Showing posts with label huntress. Show all posts
Showing posts with label huntress. Show all posts

Thursday, 25 September 2025

LIVING FOSSILS: METASEQUOIA

Autumn is a wonderful time to explore Vancouver. It is a riot of yellow, orange and green. The fallen debris you crunch through send up wafts of earthy smells that whisper of decomposition, the journey from leaf to soil.

It is a wonderful time to be out and about. I do love the mountain trails but must confess to loving our cultivated gardens for their colour and variety. 

We have some lovely native plants and trees and more than a few exotics at Vancouver's arboreal trifecta — Van Dusen, Queen E Park and UBC Botanical Gardens. One of those exotics, at least exotic to me, is the lovely conifer you see here is Metasequoia glyptostroboides — the dawn redwood. 

Of this long lineage, this is the sole surviving species in the genus Metasequoia and one of three species of conifers known as redwoods. Metasequoia are the smaller cousins of the mighty Giant Sequoia, the most massive trees on Earth. 

As a group, the redwoods are impressive trees and very long-lived. The President, an ancient Giant Sequoia, Sequoiadendron giganteum, and granddaddy to them all has lived for more than 3,200 years. While this tree is named The President, a worthy name, it doesn't really cover the magnitude of this giant by half.   

This tree was a wee seedling making its way in the soils of the Sierra Nevada mountains of California before we invented writing. It had reached full height before any of the Seven Wonders of the Ancient World, those remarkable constructions of classical antiquity, were even an inkling of our budding human achievements. And it has outlasted them all save the Great Pyramid of Giza, the oldest and last of those seven still standing, though the tree has faired better. Giza still stands but the majority of the limestone façade is long gone.

Aside from their good looks (which can really only get you so far), they are resistant to fire and insects through a combined effort of bark over a foot thick, a high tannin content and minimal resin, a genius of evolutionary design. 

While individual Metasequoia live a long time, as a genus they have lived far longer. 

Like Phoenix from the Ashes, the Cretaceous (K-Pg) extinction event that wiped out the dinosaurs, ammonites and more than seventy-five percent of all species on the planet was their curtain call. The void left by that devastation saw the birth of this genus — and they have not changed all that much in the 65 million years since. Modern Metasequoia glyptostroboides looks pretty much identical to their late Cretaceous brethren.

Dawn Redwood Cones with scales paired in opposite rows
They are remarkably similar to and sometimes mistaken for Sequoia at first glance but are easily distinguishable if you look at their size (an obvious visual in a mature tree) or to their needles and cones in younger specimens. 

Metasequoia has paired needles that attach opposite to each other on the compound stem. Sequoia needles are offset and attached alternately. Think of the pattern as jumping versus walking with your two feet moving forward parallel to one another. 

Metasequoia needles are paired as if you were jumping forward, one print beside the other, while Sequoia needles have the one-in-front-of-the-other pattern of walking.

The seed-bearing cones of Metasequoia have a stalk at their base and the scales are arranged in paired opposite rows which you can see quite well in the visual above. Coast redwood cone scales are arranged in a spiral and lack a stalk at their base.

Although the least tall of the redwoods, it grows to an impressive sixty meters (200 feet) in height. It is sometimes called Shui-sa, or water fir by those who live in the secluded mountainous region of China where it was rediscovered.

Fossil Metasequoia, McAbee Fossil Beds
Metasequoia fossils are known from many areas in the Northern Hemisphere and were one of my first fossil finds as a teenager. 

And folk love naming them. More than twenty fossil species have been named over time —  some even identified as the genus Sequoia in error — but for all their collective efforts to beef up this genus there are just three species: Metasequoia foxii, Metasequoia milleri, and Metasequoia occidentalis.

During the Paleocene and Eocene, extensive forests of Metasequoia thrived as far north as Strathcona Fiord on Ellesmere Island and sites on Axel Heiberg Island in Canada's far north around 80° N latitude.

We find lovely examples of Metasequoia occidentalis in the Eocene outcrops at McAbee near Cache Creek, British Columbia, Canada. I shared a photo here of one of those specimens. Once this piece dries out a bit, I will take a dental pick to it to reveal some of the teaser fossils peeking out.

The McAbee Fossil Beds are known for their incredible abundance, diversity and quality of fossils including lovely plant, insect and fish species that lived in an old lake bed setting. While the Metasequoia and other fossils found here are 52-53 million years old, the genus is much older. It is quite remarkable that both their fossil and extant lineage were discovered in just a few years of one another. 

Metasequoia was first described as a new genus from a fossil specimen found in 1939 and published by Japanese paleobotanist Shigeru Miki in 1941. Remarkably, the living version of this new genus was discovered later that same year. 

Professor Zhan Wang, an official from the Bureau of Forest Research was recovering from malaria at an old school chum's home in central China. His friend told him of a stand of trees discovered in the winter of 1941 by Chinese botanist Toh Gan (干铎). The trees were not far away from where they were staying and Gan's winter visit meant he did not collect any specimen as the trees had lost their leaves. 

The locals called the trees Shui-sa, or water fir. As trees go, they were reportedly quite impressive with some growing as much as sixty feet tall. Wang was excited by the possibility of finding a new species and asked his friend to describe the trees and their needles in detail. Emboldened by the tale, Wang set off through the remote mountains to search for his mysterious trees and found them deep in the heart of  Modaoxi (磨刀溪; now renamed Moudao (谋道), in Lichuan County, in the central China province of Hubei. He found the trees and was able to collect living specimens but initially thought they were from Glyptostrobus pensilis (水松). 

A few years later, Wang showed the trees to botanist Wan-Chun Cheng and learned that these were not the leaves of s Glyptostrobus pensilis (水松 ) but belonged to a new species. 

While the find was exciting, it was overshadowed by China's ongoing conflict with the Japanese that was continuing to escalate. With war at hand, Wang's research funding and science focus needed to be set aside for another two years as he fled the bombing of Beijing. 

When you live in a world without war on home soil it is easy to forget the realities for those who grew up in it. 

Zhan Wang and his family lived to witness the 1931 invasion of Manchuria, then the 1937 clash between Chinese and Japanese troops at the Marco Polo Bridge, just outside Beijing. 

That clash sparked an all-out war that would grow in ferocity to become World War II. 

Within a year, the Chinese military situation was dire. Most of eastern China lay in Japanese hands: Shanghai, Nanjing, Beijing, Wuhan. As the Japanese advanced, they left a devastated population in their path where atrocity after atrocity was the norm. Many outside observers assumed that China could not hold out, and the most likely scenario was a Japanese victory over China.

Yet the Chinese hung on, and after the horrors of Pearl Harbor, the war became genuinely global. The western Allies and China were now united in their war against Japan, a conflict that would finally end on September 2, 1945, after Allied naval forces blockaded Japan and subjected the island nation to intensive bombing, including the utter devastation that was the Enola Gay's atomic payload over Hiroshima. 

With World War II behind them, the Chinese researchers were able to re-focus their energies on the sciences. Sadly, Wang was not able to join them. Instead, two of his colleagues, Wan Chun Cheng and Hu Hsen Hsu, the director of Fan Memorial Institute of Biology would continue the work. Wan-Chun Cheng sent specimens to Hu Hsen Hsu and upon examination realised they were the living version of the trees Miki had published upon in 1941. 

Hu and Cheng published a paper describing a new living species of Metasequoia in May 1948 in the Bulletin of Fan Memorial Institute of Biology.

