Saturday, 21 December 2019

UPPER TRIASSIC LUNING FORMATION

Exposures of the Upper Triassic (Early Norian, Kerri zone), Luning formation, West Union Canyon, just outside Berlin-Ichthyosaur State Park, Nevada.

The Berlin-Ichthyosaur State Park in central Nevada is a very important locality for the understanding of the Carnian-Norian boundary (CNB) in North America.

Rich ammonoid faunas from this site within the Luning Formation were studied by Silberling (1959) and provided support for the definition of the Schucherti and Macrolobatus zones of the latest Carnian, which are here overlain by well-preserved faunas of the earliest Norian Kerri Zone. Despite its importance, no further investigations have been done at this site during the last 50 years.

Jim Haggart, Mike Orchard and Paul Smith (all local Vancouverites) collaborated on a project that took them down to Nevada to look at the conodonts (Oh, Mike) and ammonoids (Jim's fav); the group then published a paper, "Towards the definition of the Carnian/Norian Boundary: New data on Ammonoids and Conodonts from central Nevada," which you can find in the proceedings of the 21st Canadian Paleontology Conference; by Haggart, J W (ed.); Smith, P L (ed.); Canadian Paleontology Conference Proceedings no. 9, 2011 p. 9-10.

They conducted a bed-by-bed sampling of ammonoids and conodonts in West Union Canyon during October 2010. The eastern side of the canyon provides the best record of the Macrolobatus Zone, which is represented by several beds yielding ammonoids of the Tropites group, together with Anatropites div. sp. Conodont faunas from both these and higher beds are dominated by ornate 'metapolygnthids' that would formerly have been collectively referred to Metapolygnathus primitius, a species long known to straddle the CNB. Within this lower part of the section, they resemble forms that have been separated as Metapolygnathus mersinensis. Slightly higher, forms close to 'Epigondolella' orchardi and a single 'Orchardella' n. sp. occur. This association can be correlated with the latest Carnian in British Columbia.

Higher in the section, the ammonoid fauna shows a sudden change and is dominated by Tropithisbites. Few tens of metres above, but slightly below the first occurrence of Norian ammonoids Guembelites jandianus and Stikinoceras, two new species of conodonts (Gen et sp. nov. A and B) appear that also occur close to the favoured Carnian/Norian boundary at Black Bear Ridge, British Columbia. Stratigraphically higher collections continue to be dominated by forms close to M. mersinensis and 'E.' orchardi.

The best exposure of the Kerri Zone is on the western side of the West Union Canyon. Ammonoids, dominated by Guembelites and Stikinoceras div. sp., have been collected from several fossil-bearing levels. Conodont faunas replicate those of the east section. The collected ammonoids fit perfectly well with the faunas described by Silberling in 1959, but they differ somewhat from coeval faunas of the Tethys and Canada.

The genus Gonionotites, very common in the Tethys and British Columbia, is for the moment unknown in Nevada. More in general, the Upper Carnian faunas are dominated by Tropitidae, while Juvavitidae are lacking.

After years of reading about the correlation between British Columbia and Nevada, I had the very great pleasure of walking through these same sections in October 2019 with members of the Vancouver Paleontological Society and Vancouver Island Palaeontological Society. It was with that same crew that I'd originally explored fossil sites in the Canadian Rockies in the early 2000s. Those early trips led to paper after paper and the exciting revelations that inspired our Nevada adventure.

Friday, 20 December 2019

MIGUASHA BOTHRIOLEPIS CANADENSIS

A stunning replica of Bothriolepis canadensis from Upper Devonian (Frasnian), Escuminac formation, Parc de Miguasha, Baie des Chaleurs, Gaspé, Québec, Canada.

Over the past 170 years, the Late Devonian Miguasha biota from eastern Canada has yielded a diverse aquatic assemblage including 20 species of lower vertebrates (anaspids, osteostra-cans, placoderms, acanthodians, actinopterygians and sarcopterygians), a more limited invertebrate assemblage, and a continental component including plants, scorpions and millipedes.

Originally interpreted as a freshwater lacustrine environment, recent paleontological, taphonomic, sedimentological and geochemical evidence corroborates a brackish estuarine setting. Over 18,000 fish specimens have been recovered showing various modes of fossilization, including uncompressed material and soft-tissue preservation. Most vertebrates are known from numerous, complete, articulated specimens. Exceptionally well-preserved larval and juvenile specimens have been identified for 14 out of the 20 species of fishes, allowing growth studies. Numerous horizons within the Escuminac Formation are now interpreted as either Konservat– or Konzentrat–Lagerstätten.

This replica was purchased at the Musée d'Histoire Naturelle, Miguasha (MHNM) and is in the collection of the deeply awesome (and well-travelled) John Fam.

Great Canadian Lagerstätten 4. The Devonian Miguasha Biota (Québec): UNESCO World Heritage Site and a Time Capsule in the Early History of Vertebrates, Richard Cloutier, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, QC, Canada, G5L 3A1, richard_cloutier@uqar.ca, http://dx.doi.org/10.12789/geocanj.2013.40.008

Wednesday, 18 December 2019

CRINOID FAUNA FROM ANTICOSTI ISLAND

Very proud of Mario Cournoyer for his first article to be published in the journal of paleontology on Ordovician and Silurian Crinoids of Anticosti Island, Quebec, Canada.

The end-Ordovician extinctions had a profound effect on shallow-water benthic communities, including the Crinoidea. A hard-won recovery after the extinctions led (not surprisingly) to macroevolutionary turnover in crinoid faunas. We do not have many of these exposures to study this impactful moment in our evolutionary history and our opportunity to see this transition in Canada is special indeed. Anticosti Island is the most complete Ordovician-Silurian boundary section recording shallow-water habitats.

Both new taxa and changes in Anticosti Island stratigraphic nomenclature are addressed in the paper. New taxa include Becsciecrinus groulxi n. sp., Bucucrinus isotaloi n. sp., Jovacrinus clarki n. sp., Plicodendrocrinus petryki n. sp., Plicodendrocrinus martini n. sp., Thalamocrinus daoustae n. sp., and Lateranicrinus saintlaurenti n. gen. n. sp.

