
This gorgeous cream and brown big beast of a heteromorph, Diplomoceras (Diplomoceras) sp., (Hyatt, 1900) was found within the 72 million-year-old sediments of the upper Nanaimo Group on the northern Gulf Island of Hornby in southwestern British Columbia, Canada. 

The site is known as Boulder Point to the locals and it has been a popular fossil destination for many years. It is the home of the K'ómoks First Nation, who called the island Ja-dai-aich.

Many of the fossils found at this locality are discovered in concretions rolled smooth by time and tide. The concretions you find on the beach are generally round or oval in shape and are made up of hard, compacted sedimentary rock. 

If you are lucky, when you split these nodules you are rewarded with a fossil hidden within. That is not always the case but the rewards are worth the effort. 

These past few years, many new and wonderful specimens have been unearthed — particularly by members of the Vancouver Island Palaeontological Society. 

And so it was in the first warm days of early summer last year. Three members of the Vancouver Palaeontological Society excavated this 100 cm long fossil specimen over two days in June of 2020. The specimen was not in concretion but rather embedded in the hard sintered shale matrix beneath their feet. It was angled slightly downward towards the shoreline and locked within the rolling shale beds of the island. 

Diplomoceratidae (Spath, 1926) are often referred to as the paperclip ammonites. They are in the family of ammonites included in the order Ammonitida in the Class Cephalopoda and are found within marine offshore to shallow subtidal Cretaceous — 99.7 to 66.043 million-year-old — sediments worldwide. 

I was reading with interest this morning about a new find published by Muramiya and Shigeta in December 2020 of a new heteromorph ammonoid Sormaites teshioensis gen. et sp. nov. (Diplomoceratidae) described from the upper Turonian (Upper Cretaceous) in the Nakagawa area, Hokkaido, northern Japan. 

This lovely has a shell surface ornamented with simple, straight, sharp-tipped ribs throughout ontogeny, but infrequent flared ribs and constrictions occur on later whorls. Excluding its earliest whorls, its coiling and ornamentation are very similar to Scalarites mihoensis and Sc. densicostatus from the Turonian to Coniacian in Hokkaido and Sakhalin, suggesting that So. teshioensis was probably derived from one of these taxa in the Northwest Pacific during middle to late Turonian.

Much like the long-lived geoducks living in Puget Sound today, studies of Diplomoceras suggest that members of this family could live to be over 200 years old — a good 40-years longer than a geoduck but not nearly as long-lived as the extant bivalve Arctica islandica that reach 405 to 410 years in age. 

Along with this jaw-dropper of a heteromorph, the same group found an Actinosepia, gladius — internal hard body part found in many cephalopods of a Vampyropod. Vampyropods are members of the proposed group Vampyropoda — equivalent to the superorder Octopodiformes — which includes vampire squid and octopus.

The upper Nanaimo Group is a mix of marine sandstone, conglomerate and shale. These are partially exposed in the Campanian to the lower Maastrichtian outcrops at Collishaw Point on the northwest side of Hornby Island.

Along with fossil crabs, shark teeth, bivalves and occasional rare and exquisite saurodontid fish, an ambush predator with very sharp serrated teeth and elongate, torpedo-like body — we also find three heteromorph ammonite families are represented within the massive, dark-grey mudstones interlaminated and interbedded with siltstone and fine-grained sandstone of the upper Campanian (Upper Cretaceous) strata of the Northumberland Formation exposed here: Baculitidae, Diplomoceratidae and Nostoceratidae. 

A variety of species are distinguished within these families, of which only three taxa – Baculites occidentalis (Meek, 1862), Diplomoceras (Diplomoceras) cylindraceum (Defrance, 1816) and Nostoceras (Nostoceras) hornbyense (Whiteaves, 1895), have been studied and reported previously. 

Over the last decade, large new collections by many members of the Vancouver Island Palaeontological Society and palaeontologists working at the Geologic Survey of Canada, along with a renewed look at previous collections have provided new taxonomic and morphometric data for the Hornby Island ammonite fauna. This renewed lens has helped shape our understanding and revamp descriptions of heteromorph taxa. Eleven taxa are recognized, including the new species Exiteloceras (Exiteloceras) densicostatum sp. nov., Nostoceras (Didymoceras?) adrotans sp. nov. and Solenoceras exornatus sp. nov. 

