Friday, 19 March 2021

HOODED SEALS: CYSTOPHORA CRISTATA

Hooded seals, Cystophora cristata, are large phocid seals in the family Phocidae, who live in some of the chilliest places on Earth, from 47° to 80° N in latitude. 

They frequent the eastern coast of North America north of Maine to the western tip of Europe, along the coast of Norway near Svalbard. 

These skilled divers are mainly concentrated around Bear Island, Norway, Iceland, and northeast Greenland. 

In rare cases, we find them in the icy waters in Siberia. They usually dive depths of 600 m (1,968 ft) in search of fishy treats but can go as deep as 1000 m (3,280 ft) when needed. That is deep into the cold, dark depths of our oceans. Sunlight entering the sea may travel as deep as 1,000 m (3,280 ft) under the right conditions, but there is rarely any significant light beyond 200 meters (656 ft). This is the dark zone and the place we find our bioluminescent friends. 

Hooded seals have a sparse fossil record. One of the first fossils found was a Pliocene specimen from Anvers, Belgium discovered in 1876. In 1983 a paper was published claiming there were some fossils found in North America thought to be from Cystophora cristata. Of the three accounts, the most creditable discovery was from a sewer excavation in Maine, the northeasternmost U.S. state, known for its rocky coastline, maritime history and nature areas like the granite and spruce islands of Acadia National Park. A scapula and humeri were found among other bones and thought to date to the post-Pleistocene. 

Of two other accounts, one was later reassigned to another species and the other left unsolved. (Folkow, et al., 2008; Kovacs and Lavigne, 1986; Ray, 1983)

The seals are typically silver-grey or white in colour, with black spots that vary in size covering most of the body. Hooded seal pups are known as "blue-backs" because their coats are blue-grey on the back with whitish bellies, though this coat is shed after 14 months of age when the pups moult.

Hooded seals live primarily on drifting pack ice and in deep water in the Arctic Ocean and North Atlantic. Although some drift away to warmer regions during the year their best survival rate is in colder climates. They can be found on four distinct areas with pack ice: near Jan Mayen Island (northeast of Iceland); off Labrador and northeastern Newfoundland; the Gulf of St. Lawrence; and the Davis Strait (off midwestern Greenland). 

Hooded Seal and pup
Males appear to be localized around areas of complex seabeds, such as Baffin Bay, Davis Strait, and the Flemish Cap. 

Females concentrate their habitat efforts primarily on shelf areas, such as the Labrador Shelf. 

Females reach the age of sexual maturity between 2 and 9 years old and it is estimated that most females give birth to their first young at around 5 years of age. 

Males reach sexual maturity a little later around 4 to 6 years old but often do not mate until much later. Females give birth to one young at a time through March and April. The gestation period is 240 to 250 days. 

During this time the fetus, unlike those of other seals, sheds its lanugo — a covering of fine soft hair that is replaced by thicker pelage — in the uterus. These young are precocious and at birth are able to move about and swim with ease. They are independent and left to fend for themselves immediately after they have been weaned.

Hooded seals are known to be a highly migratory species that often wander long distances, as far west as Alaska and as far south as the Canary Islands and Guadeloupe. Prior to the mid-1990s, hooded seal sightings in Maine and the east Atlantic were rare but began increasing in the mid-1990s. From January 1997 to December 1999, a total of 84 recorded sightings of hooded seals occurred in the Gulf of Maine, one in France and one in Portugal. 

From 1996 to 2006, five strandings and sightings were noted near the Spanish coasts in the Mediterranean Sea. There is no scientific explanation for the increase in sightings and range of the hooded seal.

Cystophora means "bladder-bearer" in Greek and pays homage to this species' inflatable bladder septum on the heads of adult males. The bladder hangs between the eyes and down over the upper lip in a deflated state. 

The hooded seal can inflate a large balloon-like sac from one of its nostrils. This is done by shutting one nostril valve and inflating a membrane, which then protrudes from the other nostril. I was thinking of Hooded seals when contemplating the nasal bladders of Prosaurolophus maximum, large-headed duckbill dinosaurs, or hadrosaurid, in the ornithischian family Hadrosauridae. Perhaps both species used these bladders in a similar manner — to warn predators and attract mates.

The hooded seal is known for its uniquely elastic nasal cavity located at the top of its head, also known as the hood. Only males possess this display-worthy nasal sac, which they begin to develop around the age of four. The hood begins to inflate as the seal makes its initial breath prior to going underwater. It then begins to repetitively deflate and inflate as the seal is swimming. The purpose of this is acoustic signalling. It occurs when the seal feels threatened and attempt to ward off hostile species when competing for resources such as food and shelter. It also serves to communicate their health and superior status to both other males and females they are attempting to attract. 

In sexually mature males, a pinkish balloon-like nasal membrane comes out of the left nostril to further aid it in attracting a mate. This membrane, when shaken, is able to produce various sounds and calls depending on whether the seal is underwater or on land. Most of these acoustic signals are used in an acoustic situation (about 79%), while about 12% of the signals are used for sexual purposes.

References: Ray, C. 1983. Hooded Seal, Cystophora cristata: Supposed Fossil Records in North America. American Society of Mammalogists, Vol. 64 No. 3: 509-512; Cystophora cristata, Hooded Seal", 2007; "Seal Conservation Society", 2001; Kovacs and Lavigne, 1986.

Thursday, 18 March 2021

CHOCOLATE CHEIRURID

This glorious rich chocolate showboat is the trilobite Cheirurus ingricus from Middle Ordovician limestone deposits in the Wolchow River Region of Saint Petersburg, Russia. 

We sometimes find these lovelies enrolled or semi-enrolled with their impossibly thin genal spines lifted in the air. The Cheirurids appeared about 500 million years ago and died out about 390 million years ago. They are definitely a favourite!

Wednesday, 17 March 2021

DR. DANNER: FOSSILS OF THE CHILLIWACK GROUP

In May 2001, Dr. Ted Danner, Professor Emeritus from UBC and my mentor gave a talk to the Vancouver Paleontological Society. For over fifteen years, we would meet for dinner on the third Thursday of every month. I would swing by to pick him up and we would head to his favourite restaurant for a meal and lively discussion. 

Dinner was a delight of banter, stories and paleontological debates. Dr. Danner had a keen mind and a sharp wit. The world lost a truly beautiful soul when he passed away in 2012. 

Wilbert R. Danner began teaching geology at UBC in 1954 and established the Beer-Pop Can-Bottle Deposit Refund Award in 1989 using proceeds from the return of bottles and cans collected on weekly scavenging treks on UBC’s Vancouver Campus.

Danner’s office was often full of cans ready to be taken to the recycling depot. He raised $46,000 from collected bottles and cans to support students before he passed away in 2012. He chose to name it the Beer-Pop Can-Bottle Deposit Refund Award to show that, over time, even small contributions can have a big impact.

“Ted taught UBC’s introductory geology course for many years,” says geologist and entrepreneur Ross Beaty, a former student of Danner and executor of his estate. “He was a quirky, enthusiastic professor who inspired many students to go into geoscience. What a wonderful legacy he’s now left for UBC and future generations of geologists.”