The status of Xenocrinus rubus as a boundary-crossing taxon is confirmed, range extensions of several taxa are documented, and the distribution of crinoids with the revised stratigraphic nomenclature is documented. This publication is a labour of love covering many years of a collaborative effort by Cournoyer and William Ausich. Definitely give it a read:

https://www.cambridge.org/core/journals/journal-of-paleontology/article/new-taxa-and-revised-stratigraphic-distribution-of-the-crinoid-fauna-from-anticosti-island-quebec-canada-late-ordovicianearly-silurian/F92B5EABBF45D4A0D915E5477ACB71CB

Tuesday, 17 December 2019

VOLTERRA ALABASTER

The beautiful walled city of Volterra, an ancient Etruscan town some 45 miles southwest of Florence, is famous for its well-preserved medieval ramparts, museums and archeological sites and atmospheric cobblestone streets.

Since ancient times, Volterra, a key trading center and one of the most important Etruscan towns has been known as the city of alabaster.

The Etruscans mined alabaster in the nearby hills and considered it the stone of the dead. The mineral was used for elaborate funerary urns and caskets that housed the ashes of the departed, prized for its durability, beautiful coloration, natural veining and translucence. When the Romans ascended, alabaster fell out of favour and marble became the preferred sculpting material.

To work alabaster requires an assortment of hand tools, an artistic eye, and a tolerance for vast clouds of dust. An alabastraio begins with a block or chunk of alabaster. If the final product is to be a vase or bowl, the stone is turned on a lathe similar to what is used to make pottery and then shaped with chiselling tools.

Although alabaster and marble may seem similar in appearance when polished, they are very different materials, particularly when it comes to their hardness and mineral content. Alabaster is a fine-grained form of gypsum, a sedimentary rock made from tiny crystals visible only under magnification. The ancient Egyptians preferred alabaster for making their sphinxes or creating burial objects such as cosmetic jars. The purest alabaster is white and a bit translucent; impurities such as iron oxide cause the spidery veins. I like a mix of both, preferably backlit to show the blending of colour.

Alabaster is more graceful in appearance than marble. Marble consists mostly of calcite, formed when limestone underground is changed through extreme pressure or heat. It’s not quite as delicate as alabaster and became the preferred material for master sculptors such as Michelangelo who relied on marble from Carrara for his most famous works.

I had the very great pleasure of travelling to Carrara with Guylaine Rondeau many years ago, making her stop at every single roadcut along the way. More on those wonders later...

Alabaster is the common name applied to a few types of rocks. Translucent and beautiful, alabaster generally includes some calcium in gypsum. Gypsum is a composite of calcium sulphate, a type of sedimentary rock formed millions of years ago in the depths of a shallow sea. Left by time and tide, it evaporated into the creamy (full of lovely chemical impurities) or fully transparent (pure gypsum) stone we see today.

Alabaster is simply beautiful. In the right hands, it can be sculpted to evoke the most wondrous reflections of light and emotion. And it stands the test of time, becoming more beautiful with each passing year... rather like my Auntie Gail. I'm thinking of you as I write this my beautiful one. Happy 70th birthday to my Auntie of Alabaster. xo

Monday, 16 December 2019

PROLYELLICERAS ULRICHI

Prolyelliceras ulrichi (Knechtel, 1947) a fast-moving nektonic carnivore ammonite from Cretaceous lithified, black, carbonaceous limestone outcrops in Peru.

This specimen shows a pathology, a slight deviation to the side of the siphonal of the ammonite. We see Prolyelliceras from the Albian to Middle Albian from five localities in Peru.

Reference: M. M. Knechtel. 1947. Cephalopoda. In: Mesozoic fossils of the Peruvian Andes, Johns Hopkins University Studies in Geology 15:81-139

W. J. Kennedy and H. C. Klinger. 2008. Cretaceous faunas from Zululand and Natal, South Africa. The ammonite subfamily Lyelliceratinae Spath, 1921. African Natural History 4:57-111. The beauty you see here is in the collection of José Juárez Ruiz

Sunday, 15 December 2019

FOSSIL INSECTS IN AMBER

PISTA DE BAILE JURÁSICA

This trackway from the Iberian Peninsula is a busy one! The theropod dinosaur tracks (and a few sauropods, too) cover the entire surface. They must have crossed this muddy area en masse sometime back in the Jurassic.

The Iberian Peninsula is the westernmost of the three major southern European peninsulas — the Iberian, Italian, and Balkan. It is bordered on the southeast and east by the Mediterranean Sea, and on the north, west, and southwest by the Atlantic Ocean. The Pyrenees mountains are situated along the northeast edge of the peninsula, where it adjoins the rest of Europe. Its southern tip is very close to the northwest coast of Africa, separated from it by the Strait of Gibraltar and the Mediterranean Sea.

The Iberian Peninsula contains rocks of every geological period from the Ediacaran to the recent, and almost every kind of rock is represented. To date, there are 127 localities of theropod fossil finds ranging from the Callovian-Oxfordian (Middle-Upper Jurassic) to the Maastrichtian (Upper Cretaceous), with most of the localities concentrated in the Kimmeridgian-Tithonian interval and the Barremian and Campanian stages. The stratigraphic distribution is interesting and suggests the existence of ecological and/or taphonomic biases and palaeogeographical events that warrant additional time and attention.

As well as theropods, we also find their plant-eating brethren. This was the part of the world where the last of the hadrosaurs, the 'duck-billed' dinosaurs, lived then disappeared in the Latest Cretaceous K/T extinction event, 65.5 million years ago.

The core of the Iberian Peninsula consists of a Hercynian cratonic block known as the Iberian Massif. On the northeast, this is bounded by the Pyrenean fold belt, and on the southeast, it is bounded by the Baetic System. These twofold chains are part of the Alpine belt. To the west, the peninsula is delimited by the continental boundary formed by the magma-poor opening of the Atlantic Ocean. The Hercynian Foldbelt is mostly buried by Mesozoic and Tertiary cover rocks to the east but nevertheless outcrops through the Sistema Ibérico and the Catalan Mediterranean System. The photo you see here is care of the awesome Pedro Marrecas from Lisbon, Portugal. Hola, Pista de baile jurásica!