That same year, Arnold Arboretum of Harvard University sent an expedition to collect seeds and, soon after, seedling trees were distributed to various universities and arboreta worldwide. 

Today, Metasequoia grow around the globe. When I see them, I think of Wang and all he went through. He survived the conflict and went on to teach other bright, young minds about the bountiful flora in China. I think of Wan Chun Cheng collaborating with Hu Hsen Hsu in a time of war and of Hu keeping up to date on scientific research, even published works from colleagues from countries with whom his country was at war. Deep in my belly, I ache for the huge cost to science, research and all the species impacted on the planet from our human conflicts. Each year in April, I plant more Metasequoia to celebrate Earth Day and all that means for every living thing on this big blue orb.  

References: 

  • https://web.stanford.edu/group/humbioresearch/cgi-bin/wordpress/?p=297
  • https://humboldtredwoods.org/redwoods

Wednesday, 24 September 2025

LOWER LIAS LYTOCERAS AMMONITE

A superbly prepped and extremely rare Lytoceras (Suess, 1865) ammonite found as a green ammonite nodule by Matt Cape in the Lower Lias of Dorset. 

Lytoceras are rare in the Lower Lias of Dorset — apart from the Belemnite Stone horizon — so much so that Paul Davis, whose skilled prep work you see here, initially thought it might be a Becheiceras hidden within the large, lumpy nodule. 

One of the reasons these lovelies are rarely found from here is that they are a Mediterranean Tethyian genus. The fossil fauna we find in the United Kingdom are dominated by Boreal Tethyian genera. 

We do find Lytoceras sp. in the Luridum subzone of the Pliensbachian showing that there was an influx of species from the Mediterranean realm during this time. This is the first occurrence of a Lytoceras that he has ever seen in a green nodule and Paul's seen quite a few. 

This absolutely cracking specimen was found and is in the collections of the awesome Matt Cape. Matt recognized that whatever was hidden in the nodule would take skilled and careful preparation using air scribes. Indeed it did. It took more than five hours of time and skill to unveil the lovely museum-worthy specimen you see here. 

We find Lytoceras in more than 1,000 outcrops around the globe ranging from the Jurassic through to the Cretaceous, some 189.6 to 109.00 million years ago. Once this specimen is fully prepped with the nodule material cut or scraped away, you can see the detailed crinkly growth lines or riblets on the shell and none of the expected coarse ribbing. 

Lytoceras sp. Photo: Craig Chivers
If you imagine running your finger along these, you would be tracing the work of decades of growth of these cephalopods. 

While we cannot know their actual lifespans, but we can make a healthy guess. 

The nautilus, their closest living cousins live upwards of 20 years — gods be good — and less than three years if conditions are poor.

The flanges, projecting flat ribs or collars, develop at the edge of the mouth border on the animal's mantle as they grow each new chamber. 

Each delicate flange grows over the course of the ammonites life, marking various points in time and life stages as the ammonite grew. There is a large variation within Lytoceras with regards to flanges. They provide both ornamentation and strength to the shell to protect it from water pressure as they moved into deeper seas.

The concretion prior to prep
This distinctive genus with its evolute shells are found in the Cretaceous marine deposits of: 

Antarctica (5 collections), Austria (19), Colombia (1), the Czech Republic (3), Egypt (2), France (194), Greenland (16), Hungary (25), Italy (11), Madagascar (2), Mexico (1), Morocco (4), Mozambique (1), Poland (2), Portugal (1), Romania (1), the Russian Federation (2), Slovakia (3), South Africa (1), Spain (24), Tanzania (1), Trinidad and Tobago (1), Tunisia (25); and the United States of America (17: Alaska, California, North Carolina, Oregon).

We also find them in Jurassic marine outcrops in:

Austria (15), Canada (9: British Columbia), Chile (6), France (181), Germany (11), Greenland (1), Hungary (189), India (1), Indonesia (1), Iran (1), Italy (50), Japan (14), Kenya (2), Luxembourg (4), Madagascar (2), Mexico (1), Morocco (43), New Zealand (15), Portugal (1), Romania (5), the Russian Federation (1), Slovakia (1), Spain (6), Switzerland (2), Tunisia (11), Turkey (12), Turkmenistan (1), Ukraine (5), the United Kingdom (12), United States (11: Alaska, California) — in at least 977 known collections. 

References:

Sepkoski, Jack (2002). "A compendium of fossil marine animal genera (Cephalopoda entry)". Bulletins of American Paleontology. 363: 1–560. Archived from the original on 2008-05-07. Retrieved 2017-10-18.

Paleobiology Database - Lytoceras. 2017-10-19.

Systematic descriptions, Mesozoic Ammonoidea, by W.J Arkell, Bernhard Kummel, and C.W. Wright. 1957. Treatise on Invertebrate Paleontology, Part L. Geological Society of America and University of Kansas press.

Friday, 19 September 2025

MIGWAT: SLEEK, PLAYFUL SEALS

Seals—those sleek, playful creatures that glide through our oceans and lounge on rocky shores—are part of a remarkable evolutionary story stretching back millions of years. 

Though we often see them today basking on beaches or popping their heads above the waves, their journey through the fossil record reveals a dramatic tale of land-to-sea adaptation and ancient global wanderings.

Seals belong to a group of marine mammals called pinnipeds, which also includes sea lions and walruses. All pinnipeds share a common ancestry with terrestrial carnivores, and their closest living relatives today are bears and mustelids (like otters and weasels). Their ancestors walked on land before evolving to thrive in marine environments.

The fossil record suggests that pinnipeds first emerged during the Oligocene epoch, around 33 to 23 million years ago. These early proto-seals likely lived along coastal environments, where they gradually adapted to life in the water. Over time, their limbs transformed into flippers, their bodies streamlined, and their reliance on the sea for food and movement became complete.

In Kwak'wala, the language of the Kwakwaka'wakw of the Pacific Northwest, seals are known as migwat, and fur seals are referred to as xa'wa.

Tuesday, 16 September 2025

SHAGGY TITANS OF THE GRASSLANDS: BISON

Bison move across the prairie like living storms, vast and steady, with the weight of centuries in their stride. 

Their dark eyes hold a quiet, unwavering depth—as if they’ve looked into the heart of time itself and carry its secrets in silence. Look into the eyes of this fellow and tell me you do not see his deep intelligence as he gives the camera a knowing look.

Shaggy fur ripples in the wind, rich and earthy, brushed by sun and shadow, a cloak woven from wilderness. When they breathe, clouds rise in the cold air, soft and ephemeral, like whispered promises that vanish but leave warmth behind.

There is something profoundly romantic in their presence: strength wrapped in gentleness, endurance softened by grace.  To watch them is to feel the wild itself lean closer, reminding us of a love as vast as the horizon, as eternal as the ground beneath our feet.

When we think of bison today, images of great herds roaming the North American plains come to mind—dark, shaggy shapes against sweeping prairies. But the story of bison goes back far deeper in time. 

These massive grazers are part of a lineage that stretches millions of years into the past, their fossil record preserving the tale of their rise, spread, and survival.

Bison belong to the genus Bison, within the cattle family (Bovidae). Their story begins in Eurasia during the late Pliocene, around 2.6 million years ago, when the first true bison evolved from earlier wild cattle (Bos-like ancestors). 

Fossils suggest they descended from large bovids that roamed open grasslands of Eurasia as forests retreated and cooler, drier climates expanded.

