Showing posts with label paleontology. Show all posts
Showing posts with label paleontology. Show all posts

Monday, 30 January 2023

CANADA'S SMILODON

This fierce predator with the luxurious coat is Smilodon fatalis — a compact but robust killer that weighed in around 160 to 280 kg and was 1.5 - 2.2 metres long.

Smilodon is a genus of the extinct machairodont subfamily of the felids. It is one of the most famous prehistoric mammals and the best known saber-toothed cat. Although commonly known as the saber-toothed tiger, it was not closely related to the tiger or other modern cats.

Up until a few years ago, all the great fossil specimens of this apex predator were found south of us in the United States. That was until some interesting bones from Medicine Hat, Alberta got a second look.

A few years ago, a fossil specimen caught the eye of researcher Ashley Reynolds as she was rummaging through the collections at the Royal Ontario Museum in Toronto. 

Back in the 1960s,  University of Toronto palaeontologist C.S. Churcher and his team had collected and donated more than 1,200 specimens from their many field seasons scouring the bluffs of the South Saskatchewan River near Medicine Hat, Alberta.

Churcher is a delightful storyteller and a palaeontologist with a keen eye. I had the very great pleasure of listening to many of his talks out at the University of British Columbia and a few Vancouver Paleontological Society meetings in the mid-2000s. 

"Rufus" was a thoroughly charming storyteller and shared many of his adventures from the field. 

He moved out to the West Coast for his retirement, first to Gabriola Island then to Victoria, but his keen love of the science kept him giving talks to enthralled listeners keen to hear about his survey of the Dakhleh Oasis in the Western Desert of Egypt, geomorphology, stratigraphy, recent biology, Pleistocene and Holocene lithic cultures, insights learned from Neolithic Islamic pottery to Roman settlements.

The specimens he had collected had been roughly sorted but never examined in detail. Reynolds, who was researching the growth patterns and life histories of extinct cats saw a familiar-looking bone from an ancient cat's right front paw. That tiny paw bone had reached through time and was positively identified as Canada's first Smilodon.

These Apex Predators used their exceptionally long upper canine teeth to hunt large mammals. 

Isotopes preserved in the bones of S. fatalis in the La Brea Tar Pits in California tell us that they liked to dine on bison (Bison antiquus) and camels (Camelops) along with deer and tapirs. Smilodon is thought to have killed its prey by holding it still with its forelimbs and biting it. And that was quite the bite!

Their razor-sharp incisors were arranged in an arch. Once they bit down, the teeth would hold their prey still and stabilize it while the canine bite was delivered — and what a bite that was. They could open their mouths a full 120 degrees.

Smilodon died out at the same time that most North and South American megafauna disappeared, about 10,000 years ago. Its reliance on large animals has been proposed as the cause of its extinction, along with climate change and competition with other species. 

Friday, 27 January 2023

LOWER LIAS LYTOCERAS

A superbly prepped and extremely rare Lytoceras (Suess, 1865) ammonite found as a green ammonite nodule by Matt Cape in the Lower Lias of Dorset. 

Lytoceras are rare in the Lower Lias of Dorset — apart from the Belemnite Stone horizon — so much so that Paul Davis, whose skilled prep work you see here, initially thought it might be a Becheiceras hidden within the large, lumpy nodule. 

One of the reasons these lovelies are rarely found from here is that they are a Mediterranean Tethyian genus. The fossil fauna we find in the United Kingdom are dominated by Boreal Tethyian genera. 

We do find Lytoceras sp. in the Luridum subzone of the Pliensbachian showing that there was an influx of species from the Mediterranean realm during this time. This is the first occurrence of a Lytoceras that he has ever seen in a green nodule and Paul's seen quite a few. 

This absolutely cracking specimen was found and is in the collections of the awesome Matt Cape. Matt recognized that whatever was hidden in the nodule would take skilled and careful preparation using air scribes. Indeed it did. It took more than five hours of time and skill to unveil the lovely museum-worthy specimen you see here. 

We find Lytoceras in more than 1,000 outcrops around the globe ranging from the Jurassic through to the Cretaceous, some 189.6 to 109.00 million years ago. Once this specimen is fully prepped with the nodule material cut or scraped away, you can see the detailed crinkly growth lines or riblets on the shell and none of the expected coarse ribbing. 

Lytoceras sp. Photo: Craig Chivers
If you imagine running your finger along these, you would be tracing the work of decades of growth of these cephalopods. 

While we cannot know their actual lifespans, but we can make a healthy guess. 

The nautilus, their closest living cousins live upwards of 20 years — gods be good — and less than three years if conditions are poor.

The flanges, projecting flat ribs or collars, develop at the edge of the mouth border on the animal's mantle as they grow each new chamber. 

Each delicate flange grows over the course of the ammonites life, marking various points in time and life stages as the ammonite grew. There is a large variation within Lytoceras with regards to flanges. They provide both ornamentation and strength to the shell to protect it from water pressure as they moved into deeper seas.

The concretion prior to prep
This distinctive genus with its evolute shells are found in the Cretaceous marine deposits of: 

Antarctica (5 collections), Austria (19), Colombia (1), the Czech Republic (3), Egypt (2), France (194), Greenland (16), Hungary (25), Italy (11), Madagascar (2), Mexico (1), Morocco (4), Mozambique (1), Poland (2), Portugal (1), Romania (1), the Russian Federation (2), Slovakia (3), South Africa (1), Spain (24), Tanzania (1), Trinidad and Tobago (1), Tunisia (25); and the United States of America (17: Alaska, California, North Carolina, Oregon).

We also find them in Jurassic marine outcrops in:

Austria (15), Canada (9: British Columbia), Chile (6), France (181), Germany (11), Greenland (1), Hungary (189), India (1), Indonesia (1), Iran (1), Italy (50), Japan (14), Kenya (2), Luxembourg (4), Madagascar (2), Mexico (1), Morocco (43), New Zealand (15), Portugal (1), Romania (5), the Russian Federation (1), Slovakia (1), Spain (6), Switzerland (2), Tunisia (11), Turkey (12), Turkmenistan (1), Ukraine (5), the United Kingdom (12), United States (11: Alaska, California) — in at least 977 known collections. 

References:

Sepkoski, Jack (2002). "A compendium of fossil marine animal genera (Cephalopoda entry)". Bulletins of American Paleontology. 363: 1–560. Archived from the original on 2008-05-07. Retrieved 2017-10-18.

Paleobiology Database - Lytoceras. 2017-10-19.

Systematic descriptions, Mesozoic Ammonoidea, by W.J Arkell, Bernhard Kummel, and C.W. Wright. 1957. Treatise on Invertebrate Paleontology, Part L. Geological Society of America and University of Kansas press.

Thursday, 26 January 2023

HORNBY ISLAND FOSSILS

Diplomoceras sp.
This gorgeous cream and brown big beast of a heteromorph, Diplomoceras (Diplomoceras) sp., (Hyatt, 1900) was found within the 72 million-year-old sediments of the upper Nanaimo Group on the northern Gulf Island of Hornby in southwestern British Columbia, Canada. 

The site is known as Boulder Point to the locals and it has been a popular fossil destination for many years. It is the home of the K'ómoks First Nation, who called the island Ja-dai-aich.

Many of the fossils found at this locality are discovered in concretions rolled smooth by time and tide. The concretions you find on the beach are generally round or oval in shape and are made up of hard, compacted sedimentary rock. 