Pereda-Suberbiola, Xabier; Canudo, José Ignacio; Company, Julio; Cruzado-Caballero, Penélope; Ruiz-Omenaca, José Ignacio. "Hadrosauroid dinosaurs from the latest Cretaceous of the Iberian Peninsula" Journal of Vertebrate Paleontology 29(3): 946-951, 12 de septiembre de 2009.

Pereda-Suberbiola, Xabier; Canudo, José Ignacio; Cruzado-Caballero, Penélope; Barco, José Luis; López-Martínez, Nieves; Oms, Oriol; Ruíz-Omenaca, José Ignacio. Comptes Rendus Palevol 8(6): 559-572 septiembre de 2009.

Saturday, 14 December 2019

IDENTIFYING FOSSIL BONE

If you’re wondering if you have Fossil Bone, you’ll want to look for the telltale texture on the surface. It’s best to take the specimen outside & photograph it in natural light.

With fossil bone, you will be able to see the different canals and webbed structure of the bone, sure signs that the object was of biological origin.

As my good friend Mike Boyd notes, without going into the distinction between dermal bone and endochondral bone (which relates to how they form - or ossify), it's worth noting that bones such as the one illustrated here will usually have a layer of smooth (or periosteal) bone on the outer surface and spongy (or trabecular) bone inside.

The distinction can be well seen in the photograph. The partial weathering away of the smooth external bone has resulted in the exposure of the spongy bone interiors. Geographic context is important, so knowing where it was found is very helpful for an ID. Knowing the geologic context of your find can help you to figure out if you've perhaps found a terrestrial or marine fossil. Did you find any other fossils nearby? Can you see pieces of fossil shells or remnants of fossil leaves? Things get tricky with erratics. That's when something has deposited a rock or fossil far from the place it originated. We see this with glaciers. The ice can act like a plow, lifting up and pushing a rock to a new location, then melting away to leave something out of context.

Friday, 13 December 2019

ANCIENT SWAMPS AND SOLAR FLARES

If fossil fuels are made from fossils, are oil, gas and coal made from dead dinosaurs? Well, no, but they are made from fossils. We do not heat our homes or run our cars on dead hadrosaurs. No mighty T-Rex burns up your chimney, instead, for the most part, we burn very humble dead algae. Yep, plants. Really old ones.

I know, right? It sounds much less exciting, but the process by which algae and other plant life soak up the Sun's energy, store it for millions of years, then give it all up for us to burn as fuel is a pretty fantastic tale!

Fossil fuel is a fuel formed by a natural process, the anaerobic decomposition of buried dead organisms who soaked up and stored energy from ancient photosynthesis. Picture ancient trees, algae and peat soaking up the sun, then storing that energy for us to use millions of years later. These organisms and their resulting fossil fuels are millions of years old, sometimes more than 650 million years. That's way back in the day when Earth's inhabitants were mostly viruses, bacteria and some early multi-cellular jelly-like critters.

Fossil fuels consist mainly of dead plants – coal from trees, and natural gas and oil from algae, a diverse group of aquatic photosynthetic eukaryotic organisms I like to think of as pond scum. These deposits are called fossil fuels because, like fossils, they are the remains of plants and animals that lived long ago.

If we could go back far enough, we'd find that our oil, gas, and coal deposits are really remnants of algal pools, peat bogs and ancient muddy swamps. Dead plants and algae accumulate and over time, then pressure turns the mud and dead plants into rock. Geologists call the once-living matter in the rock kerogen. If they haven't been cooked too badly, we call them fossils.

Kerogen is the solid, insoluble organic matter in sedimentary rocks and it is made from a mixture of ancient organic matter. A bit of this tree and that algae all mixed together to form a black, sticky, oily rock. The Earth’s internal heat cooks the kerogen. The hotter it gets, the faster it becomes oil, gas, or coal. If the heat continues after the oil is formed, all the oil turns to gas. The oil and gas then seep through cracks in the rocks. Much of it is lost. We find oil and gas today because some happened to become trapped in porous, sponge-like rock layers capped by non-porous rocks. We tap into these the way you might crack into a bottle of olive oil sealed with wax.

Fossil fuel experts call this arrangement a reservoir and places like Alberta, Iran and Qatar are full of them. A petroleum reservoir or oil and gas reservoir is a subsurface pool of hydrocarbons contained in porous or fractured rock formations. Petroleum reservoirs are broadly classified as conventional and unconventional reservoirs. In the case of conventional reservoirs, the naturally occurring hydrocarbons, such as crude oil or natural gas, are trapped by overlying rock formations with lower permeability. In unconventional reservoirs, the rocks have high porosity and low permeability which keeps the hydrocarbons trapped in place, so these unconventional reservoirs don't need a rock cap.

Coal is an important form of fossil fuel. Much of the early geologic mapping of Canada (and other countries) was done for the sole purpose of mapping the coal seams. You can use it to heat your home, run a coal engine or sell it for cold hard cash. It's a dirty fuel, but for a very long time, most of our industries used it as the sole means of energy. But what is so bad about burning coal and other fossil fuels? Well, many things...

Burning fossil fuels, like oil and coal, releases large amounts of carbon dioxide and other gases into the atmosphere. They get trapped as heat, which we call the greenhouse effect. This plays havoc with global weather patterns and our world does not do so well when that happens. The massive end-Permian extinction event, the worst natural disaster in Earth's history when 90% of all life on Earth died was caused by massive volcanic eruptions that spewed gas and lava, covering the Earth in volcanic dust, then acid rain. Picture Mordor times ten. This wasn't a culling of the herd, this was full-on decimation. I'll spare you the details, but the whole thing ended poorly.