The earliest known species, Bison priscus, or the Steppe Bison, was a giant compared to modern bison, sporting long horns that could span over six feet tip to tip. These animals thrived across Europe, Asia, and eventually crossed into North America via the Bering Land Bridge during the Pleistocene Ice Age.

The fossil record of bison stretches back about 2 million years in Eurasia and at least 200,000 years in North America, where they became one of the most successful large herbivores of the Ice Age. Fossil evidence shows that at least seven different species of bison once lived in North America, including the iconic Bison latifrons with its massive horns, and Bison antiquus, which is considered the direct ancestor of the modern American bison (Bison bison).

Some of the richest fossil bison deposits come from Siberia and Eastern Europe – home to abundant Bison priscus fossils, often preserved in permafrost with soft tissues intact. They are also found in Alaska, USA and in Canada's Yukon region – where Ice Age bison fossils are found alongside mammoth, horse, and muskox remains.

The Great Plains of the United States and Canada are rich in Bison antiquus and later species, often in mass bone beds where entire herds perished. We also find their remains in California and the American Southwest at sites like the La Brea Tar Pits. La Brea preserves bison remains from the Late Pleistocene and their museum of the same name has a truly wonderful display of Pleistocene wolves. Definitely worthy of a trip!

One particularly famous fossil site is the Hudson-Meng Bison Kill Site in Nebraska, where remains of over 600 Bison antiquus dating to about 10,000 years ago provide a window into Ice Age hunting practices and herd behavior.

By the end of the Ice Age, many megafauna species disappeared, but bison endured. Bison antiquus gradually gave rise to the modern American bison (Bison bison), which still carries echoes of its Ice Age ancestors. Though smaller than their Pleistocene relatives, today’s bison remain the largest land mammals in North America.

Tuesday, 2 September 2025

HIGHLANDS OF ICELAND

The Northern Lights over a sea of wildflowers in the marsh near Landmannalaugar, part of the Fjallabak Nature Reserve in the Highlands of Iceland.

Landmannalaugar is at the northern tip of the Laugavegur hiking trail that leads through natural geothermal hot springs and an austere yet poetically beautiful landscape. 

Here, you can see the Northern Lights play through the darkness of a night sky without light pollution and bask in the raw geology of this rugged land.

The Fjallabak region takes its name from the numerous wild and rugged mountains with deeply incised valleys, which are found there. 

The topography of the Torfajokull, a central volcano found within the Fjallabak Nature Reserve, is a direct result of the region being the largest rhyolite area in Iceland and the largest geothermal area (after Grimsvotn in Vatnajokull).

The Torfajokull central volcano is an active volcanic system but is now in a declining fumarolic stage as exemplified by numerous fumaroles and hot springs. The hot pools at Landmannalaugar are but one of many manifestations of geothermal activity in the area, which also tends to alter the minerals in the rocks, causing the beautiful colour variations from red and yellow to blue and green, a good example being Brennisteinsalda. Geologists believe that the Torfajokull central volcano is a caldera, the rim being Haalda, Suðurnamur, Norður-Barmur, Torfajokull, Kaldaklofsfjoll and Ljosartungur.

The bedrock of the Fjallabak Nature Reserve dates back 8-10 million years. At that time the area was on the Reykjanes – Langjokull ridge rift zone. 

The volcano has been most productive during the last 2 million years, that is during the last Ice Age Interglacial rhyolite lava (Brandsgil) and sub-glacial rhyolite (erupted under ice/water, examples being Blahnukur and Brennisteinsalda are characteristic formations in the area. 

To the north of the Torfajokull region, sub-glacial volcanic activity produced the hyaloclastites (Moberg) mountains, such as Lodmundur and Mogilshofdar.

On March 19, 2021, a volcanic eruption started in the Geldingadalir valley at the Fagradalsfjall mountain on the Reykjanes peninsula, South-West Iceland. The volcano is situated approximately 30 km from the country’s capital city, Reykjavík. The eruption is ongoing and the landscape in the valley and its surrounding area is constantly changing as a result.

Prior to the eruptive display earlier this year, volcanic activity over the past 10.000 years has been restricted to a few northeast-southwest fissures, the most recent one, the Veidivotn fissure from 1480, formed Laugahraun (by the hut at Landmannalaugar), Namshraun, Nordurnamshraun, Ljotipollur and other craters which extend 30 km, further to the north Eruptions in the area tend to be explosive and occur every 500 – 800 years, previous known eruptions being around AD 150 and 900.

Thursday, 28 August 2025

FOSSILS WHALES FROM SOUTHERN VANCOUVER ISLAND

Modern Whale Vertebrae
The air is heavy with salt spray at Muir Creek, just west of Sooke on southern Vancouver Island. Waves tumble over barnacle-crusted boulders, and eagles wheel overhead. 

Thick layers of sandstone and conglomerate preserve a rich assemblage of marine fossils. Local collectors have long explored these beaches, spotting fossilized ribs and vertebrae protruding from the cliffs. 

My first trip here was back in the mid 1990s with the Vancouver Paleontological Society. It is a regular haunt for the Victoria Paleontological Society and other regional fossil collecting groups.

It’s a place where the modern Pacific feels timeless—but buried in the cliffs are the remains of creatures that swam here more than 25 million years ago. 

They are whales, yes, but not quite the whales we know today. Their bones tell the story of an ocean in transition and of whales caught mid-evolution—halfway between toothed predators and the filter-feeders that now dominate the seas.

Southern Vancouver Island’s fossil-bearing rocks belong largely to the Sooke Formation, a marine deposit dating to the late Oligocene (around 25–23 million years ago). At that time, much of the region lay beneath shallow coastal waters. Sediments settled over the remains of sea creatures, entombing shells, bird bones, shark teeth, and occasionally the massive bones of early whales.

These are not fossils of the gigantic blue whales or humpbacks we know today, but their ancestors—smaller, stranger, and crucial to the story of whale evolution.

One of the most remarkable finds from Vancouver Island is Aetiocetus, a small whale that lived during the late Oligocene. Aetiocetus is a classic “transitional fossil”—a whale that still had teeth, yet also shows evidence of developing baleen. This makes it a key player in understanding how modern filter-feeding whales (like gray whales and blue whales) evolved from their toothed ancestors.

Imagine a creature about 3–4 meters long, sleek like a dolphin but with a skull showing both sharp teeth and grooves that hint at primitive baleen plates. It likely hunted fish and squid but may have supplemented its diet by gulping in small prey from the water column. 

Fossils of Aetiocetus have been found in Oregon and Japan, but southern Vancouver Island provides some of the northernmost evidence of this important lineage.

Alongside these early baleen whales, researchers have also found evidence of primitive odontocetes—the group that includes dolphins, porpoises, and sperm whales. These small, agile predators were experimenting with echolocation, the same sonar-like ability modern toothed whales use to hunt in dark or murky waters.

The whales preserved on southern Vancouver Island belong to a lineage with an extraordinary backstory. Around 50 million years ago, in what is now Pakistan and India, the ancestors of whales were land-dwelling, hoofed mammals (related to early hippos). Over millions of years, these animals waded into rivers and seas, evolving into the fully aquatic forms we recognize as whales.

By the time the Sooke Formation was laid down, whales had already colonized oceans worldwide. But the fossils here capture them in the middle of another transformation—the split between toothed whales (odontocetes) and baleen whales (mysticetes). Vancouver Island’s cliffs are, in a sense, a library shelf containing one of evolution’s most important chapters.

