Wednesday, 6 October 2021

PEARLS: BEAUTY FROM A GRAIN OF SAND

One of my favourite pairs of earrings are a simple set of pearls. I have worn them pretty much every day since 2016 when I received them as a gift. What is it about pearls that makes them so appealing? I am certainly not alone in this. 

A simple search will show you a vast array of pearls being used for their ornamental value in cultures from all over the world. I suppose the best answer to why they are appealing is just that they are

If you make your way to Paris, France and happen to visit the Louvre's Persian Gallery, do take a boo at one of the oldest pearl necklaces in existence — the Susa necklace. It hails from a 2,400-year-old tomb of long lost Syrian Queen. It is a showy piece with three rows of 72 pearls per strand strung upon a bronze wire. 

That queen knew how to accessorize. 

I imagine her putting the final touches of her outfit together, donning the pearls and making an entrance to wow the elite of ancient Damascus. The workmanship is superb, intermixing pure gold to offset the lustre of the pearls. It is precious and ancient, crafted one to two hundred years before Christ. Perhaps a gift from an Egyptian Pharaoh or from one of the Sumerians, Eblaites, Akkadians, Assyrians, Hittites, Hurrians, Mitanni, Amorites or Babylonian dignitaries who sued for peace but brought war instead. 

Questions, good questions, but questions without answers. So, what can we say of pearls? We do know what they are and it is not glamorous. Pearls form in shelled molluscs when a wee bit of sand or some other irritant gets trapped inside the shell, injuring the flesh. As a defensive and self-healing tactic, the mollusc wraps it in layer upon layer of mother-of-pearl — that glorious shiny nacre that forms pearls. 

They come in all shapes and sizes from minute to a massive 32 kilograms or 70 pounds. While a wide variety of our mollusc friends respond to injury or irritation by coating the offending intruder with nacre, there are only a few who make the truly gem-y pearls. These are the marine pearl oysters, Pteriidae and a few freshwater mussels. Aside from Pteriidae and freshwater mussels, we sometimes find less gem-y pearls inside conchs, scallops, clams, abalone, giant clams and large marine gastropods.

Pearls are made up mostly of the carbonate mineral aragonite, a polymorphous mineral — same chemical formula but different crystal structure — to calcite and vaterite, sometimes called mu-calcium carbonate. 

These polymorphous carbonates are a bit like Mexican food where it is the same ingredients mixed in different ways. 

Visually, they are easy to tell apart — vaterite has a hexagonal crystal system, calcite is trigonal and aragonite is orthorhombic.

As pearls fossilize, the aragonite usually gets replaced by calcite, though sometimes by vaterite or another mineral. When we are very lucky, that aragonite is preserved with its nacreous lustre — that shimmery mother-of-pearl we know and love.  

Molluscs have likely been making pearls since they first evolved 530 million years ago. The oldest known fossil pearls found to date, however, are 230-210 million years old. 

This was the time when our world's landmass was concentrated into the C-shaped supercontinent of Pangaea and the first dinosaurs were calling it home. In the giant ancient ocean of Panthalassa, ecosystems were recovering from the high carbon dioxide levels that fueled the Permian extinction. Death begets life. With 95% of marine life wiped out, new species evolved to fill each niche.  

While this is where we found the oldest pearl on record, I suspect we will one day find one much older and hopefully with its lovely great-great grandmother-of-pearl intact. 

Tuesday, 5 October 2021

MIGHTY DOVE CREEK MOSASAUR

Dove Creek Mosasaur (Tylosaur) found by Rick Ross, VIPS
This specimen of the teeth and lower jawbone of a large marine reptile was discovered by Rick Ross, Vancouver Island Palaeontological Society, during the construction of the Inland Highway, near the Dove Creek intersection, Vancouver Island, British Columbia on Canada's west coast.

If you look closely, you can see several smaller disc-shaped objects to the upper right. These are part of this fellow's sclerotic eye-ring.