If you are lucky, when you split these nodules you are rewarded with a fossil hidden within. That is not always the case but the rewards are worth the effort. 

These past few years, many new and wonderful specimens have been unearthed — particularly by members of the Vancouver Island Palaeontological Society. 

And so it was in the first warm days of early summer last year. Three members of the Vancouver Palaeontological Society excavated this 100 cm long fossil specimen over two days in June of 2020. The specimen was not in concretion but rather embedded in the hard sintered shale matrix beneath their feet. It was angled slightly downward towards the shoreline and locked within the rolling shale beds of the island. 

Diplomoceratidae (Spath, 1926) are often referred to as the paperclip ammonites. They are in the family of ammonites included in the order Ammonitida in the Class Cephalopoda and are found within marine offshore to shallow subtidal Cretaceous — 99.7 to 66.043 million-year-old — sediments worldwide. 

I was reading with interest this morning about a new find published by Muramiya and Shigeta in December 2020 of a new heteromorph ammonoid Sormaites teshioensis gen. et sp. nov. (Diplomoceratidae) described from the upper Turonian (Upper Cretaceous) in the Nakagawa area, Hokkaido, northern Japan. This lovely has a shell surface ornamented with simple, straight, sharp-tipped ribs throughout ontogeny, but infrequent flared ribs and constrictions occur on later whorls. Excluding its earliest whorls, its coiling and ornamentation are very similar to Scalarites mihoensis and Sc. densicostatus from the Turonian to Coniacian in Hokkaido and Sakhalin, suggesting that So. teshioensis was probably derived from one of these taxa in the Northwest Pacific during middle to late Turonian.

Much like the long-lived geoducks living in Puget Sound today, studies of Diplomoceras suggest that members of this family could live to be over 200 years old — a good 40-years longer than a geoduck but not nearly as long-lived as the extant bivalve Arctica islandica that reach 405 to 410 years in age. 

Along with this jaw-dropper of a heteromorph, the same group found an Actinosepia, gladius — internal hard body part found in many cephalopods of a Vampyropod. Vampyropods are members of the proposed group Vampyropoda — equivalent to the superorder Octopodiformes — which includes vampire squid and octopus.

The upper Nanaimo Group is a mix of marine sandstone, conglomerate and shale. These are partially exposed in the Campanian to the lower Maastrichtian outcrops at Collishaw Point on the northwest side of Hornby Island.

Along with fossil crabs, shark teeth, bivalves and occasional rare and exquisite saurodontid fish, an ambush predator with very sharp serrated teeth and elongate, torpedo-like body — we also find three heteromorph ammonite families are represented within the massive, dark-grey mudstones interlaminated and interbedded with siltstone and fine-grained sandstone of the upper Campanian (Upper Cretaceous) strata of the Northumberland Formation exposed here: Baculitidae, Diplomoceratidae and Nostoceratidae. 

A variety of species are distinguished within these families, of which only three taxa – Baculites occidentalis (Meek, 1862), Diplomoceras (Diplomoceras) cylindraceum (Defrance, 1816) and Nostoceras (Nostoceras) hornbyense (Whiteaves, 1895), have been studied and reported previously. 

Over the last decade, large new collections by many members of the Vancouver Island Palaeontological Society and palaeontologists working at the Geologic Survey of Canada, along with a renewed look at previous collections have provided new taxonomic and morphometric data for the Hornby Island ammonite fauna. This renewed lens has helped shape our understanding and revamp descriptions of heteromorph taxa. Eleven taxa are recognized, including the new species Exiteloceras (Exiteloceras) densicostatum sp. nov., Nostoceras (Didymoceras?) adrotans sp. nov. and Solenoceras exornatus sp. nov. 

A great variety of shape and form exist within each group. Morphometric analyses by Sandy McLachlan and Jim Haggart of over 700 specimens unveiled the considerable phenotypic plasticity of these ammonites. They exhibit an extraordinarily broad spectrum of variability in their ornamentation and shell dimensions. 

The presence of a vibrant amateur palaeontological community on Vancouver Island made the extent of their work possible. Graham Beard, Doug Carrick, Betty Franklin, Raymond Graham, Joe Haegert, Bob Hunt, Stevi Kittleson, Kurt Morrison and Jean Sibbald are thanked for their correspondence and generosity in contributing many of the exquisite specimens featured in that study. 

These generous individuals, along with many other members of the Vancouver Island Palaeontological Society (VIPS), Vancouver Paleontological Society (VanPS), and British Columbia Paleontological Alliance (BCPA), have contributed a great deal to our knowledge of the West Coast of Canada and her geologic and palaeontological correlations to the rest of the world; notably, Dan Bowen, Rick Ross, John Fam and Pat and Mike Trask, Naomi & Terry Thomas. Their diligence in the collection, preparation and documentation of macrofossils is a reflection of the passion they have for palaeontology and their will to help shape the narrative of Earth history.

Through their efforts, a large population sample of Nostoceras (Nostoceras) hornbyense was made available and provided an excellent case study of a member of the Nostoceratidae. It was through the well-documented collection and examination of a remarkable number of nearly complete, well-preserved specimens that a re-evaluation of diagnostic traits within the genus Nostoceras was made possible. 

The north-east Pacific Nostoceras (Nostoceras) hornbyense Zone and the global Nostoceras (Nostoceras) hyatti Assemblage Zone are regarded as correlative, reinforcing a late Campanian age for the Northumberland Formation. This builds on the earlier work of individuals like Alan McGugan and others. McGugan looked at the Upper Cretaceous (Campanian and Maastrichtian) Foraminifera from the Upper Lambert and Northumberland Formations, Gulf Islands, British Columbia, Canada.

The Maastrichtian Bolivina incrassata fauna (upper part of Upper Lambert Formation) of Hornby Island (northern Comox Basin) is now recognized in the southern Nanaimo Basin on Gabriola and Galiano Islands. The Maastrichtian planktonic index species Globotruncana contusa occurs in the Upper Northumberland Formation of Mayne Island and Globotruncana calcarata (uppermost Campanian) occurs| in the Upper Northumberland Formation of Mayne Island and also in the Upper Lambert Formation at Manning Point on the north shore of Hornby Island (Comox Basin).

Very abundant benthonic and planktonic foraminiferal assemblages from the Upper Campanian Lower Northumberland Formation of Mayne Island enable paleoecological interpretations to be made using the Fisher diversity index, triangular plots of Texturlariina/Rotaliina/Miliolina, calcareous/agglutinated ratios, planktonic/benthonic ratios, generic models, and associated microfossils and megafossils. 

Combined with local geology and stratigraphy a relatively shallow neritic depositional environment is proposed for the Northumberland Formation in agreement with Scott but not Sliter who proposed an Outer shelf/slope environment with depths of 300 m or more.

References & further reading: Sandy M. S. McLachlan & James W. Haggart (2018) Reassessment of the late Campanian (Late Cretaceous) heteromorph ammonite fauna from Hornby Island, British Columbia, with implications for the taxonomy of the Diplomoceratidae and Nostoceratidae, Journal of Systematic Palaeontology, 16:15, 1247-1299, DOI: 10.1080/14772019.2017.1381651

Crickmay, C. H., and Pocock, S. A. J. 1963. Cretaceous of Vancouver, British Columbia. American Association of Petroleum Geologists Bulletin, 47, pp. 1928-1942.