Fossil Gastropods, Photo: John Fam

Standing at Muir Creek today, it’s hard not to draw parallels between past and present. Offshore, humpback whales spout on their summer migration. Orcas patrol the Strait of Juan de Fuca, hunting salmon with precision. Gray whales feed along kelp beds in shallow waters. These are the direct descendants of the fossil whales entombed in the cliffs.

That continuity of life—millions of years stretching unbroken from fossil Aetiocetus to the humpback breaching offshore—gives southern Vancouver Island a special place in the story of the Pacific.

The cliffs of Muir Creek and other fossil sites are constantly eroding, revealing new fossils—but also destroying them. Without careful collection and preservation, many specimens are lost to the sea. 

It is for this reason that we encourage citizen scientists to report significant finds rather than attempt to remove them — and in the case of the Muir Creek fossil site, to avoid collecting from the cliffs. 

Fossils are protected under British Columbia’s Heritage Conservation Act, meaning they belong to the province and its people.

Next time you stand on those windswept cliffs, watching an orca’s dorsal fin slice through the surf, remember: you are standing on an ancient whale highway. Beneath your feet, locked in stone, are the bones of their ancestors—whales that swam here long before the Salish Sea had a name.

Tuesday, 26 August 2025

OUR GREAT BEARS: URSAVUS TO NAN

GREAT BEAR NA̱N
Hiking in BC, both grizzly and black bear sightings are common. Nearly half the world's population, some 25,000 Grizzly Bears, roam the Canadian wilderness — of those, 14,000 or more call British Columbia home. 

These highly intelligent omnivores spend their days lumbering along our coastlines, mountains and forests.

Both bear families descend from a common ancestor, Ursavus, a bear-dog the size of a raccoon who lived more than 20 million years ago. Seems an implausible lineage given the size of their very large descendants. 

An average Grizzly weighs in around 800 lbs (363 kg), but a recent find in Alaska tops the charts at 1600 lbs (726 kg). 

This mighty beast stood 12' 6' high at the shoulder, 14' to the top of his head and is one of the largest grizzlies ever recorded — a na̱ndzi.

Adult bears tend to live solo except during mating season. Those looking for love congregate from May to July in the hopes of finding a mate. Through adaptation to shifting seasons, the females' reproductive system delays the implantation of fertilized eggs — blastocysts —until November or December to ensure her healthy pups arrive during hibernation. If food resources were slim that year, the newly formed embryo will not catch or attach itself to her uterine wall and she'll try again next year. 

Females reach mating maturity at 4-5 years of age. They give birth to a single or up to four cubs (though usually just two) in January or February. The newborn cubs are cute little nuggets — tiny, hairless, and helpless — weighing in at 2-3 kilograms or 4-8 pounds. They feast on their mother’s nutrient-dense milk for the first two months of life. The cubs stay with their mamma for 18 months or more. Once fully grown, they can run 56 km an hour, are good at climbing trees and swimming and live 20-25 years in the wild. 

A Grizzly bear encounter inspires a humbling appreciation of just how remarkable these massive beasts are. Knowing their level of intelligence, keen memory and that they have a bite force of over 8,000,000 pascals — enough to crush a bowling ball — inspires awe and caution in equal measure. 

They have an indescribable presence. It is likely because of this that these majestic bears show up often in the superb carvings and work of First Nations artists. I have had close encounters with many bears growing up in the Pacific Northwest, meeting them up close and personal in the South Chilcotins and along our many shorelines. 

First Nation Lore and Language

In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest — or Kwakwaka'wakw, speakers of Kwak'wala — a Grizzly bear is known as na̱n

The ornamental carved Grizzly bear headdress was worn by the comic Dluwalakha Grizzly Bear Dancers, Once more from Heaven, in the Grizzly Bear Dance or Gaga̱lalał, is known as na̱ng̱a̱mł

The Dluwalakha dancers were given supernatural treasures or dloogwi which they passed down from generation to generation. 

In the Hamat'sa Grizzly bear dance, Nanes Bakbakwalanooksiwae, no mask was worn. Instead, the dancers painted their faces red and wore a costume of bearskin or t̓ła̱ntsa̱m and long wooden claws attached to their hands. You can imagine how impressive that sight is lit by the warm flickering flames of firelight during a Winter Dance ceremony.

Smoke of the World / Speaking of the Ancestors — Na̱wiła

Kwaguʼł Winter Dancers — Qagyuhl
Should you encounter a black bear and wish to greet them in Kwak'wala, you would call them t̕ła'yi. Kwakiutl First Nations, Smoke of the World, count Grizzly Bears as an ancestor — along with Seagull, Sun and Thunderbird. 

To tell stories of the ancestors is na̱wiła. Each of these ancestors took off their masks to become human and founded the many groups that are now bound together by language and culture as Kwakwaka’wakw. 

The four First Nations who collectively make up the Kwakiutl are the Kwakiutl (Kwágu7lh), K’umk’utis/Komkiutis, Kwixa/Kweeha (Komoyoi) and Walas Kwakiutl (Lakwilala) First Nations. 

There is likely blood of the Lawit’sis in there, too, as they inhabited the village site at Tsax̱is/T'sakis, Fort Rupert before the Kwakiutl First Nations made it a permanent home. It was here that I grew up and learned to greet my ancestors. 

Not all Kwakwaka'wakw dance the Gaga̱lalał, but their ancestors likely attended feasts where the great bear was celebrated. To speak or tell stories of the ancestors is na̱wiła — and Grizzly bear as an ancestor is na̱n helus.

Visiting British Columbia's Great Bears

If you are interested in viewing British Columbia's Great Bears, do check out Indigenous Tourism BC's wonderfully informative website and the culturally-rich wildlife experiences on offer. You will discover travel ideas and resources to plan your next soul-powered adventure. To learn more about British Columbia's Great Bears and the continuing legacy of First Nation stewardship, visit: 

Indigenous Tourism BC: https://www.indigenousbc.com

Great Bear Lodge has been offering tours to view the majestic animals of the Pacific Northwest. They keep both the guests' and the animals' comfort and protection in mind. I highly recommend their hospitality and expertise. To see their offerings, visit: www.greatbeartours.com

Image: Group of Winter Dancers--Qagyuhl; Curtis, Edward S., 1868-1952, https://lccn.loc.gov/2003652753. 

Note: The Qagyuhl in the title of this photograph refers to the First Nation group, not the dancers themselves. I think our dear Edward was trying to spell Kwaguʼł and came as close as he was able. In Kwak'wala, the language of the Kwaguʼł or Kwakwakaʼwakw, speakers of Kwak'wala, the Head Winter Dancer is called t̕seḵa̱me' — and to call someone a really good dancer, you would use ya̱'winux̱w

Charmingly, when Edward S. Curtis was visiting Tsaxis/T'sakis, he was challenged to a wrestling competition with a Giant Pacific Octopus, Enteroctopus dofleini. George Hunt (1854-1933) my great great grandfather's elder brother had issued the challenge and laughed himself senseless when Edward got himself completely wrapped up in tentacles and was unable to move. Edward was soon untangled and went on to take many more photos of the First Nations of the Pacific Northwest. Things did not go as well for the octopus or ta̱ḵ̕wa. It was later served for dinner or dzaḵwax̱stala, as it seemed calamari was destined for that night's menu.  


Friday, 22 August 2025

LOVE LANGUAGE OF THE FAR NORTH

Nunatsiarmiut Mother and Child, Baffin Island, Nunavut
Warm light bathes this lovely Nunatsiarmiut mother and child from Baffin Island, Nunavut. 

