Tuesday 5 March 2024

MEET FERGUSONITES HENDERSONAE: HETTANGIAN AMMONITE

Fergusonites hendersonae (Longridge, 2008)
Meet Fergusonites hendersonae, a Late Hettangian (Early Jurassic) ammonite from the Taseko Lakes area of British Columbia, Canadian Rockies.

I had the very great honour of having this fellow, a new species of nektonic carnivorous ammonite, named after me by paleontologist Louse Longridge from the University of British Columbia. I'd met Louise as an undergrad and was pleased as punch to hear that she would be continuing the research by Dr. Howard Tipper.

We did several trips over the years up to the Taseko Lake area of the Rockies joined by many wonderful researchers from Vancouver Island Palaeontological Society and Vancouver Paleontological Society, as well as the University of British Columbia. Both Dan Bowen and John Fam were instrumental in planning those expeditions. We endured elevation sickness, rain, snow, grizzly bears and very chilly nights (we were sleeping right next to a glacier at one point) but were rewarded by the enthusiastic crew, helicopter rides (which really cut down the hiking time) excellent specimens and stunningly beautiful country. We were also blessed with excellent access as the area is closed to collecting except with a permit.

Reference: PaleoDB 157367 M. Clapham GSC C-208992, Section A 09, Castle Pass Angulata - Jurassic 1 - Canada, Longridge et al. (2008)

Full reference: L. M. Longridge, P. L. Smith, and H. W. Tipper. 2008. Late Hettangian (Early Jurassic) ammonites from Taseko Lakes, British Columbia, Canada. Palaeontology 51:367-404

PaleoDB taxon number: 297415; Cephalopoda - Ammonoidea - Juraphyllitidae; Fergusonites hendersonae Longridge et al. 2008 (ammonite); Average measurements (in mm): shell width 9.88, shell diameter 28.2; Age range: 201.6 to 196.5 Ma. Locality info: British Columbia, Canada (51.1° N, 123.0° W: paleo coordinates 22.1° N, 66.1° W)

LOTUS FLOWER FRUIT

Lotus Flower Fruit, Nelumbo
This beauty is the fruit of the lotus, Nelumbo. This specimen was found by Green River Stone (GRS) in early Eocene outcrops of the Fossil Lake Member of the Green River Formation. 

The awesome possums from GRS are based out of North Logan, Utah, USA and have unearthed some world-class specimens. They've found Nelumbo leaves over the years but this is their first fossil specimen of the fruit.

And what a specimen it is! The spectacularly preserved fruit measures 6-1/2" round. Here you can see both the part and counterpart in fine detail. Doug Miller of Green River Stone sent copies to me this past summer and a copy to the deeply awesome Kirk Johnson, resident palaeontologist over at the Smithsonian Institute, to confirm the identification.

There is another spectacular specimen from Fossil Butte National Monument. They shared photos of a Nelumbo just yesterday. Nelumbo is a genus of aquatic plants in the order Proteales found living in freshwater ponds. You'll recognize them as the emblem of India, Vietnam and many wellness centres.

Nelumbo Fruit, Green River Formation
There is residual disagreement over which family the genus should be placed in. Traditional classification systems recognized Nelumbo as part of the Nymphaeaceae, but traditional taxonomists were likely misled by convergent evolution associated with an evolutionary shift from a terrestrial to an aquatic lifestyle. 

In the older classification systems, it was recognized under the biological order Nymphaeales or Nelumbonales. Nelumbo is currently recognized as the only living genus in Nelumbonaceae, one of several distinctive families in the eudicot order of the Proteales. Its closest living relatives, the (Proteaceae and Platanaceae), are shrubs or trees.

Interestingly, these lovelies can thermoregulate, producing heat. Nelumbo uses the alternative oxidase pathway (AOX) to exchange electrons. Instead of using the typical cytochrome complex pathway most plants use to power mitochondria, they instead use their cyanide-resistant alternative. 

This is perhaps to generate a wee bit more scent in their blooms and attract more pollinators. The use of this thermogenic feature would have also allowed thermo-sensitive pollinators to seek out the plants at night and possibly use the cover of darkness to linger and mate.

So they functioned a bit little like a romantic evening meeting spot for lovers and a wee bit like the scent diffuser in your home. This lovely has an old lineage with fossil species in Eurasia and North America going back to the Cretaceous and represented in the Paleogene and Neogene. Photo Two: Doug Miller of Green River Stone Company

Sunday 3 March 2024

LATE HETTANGIAN FOSSIL FAUNA FROM THE TASEKO LAKES: BRITISH COLUMBIA

The late Hettangian ammonite fauna from Taseko Lakes is diverse and relatively well‐preserved. Over three field seasons, thirty-five taxa from the Mineralense and Rursicostatum zones were studied and three new species discovered and named: Fergusonites hendersonae, Eolytoceras constrictum and Pseudaetomoceras victoriense

This material is very important as it greatly expands our understanding of the fauna and ranges of ammonites currently included in the North American regional ammonite zonation. 

I had the very great honour of having the fellow below, Fergusonites hendersonae, a new species of nektonic carnivorous ammonite, named after me by palaeontologist Louse Longridge from the University of British Columbia. 

I'd met Louise as an undergrad and was pleased as punch to hear that she would be continuing the research by Dr. Howard Tipper, the authority on this area of the Chilcotins and Haida Gwaii — which he dearly loved. 

"Tip" was a renowned Jurassic ammonite palaeontologist and an excellent regional mapper who mapped large areas of the Cordillera. He made significant contributions to Jurassic paleobiogeography and taxonomy in collaboration with Dr. Paul Smith, Head of Earth and Ocean Science at the University of British Columbia. 

Tip’s regional mapping within BC has withstood the test of time and for many areas became the regions' base maps for future studies. The scope of Tip’s understanding of Cordilleran geology and Jurassic palaeontology will likely never be matched. He passed away on April 21, 2005. His humour, knowledge and leadership will be sorely missed. 

Fergusonites hendersonae
Before he left us, he shared that knowledge with many of whom who would help to secure his legacy for future generations. We did several trips over the years up to the Taseko Lake area of the Rockies joined by many wonderful researchers from Vancouver Island Palaeontological Society and Vancouver Paleontological Society, as well as the University of British Columbia. 

Both Dan Bowen and John Fam were instrumental in planning those expeditions and each of them benefited greatly from the knowledge of Dr. Howard Tipper. 

If not for Tipper's early work in the region, our shared understanding and much of what was accomplished in his last years and after his passing would not have been possible. 

Over the course of three field seasons, we endured elevation sickness, rain, snow, grizzly bears and very chilly nights  — we were sleeping right next to a glacier at one point — but were rewarded by the enthusiastic crew, helicopter rides — which really cut down the hiking time — excellent specimens including three new species of ammonites, along with a high-spired gastropod and lobster claw that have yet to be written up. This area of the world is wonderful to hike and explore — stunningly beautiful country. We were also blessed with access as the area is closed to all fossil collecting except with a permit.