Dirty or no, coal is still pretty cool. It is wild to think that a lump of coal has the same number of atoms in it as the algae or rainforest that formed it. Yep, all the same atoms, just heated and pressurized over time. When you burn a lump of coal, the same number of atoms are released when those atoms dissipate as particles of soot. You may wonder what makes a rock burn. It's not intuitive that it would be possible, and yet there it is. Coal is combustible, meaning it is able to catch fire and burn. Coal is made up mostly from carbon with some hydrogen, sulphur (smells like rotting eggs, stinky pew), oxygen and nitrogen thrown in.

It is just that the long-ago rainforest was far less dense than the coal you hold in your hand today, and so is the soot into which it dissipates once burned. The energy was captured by the algal pool or rainforest by way of photosynthesis, then that same energy is released when the coal is burnt. So the energy captured in gravity and released billions of years later when the intrinsic gravity of the coal is dissipated by burning. It's enough to bend your brain.

The Sun loses mass all the time because of its process of fusion of atomic content and radiating that energy as light. Our ancient rainforests and algal pools on Earth captured some of it. So maybe our energy transformations between the Earth and the Sun could be seen more like ping-pong matches, with energy, as the ball, passing back and forth.

As mass sucks light in (hello, photosynthesis), it becomes denser, and as mass radiates light out (hello, heat from coal), it becomes less dense. Ying, yang and the beat goes on.

Thursday, 12 December 2019

FOSSIL FUELS AND THE EARTH'S MASS

A very bright, beautiful young mind asked the question, "does Earth's mass decrease when we burn fossil fuels? And if it does, is it measurable? Do we know how much of the Earth’s mass has been lost so far?"

Well, Melaina, the Earth’s mass does decrease when fossil fuels are burnt. But not in the sense you were probably imagining, and only to a very, very small degree.

There is no decrease in chemical mass. Burning fossil fuels rearranges atoms into different molecules, in the process releasing energy from chemical bonds, but in the end, the same particles — protons, neutrons, and electrons — remain, so there is no decrease in mass there.

But energy is released, and some of that energy is radiated out into space, escaping from the Earth entirely. Einstein's Theory of Relativity tells us that energy does have mass: E=mc^2, or m=E/c^2. When a chemical bond that stores energy is formed, the resulting molecule has a very tiny bit more mass than the sum of the masses of the atoms from which it was formed, so a net gain. Wait, what?

Again, this is an exceedingly tiny bit. In very rough numbers, worldwide energy consumption is about 160,000 terawatt-hours per year, and about 80% of that comes from fossil fuels. That is about 450,000,000 TJ/year (tera-joules/year). The speed of light is 300,000,000 meter/s; dividing 450,000,000 TJ by (300,000,000 m/s)^2 gives a decrease in mass of 5000 kilograms per year.

That is an exceedingly small fraction — 50 billionths of one percent — of the approximately 10,000,000,000,000 kilograms of fossil fuels consumed per year. And as far as making the Earth lighter, it’s a tenth of a billionth of a billionth of a percent of the Earth’s mass.

Of course, the energy in fossil fuels originally came from the Sun, and in absorbing that sunlight the Earth’s mass increases slightly. I picture the Earth expanding and contracting, taking a deep breath, then exhaling. We don't see this when we look, but it is a great visual for imaging this never-ending give and take process. I'm not sure how we'd measure the small changes to the Earth's net mass on any given day. The mass of the Earth may be determined using Newton's law of gravitation. It is given as the force (F), which is equal to the Gravitational constant multiplied by the mass of the planet and the mass of the object, divided by the square of the radius of the planet.

Newton's insight on the inverse-square property of gravitational force was from an intuition about the motion of the earth and the moon. The mathematical formula for gravitational force is F=GMmr2 F = G Mm r 2 where G is the gravitational constant. I know, Newton’s law could use some curb appeal but it is super useful when understanding what keeps the Earth and other planets in our solar system in orbit around the Sun and why the Moon orbits the Earth. We have Newton to thank for his formulas on the gravitational potential of water when we build hydroelectricity dams. Newton’s ideas work in most but not all scenarios. When things get very, very small, or cosmic, gravity gets weird... and we head on back to Einstein to make sense of it all.

There was a very cool paper published yesterday by King Yan Fong et al. in the journal Nature that looked at heat transferring in a previously unknown way — heat transferred across a vacuum by phonons — tiny, atomic vibrations. The effect joins conduction, convection and radiation as ways for heating to occur — but only across tiny distances. The heat is transferred by phonons — the energy-carrying particles of acoustic waves, taking advantage of the Casimir effect, in which the quantum fluctuations in the space between two objects that are really, really close together result in physical effects not predicted by classical physics. This is another excellent example of the universe not playing by conventional rules when things get small. Weird, but very cool!

But the question was specifically about the mass of the Earth and the burning of fossil fuels, and that process does decrease the mass.

So it is mostly true that the Earth’s mass does not decrease due to fossil fuel burning because the numbers are so low, but not entirely true. The fuel combines with oxygen from the atmosphere to produce carbon dioxide, water vapour, and soot or ash. The carbon dioxide and water vapour go back into the atmosphere along with some of the soot or ash, the rest of which is left as a solid residue. The weight of the carbon dioxide plus the water vapour and soot is exactly the same as the weight of the original fuel plus the weight of the oxygen consumed. In general, the products of any chemical reaction whatsoever weigh the same as the reactants.

There is only one known mechanism by which Earth’s mass decreases to any significant degree: molecules of gas in the upper atmosphere (primarily hydrogen and helium, because they are the lightest) escape from Earth’s gravity at a steady rate due to thermal energy. This is counterbalanced by a steady rain of meteors hitting Earth from outer space (if you ever want to hunt them, fly a helicopter over the frozen arctic, they really stand out), containing mostly rock, water, and nickel-iron. These two processes are happening all the time and will continue at a steady rate unchanged by anything we humans do. So, the net/net is about the same.