They speak Inuktitut, the mother tongue of the majority of the Nunatsiarmiut who call Baffin Island home. 

Baffin is the largest island in the Arctic Archipelago in the territory of Nunavut in Canada's far north—the chilliest region of Turtle Island. 

As part of the Qikiqtaaluk Region of Nunavut, Baffin Island is home to a constellation of remote Inuit communities each with a deep cultural connection to the land—Iqaluit, Pond Inlet, Pangnirtung, Clyde River, Arctic Bay, Kimmirut and Nanisivik. 

The ratio of Inuit to non-Inuit here is roughly three to one and perhaps the reason why the Inuktitut language has remained intact and serves as the mother tongue for more than 36,000 residents. Inuktitut has several subdialects—these, along with a myriad of other languages—are spoken across the north.  

If you look at the helpful visual below you begin to get a feel for the diversity of these many tongues. The languages vary by region. There is the Iñupiaq of the Inupiatun/Inupiat; Inuvialuktun of the Inuinnaqtun, Natsilingmiutut, Kivallirmiutut, Aivilingmiutut, Qikiqtaaluk Uannanganii and Siglitun. Kalaallisut is spoken by many Greenlandic peoples though, in northwest Greenland, Inuktun is the language of the Inughuit.

We use the word Inuktitut when referring to a specific dialect and inuktut when referring to all the dialects of Inuktitut and Inuinnaqtun.

Northern Language Map (Click to Enlarge)
Should you travel to the serene glacier-capped wilds and rolling tundra of our far north, you will want to dress for the weather and learn a few of the basics to put your best mukluk shod feet forward. 

The word for hello or welcome in Inuktitut is Atelihai—pronounced ahh-tee-lee-hi. And thank you is nakurmiik, pronounced na-kur-MIIK.  

Perhaps my favourite Inuktitut expression is Naglingniq qaikautigijunnaqtuq maannakautigi, pronounced NAG-ling-niq QAI-kau-ti-gi-jun-naqtuq MAAN-na-KAU-ti-gi. This tongue-twister is well worth the linguistic challenge as it translates to love can travel anywhere in an instant. Indeed it can. 

So much of our Indigenous culture is passed through stories, so language takes on special meaning in that context. It is true for all societies but especially true for the Inuit. Stories help connect the past to the present and future. They teach how to behave in society, engage with the world and how to survive in the environment. They also help to create a sense of belonging. 

You have likely seen or heard the word Eskimo used in older books to refer to the Inuit, Iñupiat, Kalaallit or Yupik. This misnomer is a colonial term derived from the Montagnais or Innu word ayas̆kimewnetter of snowshoes

It is a bit like meeting a whole new group of people who happen to wear shoes and referring to them all as cobblers—not as a nickname, but as a legal term to describe populations from diverse communities disregarding the way each self-refer. 

Inukshuk / Inuksuk Marker Cairn
For those who identify as Inupiaq or Yupik, the preferred term is Inuit meaning people—though some lingering use of the term Eskimo lives on. The Inuit as a group are made up of many smaller groups. 

The Inuit of Greenland self-refer as Kalaallit or Greenlanders when speaking Kalaallisut

The Tunumiit of Tunu (east Greenland), speak Tunumiit oraasiat ("East Greenlandic"); and the Inughuit of north Greenland, speak Inuktun "Polar Eskimo."

The Inupiat of Alaska, or real people, use Yupik as the singular for real person and yuk to simply mean person.

When taken all together, Inuit is used to mean all the peoples in reference to the Inuit, Iñupiat, Kalaallit and Yupik. Inuit is the plural of inuk or person

You likely recognize this word from inuksuk or inukshuk, pronounced ih-nook-suuk — the human-shaped stone cairns built by the Inuit, Iñupiat, Kalaallit, Yupik, and other peoples of the Arctic regions of northern Canada, Greenland, and Alaska—as helpful reference markers for hunters and navigation. 

The word inuksuk means that which acts in the capacity of a human, combining inuk or person and suk, as a human substitute

A World of Confusion

You may be disappointed to learn that our northern friends do not live in igloos. I remember answering the phone as a child and the fellow calling was hoping to speak to my parents about some wonderful new invention perfect for use in an igloo. 

The call came while I was in the kitchen of our family home in Port Hardy. He was disappointed to hear that I was standing in a wooden house with the standard four walls to a room and a handy roof topping it off. 

I also had my own room with Scooby-Doo wallpaper, but he was having nothing of it.

"Well, what about your neighbours? Surely, a few of them live in igloos..." 

It seems that some atlases in circulation at the time, and certainly the one he was looking at, simply blanketed everything north of the 49th parallel in a snowy white. His clearly showed an igloo sitting proudly in the centre of the province.

Interestingly, I only learned this morning (thank you, Jen) that that type of playful map is called a Counter Map and can be used in delightful ways to draw the reader in to the mapping of a landscape, region, people or culture—often out of scale and with many wonderful images added to give you a beautiful sense of the people, plants, animals and topography of a place.

My cousin Shawn brought one such simplified book back from his elementary school in California. British Columbia had a nice image of a grizzly bear and a wee bit further up, a polar bear grinned smugly. 

British Columbia's beaver population would be sad to know that they did not inhabit the province though there were two chipper beavers with big bright smiles—one in Ontario and another gracing the province of Quebec. Further north, where folk do build igloos, their icy domes were curiously lacking. 

Igloos are used for winter hunting trips much the same way we use tents for camping. The Inuit do not have fifty words for snow—you can thank the ethnographer Franz Boas for that wee fabrication—but within the collective languages of the frozen north there are more than fifty words to describe it. And kisses are not nose-to-nose. To give a tender kiss or kunik to a loved one, you press your nose and upper lip to their forehead or cheek and rub gently. 

Fancy trying a wee bit of Inuktitut yourself? This link will bring you to a great place to start: https://inhabitmedia.com/inuitnipingit/

Inuit Language Map:  By Noahedits - Own work, CC BY-SA 4.0. If you want to the image full size, head to this link: https://commons.wikimedia.org/w/index.php?curid=85587388

Sunday, 17 August 2025

AVES: LIVING DINOSAURS

Cassowary, Casuariiformes
Wherever you are in the world, it is likely that you know your local birds. True, you may call them des Oiseaux, pássaros or uccelli — but you'll know their common names by heart.

You will also likely know their sounds. The tweets, chirps, hoots and caws of the species living in your backyard.

Birds come in all shapes and sizes and their brethren blanket the globe. It is amazing to think that they all sprang from the same lineage given the sheer variety. 

If you picture them, we have such a variety on the planet — parrots, finches, wee hummingbirds, long-legged waterbirds, waddling penguins and showy toucans. 

But whether they are a gull, hawk, cuckoo, hornbill, potoo or albatross, they are all cousins in the warm-blooded vertebrate class Aves. 

The defining features of the Aves are feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweight skeleton. The best features, their ability to dance, bounce and sing, are not listed, but it is how I see them in the world.

These modern dinosaurs live worldwide and range in size from the 5 cm (2 in) bee hummingbird to the 2.75 m (9 ft) ostrich. 

There are about ten thousand living species, more than half of which are passerine, or "perching" birds. Birds have wings whose development varies according to species; the only known groups without wings are the extinct moa and elephant birds.

Wings evolved from forelimbs giving birds the ability to fly
Wings, which evolved from forelimbs, gave birds the ability to fly, although further evolution has led to the loss of flight in some birds, including ratites, penguins, and diverse endemic island species. 