This fauna understanding helps us to understand the correlations between different areas: (1) the Mineralense and Rursicostatum zones are present in Taseko Lakes and can be readily correlated with contemporaneous strata elsewhere in North America; (2) the Mineralense and Rursicostatum zones of North America are broadly equivalent to the Canadensis Zone and probably the Arcuatum horizon of the South American succession; (3) broad correlations are possible with middle–late Hettangian and earliest Sinemurian taxa in New Zealand; (4) the Mineralense and Rursicostatum zones are broadly equivalent to the circum‐Mediterranean Marmoreum Zone; (5) the Mineralense Zone and the lower to middle portion of the Rursicostatum Zone are probably equivalent to the Complanata Subzone whereas the upper portion of the Rursicostatum Zone may equate to the Depressa Subzone of the north‐west European succession.

Taseko Lake Area, BC
The Taseko Lakes area has yielded the best preserved and most diverse collection of late Hettangian ammonites yet discovered in British Columbia (BC). Early studies of the fauna were undertaken by Frebold (1951, 1967). At that time, eastern Pacific ammonite faunas were poorly understood and species were frequently shoehorned into established north‐west European taxa. 

Since then, knowledge of eastern Pacific Hettangian ammonite faunas has improved considerably. 

Detailed systematic studies have been completed on faunas from localities in other areas of BC, Alberta, Alaska, Oregon, Nevada, Mexico and South America (e.g. Guex 1980, 1995; Imlay 1981; Hillebrandt 1981, 1988, 1990, 1994, 2000a–d; Smith and Tipper 1986; Riccardi et al. 1991; Jakobs and Pálfy 1994; Pálfy et al. 1994, 1999; Taylor 1998; Hall et al. 2000; Taylor and Guex 2002; Hall and Pitaru 2004). 

These studies have demonstrated that Early Jurassic eastern Pacific ammonites had strong Tethyan affinities as well as a high degree of endemism (Guex 1980, 1995; Taylor et al. 1984; Smith et al. 1988; Jakobs et al. 1994; Pálfy et al. 1994). Frebold’s early studies were also hampered because they were based on small collections, which limited understanding of the diversity of the fauna and variation within populations. However, recent mapping has greatly improved our understanding of the geology of Taseko Lakes (Schiarizza et al. 1997; Smith et al. 1998; Umhoefer and Tipper 1998) and encouraged further collecting that has dramatically increased the size of the sample.

A study of the ammonite fauna from Taseko Lakes is of interest for several reasons. The data are important for increasing the precision of the late Hettangian portion of the North American Zonation. 

Owing to the principally Tethyan or endemic nature of Early Jurassic ammonites in the eastern Pacific, a separate zonation for the Hettangian and Sinemurian of the Western Cordillera of North America has been established by Taylor et al. (2001). Except for information available from the early studies by Frebold (1951, 1967), the only Taseko Lakes taxa included in the North American Zonation of Taylor et al. (2001) were species of Angulaticeras studied by Smith and Tipper (2000). 

Since then, Longridge et al. (2006) made significant changes to the zonation of the late Hettangian and early Sinemurian based on a detailed study of the Badouxia fauna from Taseko Lakes (Text‐fig. 2). An additional taxonomic study was recently completed on the late Hettangian ammonite Sunrisites (Longridge et al. 2008) and this information has not yet been included within the zonation. 

Hettangian Zonation
The systematics of the remaining ammonite fauna from Taseko Lakes are presented here. A comprehensive study of this material is important because the exceptional quality and diversity of the fauna provide important data for updating the North American Zonation, making it more comprehensive and more widely applicable, especially in Canada.

The Taseko Lakes fauna can improve Hettangian correlations within North America as well as between North America and the rest of the world. 

North‐west European ammonite successions (e.g. Dean et al. 1961; Mouterde and Corna 1997; Page 2003) are considered the primary standard for Early Jurassic biochronology (Callomon 1984). 

In north‐west Europe, the turnover from schlotheimiid dominated faunas in the late Hettangian to arietitid dominated faunas in the early Sinemurian was sharp (e.g. Dean et al. 1961; Bloos 1994; Bloos and Page 2002). In other areas, by contrast, these faunas were not so mutually exclusive and the transition was much more gradual. 

This makes correlations between north‐west Europe and other areas difficult (e.g. Bloos 1994; Bloos and Page 2000, 2002). Correlations are further impeded by endemism and provincialism. 

The Taseko Lakes fauna addresses these problems because it contains many taxa that are common throughout the eastern Pacific as well as several cosmopolitan taxa that make intercontinental correlation possible. Correlation between North America and other areas is of particular significance in that the interbedded volcanic and fossiliferous marine rocks in North America permit the calibration of geochronological and biochronological time scales (Pálfy et al. 1999, 2000). 

This correlation between the late Hettangian fauna in the Taseko Lakes area and contemporaneous faunas in other areas of North America, South America, New Zealand, western and eastern Tethys, and north‐west Europe is of particular interest to me — especially the correlation of the faunal sequences of Nevada, USA. 

Reference: PaleoDB 157367 M. Clapham GSC C-208992, Section A 09, Castle Pass Angulata - Jurassic 1 - Canada, Longridge et al. (2008)

L. M. Longridge, P. L. Smith, and H. W. Tipper. 2008. Late Hettangian (Early Jurassic) ammonites from Taseko Lakes, British Columbia, Canada. Palaeontology 51:367-404

PaleoDB taxon number: 297415; Cephalopoda - Ammonoidea - Juraphyllitidae; Fergusonites hendersonae Longridge et al. 2008 (ammonite); Average measurements (in mm): shell width 9.88, shell diameter 28.2; Age range: 201.6 to 196.5 Ma. Locality info: British Columbia, Canada (51.1° N, 123.0° W: paleo coordinates 22.1° N, 66.1° W)

Photo One: Hettangian Ammonites and Gastropods, Taseko Lakes. Photo Two: Fergusonites hendersonae, a Late Hettangian (Early Jurassic) ammonite from the Taseko Lakes area of British Columbia, Canadian Rockies, named by Dr. Louise Longridge after Heidi Henderson, Chair, Vancouver Paleontological Society who collected and subsequently donated many Hettangian specimens from Taseko Lakes to the GSC collections. Holotype. GSC 127423 from the Rursicostatum Zone, Castle Pass section A, level 06, Taseko Lakes.

Map: Localities of sections and isolated outcrops bearing late Hettangian ammonites in the Taseko Lakes map area. Figure Two: Zonation for the Hettangian showing correlation of North American zones with South America, north‐west Europe, western Tethys (circum‐Mediterranean), eastern Tethys and New Zealand. Only approximate correlations are implied. 

Saturday 2 March 2024

GIANT GROUND SLOTH: MASSIVE, EXTINCT VEGANS

In 1788, this magnificent specimen of a Megatherium sloth was sent to the Royal Cabinet of Natural History from the Viceroyalty of Rio de la Plata.

The megatheria were large terrestrial sloths belonging to the group, Xenarthra. These herbivores inhabited large areas of land on the American continent. Their powerful skeleton enabled them to stand on their hind legs to reach leaves high in the trees, a huge advantage given the calories needed to be consumed each day to maintain their large size.

Avocados were one of the food preferences of our dear Giant ground sloths. They ate then pooped them out, spreading the pits far and wide. The next time you enjoy avocado toast, thank this large beastie. One of his ancestors may have had a hand (or butt) in your meal.

In 1788, Bru assembled the skeleton as you see it here. It is exhibited at the Museo Nacional De Ciencias Naturales in Madrid, Spain, in its original configuration for historic value. If you look closely, you'll see it is not anatomically correct. But all good paleontology is teamwork. Based upon the drawings of Juan Bautista Bru, George Cuvier used this specimen to describe the species for the very first time.