England, T.D.J. and R. N. Hiscott (1991): Upper Nanaimo Group and younger strata, outer Gulf Islands, southwestern British Columbia: in Current Research, Part E; Geological Survey of Canada, Paper 91-1E, p. 117-125.

McGugan, Alan. (2011). Upper Cretaceous (Campanian and Maestrichtian) Foraminifera from the Upper Lambert and Northumberland Formations, Gulf Islands, British Columbia, Canada. Canadian Journal of Earth Sciences. 16. 2263-2274. 10.1139/e79-211. 

Scott, James. (2021). Upper Cretaceous foraminifera of the Haslam, Qualicum, and Trent River formations, Vancouver Island, British Columbia /. 

Sliter, W. & Baker, RA. (1972). Cretaceous bathymetric distribution of benthic foraminifers. Journal of Foraminiferal Research - J FORAMIN RES. 2. 167-183. 10.2113/gsjfr.2.4.167. 

Spath L. F. 1926. A Monograph of the Ammonoidea of the Gault; Part VI. Palaeontographical Society London

Sullivan, Rory (4 November 2020). "Large squid-like creature that looked like a giant paperclip lived for 200 years — 68 million years ago". The Independent. Archived from the original on 4 November 2020.

Urquhart, N. & Williams, C.. (1966). Patterns in Balance of Nature. Biometrics. 22. 206. 10.2307/2528236. 

Yusuke Muramiya and Yasunari Shigeta "Sormaites, a New Heteromorph Ammonoid Genus from the Turonian (Upper Cretaceous) of Hokkaido, Japan," Paleontological Research 25(1), 11-18, (30 December 2020). https://doi.org/10.2517/2020PR016.

Photos: Vancouver Island Palaeontological Society, Courtenay, British Columbia, Naomi and Terry Thomas.

Saturday, 14 January 2023

FOUR TUSKS AND A TRUNK: TETRALOPHODON

Tetralophodon ("four-ridged tooth") is an extinct proboscidean genus belonging to the superfamily Elephantoidea. 

Their fossils have been found from the late Miocene to the Middle Pliocene of Europe, Asia, and Africa, which means many of our ancestors would have had the opportunity to see and hunt them. Lucky for them, these large elephant-like animals preferred fruits and vegetables. 

Like the gomphotheres, to which it was not closely related, Tetralophodon had an impressive four tusks and a trunk. They were big and on size with our modern elephants. You and I would come up to their hip bone on average. They were about 2.58–3.45 m (8.5–11.3 ft) tall at the shoulder and up to 10 tonnes in weight, larger than the size of the present Asian elephant, with a long trunk and incisors ranging up to 2 m (6.6 ft) long. 

Monday, 28 November 2022

BC'S FOSSIL BOUNTY ON TELUS OPTIK TV

Melissa Kay, Fossil Restoration Technician, Dino Lab Inc.
Cue the confetti! BC's Fossil Bounty begins filming Season Two today. For those of you waiting on Season One, it was released this past week. Each of our interviewees are wonderfully engaging and share their stories to much delight.

A huge thank you to everyone for participating and making this show possible. You can look for Season One on TELUS Optik TV or on YouTube. You can also find links to the series on the BC's Fossil Bounty page on Facebook.

Join the Fossil Huntress as we explore the rich fossil bounty of fossil plants, dinosaurs to mighty marine reptiles and the people who unearth them.

Discover British Columbia's violent past — how plate tectonics, volcanoes and glaciers shaped the land and why we find plant fossils along the Kitsilano foreshore and marine fossils beneath False Creek.

Did you know that some female dinosaurs have distinctive bone material that tells us they are just about to give birth or just became new mammas? What are some of the fossils you can find in the Vancouver area and around British Columbia? What makes for environmentally and socially responsible mining? Where IS Waldo?

Dr. Catherine Hickson & Dr. John Clague
Did you know there is a place you can visit where they encourage you to touch the fossils? Yep, Dino Lab is your go-to for the full touch-and-feel dino experience!

How do you get a job prepping dinosaurs or creating larger-than-life murals for museums of our ancient world? You will love this show if you are thinking of becoming a palaeontologist or working with fossils.

​Hear from palaeontologists, geologists, geochemists, science organizations, dinosaur docents, palaeoartists and fossil preparators whose work brings our ancient world to life.

View Season One on TELUS Optik TV or the STORYHIVE and ARCHEA YouTube Channels: https://www.youtube.com/channel/UCUerL9urNX8fHb6nHc_vrBQ

Thursday, 17 November 2022

FOSSIL AMPHIBIANS OF NOVA SCOTIA

Dendrerpeton acadianum, an extinct amphibian
One of the best Canadian fossil finds stems from a random boulder picked up on the beach near the town of Joggins, Nova Scotia. Inside were the bones of a fully articulated skeleton of Dendrerpeton acadianum, a Temnospondyli from the Lower Pennsylvanian. 

These little cuties belong to an extinct genus of amphibians who loved wet, swampy wetlands similar to those we find in the bayous of Mississippi today.   

Dendrerpeton is the primitive sister-group to a clade of Temnospondyls that includes Trimerorhachoids, the Eryopoids — Ervops, Parioxys, & Sclerocephalus — Zatracheids & Dissorophoids. 

This little guy along with finding the first true reptile, Hylonomus lyelli, ancestor of all dinosaurs that would rule the Earth 100 million years later serve as the reference point where animals finally broke free of the water to live on land. This evolutionary milestone recorded at Joggins remains pivotal to understanding the origins of all vertebrate life on land, including our own species. 

Joggins records life in a once a wet, swampy wetland
Sir Charles Lyell, the author of Principles of Geology, first noted the exceptional natural heritage value of the Joggins Fossil Cliffs. He described them as: 

“...the finest example in the world of a natural exposure in a continuous section ten miles long, occurs in the sea cliffs bordering a branch of the Bay of Fundy in Nova Scotia.” 

Indeed, the world-famous Bay of Fundy with its impressive tides, the highest in the world, and stormy nature exposed much of this outcrop. 

Wednesday, 16 November 2022

FOSSILS FROM TURTLE ISLAND'S EASTERN COASTLINE

Hylonomus lyelli, Ancestor of all dinosaurs
The fossil cliffs at Joggins are one of Canada's gems, now a UNESCO World Heritage Site, you can visit to see our ancient world frozen in time. 

Preserved in situ is a snapshot of an entire food chain of a terrestrial Pennsylvanian Coal Age wetland.

The outcrop holds fossil plant life — including impressive standing lycopsid trees that formed the framework of these wetlands — decomposing detritivores in the invertebrates and tetrapods, the predatory carnivores of the day.

The Coal Age trees were fossilized where they stood 300-million-years ago with the remains of the earliest reptiles entombed within. The preservation is quite marvellous with the footprints of creatures who once lived in these wetlands are frozen where they once walked and the dens of amphibians are preserved with remnants of their last meal. 

Nowhere is a record of plant, invertebrate and vertebrate life within now fossilized forests rendered more evocatively. The fossil record at Joggins contains 195+ species of plants, invertebrates and vertebrates. The fossil plant life became the vast coal deposits for which this period of Earth's history is named. 

Recorded in the rock are vertebrate and invertebrate fauna both aquatic and terrestrial. This broad mix of specimens gives us a view into life back in the Pennsylvanian and sets us up to understand their ecological context.
Pennsylvanian Coal Age Ecosystem, 300-Million-Years-Old
The fossil record includes species first defined at Joggins, some of which are found nowhere else on Earth. 