A great variety of shape and form exist within each group. Morphometric analyses by Sandy McLachlan and Jim Haggart of over 700 specimens unveiled the considerable phenotypic plasticity of these ammonites. They exhibit an extraordinarily broad spectrum of variability in their ornamentation and shell dimensions. 

The presence of a vibrant—and deeply awesome—palaeontological community on Vancouver Island made the extent of their work possible. 

Graham Beard, Doug Carrick, Betty Franklin, Raymond Graham, Joe Haegert, Bob Hunt, Stevi Kittleson, Kurt Morrison and Jean Sibbald are thanked for their correspondence and generosity in contributing many of the exquisite specimens featured in that study. 

These generous individuals, along with many other members of the Vancouver Island Palaeontological Society (VIPS), Vancouver Paleontological Society (VanPS), and British Columbia Paleontological Alliance (BCPA), have contributed a great deal to our knowledge of the West Coast of Canada and her geologic and palaeontological correlations to the rest of the world; notably, Dan Bowen, Rick Ross, John Fam and Pat and Mike Trask, Naomi & Terry Thomas. Their diligence in the collection, preparation and documentation of macrofossils is a reflection of the passion they have for palaeontology and their will to help shape the narrative of Earth history.

Through their efforts, a large population sample of Nostoceras (Nostoceras) hornbyense was made available and provided an excellent case study of a member of the Nostoceratidae. It was through the well-documented collection and examination of a remarkable number of nearly complete, well-preserved specimens that a re-evaluation of diagnostic traits within the genus Nostoceras was made possible. 

The north-east Pacific Nostoceras (Nostoceras) hornbyense Zone and the global Nostoceras (Nostoceras) hyatti Assemblage Zone are regarded as correlative, reinforcing a late Campanian age for the Northumberland Formation. This builds on the earlier work of individuals like Alan McGugan and others. McGugan looked at the Upper Cretaceous (Campanian and Maastrichtian) Foraminifera from the Upper Lambert and Northumberland Formations, Gulf Islands, British Columbia, Canada.

The Maastrichtian Bolivina incrassata fauna (upper part of Upper Lambert Formation) of Hornby Island (northern Comox Basin) is now recognized in the southern Nanaimo Basin on Gabriola and Galiano Islands. The Maastrichtian planktonic index species Globotruncana contusa occurs in the Upper Northumberland Formation of Mayne Island and Globotruncana calcarata (uppermost Campanian) occurs| in the Upper Northumberland Formation of Mayne Island and also in the Upper Lambert Formation at Manning Point on the north shore of Hornby Island (Comox Basin).

Very abundant benthonic and planktonic foraminiferal assemblages from the Upper Campanian Lower Northumberland Formation of Mayne Island enable paleoecological interpretations to be made using the Fisher diversity index, triangular plots of Texturlariina/Rotaliina/Miliolina, calcareous/agglutinated ratios, planktonic/benthonic ratios, generic models, and associated microfossils and megafossils. 

Combined with local geology and stratigraphy a relatively shallow neritic depositional environment is proposed for the Northumberland Formation in agreement with Scott but not Sliter who proposed an Outer shelf/slope environment with depths of 300 m or more.

References & further reading: Sandy M. S. McLachlan & James W. Haggart (2018) Reassessment of the late Campanian (Late Cretaceous) heteromorph ammonite fauna from Hornby Island, British Columbia, with implications for the taxonomy of the Diplomoceratidae and Nostoceratidae, Journal of Systematic Palaeontology, 16:15, 1247-1299, DOI: 10.1080/14772019.2017.1381651

Crickmay, C. H., and Pocock, S. A. J. 1963. Cretaceous of Vancouver, British Columbia. American Association of Petroleum Geologists Bulletin, 47, pp. 1928-1942.