LOVE CAN TRAVEL ANYWHERE IN AN INSTANT

Nunatsiarmiut Mother and Child, Baffin Island, Nunavut
Warm light bathes this lovely Nunatsiarmiut mother and child from Baffin Island, Nunavut. 

They speak Inuktitut, the mother tongue of the majority of the Nunatsiarmiut who call Baffin Island home. 

Baffin is the largest island in the Arctic Archipelago in the territory of Nunavut in Canada's far north—the chilliest region of Turtle Island. 

As part of the Qikiqtaaluk Region of Nunavut, Baffin Island is home to a constellation of remote Inuit communities each with a deep cultural connection to the land—Iqaluit, Pond Inlet, Pangnirtung, Clyde River, Arctic Bay, Kimmirut and Nanisivik. 

The ratio of Inuit to non-Inuit here is roughly three to one and perhaps the reason why the Inuktitut language has remained intact and serves as the mother tongue for more than 36,000 residents. Inuktitut has several subdialects—these, along with a myriad of other languages—are spoken across the north.  

If you look at the helpful visual below you begin to get a feel for the diversity of these many tongues. The languages vary by region. There is the Iñupiaq of the Inupiatun/Inupiat; Inuvialuktun of the Inuinnaqtun, Natsilingmiutut, Kivallirmiutut, Aivilingmiutut, Qikiqtaaluk Uannanganii and Siglitun. Kalaallisut is spoken by many Greenlandic peoples though, in northwest Greenland, Inuktun is the language of the Inughuit.

We use the word Inuktitut when referring to a specific dialect and inuktut when referring to all the dialects of Inuktitut and Inuinnaqtun.

Northern Language Map (Click to Enlarge)
Should you travel to the serene glacier-capped wilds and rolling tundra of our far north, you will want to dress for the weather and learn a few of the basics to put your best mukluk shod feet forward. 

The word for hello or welcome in Inuktitut is Atelihai—pronounced ahh-tee-lee-hi. And thank you is nakurmiik, pronounced na-kur-MIIK.  

Perhaps my favourite Inuktitut expression is Naglingniq qaikautigijunnaqtuq maannakautigi, pronounced NAG-ling-niq QAI-kau-ti-gi-jun-naqtuq MAAN-na-KAU-ti-gi. This tongue-twister is well worth the linguistic challenge as it translates to love can travel anywhere in an instant. Indeed it can. 

So much of our Indigenous culture is passed through stories, so language takes on special meaning in that context. It is true for all societies but especially true for the Inuit. Stories help connect the past to the present and future. They teach how to behave in society, engage with the world and how to survive in the environment. They also help to create a sense of belonging. 

You have likely seen or heard the word Eskimo used in older books to refer to the Inuit, Iñupiat, Kalaallit or Yupik. This misnomer is a colonial term derived from the Montagnais or Innu word ayas̆kimewnetter of snowshoes

It is a bit like meeting a whole new group of people who happen to wear shoes and referring to them all as cobblers—not as a nickname, but as a legal term to describe populations from diverse communities disregarding the way each self-refer. 

Inukshuk / Inuksuk Marker Cairn
For those who identify as Inupiaq or Yupik, the preferred term is Inuit meaning people—though some lingering use of the term Eskimo lives on. The Inuit as a group are made up of many smaller groups. 

The Inuit of Greenland self-refer as Kalaallit or Greenlanders when speaking Kalaallisut

The Tunumiit of Tunu (east Greenland), speak Tunumiit oraasiat ("East Greenlandic"); and the Inughuit of north Greenland, speak Inuktun "Polar Eskimo."

The Inupiat of Alaska, or real people, use Yupik as the singular for real person and yuk to simply mean person.

When taken all together, Inuit is used to mean all the peoples in reference to the Inuit, Iñupiat, Kalaallit and Yupik. Inuit is the plural of inuk or person

You likely recognize this word from inuksuk or inukshuk, pronounced ih-nook-suuk — the human-shaped stone cairns built by the Inuit, Iñupiat, Kalaallit, Yupik, and other peoples of the Arctic regions of northern Canada, Greenland, and Alaska—as helpful reference markers for hunters and navigation. 

The word inuksuk means that which acts in the capacity of a human, combining inuk or person and suk, as a human substitute

A World of Confusion

You may be disappointed to learn that our northern friends do not live in igloos. I remember answering the phone as a child and the fellow calling was hoping to speak to my parents about some wonderful new invention perfect for use in an igloo. 

The call came while I was in the kitchen of our family home in Port Hardy. He was disappointed to hear that I was standing in a wooden house with the standard four walls to a room and a handy roof topping it off. 

I also had my own room with Scooby-Doo wallpaper, but he was having nothing of it.

"Well, what about your neighbours? Surely, a few of them live in igloos..." 

It seems that some atlases in circulation at the time, and certainly the one he was looking at, simply blanketed everything north of the 49th parallel in a snowy white. His clearly showed an igloo sitting proudly in the centre of the province.

My cousin Shawn brought one such simplified book back from his elementary school in California. British Columbia had a nice image of a grizzly bear and a wee bit further up, a polar bear grinned smugly. 

British Columbia's beaver population would be sad to know that they did not inhabit the province though there were two chipper beavers with big bright smiles—one in Ontario and another gracing the province of Quebec. Further north, where folk do build igloos, their icy domes were curiously lacking. 

Igloos are used for winter hunting trips much the same way we use tents for camping. The Inuit do not have fifty words for snow—you can thank the ethnographer Franz Boas for that wee fabrication—but within the collective languages of the frozen north there are more than fifty words to describe it. And kisses are not nose-to-nose. To give a tender kiss or kunik to a loved one, you press your nose and upper lip to their forehead or cheek and rub gently. 

Fancy trying a wee bit of Inuktitut yourself? This link will bring you to a great place to start: https://inhabitmedia.com/inuitnipingit/

Inuit Language Map:  By Noahedits - Own work, CC BY-SA 4.0. If you want to the image full size, head to this link: https://commons.wikimedia.org/w/index.php?curid=85587388

THE GREAT BEARS OF CANADA

Look at how this protective mamma bear holds her cub in her arms to give him a bit of a wash. 

Her gentle maternal care is truly touching. This mamma has spent late Autumn to Spring in a cave, having birthed them while still hibernation and staying in the den to feed them on her milk.

Black bear cubs stay with their mamma for the first one to three years of their lives while she protects them and teaches them how to thrive in the wild using their keen sense of smell, hearing, vision and strength. Once they are old enough, they will head off into the forest to live solo until they are ready to mate and start a family of their own. 

Mating is a summer affair with bears socializing shoulder to shoulder with potential mates. Once they have mated, black bears head off on their own again to forage and put on weight for their winter hibernation. If the black bear lives in the northern extent of their range, hibernation lasts longer — they will stay in their dens for seven to eight months longer than their southern counterparts. For those that enjoy the warmer climes in the south, hibernation is shorter. If food is available year-round, the bears do not hibernate at all.

The American black bear, Ursus americanus, is native to North America and found in Canada and the United States. 

They are the most common and widely distributed of the three bear species found in Canada. 

There are roughly 650,000 roaming our forests, swamps and streams — meaning there is a good chance of running into them if you spend any amount of time in the wild. 