It was here that Sir Charles Lyell, with Sir William Dawson, founder of modern geology, discovered tetrapods — amphibians and reptiles — entombed in the upright fossil trees. 

Later work by Dawson would reveal the first true reptile, Hylonomus lyelli, ancestor of all dinosaurs that would rule the Earth 100 million years later. 

This tiny reptile serves as the reference point where animals finally broke free of the water to live on land. This evolutionary milestone recorded at Joggins remains pivotal to understanding the origins of all vertebrate life on land, including our own species. 

Sir Charles Lyell, author of Principles of Geology, first noted the exceptional natural heritage value of the Joggins Fossil Cliffs, calling them “...the finest example in the world of a natural exposure in a continuous section ten miles long, occurs in the sea cliffs bordering a branch of the Bay of Fundy in Nova Scotia.” Indeed, the world-famous Bay of Fundy with its impressive tides, the highest in the world, and stormy nature exposed much of this outcrop. 

Geological accounts of the celebrated coastal section at Joggins first appear in the published literature in 1828–1829, by Americans C.T. Jackson and F. Alger, and by R. Brown and R. Smith, managers for the General Mining Association in the Sydney and Pictou coal fields. Brown and Smith’s account is the first to document the standing fossil trees.

Joggins Fossil Cliffs Map (Click to Enlarge)
Plan Your Joggins Fossil Cliffs Staycation

Joggins Fossil Cliffs is a Canadian gem — and they welcome visitors. They offer hands-on learning and discovery microscope activities in their Fossil Lab.

You can explore interpretive displays in the Joggins Fossil Centre before heading out to the beach and cliffs with an interpreter.

Their guided tours of the fossil site include an educational component that tells you about the geology, ecology, palaeontology and conservation of this very special site. 

Joggins / Chegoggin / Mi'kmaq L'nu

We know this area as Joggins today. In Mi'kmaw, the language spoken in Mi'kma'ki, the territory of the Mi'kmaq L'nu, the area bears another name, Chegoggin, place of fishing weirs.

Booking Your Class Field Trip

If you are a teacher and would like to book a class field trip, contact the Director of Operations via the contact information listed below. They will walk you through Covid safety and discuss how to make your visit educational, memorable and fun.

Know Before You Go

The Bay of Fundy has the highest tides in the world. Beach walks are scheduled according to the tides and run regardless of the weather. Good low tides but raining, the beach walk goes on. Lovely and sunny but with a high tide, the beach walk must wait. So, you will want to dress for it as they will not be cancelled in the event of rain. Should severe weather be a factor, bookings may need to be rescheduled at the discretion of the Joggins staff.

Any questions about booking your school field trip? Feel free to email:  operations@jogginsfossilcliffs.net or call: 1 (902) 251-2727 EXT 222.

References & further reading:

Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/

Image: Hylonomus lyelli, Una ricostruzione di ilonomo by Matteo De Stefano/MUSEThis file was uploaded by MUSE - Science Museum of Trento in cooperation with Wikimedia Italia., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=48143186

Image: Arthropleura: Par Tim Bertelink — Travail personnel, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=48915156

Joggins Map: Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/

Tuesday, 15 November 2022

GULLS ON THE FORESHORE: T'SIK'WI

A gull cries in protest at not getting his share of a meal

Gulls, or colloquially seagulls, are seabirds of the family Laridae in the suborder Lari. 

The Laridae are known from not-yet-published fossil evidence from the Early Oligocene — 30–33 million years ago. 

Three gull-like species were described by Alphonse Milne-Edwards from the early Miocene of Saint-Gérand-le-Puy, France. 

Another fossil gull from the Middle to Late Miocene of Cherry County, Nebraska, USA, has been placed in the prehistoric genus Gaviota

These fossil gulls, along with undescribed Early Oligocene fossils are all tentatively assigned to the modern genus Larus. Among those of them that have been confirmed as gulls, Milne-Edwards' "Larus" elegans and "L." totanoides from the Late Oligocene/Early Miocene of southeast France have since been separated in Laricola.

Gulls are most closely related to the terns in the family Sternidae and only distantly related to auks, skimmers and distantly to waders. 

A historical name for gulls is mews, which is cognate with the German möwe, Danish måge, Swedish mås, Dutch meeuw, Norwegian måke/måse and French mouette. We still see mews blended into the lexicon of some regional dialects.

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest and my family, gulls are known as t̕sik̕wi. Most folk refer to gulls from any number of species as seagulls. This name is a local custom and does not exist in the scientific literature for their official naming. Even so, it is highly probable that it was the name you learned for them growing up.

If you have been to a coastal area nearly everywhere on the planet, you have likely encountered gulls. They are the elegantly plumed but rather noisy bunch on any beach. You will recognize them both by their size and colouring. 

Gulls are typically medium to large birds, usually grey or white, often with black markings on the head or wings. They typically have harsh shrill cries and long, yellow, curved bills. Their webbed feet are perfect for navigating the uneven landscape of the foreshore when they take most of their meals. 

Most gulls are ground-nesting carnivores that take live food or scavenge opportunistically, particularly the Larus species. Live food often includes crab, clams (which they pick up, fly high and drop to crack open), fish and small birds. Gulls have unhinging jaws which allow them to consume large prey which they do with gusto. 

Their preference is to generally live along the bountiful coastal regions where they can find food with relative ease. Some prefer to live more inland and all rarely venture far out to sea, except for the kittiwakes. 

The larger species take up to four years to attain full adult plumage, but two years is typical for small gulls. Large white-headed gulls are typically long-lived birds, with a maximum age of 49 years recorded for the herring gull.

Gulls nest in large, densely packed, noisy colonies. They lay two or three speckled eggs in nests composed of vegetation. The young are precocial, born with dark mottled down and mobile upon hatching. Gulls are resourceful, inquisitive, and intelligent, the larger species in particular, demonstrating complex methods of communication and a highly developed social structure. Many gull colonies display mobbing behaviour, attacking and harassing predators and other intruders. 

Certain species have exhibited tool-use behaviour, such as the herring gull, using pieces of bread as bait with which to catch goldfish. Many species of gulls have learned to coexist successfully with humans and have thrived in human habitats. Others rely on kleptoparasitism to get their food. Gulls have been observed preying on live whales, landing on the whale as it surfaces to peck out pieces of flesh. They are keen, clever and always hungry.

Monday, 14 November 2022

FIRST DINOSAUR FROM VANCOUVER ISLAND

This dapper fellow is a pine needle and horsetail connoisseur. He's a hadrosaurus — a duck-billed dinosaur. They were a very successful group of plant-eaters that thrived throughout western Canada during the late Cretaceous, some 70 to 84 million years ago.

Hadrosaurs lived as part of a herd, dining on pine needles, horsetails, twigs and flowering plants.

Hadrosaurs are ornithischians — an extinct clade of mainly herbivorous dinosaurs characterized by a pelvic structure superficially similar to that of birds. They are close relatives and possibly descendants of the earlier iguanodontid dinosaurs. 

They had slightly webbed, camel-like feet with pads on the bottom for cushioning and perhaps a bit of extra propulsion in water. They were primarily terrestrial but did enjoy feeding on plants near and in shallow water. There had a sturdy build with a stiff tail and robust bone structure. 

At their emergence in the fossil record, they were quite small, roughly three meters long. That's slightly smaller than an American bison. They evolved during the Cretaceous with some of their lineage reaching up to 20 meters or 65 feet.