England, T.D.J. and R. N. Hiscott (1991): Upper Nanaimo Group and younger strata, outer Gulf Islands, southwestern British Columbia: in Current Research, Part E; Geological Survey of Canada, Paper 91-1E, p. 117-125.

McGugan, Alan. (2011). Upper Cretaceous (Campanian and Maestrichtian) Foraminifera from the Upper Lambert and Northumberland Formations, Gulf Islands, British Columbia, Canada. Canadian Journal of Earth Sciences. 16. 2263-2274. 10.1139/e79-211. 

Scott, James. (2021). Upper Cretaceous foraminifera of the Haslam, Qualicum, and Trent River formations, Vancouver Island, British Columbia /. 

Sliter, W. & Baker, RA. (1972). Cretaceous bathymetric distribution of benthic foraminifers. Journal of Foraminiferal Research - J FORAMIN RES. 2. 167-183. 10.2113/gsjfr.2.4.167. 

Spath L. F. 1926. A Monograph of the Ammonoidea of the Gault; Part VI. Palaeontographical Society London

Sullivan, Rory (4 November 2020). "Large squid-like creature that looked like a giant paperclip lived for 200 years — 68 million years ago". The Independent. Archived from the original on 4 November 2020.

Urquhart, N. & Williams, C.. (1966). Patterns in Balance of Nature. Biometrics. 22. 206. 10.2307/2528236. 

Yusuke Muramiya and Yasunari Shigeta "Sormaites, a New Heteromorph Ammonoid Genus from the Turonian (Upper Cretaceous) of Hokkaido, Japan," Paleontological Research 25(1), 11-18, (30 December 2020). https://doi.org/10.2517/2020PR016.

Photos: Vancouver Island Palaeontological Society, Courtenay, British Columbia, Naomi and Terry Thomas.

Friday, 22 August 2025

LOVE LANGUAGE OF THE FAR NORTH

Nunatsiarmiut Mother and Child, Baffin Island, Nunavut
Warm light bathes this lovely Nunatsiarmiut mother and child from Baffin Island, Nunavut. 

They speak Inuktitut, the mother tongue of the majority of the Nunatsiarmiut who call Baffin Island home. 

Baffin is the largest island in the Arctic Archipelago in the territory of Nunavut in Canada's far north—the chilliest region of Turtle Island. 

As part of the Qikiqtaaluk Region of Nunavut, Baffin Island is home to a constellation of remote Inuit communities each with a deep cultural connection to the land—Iqaluit, Pond Inlet, Pangnirtung, Clyde River, Arctic Bay, Kimmirut and Nanisivik. 

The ratio of Inuit to non-Inuit here is roughly three to one and perhaps the reason why the Inuktitut language has remained intact and serves as the mother tongue for more than 36,000 residents. Inuktitut has several subdialects—these, along with a myriad of other languages—are spoken across the north.  

If you look at the helpful visual below you begin to get a feel for the diversity of these many tongues. The languages vary by region. There is the Iñupiaq of the Inupiatun/Inupiat; Inuvialuktun of the Inuinnaqtun, Natsilingmiutut, Kivallirmiutut, Aivilingmiutut, Qikiqtaaluk Uannanganii and Siglitun. Kalaallisut is spoken by many Greenlandic peoples though, in northwest Greenland, Inuktun is the language of the Inughuit.

We use the word Inuktitut when referring to a specific dialect and inuktut when referring to all the dialects of Inuktitut and Inuinnaqtun.

Northern Language Map (Click to Enlarge)
Should you travel to the serene glacier-capped wilds and rolling tundra of our far north, you will want to dress for the weather and learn a few of the basics to put your best mukluk shod feet forward. 

The word for hello or welcome in Inuktitut is Atelihai—pronounced ahh-tee-lee-hi. And thank you is nakurmiik, pronounced na-kur-MIIK.  

Perhaps my favourite Inuktitut expression is Naglingniq qaikautigijunnaqtuq maannakautigi, pronounced NAG-ling-niq QAI-kau-ti-gi-jun-naqtuq MAAN-na-KAU-ti-gi. This tongue-twister is well worth the linguistic challenge as it translates to love can travel anywhere in an instant. Indeed it can. 