Full-grown, these fuzzy monkeys will be able to run 48 kilometres (30 miles)  an hour and smell food up to 32 kilometres (20 miles) away.

With their excellent hearing, black bears usually know you are near well before you realize the same and generally take care to avoid you. Those that come in contact with humans often tend to want to check our garbage and hiking supplies for tasty snacks — hey, a free meal is a free meal.    

In British Columbia, we share our province with nearly half of all black bears and grizzly bears that reside in Canada. The 120,000 - 150,000 black bears who live in the province keep our Conservation Officers busy. They account for 14,000 - 25,000 of the calls the service receives each year. Most of those calls centre around their curiosity for the tasty smells emanating from our garbage. They are omnivores with vegetation making up 80-85% of their diet, but they are flexible around that — berries and seeds, salmon or Doritos — bears eat it all. 

And, as with all wild animals, diet is regional. In Labrador, the local black bear population lives mostly on caribou, rodents and voles. In the Pacific Northwest, salmon and other fish form a large part of the protein in their diet versus the bees, yellow jackets and honey others prefer. The braver of their number have been known to hunt elk, deer and moose calves — and a few showy bears have taken on adults of these large mammals. 

Bears hold a special place within our culture and in First Nation mythology in particular — celebrated in art, dance and song. In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest, the word for black bear is t̕ła'yimother is a̱bas and łaxwa̱lap̓a means to love each other

Kermode or Spirit Bear, Ursus americanus kermodei
From the photos here you can see that black bears are not always black —  ranging in colour from cinnamon to brown, tan, blonde, red — and even white. 

The Kermode or Spirit Bear, Ursus americanus kermodei, a subspecies of black bear found only in British Columbia — and our official provincial mammal — is a distinctive creamy white. 

They are not albinos, their colouring stems from a recessive mutant gene — meaning that if they receive two copies it triggers a single, nonsynonymous nucleotide substitution that halts all melanin production. Well, not all. They have pigmented eyes and skin but no colour in their fur. The white colour is an advantage when you are hunting salmon by day. Salmon will shy away from their black cousins knowing their intention is to enjoy them as a tasty snack. 

Spirit Bears live in the Great Bear Rainforest on British Columbia's north and central coast alongside the Kitasoo/Xai’xais First Nation who call the Kermode moskgm’ol or white bear.

The Kitasoo/Xai’xais have a legend that tells of Goo-wee, Raven making one in every ten black bears white to remind us of the time glaciers blanketed the land then slowly retreated — their thaw giving rise to the bounty we harvest today.  

Black bears of any colour are a wee bit smaller than their brown bear or grizzly bear cousins, with males weighing in at 45 to 400 kilograms (100 to 900 pounds) and females ranging from 38 to 225 kilograms (85 to 500 pounds). 

Small by relative standards but still very large animals. And they are long-lived or at least can be. Bears in captivity can live up to 30 years but those who dwell in our forests tend to live half as long or less from a mixture of local hazards and humans. 

Reference: Wild Safe BC: https://wildsafebc.com/species/black-bear/


Wednesday 28 February 2024

FOLKSTONE GAULT CLAY AMMONITES

This lovely wee 2.6 cm ammonite is Anahoplites planns from the Cretaceous Folkstone Gault Clay, county of Kent, southeast England. Joining him on this bit of matrix is a 3.2 cm section of Hamites sp

This matrix you see here is the Gault Clay, known locally as the Blue Slipper. This fine muddy clay was deposited 105-110 million years ago during the Lower Cretaceous (Upper and Middle Albian) in a calm, fairly deep-water continental shelf that covered what is now southern England and northern France.

Lack of brackish or freshwater fossils indicates that the gault was laid down in open marine environments away from estuaries. The maximum depth of the Gault is estimated 40-60m a figure which has been reached by the presence of Borings made by specialist Algal-grazing gastropods and supported by a study made by Khan in 1950 using Foraminifera. Estimates of the surface water temperatures in the Gault are between 20-22°c and 17-19°c on the seafloor. These estimates have been reached by bulk analysis of sediments which probably register the sea surface temperature for calcareous nanofossils.

It is responsible for many of the major landslides around Ventnor and Blackgang the Gault is famous for its diverse fossils, mainly from mainland sites such as Folkestone in Kent.

Folkestone, Kent is the type locality for the Gault clay yielding an abundance of ammonites, the same cannot be said for the Isle of Wight Gault, however, the south-east coast of the island has proved to be fossiliferous in a variety of ammonites, in particular, the Genus Hoplites, Paranahoplites and Beudanticeras.

While the Gault is less fossiliferous here on the island it can still produce lovely marine fossils, mainly ammonites and fish remains from these muddy mid-Cretaceous seas. The Gault clay marine fossils include the ammonites (such as Hoplites, Hamites, Euhoplites, Anahoplites, and Dimorphoplites), belemnites (such as Neohibolites), bivalves (notably Birostrina and Pectinucula), gastropods (including the lovely Anchura), solitary corals, fish remains (including shark teeth), scattered crinoid remains, and crustaceans (look for the crab Notopocorystes).

Occasional fragments of fossil wood may also be found. The lovely ammonite you see here is from the Gault Clays of Folkstone. Not all who name her would split the genus Euhoplites. There’s a reasonable argument for viewing this beauty as a very thick form of E. loricatus with Proeuhoplites being a synonym of Euhoplites

Jack Wonfor shared a wealth of information on the Gault and has many lovely examples of the ammonites found here in his collections. If you wish to know more about the Gault clay a publication by the Palaeontological Association called 'Fossils of the Gault clay' by Andrew S. Gale is available in Dinosaur Isle's gift shop.

There is a very good website maintained by Fred Clouter you can look at for reference. It also contains many handy links to some of the best fossil books on the Gault Clay and Folkstone Fossil Beds. Check it out here: http://www.gaultammonite.co.uk/

Tuesday 27 February 2024

CIBELELLA CORONATA

Cibelella Coronata / Photo: Alexei Molchanov
A spectacular creamy toned specimen of the trilobite Cibelella Coronata striking a very animated pose. 

The Genal spines give this fellow a bit of a starship look as though taking off in flight. 

This beauty is from upper Ordovician deposits along the Neva River at the head of the Gulf of Finland on the Baltic Coast, Saint Petersburg, Russia.


Monday 26 February 2024

FOSSIL FISHAPODS OF NUNAVUT

Qikiqtania wakei, a fishapod & relative to tetrapods
You will likely recall the amazing tetrapodomorpha fossil found on Ellesmere Island in the Canadian Arctic in 2004, Tiktaalik roseae

These were advanced forms transitional between fish and the early labyrinthodonts playfully referred to as fishapods — half-fish, half-tetrapod in appearance and limb morphology. 

Up to that point, the relationship of limbed vertebrates (tetrapods) to lobe-finned fish (sarcopterygians) was well known, but the origin of significant tetrapod features remained obscure for the lack of fossils that document the sequence of evolutionary changes — until Tiktaalik

While Tiktaalik is technically a fish, this fellow is as far from fish-like as you can be and still be a card-carrying member of the group. 

Interestingly, while Neil Shubin and crew were combing the icy tundra for Tiktaalik, another group was trying their luck just a few kilometres away. 

A week before the eureka moment of Tiktaalik's discovery, Tom Stewart and Justin Lemberg unearthed material that we now know to be a relative of Tiktaalik's. 