Danner’s bequest endows $320,000 for the Beer-Pop Can-Bottle Deposit Refund Award, which provides two awards annually to geology students who have demonstrated aptitude in fieldwork. Another $320,000 funds the newly established Ted Danner Memorial Entrance Bursary in Geology, provided to a student entering UBC enrolled in at least one geology course.

The estate also includes Danner’s extensive mineral collection, which now resides at UBC’s Pacific Museum of the Earth. It contains more than 2,000 specimens and is worth more than $500,000.

Beyond his annual award, Dr. Danner left a legacy in those he taught and mentored. Ted had a great fondness for the geology & fossils of the Chilliwack Group. A wonderful orator, Dr. Danner liked to reminisce about the Devonian quarry at Doaks Creek. He enjoyed hiking through the Late Mississippian limestone exposures on the east side of Red Mountain, where large crinoid columnals, corals and brachiopods have been found, sometimes partly silicified, on the weathered surfaces of the limestones and shales. 

Further up the west side of Red Mountain at the Kendle Quarry there are Late Mississippian exposures where you can find fragments of brachiopods & goniatites. Dr. Danner would often tell the tale of Reginald A. Daly who published a series of maps in 1912 of areas along the International Boundary where he found fusulinids in the Chilliwack Valley. It seems the markers Daly originally mapped have been slowly tipping to the south, with Canada gaining a small advantage over the United States each year.

Monday, 15 March 2021

SOUTH AMERICAN TAPIR

South American tapir, Tapirus terrestris
This little sweetie with his brown fur stripped and dotted with bits of white is a South American tapir, Tapirus terrestris.

He is a relative of the rhinoceros and like his rhino cousins, he loves the water. They play, swim, dive, and use it to protect themselves from predators.

Their feet are specially designed for swimming and walking on muddy shores. Each of their front feet has four splayed toes, a bit like having a fin or snowshoe on your feet. Their back feet have a similar design but with three toes. They nap and hide in the forest during the day and then head out at night to munch on leaves, shoots, fruit, and other green goodies in the Amazon Rainforest and the River Basin in South America, east of the Andes.

We find fossil remains of tapir first appearing in the middle Eocene, 41 million years ago. While many families of perissodactyls achieved very high levels of diversity, there have never been more than a few species of tapirs. Tapirs are also morphologically conservative - their teeth and skeletons resemble those of early ceratomorphs, and some have referred to them as living fossils. 

The skull is very specialized with many unique features related to the development of the proboscis. The four living species of tapirs use the prehensile proboscis to browse selectively on leaves, sprouts, and small branches, including aquatic plants and also ingest a great deal of fruit and seeds.

While modern tapir species are confined to tropical forests of South America and Asia, they originated and persisted for many millions of years in more northern regions, even during the ice ages, although their rarity as fossils suggests favourable habitats may have been scarce. Recently a huge fossil accumulation of late Miocene tapirs was discovered near Gray, Tennessee. It is the largest accumulation of fossil tapirs in the world and suggests that tapirs were once very common in some parts of North America.

Tuesday, 9 March 2021

HOW TO TELL FOSSIL BONE


If you are wondering if you have Fossil Bone, you’ll want to look for the telltale texture on the surface. 

Fossil bone is also heavier than regular bone and will have some heft in your hand. This is because the bone has absorbed the yummy minerals from the material in which it was buried.  

If you plan to have someone help you with identifying your find, it is best to take the specimen outside & photograph it in natural light. Take many photos from every angle. If you have the urge to take a video, move the lens very slowly so that all the wee details can be seen. With fossil bone, you will be able to see the different canals and webbed structure of the bone, sure signs that the object was of biological origin. 

As my good friend Mike Boyd notes, without going into the distinction between dermal bone and endochondral bone — which relates to how they form or ossify — it is worth noting that bones such as the one illustrated here will usually have a layer of smooth (or periosteal) bone on the outer surface and spongy (or trabecular) bone inside.

Dinosaur Bone, Jurassic, Colorado, USA

The distinction can be well seen here in both photographs. The partial weathering away of the smooth external bone has resulted in the exposure of the spongy bone interiors. Geographic context is important, so knowing where it was found is very helpful for an ID. 

Knowing the geologic context of your find can help you to figure out if you've perhaps found a terrestrial or marine fossil. Did you find any other fossils nearby? 

Can you see pieces of fossil shells or remnants of fossil leaves? Things get tricky with erratics. That's when something has deposited a rock or fossil far from the place it originated. We see this with glaciers. The ice can act like a plough, lifting up and pushing a rock to a new location, then melting away to leave something out of context. If you do think you have found fossil bone, it is likely that your local government would like you to report it. You may have found something very significant. I very much hope you have. 

Monday, 8 March 2021

HIKING TO THE FERNIE AMMONITE

The Fernie ammonite, Titanites occidentalis, from outcrops on Coal Mountain near Fernie, British Columbia, Canada. 

This beauty is the remains of a carnivorous cephalopod within the family Dorsoplanitidae that lived and died in a shallow sea some 150 million years ago.

If you would like to get off the beaten track and hike up to see this ancient beauty, you will want to head to the town of Fernie in British Columbia close to the Alberta border. 

Driving to the trail base is along an easy access road just east of town along Fernie Coal Road. There are some nice exposures of Cretaceous plant material on the north side (left-hand side) of the road as you head from Fernie towards Coal Creek. I recently drove up to Fernie to look at Cretaceous plant material and locate the access point to the now infamous Late Jurassic (Tithonian) Titanites (S.S. Buckman, 1921) site. While the drive out of town is on an easy, well-maintained road, the slog up to the ammonite site is a steep 3-hour push.

The first Titanites occidentalis was about one-third the size and was incorrectly identified as Lytoceras, a fast-moving nektonic carnivore. The specimen you see here is significantly larger at 1.4 metres (about four and a half feet) and rare in North America. 

Titanites occidentalis, the Western Giant, is the second known specimen of this extinct fossil species. The first was discovered in 1947 in nearby Coal Creek by a British Columbia Geophysical Society mapping team. When they first discovered this marine fossil high up on the hillside, they could not believe their eyes — both because it is clearly marine at the top of a mountain and the sheer size of this ancient beauty.

In the summer of 1947, a field crew was mapping coal outcrops for the BC Geological Survey east of Fernie. One of the students reported finding “a fossil truck tire.” Fair enough. The similarity of size and optics are pretty close to your average Goodridge. 

A few years later, GSC Paleontologist Hans Frebold described and named the fossil Titanites occidentalis after the large Jurassic ammonites from Dorset, England. The name comes from Greek mythology. Tithonus, as you may recall, was the Prince of Troy. He fell in love with Eos, the Greek Goddess of the Dawn. Eos begged Zeus to make her mortal lover immortal. Zeus granted her wish but did not grant Tithonus eternal youth. He did indeed live forever — ageing hideously. Ah, Zeus, you old trickster. It is a clever play on time placement. Dawn is the beginning of the day and the Tithonian being the latest age of the Late Jurassic. Clever Hans!

Hiking to the Fernie Ammonite

From the town of Fernie, British Columbia, head east along Coal Creek Road towards Coal Creek. The site is 3.81 km from the base of Coal Creek Road to the trailhead as the crow flies. I have mapped it here for you in yellow and added the wee purple GPS marker for the ammonite site proper. There is a nice, dark grey to black roadcut exposure of Cretaceous plants on the north side of the dirt road that is your cue to pull over and park.  