Hadrosaurs are very rare in British Columbia but a common fossil in our provincial neighbour, Alberta, to the east. Here, along with the rest of the world, they were more abundant than sauropods and a relatively common fossil find. They were common in the Upper Cretaceous of Europe, Asia, and North America.

There are two main groups of Hadrosaurs, crested and non-crested. The bony crest on the top of the head of the hadrosaurs was hollow and attached to the nasal passages. It is thought that the hollow crest was used to make different sounds. These sounds may have signalled distress or been the hadrosaur equivalent of a wolf whistle used to attract mates. Given their size it would have made for quite the trumpeting sound.

This beautiful specimen graces the back galleries of the Courtenay and District Museum on Vancouver Island, British Columbia, Canada. I was very fortunate to have a tour this past summer with the deeply awesome Mike Trask joined by the lovely Lori Vesper. The museum houses an extensive collection of palaeontological and archaeological material found on Vancouver Island, many of which have been donated by the Vancouver Island Palaeontological Society.

Dan Bowen, Chair of the Vancouver Island Palaeontological Society, shared the photo you see here of the first partly articulated dinosaur from Vancouver Island ever found. The vertebrate photo and illustration are from a presentation by Dr. David Evans at the 2018 Paleontological Symposium in Courtenay.  The research efforts of the VIPS run deep in British Columbia and this new very significant find is no exception. A Hadrosauroid dinosaur is a rare occurrence and further evidence of the terrestrial influence in the Upper Cretaceous, Nanaimo Group, Vancouver Island — outcrops that we traditionally thought of as marine from years of collecting well-preserved marine fossil fauna.

CDM 002 / Hadrosauroid Caudal Vertebrae
The fossil bone material was found years ago by Mike Trask of the Vancouver Island Palaeontological Society. You may recall that he was the same fellow who found the Courtenay Elasmosaur on the Puntledge River.

Mike was leading a fossil expedition on the Trent River. While searching through the Upper Cretaceous shales, the group found an articulated mass of bones that looked quite promising.

Given the history of the finds in the area, the bones were thought to be from a marine reptile.

Since that time, we've found a wonderful terrestrial helochelydrid turtle, Naomichelys speciosa, but up to this point, the Trent had been known for its fossil marine fauna, not terrestrial. Efforts were made to excavate more of the specimen, and in all more than 25 associated vertebrae were collected with the help of some 40+ volunteers. Identifying fossil bone is a tricky business. Encased in rock, the caudal vertebrae were thought to be marine reptile in origin. Some of these were put on display in the Courtenay Museum and mislabeled for years as an unidentified plesiosaur.

In 2016, after years of collecting dust and praise in equal measure, the bones were reexamined. They didn't quite match what we'd expect from a marine reptile. Shino Sugimoto, Fossil Preparator, Vertebrate Palaeontology Technician at the Royal Ontario Museum was called in to work her magic — painstakingly prepping out each caudal vertebrae from the block.

Once fully prepped, seemingly unlikely, they turned out to be from a terrestrial hadrosauroid. This is the second confirmed dinosaur from the Upper Cretaceous Nanaimo Group. The first being a theropod from Sucia Island consisting of a partial left thigh bone — the first dinosaur fossil ever found in Washington state.

Dr. David Evans, Temerty Chair in Vertebrate Palaeontology, Department of Natural History, Palaeobiology from the Royal Ontario Museum, confirmed the ID and began working on the partial duck-billed dinosaur skeleton to publish on the find.

Drawing of Trent River Hadrosauroid Caudal Vertebrae
Now fully prepped, the details of this articulated Hadrosauriod caudal vertebrae come to light. We can see the prominent chevron facets indicative of caudal vertebrae with a nice hexagonal centrum shape on its anterior view.

There are well-defined long, raked neural spines that expand distally — up and away from the acoelous centrum. 

Between the successive vertebrae, there would likely have been a fibrocartilaginous intervertebral body with a gel-like core —  the nucleus pulposus — which is derived from the embryonic notochord. This is a handy feature in a vertebrate built as sturdily as a hadrosaur. Acoelous vertebrae have evolved to be especially well-suited to receive and distribute compressive forces within the vertebral column.

This fellow has kissing cousins over in the state of New Jersey where this species is the official state fossil. The first of his kind was found by John Estaugh Hopkins in New Jersey back in 1838. Since that time, we've found many hadrosaurs in Alberta, particularly the Edmontosuaurs, another member of the subfamily Hadrosaurine.

In 1978, Princeton University found fifteen juvenile hadrosaurs, Maiasaura ("good mother lizard") on a paleontological expedition to the Upper Cretaceous, Two Medicine Formation of Teton County in western Montana. 

Their initial finds of several small skeletons had them on the hunt for potential nests — and they found them complete with wee baby hatchlings!

Photo One: Fossil Huntress / Heidi Henderson, VIPS

Photo Two / Sketch Three: Danielle Dufault, Palaeo-Scientific Ilustrator, Research Assistant at the Royal Ontario Museum, Host of Animalogic. 

The vertebrate photo and illustration were included in a presentation by Dr. David Evans at the 2018 BCPA Paleontological Symposium in Courtenay, British Columbia, Canada.

Photo Four: Illustration by the talented Greer Stothers, Illustrator & Natural Science-Enthusiast.

Saturday, 12 November 2022

FOSSILS OF THE LONDON CLAY

Birds, Snakes & Mammals, London Clay
Birds, mammals, snakes and crocodiles — these do not immediately spring to mind when you think of marine deposits — but these are some of the wonderful fossil specimens that make the London Clay so interesting to collect from.

The London Clay Formation is a marine geological formation of Ypresian (early Eocene Epoch, c. 56–49 Ma) age which outcrops in the southeast of England. 

The exposures are well-known for their variety of fossil fauna. The fossils from the lower Eocene sections tell us about a moderately warm, tropical to subtropical climate.

It was with the greatest pleasure that I came across some of the wonderful fossil specimens found by Martin Rayner and his father over the better part of 40-years worth of dedicated collecting. These excellent examples of the London Clay fauna hail from Sheppey, Seasalter and Tankerton. 

You may recall that Martin is a co-author of London Clay Fossils of Kent and Essex.  The book is a collectors' guide to the fossil animals and plants of the London Clay from river and coastal exposures in Kent and Essex. It is known locally as the Fossil Bible.

This superb book is published by the Medway Fossil and Mineral Society and was written by four of the Society members, David Rayner, Tony Mitchell, Martin Rayner and Fred Clouter. 

It the essential field guide for use by both beginners and the more experienced — and likely the definitive work on the subject for many years to come. 

The book includes when to collect, equipment, cleaning, preparation and preservation of specimens, sieving, storage and cataloguing, geology and a list of fourteen collecting sites  — six with site location maps, access details and collecting techniques.

There is a hugely useful identification section and comprehensive terminology for the invertebrates, vertebrates and plants of the London Clay. Here you'll find all of the yummy foraminifera, bryozoa, worms, trace fossils, corals, barnacles, lobsters, stomatopods, crabs, insects, brachiopods, bivalves, scaphopods, gastropods, nautili, coleoids, crinoids, echinoids and starfish. Also included are the sharks, rays, chimaera, bony fish, otoliths, turtles, snakes, crocodiles, birds, mammals and plant material.