Meet Qikiqtania wakei, a fishapod and close relative to our dear tetrapods — and cousin to Tiktaalik — who shares features in the flattened triangular skull, shoulders and elbows in the fin. 

Qikiqtania (pronounced kick-kick-TAN-ee-ya)
But, and here’s the amazing part, its upper arm bone (humerus) is specialised for open water swimming, not walking. 

The story gets wilder when we look at Qikiqtania’s position on the evolutionary tree— all the features for this type of swimming are newly evolved, not primitive. 

This means that Qikiqtania secondarily reentered open water habitats from ancestors that had already had some aspect of walking behaviour. 

And, this whole story was playing out 365 million years ago — the transition from water to land was going both ways in the Devonian.

Why is this exciting? You and I descend from those early tetrapods. We share the legacy of their water-to-land transition and the wee bony bits in their wrists and paddles that evolved to become our hands. I know, mindblowing!

Thomas Stewart and Justin Lemberg put in thousands of hours bringing Qikiqtania to life. 

The analysis consisted of a long path of wild events— from a haphazard moment when it was first spotted, a random collection of a block that ended up containing an articulated fin, to a serendipitous discovery three days before Covid lockdowns in March 2020.

Both teams acknowledge the profound debt owed to the individuals, organizations and indigenous communities where they had the privilege to work — Grise Fiord and Resolute Bay— Ellesmere Island in Nunavut, the largest and northernmost territory of Canada. 

Part of that debt is honoured in the name chosen for this new miraculous species. 

Aerial View of Ellesmere Island
The generic name, Qikiqtania (pronounced kick-kick-TAN-ee-ya), is derived from the Inuktitut words Qikiqtaaluk and Qikiqtani which are the traditional place name of the region where the fossil was discovered. 

The specific name, wakei, is in memory of the evolutionary biologist David Wake — colleague, mentor and friend. 

He was a professor of integrative biology and Director and curator of herpetology at the Museum of Vertebrate Zoology at the University of California, Berkeley who passed away in April 2021. 

Wake is known for his work on the biology and evolution of salamanders and vertebrate evolutionary biology. 

If you look at the photo on the left you can imagine visiting these fossil localities in Canada's far north.

Qikiqtania was found on Inuit land and belongs to the community. Thomas Stewart and his colleagues were able to conduct this research because of the generosity and support of individuals in the hamlets of Resolute Bay and Grise Fiord, the Iviq Hunters and Trappers of Grise Fiord, and the Department of Heritage and Culture, Nunavut.

To them, on behalf of the larger scientific community — Nakurmiik. Thank you! 

Here is the link to Tom Stewart's article in The Conversation & paper in Nature that dropped yesterday:

  1. Stewart, Thomas A.; Lemberg, Justin B.; Daly, Ailis; Daeschler, Edward B.; Shubin, Neil H. (2022-07-20). "A new elpistostegalian from the Late Devonian of the Canadian Arctic". Naturedoi:10.1038/s41586-022-04990-wISSN 0028-0836.
  2. Stewart, Thomas. "Meet Qikiqtania, a fossil fish with the good sense to stay in the water while others ventured onto land" The Conversation. Retrieved 2022-07-20.

Image One: An artist’s vision of Qikiqtania enjoying its fully aquatic, free-swimming lifestyle. Alex Boersma, CC BY-ND

Image Two: A new elpistostegalian from the Late Devonian of the Canadian Arctic, T. A. Stewart, J. B. Lemberg, A. Daly, E. B. Daeschler, & N. H. Shubin.

A huge shout out to the deeply awesome Neil Shubin who shared that the paper had been published and offered his insights on what played out behind the scenes!

Friday 23 February 2024

PISTA DE BAILE JURÁSICA

This busy slate grey dinosaur trackway from the Iberian Peninsula looks more like a dance floor than the thoroughfare it is. 

The numerous theropod dinosaur tracks — with a few enormous sauropod tracks thrown in for good measure — cover the entire surface. 
The local soil has a bit of rusty iron ore in it that highlights each print nicely when the soil is blown into the depressions the tracks left. 

The dinosaurs crossed this muddy area en masse sometime back in the Jurassic.

The Iberian Peninsula is the westernmost of the three major southern European peninsulas — the Iberian, Italian, and Balkan. It is bordered on the southeast and east by the Mediterranean Sea, and on the north, west, and southwest by the Atlantic Ocean. The Pyrenees mountains are situated along the northeast edge of the peninsula, where it adjoins the rest of Europe. Its southern tip is very close to the northwest coast of Africa, separated from it by the Strait of Gibraltar and the Mediterranean Sea.

The Iberian Peninsula contains rocks of every geological period from the Ediacaran to the recent, and almost every kind of rock is represented. To date, there are 127 localities of theropod fossil finds ranging from the Callovian-Oxfordian — Middle-Upper Jurassic — to the Maastrichtian (Upper Cretaceous), with most of the localities concentrated in the Kimmeridgian-Tithonian interval and the Barremian and Campanian stages. The stratigraphic distribution is interesting and suggests the existence of ecological and/or taphonomic biases and palaeogeographical events that warrant additional time and attention.

As well as theropods, we also find their plant-eating brethren. This was the part of the world where the last of the hadrosaurs, the duck-billed dinosaurs, lived then disappeared in the Latest Cretaceous K/T extinction event 65.5 million years ago.

The core of the Iberian Peninsula is made up of a Hercynian cratonic block known as the Iberian Massif. On the northeast, this is bounded by the Pyrenean fold belt, and on the southeast, it is bounded by the Baetic System. These twofold chains are part of the Alpine belt. To the west, the peninsula is delimited by the continental boundary formed by the magma-poor opening of the Atlantic Ocean. The Hercynian Foldbelt is mostly buried by Mesozoic and Tertiary cover rocks to the east but nevertheless outcrops through the Sistema Ibérico and the Catalan Mediterranean System. The photo you see here is care of the awesome Pedro Marrecas from Lisbon, Portugal. Hola, Pista de baile jurásica!

Pereda-Suberbiola, Xabier; Canudo, José Ignacio; Company, Julio; Cruzado-Caballero, Penélope; Ruiz-Omenaca, José Ignacio. "Hadrosauroid dinosaurs from the latest Cretaceous of the Iberian Peninsula" Journal of Vertebrate Paleontology 29(3): 946-951, 12 de septiembre de 2009.

Pereda-Suberbiola, Xabier; Canudo, José Ignacio; Cruzado-Caballero, Penélope; Barco, José Luis; López-Martínez, Nieves; Oms, Oriol; Ruíz-Omenaca, José Ignacio. Comptes Rendus Palevol 8(6): 559-572 septiembre de 2009.

Thursday 22 February 2024

KEPPLERITES FROM THE KURSK REGION

This glorious chocolate block contains the creamy grey ammonite Kepplerites gowerianus (Sowerby 1827) with a few invertebrate friends, including two brachiopods: Ivanoviella sp., Zeilleria sp. and the deep brown gastropod Bathrotomaria sp. There is also a wee bit of petrified wood on the backside.

These beauties hail from Jurassic, Lower Callovian outcrops in the Quarry of Kursk Magnetic Anomaly (51.25361,37.66944), Kursk region, Russia. Diameter ammonite 70мм. 

Back in the USSR — in the mid-1980s — during the expansion and development of one of the quarries, an unusual geological formation was found. This area had been part of the seafloor around an ancient island surrounded by Jurassic Seas. 