You access the trailhead on the south side of the road. You'll need to cross the creek to begin your ascent. There is no easy way across the creek and you'll want to tackle this one with a friend when the water level is low. 

The beginning of the trail is not clear but a bit of searching will reveal the trailhead with its telltale signs of previous hikers. This is a 2-3 hour moderate 6.3-kilometre hike up & back bush-whacking through scrub and fallen trees. Heading up, you'll make about a 246-metre elevation gain. You won't have a cellular signal up here but if you download the Google Map to your mobile, you'll have GPS to guide you. 

If you're coming in from out of town, the closest airport is Cranbrook. Then it is about an hour and change to Fernie and another 15-minutes or so to the site.

You will want to leave your hammers with your vehicle (no need to carry the weight) as this site is best enjoyed with a camera. This is a site you will want to wear hiking boots to access. Know that these will get wet as you cross the creek. If you'd like to see the ammonite but are not keen on the hike, a cast has been made by fossil preparator Rod Bartlett and is on display at the Courtenay Museum in Courtenay, Vancouver Island, Canada. Fernie Ammonite Palaeo Coordinates: 49°29'04"N 115°00'49"W

Saturday, 6 March 2021

MADAGASCAR GIANT: LOBOLYTOCERAS

This big beastie is a superb specimen of the ammonite Lobolytoceras costellatum showing the intricate fractal pattern of its septa. This lovely measures to a whopping 230 mm and hails from Oxfordian outcrops near Sakara, Madagascar. Lovingly prepped by the supremely talented José Juárez Ruiz.

Ammonites were predatory, squidlike creatures that lived inside coil-shaped shells. Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. They used these tentacles to snare prey — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunt today.

Catching a fish with your hands is no easy feat, as I'm sure you know. Ammonites did the equivalent, catching prey in their tentacles. They were skilled and successful hunters. They caught their prey while swimming and floating in the water column. Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. By pushing air in or out, they were able to control their buoyancy in the water column.

They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.

They were a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs, commonly referred to as ammonites, are more closely related to living coleoids — octopuses, squid, and cuttlefish) then they are to shelled nautiloids such as the living Nautilus species.

Ammonites have intricate and complex patterns on their shells called sutures. The suture patterns differ across species and tell us what time period the ammonite is from. If they are geometric with numerous undivided lobes and saddles and eight lobes around the conch, we refer to their pattern as goniatitic, a characteristic of Paleozoic ammonites.

Ammonites first appeared about 240 million years ago, though they descended from straight-shelled cephalopods called bacrites that date back to the Devonian, about 415 million years ago, and the last species vanished in the Cretaceous–Paleogene extinction event.

They were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish. They were prolific back in the day, living (and sometimes dying) in schools in oceans around the globe. We find ammonite fossils (and plenty of them) in sedimentary rock from all over the world.

In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past.

For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. Generally, deeper is older, so we use the sedimentary layers rock to match up to specific geologic time periods, rather the way we use tree-rings to date trees. A handy way to compare fossils and date strata across the globe.

Friday, 5 March 2021

SUSAN'S HOLCOPHYLLOCERAS

What is wonderful about natural science is exploring new species. Take a look at this tremendously robust suturing on this lovely ammonite, Holcophylloceras mediterraneum, (Neumayr, 1871) from Late Jurassic (Oxfordian) deposits near Sokoja, Madagasgar. This particular specimen and post goes out to Susan Gerard who has provided lovely cabinetry that will become home for so many of these wonderfully preserved specimens.  

Madagascar is a treasure trove of outstanding fossil species and this Holcophylloceras ammonite is no exception.

The shells had many chambers divided by walls called septa. The chambers were connected by a tube called a siphuncle which allowed for the control of buoyancy with the hollow inner chambers of the shell acting as air tanks to help them float.

We can see the edges of this specimen's shell where it would have continued out to the last chamber, the body chamber, where the ammonite lived. Picture a squid or octopus, now add a shell and a ton of water.

Thursday, 4 March 2021

THE ELEPHANT BIRDS OF MADAGASCAR

One hundred and seventy million years ago, Madagascar was landlocked in the middle of the supercontinent Gondwana. It was sandwiched between land that would eventually become South America and Africa and land that would eventually become India, Australia, and Antarctica. Rather like puzzle pieces, these bits of continent came together and then were slowly pulled apart.

Riding the movements of the Earth's crust, Madagascar, along with India, first split away from Africa and South America. The plates continued to shift and Madagascar split next from Australia and then Antarctica before and started heading north. While this was all happening at what may seem a snail's pace of two to four inches each year, the cumulative movement changed the shape of our world.  

Around this same time, India smashed into Asia — forming the Himalayas in the process. Madagascar finally broke away from India and was marooned in the Indian Ocean. Beautiful and solo — Madagascar has been on its own for the past 88 million years.

With Madagascar being solo for so long, many of her species only exist — or briefly existed — here. One of the most interesting of these is the Elephant birds. They are members of the extinct ratite family Aepyornithidae, made up of enormous flightless birds that once lived on the island of Madagascar. A ratite is any of a diverse group of flightless and mostly large and long-legged birds of the infraclass Palaeognathae.

Elephant birds became extinct, around 1000–1200 CE, as a result of human hunting. Elephant birds comprised the genera Mullerornis, Vorombe and Aepyornis. While they were in close geographical proximity to the ostrich, their closest living relatives are the much smaller nocturnal Kiwi — found only in New Zealand — suggesting that ratites did not diversify by vicariance during the breakup of Gondwana but instead evolved from ancestors that dispersed more recently by flying.

Elephant birds were endemic to Madagascar. Phylogenetic, genetic, and fossil evidence all suggest that the elephant bird, along with the ostrich, arrived in Madagascar and India when these landmasses were still connected to Australia and Antarctica via a land bridge.

When India and Madagascar split, the elephant bird wound up surviving on Madagascar, while the ostrich was carried north with India and was eventually introduced to Eurasia when India collided with the continent. 

The presence of the elephant bird on Madagascar can be chalked up to vicariance; it was living on Madagascar land already when Madagascar broke off from India. Most of the species on Madagascar today seem to be descended from individuals that dispersed from Africa long after Madagascar was established as a separate island.

Very rarely, but occasionally, we find fossil eggs from Elephant Birds are found The National Geographic Society in Washington holds a specimen of an Aepyornis egg which was given to Luis Marden in 1967. The specimen is intact and contains the skeleton of the unhatched bird. The Denver Museum of Nature and Science (Denver, Colorado) holds two intact eggs, one of which is currently on display. 

Another giant Aepyornis egg is on display at the Harvard Museum of Natural History in Cambridge, MA and a complete, unbroken egg, is held at Leeds Discovery Centre, Leeds, UK. A cast of the egg is preserved at the Grant Museum of Zoology at London University. There is also a complete specimen in the collections of the Kuleli Military High School Museum, Istanbul, Turkey.