So, the answer is that the Earth's mass is variable, subject to both gain and loss due to the accretion of in-falling material (micrometeorites and cosmic dust), and the loss of hydrogen and helium gas, respectively. But, drumroll please, the end result is a net loss of material, roughly 5.5×107 kg (5.4×104 long tons) per year.

The burning of fossil fuels has an impact on that equation, albeit a very small one, but an excellent question to ponder. A thank you and respectful nod to Les Niles and Michael McClennen for their insights and help with the energy consumption figures.

Wednesday, 11 December 2019

UK ROLLED TRILOBITE

Calymene blumenbachii, Theresa Paul Spink Dunn 
A lovely rolled trilobite, Calymene blumenbachii,  from outcrops in the UK. This wee beauty is in the collections of Theresa Paul Spink Dunn. This Silurian beauty is from the Homerian, Wenlock Series, Wrens Nest, Dudley, UK.

Calymene blumenbachii, sometimes erroneously spelled blumenbachi, is a species of trilobite found in the limestone quarries of the Wren's Nest in Dudley, England.

Nicknamed the Dudley Bug or Dudley Locust by an 18th-century quarryman, it became a symbol of the town and featured on the Dudley County Borough Council coat-of-arms. Calymene blumenbachii is commonly found in Silurian rocks (422.5-427.5 million years ago) and is thought to have lived in the shallow waters of the Silurian, in low energy reefs.

This particular species of Calymene (a fairly common genus in the Ordovician-Silurian) is unique to the Wenlock series in England and comes from the Wenlock Limestone Formation in Much Wenlock and the Wren's Nest in Dudley. These sites seem to yield trilobites more readily than any other areas on the Wenlock Edge, and the rock here is dark grey as opposed to yellowish or whitish as it appears on other parts of the Edge, just a few miles away, in Church Stretton and elsewhere. This suggests local changes in the environment in which the rock was deposited. The Wenlock Edge quarry is closed now to further collecting but may be open to future research projects. We shall have to see.

Monday, 9 December 2019

DOUVILLEICERAS MAMMILLATUM

Some lovely examples of Douvilleiceras mammillatum (Schlotheim, 1813), ammonites from the Lower Cretaceous (Middle-Lower Albian) Douvilliceras inequinodum zone of Ambarimaninga, Mahajanga Province, Madagascar.

The genus Douvilleiceras range from Middle to Late Cretaceous and can be found in Asia, Africa, Europe and North and South America. We have beautiful examples in the early to mid-Albian from the archipelago of Haida Gwaii in British Columbia. Joseph F. Whiteaves was the first to recognize the genus from Haida Gwaii when he was looking over the early collections of James Richardson and George Dawson. The beauties you see here measure 6cm to 10cm.

Sunday, 8 December 2019

MEGALOSAURUS SP

Megalosaurus sp. Lisbon Natural History Museum. Photo: Luis Lima

Saturday, 7 December 2019

JURASSIC STARFISH


This beautiful fossil brittle star with his slender whip-like arms is from Jurassic outcrops of Portugal and hails from the collection of Vitor Miranda. I've also included some photos of his colourful modern relatives.

At a glance, sea stars and brittle stars look quite similar. These echinoderms generally have five radiating arms (or a multiple thereof) and creep along on the seafloor using their arms for locomotion. And they come in wonderful colours.

Sea stars and brittle stars look similar and are related but are actually quite different.

Both sea stars and brittle stars are in the phylum Echinodermata, which also includes sea cucumbers, sea urchins, sand dollars and sea lilies. The most common brittle star is the long-armed brittle star, Amphipholis squamata, a gray-blue, luminescent (glowing) species.

Echinoderms can be found making a living in our oceans and are known for their five-point radial symmetry and unique water vascular system. They typically have a tough, spiny surface, which inspired their name. In Greek, echinos means “spiny” and derma means “skin.”

A neat little evolutionary feature of these lovelies is their ability to regrow lost body parts, and sea stars and brittle stars can regrow arms if broken off or eaten.

Within the phylum, sea stars and brittle stars are in different classes. Sea stars are in the class Asteroidea, where brittle stars are in Ophiuroidea, which also includes basket stars.

To tell the two apart, first, look at their bodies. The modern brittle star you see to the right looks delicate, almost spindly. The sea stars you see below are more robust. Their fundamental structure is different, especially when you look at where the arms connect to the center of the body. Brittle stars have tube feet along their arms that sense light and scent.

Sea stars have thicker, triangular-shaped arms that are typically their widest at the point of connection to the center of the body. They can be found in blue, red, orange, purple, pink, white and a mixture of those same colours.

Brittle stars, on the other hand, have much thinner, more delicate arms that appear more snake-like. Their arms connect to a central disk but do not touch one another.

Sea stars rely on their water vascular system to move. The water vascular system includes a number of small tube feet that become stiff when water is pushed into them, allowing the sea star to move on a conveyor belt-like rotation of feet.

Although brittle stars also have a water vascular system, they twist and bend their long arms to move, instead. This means that they can move much more quickly than sea stars, especially when trying to escape a predator. Handy that!

Friday, 6 December 2019

PSEUDOTHURMANNIA PICTETI

Pseudothurmannia picteti, Photo: Manuel Peña Nieto 
Pseudothurmannia is a genus of extinct cephalopods belonging to the subclass Ammonoidea and included in the family Crioceratitidae of the ammonitid superfamily Ancylocerataceae.

These fast-moving nektonic carnivores lived in the Cretaceous period, from the Hauterivian to the Barremian.

Shells of Pseudothurmannia can reach a diameter of about 4–12 centimetres (1.6–4.7 in). They show flat or slightly convex sides, a surface with dense ribs and a subquadrate whorl section.

We find fossils of Pseudothurmannia in Cretaceous outcrops in Antarctica, Czechoslovakia, France, Hungary, Italy, Japan, Morocco, Spain, Russia and the United States. The specimen you see here is in the collection of Manuel Peña Nieto from Córdoba, Spain and is from the Lower Cretaceous of Mallorca.