The outcrops of this geological formation turned out to be very rich in marine fossils. This ammonite block was found there years ago by the deeply awesome Emil Black. Sadly, he has not been able to collect there for some time. In more recent years, the site has been closed to fossil collecting and is in use solely for the processing and extraction of iron ore deposits.

Saturday 17 February 2024

HERMIT CRABS: FLIPPING HOUSES SINCE THE JURASSIC

This little cutie is a hermit crab and he is wearing a temporary home borrowed from one of our mollusc friends. 

His body is a soft, squishy spiral that he eases into the perfect size shell time and time again as he grows. 

His first choice is always the empty shell of a marine snail but will get inventive in a pinch — nuts, wood, serpulid worm tubes, aluminium cans or wee plastic caps. 

They are inventive, polite and patient. 

You see, a hermit crabs' desire for the perfect bit of real estate will have them queueing beside larger shells — shells too large for them — to wait upon a big hermit crab to come along, discard the perfect home and slip into their new curved abode. This is all done in an orderly fashion with the hermit crabs all lined up, biggest to smallest to see who best fits the newly available shell. 

There are over 800 species of hermit crab — decapod crustaceans of the superfamily Paguroidea. Their lineage dates back to the Jurassic, 200 million years ago. Their soft squishy, weakly calcified bodies do not fossilize all that often but when they do the specimens are spectacular. Think of all the species of molluscs these lovelies have had a chance to try on — including ammonites — and all the shells that were never buried in sediment to become fossils because they were harvested as homes.  

On the shores of British Columbia, Canada, the hermit crab I come across most often is the Grainyhand hermit crab, Pagurus granosimanus

These wee fellows have tell-tale orange-brown antennae and olive green legs speckled with blue or white dots. 

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, a shell is known as x̱ala̱'is and gugwis means house on the beach. 

I do not know the Kwak’wala word for a hermit crab, so I will think of these cuties as x̱ala̱'is gugwis — envisioning them finding the perfect sized shell on the surf worn shores of Tsax̱is, Fort Rupert, Vancouver Island. 

Friday 16 February 2024

UPTHRUSTING PLATES: WASHINGTON GEOLOGY

Two hundred million years ago, Washington was two large islands, bits of the continent on the move westward, eventually bumping up against the North American continent and calling it home. The shifting continues, subtly changing the landscape like a breath. We only notice when pockets of resistance manifest as earthquakes, some newsworthy, some all but unnoticed. For now, the more extreme movement has subsided laterally and continues vertically, pushing California towards the North Pole. Hello Baja-BC.

The upthrusting of plates move our mountain ranges skyward – the path of least resistance. And it is this dynamic movement that's created the landscape we see today.

The 3,000 meters of the stratigraphic section of the Chuckanut Formation along Chuckanut Drive span an age range of just a few million years. The lower part is late Paleocene with a radiometric age of around 56 million years. The upper part of the section is early Eocene. The fossils found here lived and died very close to where they are now but in a much warmer, wetter, swampy setting. The exposures of the Chuckanut Formation were once part of a vast river delta; imagine, if you will, the bayou country of the Lower Mississippi. The siltstones, sandstones, mudstones and conglomerates of this formation were laid down during a time of luxuriant plant growth in the subtropical flood plain that covered much of the Pacific Northwest.

This ancient wetland provided ideal conditions to preserve the many trees, shrubs and plants that thrived here giving us a lot of information about climate, temperature, the water cycle and humidity of the region. The Chuckanut flora is made up predominantly of plants whose modern relatives live in tropical areas such as Mexico and Central America. While less abundant, evidence of the animals that called this ancient swamp home are also found here. Rare bird, reptile, and mammal tracks have been immortalized in the outcrops of the Chuckanut Formation.

Sumas Eocene Shorebird Trackway
Tracks of a type of archaic mammal of the Orders Pantodonta or Dinocerata (blunt foot herbivores), footprints from a small shorebird, and tracks from an early equid or webbed bird track give evidence to the vertebrates that inhabited the swamps, lakes and riverways of the Pacific Northwest 50 million years ago.

Fossil mammals and bird trackways from Washington State have caused great excitement over the past few years. Many new trackways have been discovered since the 2009 slides near Sumas. George Mustoe and team collected these important finds, bringing them to the Burke Museum in Washington State to study and make available for display.

The movement of these vertebrates was captured in the soft mud on the banks of an ancient river, one of the only depositional environments favourable for track preservation. The terrestrial paleontological record of Washington State at sites like Chuckanut and Racehorse Creek (U-Pb 53 Ma.) is primarily made up of plant material with some wonderfully enticing mammal, shorebird (seen here) and large Diatryma bird tracks on rare occasions.

Thursday 15 February 2024

DARWIN'S TOXODON

Toxodon is an extinct large grazing mammal. The first Toxodon fossils were discovered by Charles Darwin on his visit to South America as part of his voyage on the HMS Beagle. 

Darwin wondered at the fossil's strange appearance as it seemed to share features with both rodents and rhinos. 

“Toxodon is perhaps one of the strangest animals ever discovered,” wrote Darwin. He first encountered the creature in Uruguay on November 26th, 1834. 

“Having heard of some giant’s bones at a neighbouring farm-house…, I rode there accompanied by my host, and purchased for the value of eighteen pence the head of the Toxodon.”

The beast’s skeleton, once fully assembled, was a baffling mish-mash of traits. It was huge like a rhino, but it had the chiselling incisors of a rodent—its name means “arched tooth”—and the high-placed eyes and nostrils of a manatee or some other aquatic mammal. “How wonderfully are the different orders, at present time so well separated, blended together in different points of the structure of the toxodon!”

Although Toxodon is not related to rodents, in 2015, it was discovered to be distantly related to rhinoceros. 

Wednesday 14 February 2024

NORTH VANCOUVER'S CRETACEOUS CAPILANO RIVER

Cretaceous Plant Material / Three Brothers Formation
Vancouver has a spectacular mix of mountains, forests, lowlands, inlets and rivers all wrapped lovingly by the deep blue of the Salish Sea. 

When we look to the North Shore, the backdrop is made more spectacular by the Coast Mountains with a wee bit of the Cascades tucked in behind.

If you were standing on the top of the Lion's Gate Bridge looking north you would see the Capilano Reservoir is tucked in between the Lions to the west and Mount Seymour to the east on the North Shore. 

The bounty of that reservoir flows directly into your cup. If you look down from the reservoir you see the Capilano River as it makes its way to the sea and enters Burrard Inlet.

The Capilano River on Vancouver's North Shore flows through the Coast Mountains and our coastal rainforest down to the Capilano watershed en route to Burrard Inlet. The headwaters are at the top of Capilano up near Furry Creek. They flow down through the valley, adding in rainwater, snowmelt and many tributaries before flowing into Capilano Lake. The lake in turn flows through Capilano Canyon and feeds into the Capilano River.

Capilano Watershed & Reservoir
Sacred First Nations Land

This area was once the exclusive domain of the Coast Salish First Nations —  xʷmə?kʷəyəm (Musqueam), Skwxwú7mesh (Squamish), and səlilwətaɬ (Tsleil-Waututh) Nations until the early 1800s. 

The Musqueam First Nation are traditional hən̓q̓əmin̓əm̓ speaking people who number a strong and thriving 1,300. Many live today on a wee slip of their traditional territory just south of Marine Drive near the mouth of the Fraser River. 