David Attenborough, an esteemed naturalist and my personal hero, owned an almost complete eggshell, dating from 600 to 700 CE, which he pieced together from fragments that were given to him while making his 1961 BBC series Zoo Quest to Madagascar. In March 2011, the BBC broadcast the 60-minute documentary Attenborough and the Giant Egg, presented by Attenborough, about his personal scientific quest to discover the secrets of the elephant bird and its egg.

Photo: Griffon, Gyps fulvus. The griffon vulture is a large Old World vulture in the bird of prey family Accipitridae.

Photo: Aepyornis skeleton. Quaternary of Madagascar by Monnier, 1913 by Monnier - http://digimorph.org/specimens/Aepyornis_maximus/Aepyornis.phtml digimorph.org, Public Domain, https://commons.wikimedia.org/w/index.php?curid=79655

Cooper, A., Lalueza-Fox, C., Anderson, S., Rambaut, A., Austin, J., and Ward, R. (2001). Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409:704-707.

Goodman, S. M., and Benstead, J. P. (2005). Updated estimates of biotic diversity and endemism for Madagascar. Oryx 39(1):73-77.

Evolution Berkeley: https://evolution.berkeley.edu/evolibrary/news/091001_madagascar

Vences, M., Wollenberg, K. C., Vieites, D. R., and Lees, D. C. (2009). Madagascar as a model region of species diversification. Trends in Ecology and Evolution 24(8):456-465.

Saturday, 27 February 2021

GULF ISLANDS GREEN ISLE

Arbutus tree, Arbutus menziesii, reaching out to sea, Hornby Island
Windswept, peaceful, stormy and abundant, Hornby is a mix of everything desirable about the northern Gulf Islands of the west coast of British Columbia.

It is a very green island, both in the practices of those who live here and in the mixed forest that covers the land. 

We see the large conifers, Western red cedar, western hemlock, grand fir and lodgepole pine on the island.

You also see lovely examples of the smaller Pacific yew, Taxus brevifolia, a small evergreen that is used by First Nations carvers for bows and paddles for canoes.

 Many spectacular specimens of arbutus, Arbutus menziesii, grow along the water's edge. These lovely evergreens have a rich orange-red bark that peels away in thin sheets, leaving a greenish, silvery smooth appearance and a satiny sheen. And these trees, like all trees, have kin recognition. They can swap nutrients with one another using mycelium, the neural network of fungi, as their go-between. Arbutus, the broadleaf evergreen species is the tree I most strongly associate with Hornby. Hornby has its fair share of broadleaf deciduous trees. Bigleaf maple, red alder, black cottonwood, Pacific flowering dogwood, cascara and several species of willow thrive here.


There are populations of Garry oak, Quercus garryana, with their deeply lobed leaves, on the southern end of the island and at Helliwell Provincial Park on a rocky headland at the northeast end of Hornby. 

The island has about 260 acres (1.1 km2) of undisturbed stands of older forests. They take up a relatively small footprint, just under 3.5%, of the island's overall size. 1,330 acres (540 ha) of older second-growth stands cover just under 20% of the island. 

Beneath these ancient wonders are mycorrhizal networks, communicating, gathering and sharing nutrients between these ancient stands of trees. The fungi break down the plant matter and animal species that have lived and died since time immemorial. The ground you walk across is a patchwork of the true essence of Hornby — unique steps across this terra firma records the island's long history. 

Here, embedded and imprinted within the ground are the stories of its geologic past, a time of history of being beneath a great sea, uplifting, the scrapings of the ice ages. Higher still are the hydrocarbon remnants that record the ebb and flow, lives and deaths of the K'ómoks First Nation, who called this island Ja-dai-aich — then European explorers, Americans, farmers, fisherman and artisans who have explored or called Hornby home.

Douglas fir, Pseudotsuga menziesii
Most of the trees you see on the island are Douglas fir, Pseudotsuga menziesii, an evergreen conifer species in the pine family. The common name is a nod to the Scottish botanist, David Douglas, who collected and first reported on this large evergreen.

Sadly for Douglas, it is Archibald Menzies, a Scottish physician, botanist, naturalist — and David's arch-rival, whose name is commemorated for science. He's also credited with the scientific name for our lovely arbutus trees.

Menzies was part of the Vancouver Expedition (1791–1795) a four-and-a-half-year voyage of exploration commanded by Captain George Vancouver of the British Royal Navy.

Their voyage built on the work of James Cook. Cook was arguably the first ship's captain to ensure his crew remained scurvy free by implementing a practice of nutritious meals (those containing ascorbic acid also known as Vitamin C) and meticulous standards for onboard hygiene. Though he did much to lower the mortality rate amongst his crew, he made some terrible decisions that led to his early demise. Cook was attacked and killed in 1779 during his third exploratory voyage in the Pacific while attempting to kidnap the Island of Hawaii's monarch, Kalaniʻōpuʻu.

During the four and a half year Vancouver Expedition voyage, the crew and officers bickered amongst themselves, circumnavigated the globe, touching down on five continents. Little did they know, for many of them it would be the last voyage they would ever take. 

The expedition returned to a Britain more interested in its ongoing war than in Pacific explorations. Vancouver was attacked by the politically well-connected Menzies for various slights, then challenged to a duel by Thomas Pitt, the 2nd Baron of Camelford.

The fellow for whom the fair city of Vancouver is named never did complete his massive cartographical work. With health failing and nerves eroded, he lost the dual and his life. It was Peter Puget, whose name adorns Puget Sound, who completed Vancouver's — and arguably Cook's work on the mapping of our world.

Wednesday, 24 February 2021

DELICATELY RIDGED PORPOCERAS

An exquisite specimen of the delicately ridged ammonite, Porpoceras verticosum, from Middle Toarcian outcrops adjacent the Rhône in southeastern France.

Porpoceras (Buchman, 1911) is a genus of ammonite that lived during the early and middle Toarcian stage of the Early Jurassic. We see members of this genus from the uppermost part of the Serpentinum Zone to Variabilis Subzone. These beauties are found in Europe, Asia, North America and South America.

Ammonites belonging to this genus have evolute shells, with compressed to depressed whorl section. The flanks are slightly convex and the venter has been low. The whorl section is sub-rectangular. 

The rib is pronounced and somewhat fibulate on the inner whorls — just wee nodes here — and tuberculate to spined on the ventrolateral shoulder. It differs from Peronoceras by not having a compressed whorl section and regular nodes or fibulation. Catacoeloceras is also similar, but it has regular ventrolateral tubercles and is missing the classic nodes or fibulation of his cousins.

This specimen hails from southern France near the Rhône, one of the major rivers of Europe. It has twice the average water level of the Loire and is fed by the Rhône Glacier in the Swiss Alps at the far eastern end of the Swiss canton of Valais then passes through Lake Geneva before running through southeastern France. This 10 cm specimen was prepared by the supremely talented José Juárez Ruiz

Tuesday, 23 February 2021

HOMARUS OF LEBANON

An artfully enhanced example of Homarus hakelensis, an extinct genus of fossil lobster belonging to the family Nephrophidae. Homarus is a genus of lobsters, which include the common and commercially significant species Homarus americanus (the American lobster) and Homarus gammarus (the European lobster).

The Cape lobster, which was formerly in this genus as H. capensis, was moved in 1995 to the new genus Homarinus.