The digestive and respiratory systems of birds are also uniquely adapted for flight. Some bird species of aquatic environments, particularly seabirds and some waterbirds, have further evolved for swimming.

Wee Feathered Theropod Dinosaurs

We now know from fossil and biological evidence that birds are a specialized subgroup of theropod dinosaurs, and more specifically, they are members of Maniraptora, a group of theropods that includes dromaeosaurs and oviraptorids, amongst others. As palaeontologists discover more theropods closely related to birds, the previously clear distinction between non-birds and birds has become a bit muddy.

Recent discoveries in the Liaoning Province of northeast China, which include many small theropod feathered dinosaurs — and some excellent arty reproductions — contribute to this ambiguity. 

Still, other fossil specimens found here shed a light on the evolution of Aves. Confuciusornis sanctus, an Early Cretaceous bird from the Yixian and Jiufotang Formations of China is the oldest known bird to have a beak.

Like modern birds, Confuciusornis had a toothless beak, but close relatives of modern birds such as Hesperornis and Ichthyornis were toothed, telling us that the loss of teeth occurred convergently in Confuciusornis and living birds.

The consensus view in contemporary palaeontology is that the flying theropods, or avialans, are the closest relatives of the deinonychosaurs, which include dromaeosaurids and troodontids.

Together, these form a group called Paraves. Some basal members of this group, such as Microraptor, have features that may have enabled them to glide or fly. 

The most basal deinonychosaurs were wee little things. This raises the possibility that the ancestor of all paravians may have been arboreal, have been able to glide, or both. Unlike Archaeopteryx and the non-avialan feathered dinosaurs, who primarily ate meat, tummy contents from recent avialan studies suggest that the first avialans were omnivores. Even more intriguing...

Avialae, which translates to bird wings, are a clade of flying dinosaurs containing the only living dinosaurs, the birds. It is usually defined as all theropod dinosaurs more closely related to modern birds — Aves — than to deinonychosaurs, though alternative definitions are occasionally bantered back and forth.

The Earliest Avialan: Archaeopteryx lithographica

Archaeopteryx, bird-like dinosaur from the Late Jurassic
Archaeopteryx lithographica, from the late Jurassic Period Solnhofen Formation of Germany, is the earliest known avialan that may have had the capability of powered flight. 

However, several older avialans are known from the Late Jurassic Tiaojishan Formation of China, dating to about 160 million years ago.

The Late Jurassic Archaeopteryx is well-known as one of the first transitional fossils to be found, and it provided support for the theory of evolution in the late 19th century. 

Archaeopteryx was the first fossil to clearly display both traditional reptilian characteristics — teeth, clawed fingers, and a long, lizard-like tail—as well as wings with flight feathers similar to those of modern birds. It is not considered a direct ancestor of birds, though it is possibly closely related to the true ancestor.

Unlikely yet true, the closest living relatives of birds are the crocodilians. Birds are descendants of the primitive avialans — whose members include Archaeopteryx — which first appeared about 160 million years ago in China.

DNA evidence tells us that modern birds — Neornithes — evolved in the Middle to Late Cretaceous, and diversified dramatically around the time of the Cretaceous–Paleogene extinction event 66 mya, which killed off the pterosaurs and all non-avian dinosaurs.

In birds, the brain, especially the telencephalon, is remarkably developed, both in relative volume and complexity. Unlike most early‐branching sauropsids, the adults of birds and other archosaurs have a well‐ossified neurocranium. In contrast to most of their reptilian relatives, but similar to what we see in mammals, bird brains fit closely to the endocranial cavity so that major external features are reflected in the endocasts. What you see on the inside is what you see on the outside.

This makes birds an excellent group for palaeoneurological investigations. The first observation of the brain in a long‐extinct bird was made in the first quarter of the 19th century. However, it was not until the 2000s and the application of modern imaging technologies that avian palaeoneurology really took off.

Understanding how the mode of life is reflected in the external morphology of the brains of birds is but one of several future directions in which avian palaeoneurological research may extend.

Although the number of fossil specimens suitable for palaeoneurological explorations is considerably smaller in birds than in mammals and will very likely remain so, the coming years will certainly witness a momentous strengthening of this rapidly growing field of research at the overlap between ornithology, palaeontology, evolutionary biology and the neurosciences.

Reference: Cau, Andrea; Brougham, Tom; Naish, Darren (2015). "The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc (Dinosauria, Maniraptora): Dromaeosaurid or flightless bird?". PeerJ. 3: e1032. doi:10.7717/peerj.1032. PMC 4476167. PMID 26157616.

Reference: Ivanov, M., Hrdlickova, S. & Gregorova, R. (2001) The Complete Encyclopedia of Fossils. Rebo Publishers, Netherlands. p. 312

Sunday, 10 August 2025

AINOCERAS OF VANCOUVER ISLAND

A wee baby deep chocolate Ainoceras sp. heteromorph ammonite from Vancouver Island. This adorable corkscrew-shaped ammonite is an extinct marine mollusc related to squid and octopus.  

Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. 

By pushing air in or out, they were able to control their buoyancy in the water column. These little cuties were predators who hunted in Cretaceous seas.

They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber. 

Not all ammonites have this whacky corkscrew design. Most are coiled and some are even shaped like massive paperclips. This one is so remarkable, so joyously perfect my internal thesaurus can’t keep up.

I will be heading back to the area where these lovelies are found in late March this year to see if I can find other associated fossils and learn more about his paleo community

Friday, 18 July 2025

SPIRALING BEAUTY: AMMONITES AS INDEX FOSSILS

Argonauticeras besairei, Collection of José Juárez Ruiz.
An exceptional example of fractal building of an ammonite septum, in this clytoceratid Argonauticeras besairei from the awesome José Juárez Ruiz.

Ammonites were predatory, squid-like creatures that lived inside coil-shaped shells.

Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. They used these tentacles to snare prey, — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunt today.

Catching a fish with your hands is no easy feat, as I'm sure you know. But the Ammonites were skilled and successful hunters. They caught their prey while swimming and floating in the water column. Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. By pushing air in or out, they were able to control their buoyancy in the water column.

They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.

They were a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs, commonly referred to as ammonites, are more closely related to living coleoids — octopuses, squid, and cuttlefish) than they are to shelled nautiloids such as the living Nautilus species.

The Ammonoidea can be divided into six orders:
  • Agoniatitida, Lower Devonian - Middle Devonian
  • Clymeniida, Upper Devonian
  • Goniatitida, Middle Devonian - Upper Permian
  • Prolecanitida, Upper Devonian - Upper Triassic
  • Ceratitida, Upper Permian - Upper Triassic
  • Ammonitida, Lower Jurassic - Upper Cretaceous
Ammonites have intricate and complex patterns on their shells called sutures. The suture patterns differ across species and tell us what time period the ammonite is from. If they are geometric with numerous undivided lobes and saddles and eight lobes around the conch, we refer to their pattern as goniatitic, a characteristic of Paleozoic ammonites.

If they are ceratitic with lobes that have subdivided tips; giving them a saw-toothed appearance and rounded undivided saddles, they are likely Triassic. For some lovely Triassic ammonites, take a look at the specimens that come out of Hallstatt, Austria and from the outcrops in the Humboldt Mountains of Nevada.