Wednesday, 4 December 2019

AMMONITES OF MOZAMBIQUE

Natural History Museum of Lisbon, Photo Luis Lima

Tuesday, 3 December 2019

GAVIALOSUCHUS CROCODILE OF CHELAS

This well-preserved Miocene fossil crocodile is Gavialosuchus americanus lusitanicus, (Sellards, 1915) who lived in the area near Chelas, a locality near the airport in Lisbon, Portugal around 12 million years ago. When he was alive, that area of the world was flooded and home to Mastodons and other ancient animals.

This fellow was quite the beast. The complete crocodile would have been 8-9 meters in length. Crocodiles are reptiles, which means that they are cold-blooded, are covered in dry, scaly skin, and have a backbone. They are sometimes called ‘living fossils’ because they have been living on Earth since the time of the dinosaurs.

Although they have been around for millions of years, their bodies have not changed very much during that time because they are such successful predators. Unlike alligators, crocodiles have very pointed snouts, and their upper and lower jaws are the same size. Crocodiles have webbed feet, which makes them fast swimmers.

Their bodies are very streamlined, meaning they can slide quickly through the water to catch their prey. Their size depends on the crocodile species with some modern species growing to over 7 meters (23 feet) long and weighing about 1,000 kilograms or 2,200 pounds. This ancient specimen is now housed in the Geological Museum of Lisbon. He would have been bigger than his modern cousins and a formidable predator. Luis Lima recently had the pleasure of visiting their collections and shared this photo. The museum was built in 1857 and is home to beautiful paleontology, archaeology and mineral specimens. Should you find yourself in Lisbon, it is well worth a trip.

Monday, 2 December 2019

MOZAMBIQUE AMMONITE

Natural History Museum of Lisbon. Photo: Luis Lima

Sunday, 1 December 2019

AMMONITE OF THE RHÔNE

An exquisite specimen of the delicately ridged ammonite, Porpoceras verticosum, from Middle Toarcian outcrops adjacent the Rhône in southeastern France.

Porpoceras (Buchman, 1911) is a genus of ammonite that lived during the early and middle Toarcian stage of the Early Jurassic. We see members of this genus from the uppermost part of Serpentinum Zone to Variabilis Subzone. These beauties are found in Europe, Asia, North America and South America.

Ammonites belonging to this genus have evolute shells, with compressed to depressed whorl section. Flanks were slightly convex and venter has been low. The whorl section is sub-rectangular. The rib is pronounced and somewhat fibulate on inner whorls (just wee nodes here) and tuberculate to spined on the ventrolateral shoulder. It differs from Peronoceras by not having a compressed whorl section and regular nodes or fibulation. Catacoeloceras is also similar, but it has regular ventrolateral tubercules and is missing the classic nodes or fibulation of his cousins.

This specimen hails from southern France near the Rhône, one of the major rivers of Europe. It has twice the average water level of the Loire and is fed by the Rhône Glacier in the Swiss Alps at the far eastern end of the Swiss canton of Valais then passes through Lake Geneva before running through southeastern France. This 10 cm specimen was prepared by the supremely talented José Juárez Ruiz

Saturday, 30 November 2019

CARIXIAN DOMERIEN

Carixian domerien, Upper Muschelkalk. Photo: Ange Mirabet

Friday, 29 November 2019

T. REX: THE ULTIMATE PREDATOR

The first skeleton of Tyrannosaurus rex was discovered in 1902 in Hell Creek, Montana, by the Museum's famous fossil hunter Barnum Brown. Six years later, Brown discovered a nearly complete T. rex skeleton at Big Dry Creek, Montana.

The rock around it was blasted away with dynamite to reveal a “magnificent specimen” with a “perfect” skull. This skeleton, AMNH 5027, is on view in the American Museum of Natural History's Hall of Saurischian Dinosaurs. It's also reproduced in their new exhibition T. rex: The Ultimate Predator Exhibition should you find yourself lucky enough to be in New York.

Thursday, 28 November 2019

NATURAL HISTORY MUSEUM LONDON

The Natural History Museum in London is a natural history museum that exhibits a vast range of specimens from various segments of natural history. It is one of three major museums on Exhibition Road in South Kensington, the others being the Science Museum and the Victoria and Albert Museum.

The museum is home to life and earth science specimens comprising some 80 million items within five main collections: botany, entomology, mineralogy, paleontology and zoology. The museum is also a centre of research specializing in taxonomy, identification and conservation. Given the age of the institution, many of the collections have great historical as well as scientific value, such as specimens collected by Charles Darwin and other darlings of paleontology.

The museum is particularly famous for its exhibition of dinosaur skeletons and ornate architecture, sometimes dubbed a cathedral of nature, both exemplified by the large Diplodocus cast that dominated the vaulted central hall before it was replaced in 2017 with the skeleton of a blue whale hanging from the ceiling. Here's a photo of the unveiling ceremony at the Reptiles Callery from 1905.

The Natural History Museum Library contains extensive books, journals, manuscripts, and artwork collections linked to the work and research of the scientific departments; access to the library is by appointment only. The museum is recognized as the pre-eminent centre of natural history and research of related fields in the world.

Although commonly referred to as the Natural History Museum, it was officially known as British Museum (Natural History) until 1992, despite legal separation from the British Museum itself in 1963. Originating from collections within the British Museum, the landmark Alfred Waterhouse building was built and opened by 1881 and later incorporated the Geological Museum. The Darwin Centre is a more recent addition, partly designed as a modern facility for storing valuable collections.

Like other publicly funded national museums in the United Kingdom, the Natural History Museum does not charge an admission fee. It did back in the day but was scrapped in 2001. The museum is an exempt charity and a non-departmental public body sponsored by the Department for Culture, Media and Sport. Catherine, Duchess of Cambridge, is a patron of the museum. Today, there are approximately 850 staff at the museum. It remains my favourite of all the museums I've visited as it presents our scientific history on a grande scale.

Wednesday, 27 November 2019

PROSAUROLOPHUS MAXIMUS

Prosaurolophus maximus, Ottawa Museum of Nature
Prosaurolophus was a large-headed duckbill dinosaur. The most complete described specimen has a skull around 0.9 metres (3.0 ft) long on a skeleton about 8.5 metres (28 ft) long. It had a small, stout, triangular crest in front of the eyes; the sides of this crest were concave, forming depressions.