Lobsters have long bodies with muscular tails and live in crevices or burrows on the seafloor. Three of their five pairs of legs have claws, including the first pair, which are usually much larger than the others.

Highly prized as seafood, lobsters are economically important and are often one of the most profitable commodities in coastal areas they populate. Commercially important species include two species of Homarus — which looks more like the stereotypical lobster — from the northern Atlantic Ocean, and scampi — which looks more like a shrimp — the Northern Hemisphere genus Nephrops and the Southern Hemisphere genus Metanephrops. Although several other groups of crustaceans have the word "lobster" in their names, the unqualified term lobster generally refers to the clawed lobsters of the family Nephropidae.

Clawed lobsters are not closely related to spiny lobsters or slipper lobsters, which have no claws or chelae, or to squat lobsters. The closest living relatives of clawed lobsters are the reef lobsters and the three families of freshwater crayfish. This cutie was found in Cretaceous outcrops at Hâdjoula. The sub‐lithographical limestones of Hâqel and Hâdjoula, in north‐west Lebanon, produce beautifully preserved shrimp, fish, and octopus. The localities are about 15 km apart, 45 km away from Beirut and 15 km away from the coastal city of Jbail. 

Sunday, 21 February 2021

PLAZA DE ESPANA, SEVILLE

The Plaza de España is a plaza in the Parque de María Luisa, in Seville, Spain. It was built in 1928 for the Ibero-American Exposition of 1929. 

It is a landmark example of Regionalism Architecture, mixing elements of the Baroque Revival, Renaissance Revival and Moorish Revival styles of Spanish architecture. You can stroll through the grounds and explore each of the buildings. There is amazing tile work.

The Plaza de España, designed by Aníbal González, was a principal building built on the Maria Luisa Park's edge to showcase Spain's industry and technology exhibits. González combined a mix of 1920s Art Deco and Spanish Renaissance Revival, Spanish Baroque Revival and Neo-Mudéjar styles. The Plaza de España complex is a huge half-circle; the buildings are accessible by four bridges over the moat, which represent the ancient kingdoms of Spain. In the centre is the Vicente Traver fountain.

Many tiled alcoves were built around the plaza, each representing a different province of Spain. Each alcove is flanked by a pair of covered bookshelves, now used by visitors in the manner of a "Little Free Library". Each bookshelf often contains works with information about each province. Visitors have also donated favourite novels and other books for others to read.

Today the buildings of the Plaza de España have been renovated and adapted for use as offices for government agencies. The central government departments, with a sensitive adaptive redesign, are located within it. Toward the end of the park, the grandest mansions from the fair have been adapted as museums. The most distant museum contains the city's archaeology collections. The main exhibits are Roman mosaics and artefacts from nearby Italica.

The Plaza de España has been used as a filming location, including scenes for Lawrence of Arabia (1962). The building was used as a location in the Star Wars movie series Star Wars: Episode II – Attack of the Clones (2002) — in which it featured in shots of the City of Theed on the Planet Naboo. It also featured in the 2012 film The Dictator.

Saturday, 20 February 2021

CERECINOS DE CAMPOS: DEINOTHERIUM

This partial specimen of Deinotherium giganteum hails from Middle-Upper Miocene, c. 15.97-5.33 Million Years outcrops near Cerecinos de Campos, Zamora Castile and León, northwestern Spain.

Deinotherium means "terrible beast," which feels a bit unkind to this vegetarian — though he was one of the largest elephants to walk this Earth. 

They are relatively recent in the evolutionary story of the Earth. They first appeared 17 million years ago, had a short run of it and became extinct relatively recently — just 1.6 million years ago. This fellow's cousin, Deinotherium bozasi would likely have interacted with some of our oldest relatives. 

One of the distinguishing features of Deinotherium is their curved tusks inserted only in the jaw. One of the tusks from this fellow, on display at the Museo Nacional De Ciencias Naturales in Madrid, Spain, while incomplete, was preserved rather nicely and shows the detail of where the tusk meets the jaw. Deinotherium could reach a height of over 3.5 meters. Its structure and size are similar to those of the present-day elephant. 

Thursday, 18 February 2021

EL TORCAL DE ANTEQUERA

El Torcal de Antequera
El Torcal de Antequera is a nature reserve in the Sierra del Torcal mountain range south of the city of Antequera, in Andalusia, Spain. 

From the tops of the hillsides, you can see far into the fertile grazing lands of the province of Málaga. 

There are numerous hiking routes throughout the park, some for serious walkers and climbers, as well as for those who might prefer a more gentle meander. 

El Torcal is known for its unusual landforms and is regarded as one of the most impressive karst landscapes in Europe. Karst topography forms from the dissolution of soluble rocks like limestone, dolomite, and gypsum. It often has underground drainage systems with sinkholes and caves. 

Water loves to dissolve the softer rocks but it works its erosional magic on harder, more weathering-resistant quartzites given the right conditions. El Torcal has many wonderful caves and thousands of chasms for the small animals living in this area to call home. Some are quite small, while others are large enough to be explored. The rock we see at El Torcal formed over several hundred million years. 

About 200 million years ago, much of Europe and the Middle East were submerged under the Tethys Sea. 

This was a time of carbonate sedimentation as the skeletons, shells and shells of small marine animals lived and died, depositing their remains at the bottom of the sea. 

Over vast amounts of time, these wee bits of marine matter built up until 175 million years later, the sediments have built up and compacted to form strat thousands of metres deep. 

Towards the Middle Miocene, the Iberian plates to the north of the Tethys Sea and the African plates to the south, compressed, deformed and fractured those sediments. This process is slow and continuous and still continues today. Water, wind and ice continue to shape the landscape and present the continually eroding karst landscape you can hike through today at El Torcal de Antequera.

El Torcal Natural Park is a UNESCO site. Hiking through the hills, you can see the large mushroom-shaped folds, with a very wide upper part and horizontal layers, and short and abrupt flanks. Karst acts as a large sponge, storing rainwater and releasing it within the rock to encourage the limestone to dissolve. 

Gravity pulls the water down and it trickles out again as streams along the edge of the cliffs. One of the sites that the water gathers is in the Nacimiento de La Villa spring on El Torcal's north side.

El Torcal, Karst Topography

Along with its distinct hoodoos, sprinkled amongst the limestones, you will find a wealth of interesting plants and wildlife. Look for lilies, red peonies, wild rose trees and thirty varieties of orchid.  

The many species of reptiles include the Montpellier snake and ocellated lizard, both endemic to El Torcal. 

Other wildlife to look for are the resident Griffon vultures and Spanish Ibex, Andalusian mountain goats, voles, fox and rabbits. If you are here in the evening, look for some of the nocturnal mammals who call these hills home — badgers and weasels.

The park has an excellent Visitor Centre which makes a natural starting point for your exploration of the reserve. There you will find details about the park, parking and walking routes. Guided walks are available, including the popular ‘Route of the 5 Senses’, a night-time ‘El Torcal Under Moonlight’ walk and a fossil-hunting walk, Route of the Ammonites. The visitor centre includes a very reasonably priced restaurant which offers a good selection of traditional food, all made with locally sourced ingredients.