The Secwepemc or Shuswap First Nations are a collective of 17 bands occupying the south-central part of British Columbia. Their ancestors have lived in the interior of BC, the Secwepemc territories, for at least 10,000 years.

The Coast Salish First Nations have lived in this region for thousands of years — from the mouth of the Columbia River in Oregon to north of Bute Inlet.  

It is to the Squamish Nation that we owe the name of Capilano. In Sḵwx̱wú7mesh snichim or Skwxwú7mesh, their spoken language, Kia'palano/Capilano means beautiful river. Chief Kia'palano (c. 1854-1910) was the Chief of the Squamish Nation from 1895-1910 — known as the Chief of this beautiful river area — Sa7plek.
 
The Cleveland Dam — Capilano River Regional Park

Many things have changed since then, including the Capilano River's path, water levels and sediment deposition. For the salmon who used this path to return home and those who depended on them, life has been forever altered by our hands.

We have Ernest Albert Cleveland to thank for the loss of that salmon but can credit him with much of our drinking water as it is caught and stored by the dam that bears his name. It was his vision to capture the bounty from the watershed and ensure it made its way into our cups and not the sea. 

Both the water and a good deal of sediment from the Capilano would flow into Burrard Inlet if not held back by the 91-metre concrete walls of the Cleveland Dam. While it was not Ernest's intention, his vision and dam had a secondary impact. In moving the mouth of the Capilano River he altered the erosion pattern of the North Shore and unveiled a Cretaceous Plant Fossil outcrop that is part of the Three Brothers Formation.

Capilano River Canyon & Regional Park
Know Before You Go

The fossil site is easily accessible from Vancouver and best visited in the summer months when water levels are low. 

The level of preservation of the fossils is quite good. The state in which they were fossilized, however, was not ideal. They look to have been preserved as debris that gathered in eddies in a stream or delta.

There are Cretaceous fossils found only in the sandstone. You will see exposed shale in the area but it does not contain fossil material. 

Interesting, but again not fossiliferous, are the many granitic and limestone boulders that look to have been brought down by glaciers from as far away as Texada Island. Cretaceous plant material (and modern material) found here include Poplar (cottonwood)  Populus sp. Bigleaf Maple, Acer machphyllum, Alder, Alnus rubra, Buttercup  Ranvuculus sp., Epilobrium, Red cedar, Blackberry and Sword fern.

Capilano Fossil Field Trip:

From downtown Vancouver, drive north through Stanley Park and over the Lion’s Gate Bridge. Take the North Vancouver exit toward the ferries. Turn right onto Taylor Way and then right again at Clyde Avenue. Look for the Park Royal Hotel. Park anywhere along Clyde Avenue.

From Clyde Avenue walk down the path to your left towards the Capilano River. Watch the water level and tread cautiously as it can be slippery if there has been any recent rain. Look for beds of sandstone about 200 meters north of the private bridge and just south of the Highway bridge. The fossil beds are just below the Whytecliff Apartment high rises. Be mindful of high water and slippery rocks.

Visiting the Capilano Watershed and Reservoir:

Visitors can see the reservoir from Cleveland Dam at the north end of Capilano River Regional Park. You can also visit the Capilano River Hatchery, operated below Cleveland Dam since 1971.


Tuesday 13 February 2024

JUVENILE HAMITES SUBROTUNDUS

A tremendously delicate juvenile Hamites subrotundus (J. Sowerby 1814) from Upper Albian outcrops in Mallorca, the largest of the three Balearic Islands in the Mediterranean at more than 3,600 square kilometers. 

Mallorca has been home to various inhabitants for thousands of years. Sitting some 200 kilometers off Spain’s southeastern, it is a idyllic setting for exploring the rich human and geologic history of this part of the world.

The island is made up of dolomite and limestone from a huge expanse of time, the Mesozoic and Cenozoic—170 million to 10 million years ago— and bookended by two parallel mountain chains top and bottom on its southern and northern coasts. 

As you walk the mountain passes northwest to northeast, you stroll across Miocene deposits 20 million to 13 million years ago that speak of the time in our Earth's recent past when part of the African continent collided with Europe. 

It is famous for its limestone mountains and Roman and Moorish remains. As you can see here, it is also home to some rather nice fossils including this specimen of Hamites subrotundus.

While H. subrotundus is generally a Middle Albian species, this specimen was found in the lower part of Upper Albian in the Cristatum zone by José Juárez Ruiz. José had to piece this lovely together from seven fragments. His labour of love was worth the effort. The final piece is sheer perfection and a beautiful specimen approximately 2.5 cm long.

Mallorca and the other Balearic Islands are geologically an extension of the Baetic Cordillera mountain chain of western Andalusia that extends to Murcia and Valencia. 

They are made up of sediments deposited in the Tethys Sea during the Mesozoic.

Exploring the islands, you can collect from deposits from the Triassic, Cretaceous, Jurassic, and Neogene periods. 

The limestone outcrops contain lovely examples of foraminifers—mainly the species Globigerina.

We also see lovely examples of Hamites (Hamites) subrotundus in the Euhoplites loricatus zone; Euhoplites meandrinus subzone from the Middle Albian (Lower Gault) of Folkestone, Kent, UK. 

Photo, preparation and in the collection of the deeply awesome José Juárez Ruiz. Wright C. W. 1996. Treatise on Invertebrate Paleontology (Part L Mollusca 4 Revised) Volume 4: Cretaceous Ammonoidea

Monday 12 February 2024

FOSSILS, LIMESTONE & SALT: HALLSTATT

Hallstatt Salt Mines, Austria / Permian Salt Diapir
The Hallstatt Limestone is the world's richest Triassic ammonite unit, yielding specimens of more than 500 ammonite species.

Along with diversified cephalopod fauna  — orthoceratids, nautiloids, ammonoids — we also see gastropods, bivalves, especially the late Triassic pteriid bivalve Halobia (the halobiids), brachiopods, crinoids and a few corals. We also see a lovely selection of microfauna represented. 

For microfauna, we see conodonts, foraminifera, sponge spicules, radiolaria, floating crinoids and holothurian sclerites —  polyp-like, soft-bodied invertebrate echinozoans often referred to as sea cucumbers because of their similarities in size, elongate shape, and tough skin over a soft interior. 

Franz von Hauer’s exhaustive 1846 tome describing Hallstatt ammonites inspired renowned Austrian geologist Eduard Suess’s detailed study of the area’s Mesozoic history. That work was instrumental in Suess being the first person to recognize the former existence of the Tethys Sea, which he named in 1893 after the sister of Oceanus, the Greek god of the ocean. As part of the Northern Limestone Alps, the Dachstein rock mass, or Hoher Dachstein, is one of the large karstic mountains of Austria and the second-highest mountain in the Northern Limestone Alps. It borders Upper Austria and Styria in central Austria and is the highest point in each of those states.

Parts of the massif also lie in the state of Salzburg, leading to the mountain being referred to as the Drei-Länder-Berg or three-state mountain. Seen from the north, the Dachstein massif is dominated by the glaciers with the rocky summits rising beyond them. By contrast, to the south, the mountain drops almost vertically to the valley floor. The karst limestones and dolomites were deposited in our Mesozoic seas. The geology of the Dachstein massif is dominated by the Dachstein-Kalk Formation — the Dachstein limestone — which dates back to the Triassic.