So much of our Indigenous culture is passed through stories, so language takes on special meaning in that context. It is true for all societies but especially true for the Inuit. Stories help connect the past to the present and future. They teach how to behave in society, engage with the world and how to survive in the environment. They also help to create a sense of belonging. 

You have likely seen or heard the word Eskimo used in older books to refer to the Inuit, Iñupiat, Kalaallit or Yupik. This misnomer is a colonial term derived from the Montagnais or Innu word ayas̆kimewnetter of snowshoes

It is a bit like meeting a whole new group of people who happen to wear shoes and referring to them all as cobblers—not as a nickname, but as a legal term to describe populations from diverse communities disregarding the way each self-refer. 

Inukshuk / Inuksuk Marker Cairn
For those who identify as Inupiaq or Yupik, the preferred term is Inuit meaning people—though some lingering use of the term Eskimo lives on. The Inuit as a group are made up of many smaller groups. 

The Inuit of Greenland self-refer as Kalaallit or Greenlanders when speaking Kalaallisut

The Tunumiit of Tunu (east Greenland), speak Tunumiit oraasiat ("East Greenlandic"); and the Inughuit of north Greenland, speak Inuktun "Polar Eskimo."

The Inupiat of Alaska, or real people, use Yupik as the singular for real person and yuk to simply mean person.

When taken all together, Inuit is used to mean all the peoples in reference to the Inuit, Iñupiat, Kalaallit and Yupik. Inuit is the plural of inuk or person

You likely recognize this word from inuksuk or inukshuk, pronounced ih-nook-suuk — the human-shaped stone cairns built by the Inuit, Iñupiat, Kalaallit, Yupik, and other peoples of the Arctic regions of northern Canada, Greenland, and Alaska—as helpful reference markers for hunters and navigation. 

The word inuksuk means that which acts in the capacity of a human, combining inuk or person and suk, as a human substitute

A World of Confusion

You may be disappointed to learn that our northern friends do not live in igloos. I remember answering the phone as a child and the fellow calling was hoping to speak to my parents about some wonderful new invention perfect for use in an igloo. 

The call came while I was in the kitchen of our family home in Port Hardy. He was disappointed to hear that I was standing in a wooden house with the standard four walls to a room and a handy roof topping it off. 

I also had my own room with Scooby-Doo wallpaper, but he was having nothing of it.

"Well, what about your neighbours? Surely, a few of them live in igloos..." 

It seems that some atlases in circulation at the time, and certainly the one he was looking at, simply blanketed everything north of the 49th parallel in a snowy white. His clearly showed an igloo sitting proudly in the centre of the province.

Interestingly, I only learned this morning (thank you, Jen) that that type of playful map is called a Counter Map and can be used in delightful ways to draw the reader in to the mapping of a landscape, region, people or culture—often out of scale and with many wonderful images added to give you a beautiful sense of the people, plants, animals and topography of a place.

My cousin Shawn brought one such simplified book back from his elementary school in California. British Columbia had a nice image of a grizzly bear and a wee bit further up, a polar bear grinned smugly. 

British Columbia's beaver population would be sad to know that they did not inhabit the province though there were two chipper beavers with big bright smiles—one in Ontario and another gracing the province of Quebec. Further north, where folk do build igloos, their icy domes were curiously lacking. 

Igloos are used for winter hunting trips much the same way we use tents for camping. The Inuit do not have fifty words for snow—you can thank the ethnographer Franz Boas for that wee fabrication—but within the collective languages of the frozen north there are more than fifty words to describe it. And kisses are not nose-to-nose. To give a tender kiss or kunik to a loved one, you press your nose and upper lip to their forehead or cheek and rub gently. 

Fancy trying a wee bit of Inuktitut yourself? This link will bring you to a great place to start: https://inhabitmedia.com/inuitnipingit/

Inuit Language Map:  By Noahedits - Own work, CC BY-SA 4.0. If you want to the image full size, head to this link: https://commons.wikimedia.org/w/index.php?curid=85587388