For those who might enjoy some sightseeing in the heavens, this area of Spain has extremely favourable conditions for stargazing and astronomy. The Astronomical Observation of El Torcal (OAT) is located within the park. They host regular observation evenings that take advantage of the lack of light pollution in this region.  

Places to Stay: Finca Gran Cerros Rural Retreat: The epitome of tranquil, rural Spain, Finca Gran Cerros nestles into the Andalusian hillside just a few minutes drive from the traditional white villages’ of Álora and Valle de Abdalajis. Visit them: https://www.fincagrancerros.com. Fina Gran Cerros is about 30 km south of El Torcal de Antequera nature reserve in the Sierra del Torcal mountains.


Wednesday, 17 February 2021

OLD HABITS: DULCES AND SALMOREJO

A group of nuns stepping out in Córdoba, Spain. The nuns of the Convento de Santa Isabel make sweets and cookies from centuries-old recipes passed down from the Romans and Moors. 

It is a lost art as fewer and fewer nuns take their vows. living selling sweets and confections using recipes handed down from the Romans and Moors.  

Have a bit of a sweet tooth? You will appreciate their efforts. Head to the Calle Santa Isabel with Euros on you. Once you enter the convent you'll not see any of the nuns, but will find yourself quite alone in a smallish room with a lazy Susan installed on the wall. 

While I did see some nuns in the street, many do not leave the cloister or appear in public. You never see the nun with whom you do the transaction since these are cloistered nuns who do not look upon the outside world.

On the wall, you will see a price list. Once you have chosen your goodies, you ring the buzzer. A lovely voice will ask you what you would like to enjoy. Many of these egg yolk and sugary treats are sold by the box and offerings range from 11-88 Euros.

You place your verbal order, set the monies on the lazy Susan and give it a spin. And la voila, your sweets arrive. Beyond the tasty baking, you may want to try salmorejo. It is famous in the region and owes its origins to Moorish cuisine. The dish is a thick, cold, tomato-based soup made with garlic, sherry vinegar and sometimes topped with a hard-boiled egg or jamón. The tomatoes are a recent addition to the recipe, but this region grows some of the best so I can see the appeal. Think gazpacho only tastier. Simple and delicious.

Roman Bridge on Guadalquivir River, Córdoba
The entire city is walkable and a picture postcard from every view. It is also a lovely testament to Roman engineering and building structures that last. Most of the bridges in Spain and certainly those in Córdoba all hail from Roman times.

The Convento de Santa Cruz, a convent n the historic centre, barrio de San Pedro, Córdoba, Andalusia, Spain, is well worth a visit. It was founded in 1435, by Pedro de los Ríos y Gutiérrez de Aguayo and his wife, Teresa Zurita. 

The building has maintained close ties to the Ríos family who have worked to maintain it. They have added to the complex to interesting effect. It is notable for its originality, its architecture, and the artistic setting. These include the cloister, convent, church, house of the novices of the eighteenth century, and courtyard. In the main structure, there are architectural elements in Roman, Muslim, Moorish and Baroque styles, which witness the historic and artistic development of Córdoba. The retablos which decorate the church interior, tiling, and paintings are of note. It was declared a Bien de Interés Cultural site in 2011.

Photos: Nuns taking a stroll & the Roman Bridge on the Guadalquivir River and The Great Mosque — Mezquita Cathedral — at twilight in the city of Córdoba, Andalusia, Spain.

Foodie? You are welcome to drool over at https://spanishsabores.com/12-must-try-foods-in-cordoba-eat-like-a-local-in-cordoba/

Tuesday, 16 February 2021

NEOCOMITES: AMMONITE ESPANA

This lovely burnt-orange ammonite is Neocomites (Teschenites) found on a fossil field trip to Hauterivian, Early Cretaceous deposits in the Baetic Cordillera this past year. 

The Baetic Cordillera is one of the main systems of mountain ranges in Spain along the southern and eastern Iberian Peninsula. There are several productive outcrops here that yield lovely Cretaceous ammonites and other marine species.

Neocomites are flucticulus a fast-moving nektonic carnivorous ammonite (Thieuloy, 1977) known from about a dozen offshore marine deep subtidal Cretaceous deposits in France, Hungary, Italy, Romania, Slovakia and Ukraine.

The photo and specimen you see here sharing a large boulder with a delicate heteromorph straight-shelled ammonite Bochianites are the first Neocomites I have seen come out of fossil deposits in Spain. It was found and prepped by the talented Manuel Peña Nieto of Córdoba, Spain.

Monday, 15 February 2021

ANDALUSIA: ARCHITECTURE AND FOSSILS

Córdoba’s Mezquita Mosque-Cathedral
Andalusia is a gorgeous region of hills, creamy-beige rock, rivers and farmland bordering Spain’s southern coast. 

As you explore the region, you see the influence of Roman and Islamic conquest. It was under Moorish rule from the 8th-15th centuries, a legacy that shows in its architecture, particularly at sites like the Alcázar Castle in Seville and Córdoba’s Mezquita Mosque-Cathedral and Granada’s Alhambra palace in southern Spain. 

If you look closely, there is a lovely echinoderm fossil about the size of your hand embedded within the masonry stones of the Mezquita Mosque-Cathedral.  

Fossils are common in the ashlars and masonry in Córdoba. Despite having other limestone and granite quarries nearby, the calcarenites limestones with their embedded macrofossils were the most sought after because of the ease with which they could be worked and their relative lightness.

This is one of my favourite places to visit, both for the wonderful architecture, intense human history and the wonderful Hauterivian, Early Cretaceous fossil outcrops in the Baetic Cordillera. 

The Sierra Nevada range, which boasts Spain’s highest peak, Mulhacén (3479m), is 75 kilometres of snowcapped peaks sprinkled with quaint Alpujarras villages lost in time. 

Echinoid Fossil in the Mosque-Cathedral in Córdoba
Each of these shows the juxtaposition of Muslim and Christian architecture and none more so than the especially stunning, and oh so grand Mosque-Cathedral in Córdoba. 

It was originally a small temple of Christian Visigoth origin then expanded again and again to reach a grand scale which speaks to its unusual and collaborative history. 

In 711, Muslims invaded and conquered Spain over the course of seven years. History is a tricky business to sort fact from fancy. One tale about the origins of the Muslim invasion mentions an oppressed Christian Chief, Julian, who wanted to get out from under the thumb of the tyrannical Visigoth rule. 

While powerful, the Visigoths made up only 1-2% of the population and had ruled for more than 300 years. |Their grip over the country and its growing rebellious population was already starting to crack. Julian resented King Roderic, the ruler of Spain and sought the aid of Musa ibn Nusair, the governor of North Africa to help him wage war. Musa was happy to oblige and sent the young general Tariq bin Ziyad with an army of 7,000 troops. 

Alhambra Palace, Granada, Spain
The Rock of Gibraltar — the massive monolithic limestone formed from Early Jurassic limestones and dolomites that grace the southwestern tip of Europe on the Iberian Peninsula — owes its name to Jabal At-Tariq — Arabic for 'Rock of Tariq' — the place where those first Muslim troops landed. 