This crest grew isometrically (without changing in proportion) throughout the lifetime of the individual, leading to speculation that the species may have had a soft tissue display structure, such inflatable nasal sacs.

When originally described by Brown, Prosaurolophus maximus was known from a skull and jaw. Half of the skull was badly weathered at the time of examination, and the level of the parietal was distortedly crushed upwards to the side.

The different bones of the skull are easily defined with the exception of the parietals and nasal bones. Brown found that the skull of the already described genus Saurolophus is very similar overall but also smaller than the skull of P. maximus. The unique feature of a shortened frontal in lambeosaurines is also found in Prosaurolophus, and the other horned hadrosaurines Brachylophosaurus, Maiasaura, and Saurolophus. Although they lack a shorter frontal, the genera Edmontosaurus and Shantungosaurus share an elongated dentary structure.

Patches of preserved skin are known from two juvenile specimens, TMP 1998.50.1 and TMP 2016.37.1; these pertain to the ventral extremity of the ninth through fourteenth dorsal ribs, the caudal margin of the scapular blade, and the pelvic region. Small basement scales (scales which make up the majority of the skin surface), 3–7 millimetres (0.12–0.28 in) in diameter, are preserved on these patches - this is similar to the condition seen in other saurolophine hadrosaurs.

More uniquely, feature scales (larger, less numerous scales which are interspersed within the basement scales) around 5 millimetres (0.20 in) wide and 29 millimetres (1.1 in) long are found interspersed in the smaller scales in the patches from the ribs and scapula (they are absent from the pelvic patches). Similar scales are known from the tail of the related Saurolophus angustirostris (on which they have been speculated to indicate pattern), and it is considered likely adult Prosaurolophus would've retained the feature scales on their flanks like the juveniles.

Tuesday, 26 November 2019

DELGADOCRINUS OPORTOVINUM

Delgadocrinus oportovinum
This exceptionally well-preserved crinoid, Delgadocrinus oportovinum, was found on October 11, 1905, by Nery Delgado during his work mapping the geology and paleontology of Portugal.

His find resulted in the creation of a new family, Delgadocrinoinidae, a new genus and a new species.

Ausich et al. published on New and Revised Occurrences of Ordovician Crinoids from Southwestern Europe in the Journal of Paleontology, November 2007. In their work, they honour Delgado. His find was the first record of an Ordovician crinoid from Portugal, Delgadocrinus oportovinum, marking it as the oldest known crinoid from the Iberian Peninsula (Arenigian/Oretanian boundary, early Darriwilian).

The team took a comprehensive look at the Ordovician crinoids of southwestern Europe, including taxa based on articulated crowns and stems. This summary incorporates new material, new localities, and a revision of some southwestern Europe occurrences and is well worth a read. The Type Specimen you see here is now housed in the Natural History Museum of Lisbon. Luis Lima shared a photo of his recent visit to their beautiful collections and kindly granted permission to share the photo here.

Reference: Ausich, William & Sá, Artur & Gutiérrez-Marco, Juan. (2007). New and revised occurrences of Ordovician crinoids from southwestern Europe. Journal of Paleontology - J PALEONTOL. 81. 1374-1383. 10.1666/05-038.1.

Monday, 25 November 2019

ZENASPIS PODOLICA HEAD SHIELD

A Devonian bony fish mortality plate showing a lower shield of Zenaspis podolica (Lankester, 1869) from Lower Devonian deposits of Podolia, Ukraine.

Podolia or Podilia is a historic region in Eastern Europe, located in the west-central and south-western parts of Ukraine, in northeastern Moldova. Podolia is the only region in Ukraine where 420 million-year-old remains of ichthyofauna can be found near the surface, making them accessible to collection and study. Zenaspis is an extinct genus of jawless fish which thrived during the early Devonian. Being jawless, Zenaspis was probably a bottom feeder, snicking on debris from the seafloor similar to how flounder, groupers, bass and other bottom-feeding fish make a living.

For the past 150 years, vertebrate fossils have been found in more than 90 localities situated in outcrops along banks of the Dniester River and its northern tributaries, and in sandstone quarries. At present, the faunal list of Early Devonian agnathans and fishes from Podolia number seventy-two species, including 8 Thelodonti, 39 Heterostraci, 19 Osteostraci, 4 Placodermi, 1 Acanthodii, and 1 Holocephali (Voichyshyn 2001a).

In Podolia, Lower Devonian redbeds strata (the Old Red Formation or Dniester Series) are up to 1800 m thick and range from Lochkovian to Eifelian in age (Narbutas 1984; Drygant 2000, 2003).

In their lower part (Ustechko and Khmeleva members of the Dniester Series) they consist of lovely multicoloured, mainly red, fine-grained cross-bedded massive quartz sandstones and siltstones with seams of argillites (Drygant 2000).

We see fossils of Zenaspis in the early Devonian of Western Europe. Both Zenaspis pagei and Zenaspis poweri can be found up to 25 centimetres long in Devonian outcrops of Scotland.

Reference: Voichyshyn, V. 2006. New osteostracans from the Lower Devonian terrigenous deposits of Podolia, Ukraine. Acta Palaeontologica Polonica 51 (1): 131–142. Photo care of the awesome Fossilero Fisherman.

Sunday, 24 November 2019

RAPA NUI SENTINELS

Rapa Nui (Easter Island) is famous for its rows of moai, towering figures of deified ancestors that were carved from volcanic tuff rock in quarries then moved to a platform on the water's edge. This plaster cast was made from a mould secured during a 1934-1935 Museum expedition to Rapa Nui, 2,000 miles west of the Chilean coast.

There are 887 moai on Rapa Nui, where they are revered, considered by islanders to be sacred. There is an excellent moai cast on exhibit at the American Natural History Museum in New York.