Hoplites bennettiana (Sowby, 1826).
If they have lobes and saddles that are fluted, with rounded subdivisions instead of saw-toothed, they are likely Jurassic or Cretaceous. If you'd like to see a particularly beautiful Lower Jurassic ammonite, take a peek at Apodoceras. Wonderful ridging in that species.

One of my favourite Cretaceous ammonites is the ammonite, Hoplites bennettiana (Sowby, 1826). This beauty is from Albian deposits near Carrière de Courcelles, Villemoyenne, near la région de Troyes (Aube) Champagne in northeastern France.

At the time that this fellow was swimming in our oceans, ankylosaurs were strolling about Mongolia and stomping through the foliage in Utah, Kansas and Texas. Bony fish were swimming over what would become the strata making up Canada, the Czech Republic and Australia. Cartilaginous fish were prowling the western interior seaway of North America and a strange extinct herbivorous mammal, Eobaatar, was snuffling through Mongolia, Spain and England.

In some classifications, these are left as suborders, included in only three orders: Goniatitida, Ceratitida, and Ammonitida. Once you get to know them, ammonites in their various shapes and suturing patterns make it much easier to date an ammonite and the rock formation where is was found at a glance.

Ammonites first appeared about 240 million years ago, though they descended from straight-shelled cephalopods called bacrites that date back to the Devonian, about 415 million years ago, and the last species vanished in the Cretaceous–Paleogene extinction event.

They were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish. They were prolific back in the day, living (and sometimes dying) in schools in oceans around the globe. We find ammonite fossils (and plenty of them) in sedimentary rock from all over the world.

In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past.

For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. Generally, deeper is older, so we use the sedimentary layers rock to match up to specific geologic time periods, rather the way we use tree-rings to date trees. A handy way to compare fossils and date strata across the globe.

References: Inoue, S., Kondo, S. Suture pattern formation in ammonites and the unknown rear mantle structure. Sci Rep 6, 33689 (2016). https://doi.org/10.1038/srep33689
https://www.nature.com/articles/srep33689?fbclid=IwAR1BhBrDqhv8LDjqF60EXdfLR7wPE4zDivwGORTUEgCd2GghD5W7KOfg6Co#citeas

Photo: Hoplites Bennettiana from near Troyes, France. Collection de Christophe Marot

Saturday, 5 July 2025

FOSSIL HUNTRESS PODCAST: DEAD SEXY SCIENCE

Geeky goodness from the Fossil Huntress. If you love paleontology, you will love this stream. Dinosaurs, trilobites, ammonites—you'll find them all here!

Close your eyes & fly with me as we head out together to explore Earth's rich history written in her rock. Travel to extraordinary places, sacred sites & unearth mysteries millions of years old on the Fossil Huntress Podcast.

This stream is for those who share an enduring passion for our world's hidden treasures, its wild places & want to uncover her beauty stone by stone.

This is the story of the making of our Earth and the many wonderful creatures who have called it home.

Join in the exploration of the fascinating science of paleontology — that lens that examines ancient animals, plants & ecosystems from wee single-celled organisms to big & mighty dinosaurs. Save the stream to your favorites to listen while you drive, head out fossil collecting or snuggle in for the night!

​To listen now, visit: https://open.spotify.com/show/1hH1wpDFFIlYC9ZW5uTYVL

Friday, 4 July 2025

FOSSIL FRESHWATER SALMON FROM KAMLOOPS, BRITISH COLUMBIA

Fossilized Salmon gifted to the Huntress by John Leahy
Nestled in the interior of British Columbia, the region around Kamloops is a dry, sagebrush-studded landscape—and home to some of Canada’s most remarkable fossil fish discoveries. 

It is also home to many rattlesnakes, so if you are up that way, step lively!

Among the most fascinating fossils found here are fossilized salmonids, distant ancestors of the modern Pacific salmon that are iconic to the rivers of British Columbia today.

The fossils of interest date back to the Eocene, approximately 50 million years ago, and are primarily found in the Tranquille Formation, a part of the Kamloops Group. 

This ancient lakebed is located at McAbee Fossil Beds, near Cache Creek just west of Kamloops, and also in the nearby Driftwood Canyon and Princeton fossil beds, which together form part of British Columbia’s Eocene fossil record.

The Tranquille Formation preserves what was once a large, subtropical freshwater lake surrounded by lush forests. 

Volcanic ashfalls and fine silt periodically buried aquatic organisms and plant matter, preserving them in astonishing detail. Among the insects, plants, and other fish fossils, paleontologists have discovered fossil remains of early salmonids, the group of fish that includes modern salmon and trout.

A significant discovery was Eosalmo driftwoodensis, the earliest known fossil representative of the salmon family (Salmonidae). 

First described in 1977 by Canadian ichthyologist Mark Wilson, Eosalmo was recovered from the Driftwood Canyon site in northern BC but its relatives have been found in similar-aged formations across the province, including near Kamloops.

These fossils show that salmonids had already begun to diversify during the early Eocene. Eosalmo displays characteristics linking it to both trout and salmon, suggesting that the divergence between these lineages was already underway. Its morphology includes features like a terminal mouth, forked tail, and well-developed fins, hallmarks of active freshwater swimmers.

What’s particularly interesting about fossil salmonids in British Columbia is that they appear to have lived exclusively in freshwater during the Eocene. 

This contrasts with today’s Pacific salmon, which are famously anadromous—born in freshwater, migrating to the ocean, and returning to spawn. The fossil record suggests this sea-run lifestyle evolved later, possibly as a response to tectonic shifts and changing ocean currents in the Miocene, around 20 million years ago.

The lakes of Eocene BC, including the one preserved at McAbee, would have supported thriving fish populations in a warm, relatively stable climate. Fossil finds include not just salmonids but also bowfins, suckers, and small freshwater herring-like fish, painting a picture of a rich and diverse aquatic ecosystem.

The McAbee Fossil Beds, now designated as a provincial heritage site, continue to yield new specimens. Though public access is currently restricted to protect the integrity of the site, ongoing research continues to uncover new details about the ancient ecosystems of interior BC.

Institutions such as the Royal BC Museum and the University of Alberta have studied and preserved these fossil fish. Scientific papers by Mark Wilson, and others have helped place these finds into a broader evolutionary context, revealing how ancient fish faunas of western North America evolved over tens of millions of years.

The fossil salmon of Kamloops bones, entombed in rock for 50 million years, speak to a time when the interior of British Columbia was lush, warm, and teeming with life. 

As research continues, these fossil salmonids help illuminate the early history of a fish group vital not just to ecosystems, but to cultures and economies across the Pacific Rim.

The beauty you see here is a fossil salmon skull gifted to me by the remarkable John Leahy, who is much missed!

References:

Wilson, M. V. H. (1977). Eosalmo driftwoodensis, a new genus and species of fossil salmonid fish from the Eocene of British Columbia. Canadian Journal of Earth Sciences, 14(5), 1213–1230.

Wilson, M. V. H., & Li, G. Q. (1999). Osteology and phylogenetic relationships of Eosalmo, the earliest known salmonid fish. Canadian Journal of Earth Sciences, 36(10), 1559–1573.

Archibald, S. B., Greenwood, D. R., Smith, R. Y., Mathewes, R. W., & Basinger, J. F. (2011). Great Canadian Lagerstätten 1. Early Eocene Lagerstätten of the Okanagan Highlands (British Columbia and Washington State). Geoscience Canada, 38(4), 155–164.