Tariq did invade Spain but was driven as much by greed and conquest as by Julian's alleged appeal for help. The seasoned Muslim army defeated the Visigoths handily and King Roderic lost his life in the process at the Battle of Guadalete. I visited King Roderic's home city of Toledo, on the banks of the Tagus River. 

The city was the seat of a powerful archdiocese for much of its history and has some of my favourite feats of architecture — the Gothic Cathedral, the Catedral Primada de España ("The Primate Cathedral of Spain"), and a long history in the production of bladed weapons and lovely pottery dishes.

The Muslims — or Moorish — went on to conquer most of Spain and Portugal with ease. They washed across the land and by 720 Spain was largely under Muslim control. The combined Arab-Berber forces crossed the Pyrenees into Septimania and occupied territory in Gaul until 759. Their ultimate intension was the conquest of Constantinople, but their chosen path was through Spain.

Margocalizas del Jurásico Inferior
The churches and palaces you visit today are a visual memory of that piece of history lost in time. The mosque-cathedral was divided into Muslim and Christian halves. This sharing arrangement lasted until 784, when the Christian half was purchased by the Emir 'Abd al-Rahman I, who then demolished the original structure to build the grand mosque of Córdoba on its ground.

Córdoba returned to Christian rule in 1236 during the Reconquista, and the building was converted to a Roman Catholic church, culminating in the inclusion of a Renaissance cathedral nave in the 16th century. 

If you are visiting Andalusia, it is well worth a trip. Bring your camera and comfortable shoes. 

There is a converted convent that is now a boutique hotel with a rooftop terrace — the Balcon de Córdoba — that I highly recommend. It is on Calle Encarnacion 8, 14003. If you are planning a stay, give them a jingle and enjoy their Old World style. Tel: +34 957 49 84 78.

Photo: The specimen you see here of the Lower Jurassic ammonite Margocalizas sp. is in the collections of the deeply awesome Manuel Peña Nieto of Córdoba, Spain.

Photo: Echinoid in the masonry of Córdoba’s Mezquita Mosque-Cathedral: Miguel López Pulido


Sunday, 14 February 2021

HASLAM FORMATION NEAR BRANNEN LAKE

Steller's Jay, Cyanocitta stelleri
One of the classic Vancouver Island fossil localities is the Santonian-Maastrichtian, Upper Cretaceous Haslam Formation Motocross Pit near Brannen Lake, Nanaimo, British Columbia, Canada.

The quarry is no longer active as such though there is a busy little gravel quarry a little way down the road closer to Ammonite falls near Benson Creek Falls.

Today it is an active motocross site and remains one of the classic localities of the Nanaimo Group. We find well-preserved nautiloids and ammonites — Canadoceras, Pseudoschloenbachia, Epigoniceras — the bivalves — Inoceramus, Sphenoceramus— gastropods, and classic Nanaimo Group decapods — Hoploparia, Linuparus. We also find fossil fruit and seeds which tell the story of the terrestrial history of Vancouver Island.

Upper Cretaceous Haslam Formation Motocross Pit near Brannen Lake
It was John Fam, Vice-Chair, Vancouver Island Paleontological Society (VanPS), who originally told me about the locality. John is one of the most delightful and knowledgeable people you'd be well-blessed to meet.

While he lived on Vancouver Island, he was an active member of the VanPS back when I was Chair. Several of the best joint VIPS/VanPS paleontological expeditions were planned with or instigated by his passion for fossils. I tip my hat to him for his passion and shared love of all things paleo.

John grew up 15 minutes from the motocross locality and used to collect there a few times a week with his father. John has wonderful parents and since marrying his childhood sweetheart, the amazing Grace, those excellent genetics, curiosity and love of fossils are now being passed to a new generation. It's lovely to see John and Grace continuing tradition with two boys of their own.

I met John way back then and did an overnight at his parent's house the Friday before a weekend field trip to Jurassic Point. It was a joy to have him walk me through his collections and tell his stories from earlier years. After learning about the site from John, I headed up to the Motocross Pit with my Uncle Doug. He was a delightful man who grew up on the coast and had explored much of it but not the fossil site just 10-minutes from his home. It was wonderful to walk through time with him so many years ago and then again solo this past year with sadness in my belly that one of the best I've ever known has left this Earth.

Upper Cretaceous Haslam Formation Motocross Pit near Brannen Lake
There were some no trespassing signs up but no people around, so I walked the periphery looking for the bedrock of the Haslam.

The rocks we find here were laid down south of the equator as small, tropical islands. They rode across the Pacific heading north and slightly east over the past 80 million years to where we find them today.

Jim Haggart and Peter Ward have done much to increase our understanding of the molluscan fauna of the Nanaimo Group. Personally, both personify the charming Indiana Jones school of rugged manly palaeontologists you picture in popular film. Professionally, their singular contributions and collaborative efforts have helped shape our understanding of the correlation of Nanaimo Group fauna to those we find in the Gulf Islands of British Columbia and down in the San Juan Islands of Washington State.

Their work builds on the work of Usher (1952), Matsumoto (1959a, 1959b) and Mallory (1977). A healthy nod goes out to the work of Muller and Jeletzky (1970) for untangling the lithostratigraphic and biostratigraphic foundation for our knowledge of the Nanaimo Group.

Candoceras yokoyama, Photo: John Fam, VanPS
As I walked along the bedrock of the Haslam, a Steller's Jay, Cyanocitta stelleri, followed me from tree to tree making his guttural shook, shook, shook call. Instructive, he seemed to be encouraging me, timing his hoots to the beat of my hammer. Vancouver Island truly has glorious flora and fauna.

Fancy some additional reading? Check out a paper published in the Journal of Paleontology back in 1989 by Haggard and Ward on new Nanaimo Group Ammonites from British Columbia and Washington State.

In it, they look at the ammonite species Puzosia (Mesopuzosia) densicostata Matsumoto, Kitchinites (Neopuzosia) japonicus Spath, Anapachydiscus cf. A. nelchinensis Jones, Menuites cf. M. menu (Forbes), Submortoniceras chicoense (Trask), and Baculites cf. B. boulei Collignon are described from Santonian--Campanian strata of western Canada and northwestern United States.

Stratigraphic occurrences and ranges of the species are summarized and those taxa important for correlation with other areas in the north Pacific region and Late Cretaceous ammonite fauna of the Indo-Pacific region. Here's the link: https://www.jstor.org/stable/1305358?seq=1

Peter Ward is a prolific author, both of scientific papers and more popularized works. I highly recommend his book Gorgon: Paleontology, Obsession, and the Greatest Catastrophe in Earth's History. It is an engaging romp through a decade's research in South Africa's Karoo Desert.

Photo: Candoceras yokoyamai from Upper Cretaceous Haslam formation (Lower Campanian) near Nanaimo, British Columbia. One of the earliest fossils collected by John Fam (1993). Prepared using only a cold chisel and hammer. Photo & collection of John Fam, VIPS.

Saturday, 13 February 2021

TORVOSAURUS: SAVAGE LIZARD

This toothy fellow is Torvosaurus tanneri and he hails from Late Jurassic outcrops in the Carnegie Quarry at Dinosaur National Monument, Morrison Formation, western United States — where we have found a single bone, his humerus telling us about his mighty size. 