Saturday, 23 November 2019

CARCHARODON MEGALODON CHUBUTENSIS

Carcharodon chubutensis. Photo: Luis Lima
Carcharocles chubutensis, which roughly translates to the "glorious shark of Chubut," from the ancient Greek is an extinct species of prehistoric mega-toothed sharks in the genus Carcharocles.

These big beasties lived during Oligocene to Miocene. This fellow is considered to be a close relative of the famous prehistoric mega-toothed shark, C. megalodon, although the classification of this species is still disputed.

Swiss naturalist Louis Agassiz first identified this shark as a species of Carcharodon in 1843. In 1906, Ameghino renamed this shark as C. chubutensis. In 1964, shark researcher, L. S. Glikman recognized the transition of Otodus obliquus to C. auriculatus. In 1987, shark researcher, H. Cappetta reorganized the C. auriculatus - C. megalodon lineage and placed all related mega-toothed sharks along with this species in the genus Carcharocles.

At long last, the complete Otodus obliquus to C. megalodon progression began to look clear. Since then, C. chubutensis has been re-named into Otodus chubutensis, also the other chronospecies of the Otodus obliquus - O. megalodon lineage. Chubutensis appears at the frontier Upper Oligocene to Lowest Miocene (evolving from O. angustidens which has stronger side cusps) and turns into O. megalodon in the Lower to Middle Miocene, where the side cusps are already absent. Despite previous publications, there is no chubutensis in the Pliocene.

Victor Perez and his team published on the transition between Carcharocles chubutensis and Carcharocles megalodon (Otodontidae, Chondrichthyes): lateral cusplet loss through time in March of 2018. In their work, they look at the separation between all the teeth of Carcharocles chubutensis and Carcharocles megalodon and published that it is next to impossible to divide them up as a complex mosaic evolutionary continuum characterizes this transformation, particularly in the loss of lateral cusplets.

The cuspleted and uncuspleted teeth of Carcharocles spp. are designated as chronomorphs because there is wide overlap between them both morphologically and chronologically. In the lower Miocene Beds (Shattuck Zones) 2–9 of the Calvert Formation (representing approximately 3.2 million years, 20.2–17 Ma, Burdigalian) both cuspleted and uncuspleted teeth are present, but cuspleted teeth predominate, constituting approximately 87% of the Carcharocles spp. teeth represented in their samples.

In the middle Miocene Beds 10–16A of the Calvert Formation (representing approximately 2.4 million years, 16.4–14 Ma, Langhian), there is a steady increase in the proportion of uncuspleted Carcharocles teeth.

In the upper Miocene Beds 21–24 of the St. Marys Formation (approx. 2.8 million years, 10.4–7.6 Ma, Tortonian), lateral cusplets are nearly absent in Carcharocles teeth from our study area, with only a single specimen bearing lateral cusplets. The dental transition between Carcharocles chubutensis and Carcharocles megalodon occurs within the Miocene Chesapeake Group. Although their study helps to elucidate the timing of lateral cusplet loss in Carcharocles locally, the rationale for this prolonged evolutionary transition remains unclear.

The specimen you see here is in the Geological Museum in Lisbon. The photo credit goes to the deeply awesome Luis Lima who shared some wonderful photos of his recent visit to their collections.
If you'd like to read the paper from Perez, you can find it here:
https://www.tandfonline.com/doi/full/10.1080/02724634.2018.1546732

Friday, 22 November 2019

HOPLOSCAPHITES NEBRASCENSIS

This sweet beauty with lovely colouring is a Hoploscaphites nebrascensis (Owen, 1852) macroconch. This is the female form of the ammonite that has a larger shell than the male, or microconch.

Hoploscaphites nebrascensis is an upper Maastrichtian species and index fossil. It marks the top of ammonite zonation for the Western Interior. This species has been recorded from Fox Hills Formation in North and South Dakota as well as the Pierre Shale in southeastern South Dakota and northeastern Nebraska.

It is unknown from Montana, Wyoming, and Colorado due to the deposition of coeval terrestrial units. It has possibly been recorded in glacial deposits in Saskatchewan and northern North Dakota, but that is hearsay. Outside the Western Interior, this species has been found in Maryland and possibly Texas in the Discoscaphites Conrad zone. This lovely one is in the collection of the deeply awesome (and enviable) José Juárez Ruiz. A big thank you to Joshua DrSlattmaster J Slattery for his insights on this species.

Thursday, 21 November 2019

Wednesday, 20 November 2019

EARLY PREDATORY DINOSAURS

Predatory dinosaurs were an important ecological component of terrestrial Mesozoic ecosystems.

Though theropod dinosaurs carried this role during the Jurassic and Cretaceous Periods (and probably the post-Carnian portion of the Triassic), it is difficult to depict the Carnian scenario, due to the scarcity of fossils.

Until now, knowledge on the earliest predatory dinosaurs mostly relies on herrerasaurids recorded in the Carnian strata of South America. Phylogenetic investigations recovered the clade in different positions within Dinosauria, whereas fewer studies challenged its monophyly.

Although herrerasaurid fossils are much better recorded in present-day Argentina than in Brazil, Argentinean strata so far yielded no fairly complete skeleton representing a single individual.

Here, the authors describe Gnathovorax cabreirai, a new herrerasaurid based on an exquisite specimen found as part of a multi-taxic association form southern Brazil. The type specimen comprises a complete and well-preserved articulated skeleton, preserved in close association (side by side) with rhynchosaur and cynodont remains.

Given its superb state of preservation and completeness, the new specimen sheds light on poorly understood aspects of the herrerasaurid anatomy, including endocranial soft tissues.

The specimen also reinforces the monophyletic status of the group and provides clues on the ecomorphology of the early carnivorous dinosaurs. Indeed, an ecomorphological analysis employing dental traits indicates that herrerasaurids occupy a particular area in the morphospace of faunivorous dinosaurs, which partially overlaps the area occupied by post-Carnian theropods. This indicates that herrerasaurid dinosaurs preceded the ecological role that later would be occupied by large to medium-sized theropods. Link to the paper: https://peerj.com/articles/7963/