McAbee Fossil Beds Provincial Heritage Site: https://www2.gov.bc.ca

If you’re ever driving through Kamloops, it’s humbling to think that beneath your feet lie the ancestors of today’s salmon—timeless travellers of BC’s ancient waterways.

Saturday, 28 June 2025

MIGWAT: SLEEK, PLAYFUL SEALS

Seals—those sleek, playful creatures that glide through our oceans and lounge on rocky shores—are part of a remarkable evolutionary story stretching back millions of years. 

Though we often see them today basking on beaches or popping their heads above the waves, their journey through the fossil record reveals a dramatic tale of land-to-sea adaptation and ancient global wanderings.

Seals belong to a group of marine mammals called pinnipeds, which also includes sea lions and walruses. All pinnipeds share a common ancestry with terrestrial carnivores, and their closest living relatives today are bears and mustelids (like otters and weasels). Their ancestors walked on land before evolving to thrive in marine environments.

The fossil record suggests that pinnipeds first emerged during the Oligocene epoch, around 33 to 23 million years ago. These early proto-seals likely lived along coastal environments, where they gradually adapted to life in the water. Over time, their limbs transformed into flippers, their bodies streamlined, and their reliance on the sea for food and movement became complete.

In Kwak'wala, the language of the Kwakwaka'wakw of the Pacific Northwest, seals are known as migwat, and fur seals are referred to as xa'wa.

Friday, 27 June 2025

PORT HARDY: TIME AND TIDE

One of the most beautiful areas of Vancouver Island is the town of Port Hardy on the north end of the island. 

Just outside Port Hardy further south on the west coast is the area known as Fort Rupert or Tsaxis—my home community. 

It was here that the Hudson's Bay Company built Fort Rupert both for trade with the local First Nation population and the allure of potential coal deposits. 

I headed up to the north island this past week to stomp around my old haunts, visit with family and get in a bit of late season kayaking. The town was much as I remembered it. There have been changes, of course. I lived up on Wally's hill above the reserve at Tsaxis beside the old cemetery. 

My wee childhood home is still there and I am very pleased to see that the earthly home of my ancestors is well maintained. The cemetery is groomed and cared for but the land surrounding it is overgrown and it took me a few minutes to orient myself to see where things used to be. Where the old Hudson's Bay Company Fort and its iconic chimney were in relation to the graveyard. 

A lifetimes worth of memories came flooding back. Those from my earliest years and then later when I returned to kayak, fish and scuba dive in these rich waters.

My plans of blissful days kayaking and taking photos of the scenery were altered by hurricane-force winds. Still beautiful, but chilly and choppy.

The beachhead here was clocking 120 km winds so I did a brief visit to the homestead, the graveyard and Jokerville then headed home to light the fire and hunker in as the storm blew through. 

Port Harty and Fort Rupert have an interesting history and how you read it or hear it truly depends on the lens that is applied. This has been the ancestral home to many First Nation groups. Mostly they were passing through and coming here to dig up delicious butter clams, roots, berries and other natural yummy goodness. Years before Port Hardy was settled at the turn of the century it was the home to the Kwakiutl or Kwagu’ł and part of my heritage. 

Alec and Sarah Lyon operated a store and post office on the east side of Hardy Bay. A 1912 land deal promoted by the Hardy Bay Land Co., put the area on the map and increased its population. By 1914, 12 families had settled, built a school, sawmill, church and hotel. 

The community of Port Hardy is situated within traditional Kwagu’ł First Nation territory. It is also home to the Gwa’sala-‘Nakwaxda’xw First Nation. In 1964 all the First Nations communities were amalgamated and forced to relocate from their traditional territories by the federal government, for administrative reasons. 

The First Nation families were told that it would cost less for education, easier for medical help, and the government would help with housing, but it turned out to be a hidden agenda designed to assimilate the various groups into Canadian society — or face extermination. Several years of threats and promises later, the Gwa’sala and ‘Nakwaxda’xw reluctantly gave in to the relocation, but the government didn’t keep their promise for adequate housing. 

There were five homes for over 200 people on the Tsulquate Reservation. The Gwa’sala traditional territory is Smith Inlet and surrounding islands. ‘Nakwaxda’xw traditional territory is Seymour Inlet, the Deserter’s Group, Blunden Harbour, and surrounding islands.

There was limited access to the community until the logging road connecting Port Hardy to Campbell River was paved in December of 1979. As a child, travelling to visit my grandmother in Nanaimo meant eating eating dust behind logging trucks all the way from Hardy to Campbell doing about 40 kilometres an hour, then a stop at the Dairy Queen in Campbell River for a banana split, and on again on the old Island Highway.

Port Hardy’s population grew to a little over 5,000 residents during the Island Copper Mine years (1971-1995). The former mine site is located 16 kilometres south of Port Hardy on the shores of Rupert Inlet. The open-pit porphyry copper mine employed over 900 employees from Port Hardy and the surrounding communities. Today, the former mine has been transformed into a wildlife habitat and pit lake biological treatment system (BHP Copper Inc., 2010). The Quatsino First Nation manage the property and their Economic Development Board is exploring options for its use. 

The Quatsino First Nations have conducted several feasibility studies around the implementation of a puck or brickett mill onsite, utilizing the existing infrastructure, which includes six industrial buildings.

Today, Port Hardy serves as the crossroads for air, ferry and marine transportation networks, and serves as the gateway to the fast-growing Central Coast, the Cape Scott and North Coast Trails, and BC Ferry’s northern terminus for the Discovery Coast run and Prince Rupert. It supports several traditional and emerging sectors and remains rich in natural resources and community spirit.

Every corner of the Port Hardy region is enriched with culture and history. Starting with the two welcome poles in Carrot Park, both carved and replicated by Calvin Hunt, a Kwagu’ł artist who is based in Tsax̱is. 

From here and along the seawall are interpretive signs with Kwak’wala words for various wildlife, such as salmon, bear, wolf, and orca. At the end of this walk is Tsulquate Park. 

From here you can see across Queen Charlotte Strait; the ocean highway and lands of the Kwakwa̱ka̱ʼwakw. Port Hardy was named after Vice-Admiral Sir Thomas Masterman Hardy (5 April 1769 – 20 September 1839) who served as the captain of H.M.S. Victory in the Royal Navy. 

He served at the Battle of Trafalgar and held Lord Nelson at the end of that battle where Nelson died in his arms. Though he never visited this island community, it bears his name today. 

A ten-minute drive from downtown Port Hardy, in the neighbouring community of Fort Rupert, is the village of Tsax̱is. This is the current home of the Kwagu’ł First Nation. Here lies elaborated totem poles and the big house; a venue where First Nations ceremonies take place, such as the potlatch. 

The potlatch is a First Nations constitution that determines our politics, our government, our education, our medicine, our territory, and our jurisdiction. Potlatch is a complex event with several ceremonies, which are still practiced in buildings like the Tsax̱is big house.

On the front porch of the village of Tsax̱is is Tayaguł (Storey’s Beach). Along this waterfront were several villages, which are depicted on map (pictured below) by Mervyn Child, a Kwagu’ł artist. 

Across the way and middle of K’ak’a (Beaver Harbour) are Atłanudzi (Cattle Island), Ḵ’ut’sa̱dze (Peel Island), Ḵ’a̱msa̱x̱tłe (Shell Island), and Uxwiwe’ (Deer Island). Once the words are broken down and translated; the names of these islands are unique to their environment, as they’re part of a story that belongs to the Kwagu’ł.

Where: Port Hardy, British Columbia. 50°43'27"N, 127°29'52"W