If you fancy picking up a copy, here is the UKGE link: https://www.ukge.com/en-ie/London-Clay-Fossils-of-Kent-and-Essex__p-3291.aspx

Photo One: Martin Rayner: Snake, Bird and Mammal finds from the London Clay, mostly from Sheppey and Seasalter, UK

Photo Two: Martin Rayner: A rare skull from the remains of the sea snake Palaeophis toliapicus.  

Friday, 11 November 2022

TARANTULAS AND AMMONOIDS OF NEVADA

Hiking the hills of Nevada looking for David Taylor's faunal succession based on ammonoids established for the Late Hettangian to Early Sinemurian interval in the Western Cordillera.

The land here is free of trees with low only low groupings of gnarly scrub to work through to get to the bedrock below. 

Our work here was in October, which is a time when Nevada is cool in the mornings and evenings, but still surprisingly hot during the day. It is also tarantula breeding season and my first glimpse of these spiders in volume at field sites. 

It was a tremendous experience to walk through time and compare the fossil assemblages here with our own in the Canadian Rockies. Here the faunal sequence consists of one zone and four informal biochronologic units or assemblages and was outlined by Taylor as follows: Paracaloceras morganense assemblage, Badouxia oregonensis assemblage, Canadensis Zone, Metophioceras trigonatum assemblage and Coroniceras involutum. They matched up to specimens we collected over three field seasons to similar faunal outcrops of Late Hettangian to Early Sinemurian of the Last Creek and Tyaughton area of the Canadian Rockies.

The succession also correlates with the interval delineated by the Northwest European Angulata Zone through the Lyra Subzone. Two new genera (Guexiceras and Tipperoceras) are described along with 23 new species. 

The phylogenetic relationships of the earliest Jurassic ammonite superfamilies indicate that it is useful to include under the Psiloceratida, the Psilocerataceae and their derivatives including the Lytocerataceae

The Arietitaceae were derived from Hettangian Lytocerataceans. There is still much work to be done to work out the finer points of comparison between British Columbia's Triassic fauna and those that lived and died in what is now Nevada, USA, but enjoyable work it it.

Thursday, 10 November 2022

AMMONOIDS, LIMESTONE AND SALT: HALLSTATT

Hallstatt Salt Mines, Austria / Permian Salt Diapir
The Hallstatt Limestone is the world's richest Triassic ammonite unit, yielding specimens of more than 500 ammonite species.

Along with diversified cephalopod fauna  — orthoceratids, nautiloids, ammonoids — we also see gastropods, bivalves, especially the late Triassic pteriid bivalve Halobia (the halobiids), brachiopods, crinoids and a few corals. We also see a lovely selection of microfauna represented. 

For microfauna, we see conodonts, foraminifera, sponge spicules, radiolaria, floating crinoids and holothurian sclerites —  polyp-like, soft-bodied invertebrate echinozoans often referred to as sea cucumbers because of their similarities in size, elongate shape, and tough skin over a soft interior. 

Franz von Hauer’s exhaustive 1846 tome describing Hallstatt ammonites inspired renowned Austrian geologist Eduard Suess’s detailed study of the area’s Mesozoic history. That work was instrumental in Suess being the first person to recognize the former existence of the Tethys Sea, which he named in 1893 after the sister of Oceanus, the Greek god of the ocean. As part of the Northern Limestone Alps, the Dachstein rock mass, or Hoher Dachstein, is one of the large karstic mountains of Austria and the second-highest mountain in the Northern Limestone Alps. It borders Upper Austria and Styria in central Austria and is the highest point in each of those states.

Parts of the massif also lie in the state of Salzburg, leading to the mountain being referred to as the Drei-Länder-Berg or three-state mountain. Seen from the north, the Dachstein massif is dominated by the glaciers with the rocky summits rising beyond them. By contrast, to the south, the mountain drops almost vertically to the valley floor. The karst limestones and dolomites were deposited in our Mesozoic seas. The geology of the Dachstein massif is dominated by the Dachstein-Kalk Formation — the Dachstein limestone — which dates back to the Triassic.

Hallstatt and the Hallstatt Sea, Austria
There were several phases of mountain building in this part of the world pushing the limestone deposits 3,000 metres above current sea level. The rock strata were originally deposited horizontally, then shifted, broken up and reshaped by the erosive forces of ice ages and erosion.

The Hallstatt mine exploits a Permian salt diapir that makes up some of this area’s oldest rock. 

The salt accumulated by evaporation in the newly opened, and hence shallow, Hallstatt-Meliata Ocean. This was one of several small ocean basins that formed in what is now Europe during the late Paleozoic and early Mesozoic when the world’s landmasses were welded together to form the supercontinent Pangea. 

Pangea was shaped like a crescent moon that cradled the famous Tethys Sea. Subduction of Tethyian oceanic crust caused several slivers of continental crust to separate from Pangea, forming new “back-arc basins” (small oceans formed by rifting that is associated with nearby subduction) between the supercontinent and the newly rifted ribbon continents.

The Hallstatt-Meliata Ocean was one such back-arc basin. As it continued to expand and deepen during the Triassic, evaporation ceased and reefs flourished; thick limestone deposits accumulated atop the salt. When the Hallstatt-Meliata Ocean closed in the Late Jurassic, the compression squeezed the low-density salt into a diapir that rose buoyantly, injecting itself into the Triassic limestones above.

The Hallstatt salt diapir and its overlying limestone cap came to rest in their present position in the northern Austrian Alps when they were shoved northward as nappes (thrust sheets) during two separate collision events, one in the Cretaceous and one in the Eocene, that created the modern Alps. It is from the Hallstatt salt diapir that Hallstatt, like so many cities and towns, gets its name.

Deposits of rock salt or halite, the mineral name of sodium chloride with the chemical formula of NaCl, are found and mined around the globe. These deposits mark the dried remains of ancient oceans and seas. Names of rivers, towns and cities in Europe — Salzburg, Halle, Hallstatt, Hallein, La Salle, Moselle — all pay homage to their connection to halite and salt production. The Greek word for salt is hals and the Latin is sal. The Turkish name for salt is Tuz, which we see in the naming of Tuzla, a salt-producing region of northeastern Bosnia-Herzegovina and in the names of towns that dot the coast of Turkey where it meets the Black Sea. Hallstatt with its salt diapir is no exception.

The salt-named town of Hallstatt sits on the shores of the idyllic Hallstätter Sea at the base of the Dachstein massif. Visiting it today, you experience a quaint traditional fishing village built in the typical upper Austrian style. Tourism drives the economy as much as salt as this area of the world is picture-perfect from every angle.

Space is at a minimum in the town. For centuries, every ten years the local cemetery exhumes the bones of those buried there and moves them to an ossuary to make room for new burials. The Hallstatt Ossuary is called Karner, Charnel House, or simply Beinhaus (Bone House). Karners are places of secondary burials. They were once common in the Eastern Alps, but that custom has largely disappeared.

Hallstatt Beinhaus Ossuary, Hallstatt, Austria
A collection of over 700 elaborately decorated skulls rest inside the ossuary. They are lined up on rows of wooden shelves that grace the walls of the chapel. Another 500 undecorated skulls, bare and without any kind of adornment, are stacked in the corners.

Each is inscribed and attached to a record with the deceased's name, profession and date of death. The Bone House is located in a chapel in the basement of the Church of Saint Michael. The church dates from the 12th century CE. 