The specimen you see here is currently on display at the Museo Nacional De Ciencias Naturales in Madrid, Spain.

Torvosaurus were one of the largest and most robust carnivores of the Jurassic. 

These "savage lizards," were true to their name. They were skilled bipedal hunters who weighed over two tons. They had powerful dentition, large, sharp teeth and strong claws on their forelegs — ferocious predators of the Upper Jurassic. He would have roamed alongside the mighty Camarasaurus, Diplodocus, Apatosaurus, Stegosaurus and Allosaurus.

Palaeontologist Earl Douglass, 1909
Fossil specimens of Torvosaurus have been found in the Lourinha Formation near Lisbon, Portugal. Here, he would have towered over the smaller Allosaurus of the region who were just over eight metres or 27 feet on average, while he towered at over ten metres or 35 feet. 

This was not the case for the Allosaurus — famed brontosaur hunters — who roamed the fern-covered floodplains of the Jurassic west and what would one day become the United States. Here they grew massive, passing twelve metres or 40 feet in length and towering over the local Tovosaurus. Allosaurus had a large bite, their jaws opening up very wide, making them capable of taking very big bites and positioning them as the top carnivores of the Late Jurassic.

Still, both of these hunters had to contend with Sauophaganax, the largest Jurassic theropod at a whopping twelve to thirteen metres — making it the largest Allosaurus and maybe even a wee bit larger than the mighty Tyrannosaurus rex roaming around western North America back when it was the island continent of Laramidia. This would have been fearsome land to roam as the juvenile of any species as all of these brutes would have the skill, speed and teeth to take you down. 

Photo One: Tovosaurus tannerion display at the Museo Nacional De Ciencias Naturales in Madrid, Spain.

Photo Two: Palaeontologist Earl Douglass digging up the remains of a Brontosaurus at the Carnegie Quarry, 1909. To learn more about this fossil site, visit: https://carnegiemnh.org/celebrated-fossil-quarry/

Friday, 12 February 2021

KOURISODON PUNTLEDGENSIS

Kourisodon Puntledgensis
Mosasaurs were large, globally distributed marine predators who dominated our Late Cretaceous oceans.  Since the unearthing of the first mosasaur in 1766 (Mulder, 2003) we've discovered their fossil remains most everywhere around the globe — New Zealand, Antarctica, Africa, North and South America, Europe and Japan.

One of my favourite specimens is a juvenile on display at the Royal Tyrell Museum in Alberta. That particular mosasaur is smaller than many of the marine reptiles in their collection but wonderfully preserved with his last meal — a metre-long lizardfish. 

After this fellow died, he drifted to the bottom of the Bearpaw Sea, an ancient body of water that connected the Gulf of Mexico and Hudson's Bay, splitting North America in two. Once settled, sharks scavenged his remains but left enough for quite a view into our Cretaceous seas. The fossil was excavated in 2008 from 71 million-year-old outcrops in the Korite Ammonite Mine in Alberta, Canada.

The specimen was prepped by the Royal Tyrell's talented technician, Mark, who cheekily nicknamed the specimen Mister Sinister because of its toothy evil grin. 

We have found marine reptile remains on Vancouver Island and in northern British Columbia. Since the first find of a marine reptile on the Puntledge River, members of the Vancouver Island Palaeontological Society have made many significant paleontological finds. Found the fossil remains of an elasmosaur and two mosasaurs along the banks of the Puntledge River and this past summer, a juvenile elasmosaur was excavated on the Trent River.

The first set of about 10 mosasaurs vertebrae (Platecarpus) was found by Tim O’Bear and unearthed by a team of VIPS and Museum enthusiasts led by Rolf Ludvigsen. Dan Bowen and Joe Morin of the Vancouver Island Palaeontological Society prepped the specimens for the Museum.

In 1993, a new species of mosasaur, Kourisodon puntledgensis, a razor-toothed mosasaur, was found upstream from the elasmosaur site by Joe Zembiliwich on a field trip led by Mike Trask. A replica of this specimen now calls The Canadian Fossil Discovery Centre in Morden home.

What is significant about this specimen is that it is a new genus and species. At 4.5 meters, it is a bit smaller than most mosasaurs and similar to Clidastes, but just as mighty. Kourisodon ("razor tooth") is a genus of mosasaur that has been found from Vancouver Island in British Columbia, Canada, as well as from the Izumi Group of Japan.

Kourisodon Puntledgensis
These finds date back to the late Santonian stage and the late Campanian to the late Maastrichtian, respectively, of the Late Cretaceous. Kourisodon was originally described as a member of the Leiodontini, more recently as a Clidastine.

Interestingly, this species has been found in this one locality in Canada and across the Pacific in the basal part of the Upper Cretaceous — middle Campanian to Maastrichtian — of the Izumi Group, Izumi Mountains and Awaji Island of southwestern Japan. We see an interesting correlation with the ammonite fauna from these two regions as well.

In 2005, a fragmentary skeleton from exposures of the Izumi Group on Shikoku Island, Japan, was assigned to Kourisodon sp.

The Japanese specimen had longer maxillary teeth along with a few other differences from K. puntledgensis, which the authors interpreted to mean that this individual belonged to a second species, although this new species has not yet been formally named. Other fragmentary remains from the Izumi Group have been tentatively assigned to K. sp., some of which represent juvenile animals.

Until recently, mosasaur remains from the Izumi Group (Upper Cretaceous) in southwest Japan comprised only scattered finds. Recently, additional fossil material has been unearthed from the upper Campanian Hiketa Formation in Kagawa Prefecture.

A new Kourisodon sp. has just been recorded, on the basis of portions of skull and mandible which has small and laterally compressed teeth. A few teeth of the same or similar type have previously been described from the Maastrichtian Mutsuo Formation in Osaka Prefecture. A report of Mosasaurus sp. A, which resembles M. missouriensis and M. dekayi, is based on some cranial and mandible remains, inclusive of numerous teeth and a few well-preserved cervical and two incomplete dorsal vertebrae, from the Maastrichtian Mutsuo Formation in Osaka Prefecture.

There's still a bit of sorting to do to tease out the lineage of these lovely marine reptiles. A slender tooth of Mosasaurus sp. from the Mutsuo Formation has since been reassigned to Platecarpus (Plioplatecarpinae) yet may indeed be a species of Mosasaurus. It is currently recorded as Mosasaurus sp. B. Many smaller specimens of mosasaurids have been found in the Izumi Group. It may have been that these are juvenile mosasaurs or smaller-sized, Kourisodon-like animals. Recent finds of Kourisodon sp. from the upper Campanian Hiketa Formation and the Maastrichtian Mutsuo Formation suggests that we are seeing Kourisodon-like animals and a strong correlation with our own Pacific fauna from the Nanaimo Group.

What we do not see is a correlation between our Pacific fauna and those from our neighbouring province to the east. Betsy Nicholls and Dirk Meckert published on the marine reptiles from the Nanaimo Group (Upper Cretaceous) of Vancouver Island in the Canadian Journal of Earth Sciences in 2002. What we see in our faunal mix reinforces the provinciality of the Pacific faunas — though a  strong correlation with Cretaceous Japanese fauna — and their isolation from contemporaneous faunas in the Western Interior Seaway.