Hallstatt and the Hallstatt Sea, Austria
There were several phases of mountain building in this part of the world pushing the limestone deposits 3,000 metres above current sea level. The rock strata were originally deposited horizontally, then shifted, broken up and reshaped by the erosive forces of ice ages and erosion.

The Hallstatt mine exploits a Permian salt diapir that makes up some of this area’s oldest rock. 

The salt accumulated by evaporation in the newly opened, and hence shallow, Hallstatt-Meliata Ocean. This was one of several small ocean basins that formed in what is now Europe during the late Paleozoic and early Mesozoic when the world’s landmasses were welded together to form the supercontinent Pangea. 

Pangea was shaped like a crescent moon that cradled the famous Tethys Sea. Subduction of Tethyian oceanic crust caused several slivers of continental crust to separate from Pangea, forming new “back-arc basins” (small oceans formed by rifting that is associated with nearby subduction) between the supercontinent and the newly rifted ribbon continents.

The Hallstatt-Meliata Ocean was one such back-arc basin. As it continued to expand and deepen during the Triassic, evaporation ceased and reefs flourished; thick limestone deposits accumulated atop the salt. When the Hallstatt-Meliata Ocean closed in the Late Jurassic, the compression squeezed the low-density salt into a diapir that rose buoyantly, injecting itself into the Triassic limestones above.

The Hallstatt salt diapir and its overlying limestone cap came to rest in their present position in the northern Austrian Alps when they were shoved northward as nappes (thrust sheets) during two separate collision events, one in the Cretaceous and one in the Eocene, that created the modern Alps. It is from the Hallstatt salt diapir that Hallstatt, like so many cities and towns, gets its name.

Deposits of rock salt or halite, the mineral name of sodium chloride with the chemical formula of NaCl, are found and mined around the globe. These deposits mark the dried remains of ancient oceans and seas. Names of rivers, towns and cities in Europe — Salzburg, Halle, Hallstatt, Hallein, La Salle, Moselle — all pay homage to their connection to halite and salt production. The Greek word for salt is hals and the Latin is sal. The Turkish name for salt is Tuz, which we see in the naming of Tuzla, a salt-producing region of northeastern Bosnia-Herzegovina and in the names of towns that dot the coast of Turkey where it meets the Black Sea. Hallstatt with its salt diapir is no exception.

The salt-named town of Hallstatt sits on the shores of the idyllic Hallstätter Sea at the base of the Dachstein massif. Visiting it today, you experience a quaint traditional fishing village built in the typical upper Austrian style. Tourism drives the economy as much as salt as this area of the world is picture-perfect from every angle.

Space is at a minimum in the town. For centuries, every ten years the local cemetery exhumes the bones of those buried there and moves them to an ossuary to make room for new burials. The Hallstatt Ossuary is called Karner, Charnel House, or simply Beinhaus (Bone House). Karners are places of secondary burials. They were once common in the Eastern Alps, but that custom has largely disappeared.

Hallstatt Beinhaus Ossuary, Hallstatt, Austria
A collection of over 700 elaborately decorated skulls rest inside the ossuary. They are lined up on rows of wooden shelves that grace the walls of the chapel. Another 500 undecorated skulls, bare and without any kind of adornment, are stacked in the corners.

Each is inscribed and attached to a record with the deceased's name, profession and date of death. The Bone House is located in a chapel in the basement of the Church of Saint Michael. The church dates from the 12th century CE. 

Decorating the skulls was traditionally the job of the local gravedigger and an honour granted to very few. At the family's request, garlands of flowers were painted on the skulls of deceased as decorative crowns if they were female. The skulls of men and boys were painted wreaths of oak or ivy.

Every building in Hallstatt looks out over the Hallstätter Sea. This beautiful mountain lake considered one of the finest of Austria's Salzkammergut region. It lies at the northern foot of the Dachstein mountain range, sitting eight-and-a-half kilometres long and two kilometres wide. The shoreline is dotted by the villages of  Obertraun, Steeg, and Hallstatt.

The region is habitat to a variety of diverse flora and fauna, including many rare species such as native orchids, in the wetlands and moors in the south and north.

Linked by road to the cities of Salzburg and Graz, Hallstatt and its lake were declared one of the World Heritage sites in Austria in 1997 and included in the Hallstatt-Dachstein Salzkammergut Alpine UNESCO World Heritage Site. The little market village of Hallstatt takes its name from the local salt mine.

Hallstatt, Salzkammergut region, Austria
The town is a popular tourist destination with its quaint shops and terraced cafes. In the centre of town, the 19th-century Evangelical Church of Hallstatt with its tall, slender spire is a lakeside landmark. You can see it here in the photo on the left.

Above the town are the Hallstatt Salt mines located within the 1,030-meter-tall Salzburg Salt Mountain. They are accessible by cable car or a three-minute journey aboard the funicular railway. There is also a wonderful Subterranean Salt Lake.

In 1734, there was a corpse found here preserved in salt. The fellow became known as the Man in Salt. Though no archaeological analysis was performed at the time — the mummy was respectfully reburied in the Hallstatt cemetery — based on descriptions in the mine records, archaeologists suspect the miner lived during the Iron Age. This Old Father, Senos ph₂tḗr, 'ɸatīr 'father' may have been a local farmer, metal-worker, or both and chatted with his friends and family in Celtic or Proto-Celtic.

Salt mining in the area dates back to the Neolithic period, from the 8th to 5th Centuries BC. This is around the time that Roman legions were withdrawing from Britain and the Goths sacked Rome. In Austria, agricultural settlements were dotting the landscape and the alpine regions were being explored and settled for their easy access to valuable salt, chert and other raw materials.

The salt-rich mountains of Salzkammergut and the upland valley above Hallstatt were attractive for this reason. The area was once home to the Hallstatt culture, an archaeological group linked to Proto-Celtic and early Celtic people of the Early Iron Age in Europe, c.800–450 BC.
Bronze Age vessel with cow and calf

In the 19th century, a burial site was discovered with 2,000 individuals, many of them buried with Bronze Age artefacts of amber and ivory.

It was this find that helped lend the name Hallstatt to this epoch of human history. The Late Iron Age, between around 800 and 400 BC, became known as the Hallstatt Period.

For its rich history, natural beauty and breathtaking mountainous geology, Hallstatt is a truly irresistible corner of the world.

Salzbergstraße 1, 4830 Hallstatt.  https://www.salzwelten.at/en/home/

Photo: Bronze vessel with cow and calf, Hallstatt by Alice Schumacher - Naturhistorisches Museum Wien - A. Kern – K. Kowarik – A. W. Rausch – H. Reschreiter, Salz-Reich. 7000 Jahre Hallstatt, VPA 2 (Wien, 2008) Seite 133 Abbildung 6. Hallstatt Village & Ossuary Photos: P. McClure Photography ca. 2015.

Bernoulli D, Jenkyns HC (1974) Alpine, Mediterranean, and Central Atlantic Mesozoic facies in relation to the early evolution of the Tethys. Soc Econ Paleont Mineral Spec Publ 19:129–160

Bernoulli D, Jenkyns H (2009) Ancient oceans and continental margins of the Alpine-Mediterranean Tethys: deciphering clues from Mesozoic pelagic sediments and ophiolites. Sedimentology 56:149–190