Decorating the skulls was traditionally the job of the local gravedigger and an honour granted to very few. At the family's request, garlands of flowers were painted on the skulls of deceased as decorative crowns if they were female. The skulls of men and boys were painted wreaths of oak or ivy.

Every building in Hallstatt looks out over the Hallstätter Sea. This beautiful mountain lake considered one of the finest of Austria's Salzkammergut region. It lies at the northern foot of the Dachstein mountain range, sitting eight-and-a-half kilometres long and two kilometres wide. The shoreline is dotted by the villages of  Obertraun, Steeg, and Hallstatt.

The region is habitat to a variety of diverse flora and fauna, including many rare species such as native orchids, in the wetlands and moors in the south and north.

Linked by road to the cities of Salzburg and Graz, Hallstatt and its lake were declared one of the World Heritage sites in Austria in 1997 and included in the Hallstatt-Dachstein Salzkammergut Alpine UNESCO World Heritage Site. The little market village of Hallstatt takes its name from the local salt mine.

Hallstatt, Salzkammergut region, Austria
The town is a popular tourist destination with its quaint shops and terraced cafes. In the centre of town, the 19th-century Evangelical Church of Hallstatt with its tall, slender spire is a lakeside landmark. You can see it here in the photo on the left.

Above the town are the Hallstatt Salt mines located within the 1,030-meter-tall Salzburg Salt Mountain. They are accessible by cable car or a three-minute journey aboard the funicular railway. There is also a wonderful Subterranean Salt Lake.

In 1734, there was a corpse found here preserved in salt. The fellow became known as the Man in Salt. Though no archaeological analysis was performed at the time — the mummy was respectfully reburied in the Hallstatt cemetery — based on descriptions in the mine records, archaeologists suspect the miner lived during the Iron Age. This Old Father, Senos ph₂tḗr, 'ɸatīr 'father' may have been a local farmer, metal-worker, or both and chatted with his friends and family in Celtic or Proto-Celtic.

Salt mining in the area dates back to the Neolithic period, from the 8th to 5th Centuries BC. This is around the time that Roman legions were withdrawing from Britain and the Goths sacked Rome. In Austria, agricultural settlements were dotting the landscape and the alpine regions were being explored and settled for their easy access to valuable salt, chert and other raw materials.

The salt-rich mountains of Salzkammergut and the upland valley above Hallstatt were attractive for this reason. The area was once home to the Hallstatt culture, an archaeological group linked to Proto-Celtic and early Celtic people of the Early Iron Age in Europe, c.800–450 BC.
Bronze Age vessel with cow and calf

In the 19th century, a burial site was discovered with 2,000 individuals, many of them buried with Bronze Age artefacts of amber and ivory.

It was this find that helped lend the name Hallstatt to this epoch of human history. The Late Iron Age, between around 800 and 400 BC, became known as the Hallstatt Period.

For its rich history, natural beauty and breathtaking mountainous geology, Hallstatt is a truly irresistible corner of the world.

Salzbergstraße 1, 4830 Hallstatt.  https://www.salzwelten.at/en/home/

Photo: Bronze vessel with cow and calf, Hallstatt by Alice Schumacher - Naturhistorisches Museum Wien - A. Kern – K. Kowarik – A. W. Rausch – H. Reschreiter, Salz-Reich. 7000 Jahre Hallstatt, VPA 2 (Wien, 2008) Seite 133 Abbildung 6. Hallstatt Village & Ossuary Photos: P. McClure Photography ca. 2015.

Bernoulli D, Jenkyns HC (1974) Alpine, Mediterranean, and Central Atlantic Mesozoic facies in relation to the early evolution of the Tethys. Soc Econ Paleont Mineral Spec Publ 19:129–160

Bernoulli D, Jenkyns H (2009) Ancient oceans and continental margins of the Alpine-Mediterranean Tethys: deciphering clues from Mesozoic pelagic sediments and ophiolites. Sedimentology 56:149–190

Wednesday, 9 November 2022

TRACKING THROUGH THE TRIASSIC

Grambergia sp. Middle Triassic Ammonoid of  BC, Canada
In the early 1980s, Tim Tozer, Geological Survey of Canada was looking at the spread of marine invertebrate fauna in the Triassic of North America. 

In the western terranes of the Cordillera, marine faunas from southern Alaska and Yukon to Mexico are known from the parts that are obviously allochthonous with regard to the North American plates.

Lower and upper Triassic faunas of these areas, as well as some that are today up to 63 ° North, have the characteristics of the lower palaeo latitudes. 

In the western Cordillera, these faunas of the lower paleo latitudes can be found up to 3,000 km north of their counterparts on the American plate. This indicates a tectonic shift of significant magnitude. There are marine triads on the North American plate over 46 latitudes from California to Ellesmere Island. 

For some periods, two to three different faunal provinces can be distinguished. The differences in faunal species are linked, not surprisingly, to their palaeolatitude. They are called LPL, MPL, HPL (lower, middle, higher palaeolatitude).

Nevada provides the diagnostic features of the lower (LPL); northeastern British Columbia that of the middle (MPL) and Sverdrup Basin, the large igneous province on Axel Heiberg Island and Ellesmere Island, Nunavut, Canada near the rifted margin of the Arctic Ocean, that of the higher palaeolatitude (HPL).

A distinction between the provinces of the middle and the higher palaeo-situations can not be made for the lower Triassic and lower Middle Triassic (anise). However, all three provinces can be seen in the deposits of Ladin, Kam and Nor.

In the early 2000s, as part of a series of joint UBC, VIPS and VanPS fossil field trips (and then Chair of the VanPS), I explored much of the lower faunal outcrops of northeastern British Columbia. It was my first time seeing many of British Columbia's Triassic outcrops. Years later, and fueled by seeing paper after paper correlating the faunal assemblages of BC to those of Nevada, I had the very great pleasure of walking through the Nevada strata with John Fam (VanPS, Vice-Chair), Dan Bowen (VIPS, Chair) and Betty Franklin (VIPS, Goddess of Everything and BCPA, Treasurer) — and witnessing first-hand the correlation between the Nevada fauna and those from the Triassic of British Columbia, Canada.

Triassic ammonoids, West Humboldt Mountains, Nevada, USA
The Nevada faunal assemblages are a lovely match. The quality of preservation at localities like Fossil Hill in the Humboldt Mountains of Nevada, perhaps the most famous and important locality for the Middle Triassic (Anisian/Ladinian) of North America, is truly outstanding.

Aside from sheer beauty and spectacular preservation, the ammonoids and belemnites were tucked in cozily with very well preserved ichthyosaur remains.

Tozer's interest in our marine invert friends was their distribution. How and when did certain species migrate, cluster, evolve — and for those that were prolific, how could their occurrence — and therefore significance — aide in an assessment of plate and terrane movements that would help us to determine paleolatitudinal significance. 

I share a similar interest but not exclusive to our cephalopod fauna. The faunal collection of all of the invertebrates holds appeal.

Middle Triassic (Anisian/Ladinian) Fauna
This broader group held an interest for J.P. Smith who published on the marine fauna in the early 1900s based on his collecting in scree and outcrops of the West Humboldt Mountains, Nevada. He published his first monograph on North American Middle Triassic marine invertebrate fauna in 1914.

N. J. Siberling from the US Geological Survey published on these same Nevada outcrops in 1962. His work included nearly a dozen successive ammonite faunas, many of which were variants on previously described species. Both their works would inform what would become a lifelong piecing together of the Triassic puzzle for Tozer.

If one looks at the fauna and the type of sediment, the paleogeography of the Triassic can be interpreted as follows: a tectonically calm west coast of the North American plate that bordered on an open sea; in the area far from the coast, a series of volcanic archipelagos delivered sediment to the adjacent basins. 

Some were lined or temporarily covered with coral wadding and carbonate banks. Deeper pools were in between. The islands were probably within 30 degrees of the triadic equator. They moved away from the coast up to about 5000 km from the forerunner of the East Pacific Ridge. The geographical situation west of the back was probably similar.

Jurassic and later generations of the crust from near the back have brought some of the islands to the North American plate; some likely to South America; others have drifted west, to Asia. There are indications that New Guinea, New Caledonia and New Zealand were at a northern latitude of 30 ° or more during the Triassic period.

The terranes that now form the western Cordillera were probably welded together and reached the North American plate before the end of the Jurassic period.

Marine Triassic occurs on the North American Plate over a latitudinal spread of 46 degrees, from California to Ellesmere Island. At some intervals of time faunas on the Plate permit the discrimination of two or three provinces with distinctively different coeval faunas. 

The faunal differences are evidently related to paleolatitude and the provinces are designated LPL, MPL, HPL (low, mid, high paleolatitude). Nevada provides the diagnostic characters of the LPL province; northeastern British Columbia the MPL; the Sverdrup Basin the HPL. In the Lower Triassic and early Middle Triassic (Anisian), the distinction between the MPL and HPL provinces cannot be made. All three provinces are recognized in the Ladinian, Carnian and Norian deposits.

Juvavites sp. Geological Survey of Canada. Photo: John Fam
In the western tracts of the Cordillera, the part formed of suspect terranes, apparently allochthonous with respect to the North American Plate, marine faunas are known all the way from southern Alaska and Yukon to Mexico.

Lower and Upper Triassic faunas from these terranes, including some which today are at 63 degrees north, have the characters of the LPL province.

Middle Triassic faunas from the terranes, as presently known, do not contribute significant data. In the terranes of the Western Cordillera, LPL faunas were now up to 3,000 km north of their counterparts on the American Plate. Through the fossil fauna assemblages, we can see this level of tectonic displacement.

Taking into account the faunas and the nature of the rocks, the Triassic paleogeography is interpreted as a tectonically quiet west shore for the North American Plate, bordered by an open sea or ocean; then, well off-shore, a series of volcanic archipelagos shedding sediment into adjacent basins. Some were fringed or intermittently covered by coralline shoals and carbonate banks. Deeper basins were in between. The islands probably were within 30 degrees of the Triassic equator and extended offshore for about 5000 km, to the spreading ridge directly ancestral to the East Pacific Rise. The geography west of the spreading ridge was probably comparable.

Jurassic and later generation of crust at the ridge had driven some of the islands into the North American Plate; some probably to South America; others have gone west to Asia. Evidence is given that northern New Guinea, New Caledonia and New Zealand may have been at a north latitude of 30 degrees or more in the Triassic. The terranes now forming the Western Cordillera had probably amalgamated, and reached the North American Plate, before the end of the Jurassic.

At the end of the Rhaetian (part of the Triassic period), most of the ammonites had died out. These are the lovely coiled molluscs you often see in museums and gift shops that sell fossils. They are a particular favourite of mine and they are both beautiful and useful to tell us much about deep time. The Hettangian, a rather poorly understood 3 million year time interval followed the Triassic-Jurassic mass extinction event.

During the Hettangian, the new or  Neoammonites developed quite quickly. Within a million years, a fairly large, diverse selection of genera and species had risen to fill the void. The gap created by the Triassic-Jurassic extinction event was re-filled and our ability to "read the rocks' to understand their continued movement through tectonic plate shifting recommenced.

Alsatites proaries, Hettangian Ammonite
It is during the Hettangian that the smooth shelled ammonite genus Psiloceras first appears. They span the time between 201.3 ± 0.2 Ma and 199.3 ± 0.3 Ma (million years ago). For my European friends, the Hettangian is the time span in which the marine limestone, shales and clay Lias of western Europe were deposited.

This Hettangian ammonite, Alsatites proaries, is a lovely example of the cephalopods cruising our ancient oceans at that time. Alsatites is an extinct genus of cephalopod belonging to the Ammonite subclass. They lived during the Early Jurassic, Hettangian till the Sinemurian and are generally extremely evolute, many whorled with a broad keel. Or, as described by one of my very young friends, he looks like a coiled snake you make in pottery class.

The Hettangian is an interesting little period of our history. It spans the time between 201.3 ± 0.2 Ma and 199.3 ± 0.3 Ma (million years ago). For my European friends, the Hettangian is the time in which the marine limestone, shales and clay Lias of western Europe were deposited. In British Columbia, Canada, we see the most diverse middle and late Hettangian (Early Jurassic) ammonite assemblages in the Queen Charlotte Islands (Haida Gwaii), an archipelago about 50 km off British Columbia's northern Pacific coast. In total, 53 ammonite taxa are described of which Paradasyceras carteri, Franziceras kennecottense, Pleuroacanthites charlottensis, Ectocentrites pacificus and Curviceras haidae are new.

In general, North American Early Jurassic ammonites are of Tethyan affinity or endemic to the eastern Pacific. For this reason, a separate zonation for the Hettangian and Sinemurian of the Western Cordillera of North America was established. Taylor et al. (2001), wrote up and published on much of this early research though, at the time, very little Canadian information was included.

Longridge, L. M., et al. “Three New Species of the Hettangian (Early Jurassic) Ammonite Sunrisites from British Columbia, Canada.” Journal of Paleontology, vol. 82, no. 1, 2008, pp. 128–139. JSTOR, www.jstor.org/stable/20144175. Accessed 27 Jan. 2020.

Tozer, ET (Tim): Marine Triassic faunas of North America: Their significance for assessing plate and terrane movements. Geol Rundsch 71, 1077-1104 (1982). https://doi.org/10.1007/BF01821119

Danner, W. (Ted): Limestone resources of southwestern British Columbia. Montana Bur. Mines & Geol., Special publ. 74: 171-185, 1976.

Davis, G., Monger, JWH & Burchfiel, BC: Mesozoic construction of the Cordilleran “collage”, central British Columbia to central California. Pacific Coast Paleography symposium 2, Soc. Economic Paleontologists and Mineralogists, Los Angeles: 1-32, 1978.

Gibson, DW: Triassic rocks of the Rocky Mountain foothills and front ranges of northeastern British Columbia and west-central Alberta. Geol. Surv. Canada Bull. 247, 1975.

Photo of the large belemnite (Atractites sp?) and ammonites (Sunrisites & Badouxia) from the Lower Jurassic (Late Hettangian), Last Creek Formation (Castle Pass member), Taseko Lakes area, British Columbia, Canada in the collection of the deeply awesome John Fam.

Photo: A drawer of Juvavites sp. in the collections of the Geological Survey of Canada. These rarely seen Upper Triassic (Carnian to Norian) ammonoids were collected over many decades by geologists of the Geological Survey of Canada from Northeastern British Columbia. Photo care of the deeply awesome John Fam.

Photo: Grambergia sp. from the Early Anisian (Middle Triassic) ammonoid biostratigraphy of northeastern British Columbia, Canada. Collection of Fossil Huntress.

Photo: Alsatites proaries, Coll. Reiter, Neoammoniten, 30 July 2011, 19:26:10