These bony plates allowed for safe hunting in deeper waters as the structures protected the delicate eye tissue from the intense water pressure. Diving birds have these same bony plates to aid them in the same way.

Mosasaurs had a hinged jaw that allowed them to swallow prey larger than themselves. They evolved special pterygoid teeth projecting back into the roof of their mouths that acted as guards against escaping prey. The jawbones Rick found were exposed just up to the hinge. Given the size, this toothy fellow could have been as much as seven (7) metres long and weighed up to a tonne.

Along with the significant find of the mosasaur, Rick Ross collected many ammonites and other marine invertebrates exposed during the construction of the Inland Island Highway. He donated the majority of them to the Royal BC Museum in Victoria. They now adorn a cabinet bearing his name and are tucked lovingly in with stories he wrote about his collecting adventures.

Glyptoxoceras heteromorph found by Rick Ross, VIPS
Science owes a great debt to the keen eye and fast thinking of Rick Ross for his work in recovering the specimen. Rick was out on a Sunday looking through the blocks that were destined to be crushed to finish up the tail end of the new highway construction. The crews had just dropped a pile of massive blocks near the Dove Creek Road crossing.

Each of the blocks was one to five tonnes in size. Rick was looking through them when he spotted a concretion sticking out. 

It did not look all that different from the hundreds he had been found up and down the highway. Interested to see what it might contain, Rick took his geology hammer and struck a blow. Off popped the end and inside was a large perfect mosasaur tooth.

Looking closer, he could see a bone sticking out in several other places within this massive block. Excited about the find and not quite sure how to approach excavating it from an active construction site, Rick searched the highway and finally located a maintenance working greasing up some heavy machinery. Rick excitedly told the field mechanic about the find and inquired who would need to be called to save the block. His answer was disappointing. The block was destined to be bulldozed in the morning. 

Panicked but still hopeful, Rick asked who his supervisor was and how to reach him on a Sunday. While initially hesitant, the urgency and excitement in Rick's voice swayed him. With a warning that the supervisor would likely not be impressed to get his call, he relented and shared the telephone number. Rick dialled the number and received the predicted reaction. Unrelenting, Rick swayed the supervisor who agreed that if Rick could get a truck up to the site first thing in the AM, the block could be lifted onto the truck. The next hour was filled with phone calls and putting together a plan to get the mighty block.

Rick called Pat Trask from the Courtenay Museum. The two are fossil hunting buddies and Rick was sure that Pat would be up for the challenge. The next call was to Doug Embree, another fossil hunting buddy from the Comox Valley. As luck would have it, Doug's brother Sam had a two-tonne flatbed truck that they would be able to use. The struggle now was would it take the weight? Monday morning arrived and the block was lifted onto the flatbed with the aid of a drill hole and chain through one corner.

The truck groaned and leaned heavily all the way into town. They had to come in via the 17th Street Bridge as a safe route to the Courtenay Museum. the local building store lent the use of a large forklift to lift the block from the heavily tilted truckbed down onto the back deck of the museum. Once in place, it was far too big to move. It sat there for almost seven years before finally being shipped to a preparatory lab down in Washington. There it was prepped and whittled down to the still massive block we see today.

This specimen is now housed in the Courtenay and District Museum on Vancouver Island, British Columbia. The jaw and associated bones are tagged as a mosasaur, but exactly what kind will need more study. We may be looking at a Tylosaurus, a very large mosasaur with an elongated, cylindrical premaxilla (snout) from which it takes its name. These were the big boys of our ancient seas who snacked on plesiosaurs and other smaller marine reptiles.

T. proriger specimen found with a plesiosaur in its stomach
In 1918, Charles H. Sternberg found a Tylosaurus, with the remains of a plesiosaur in its stomach while collecting in the Smoky Hill Chalk of Logan County, Kansas. You can visit the specimen at the Smithsonian.

Like many other mosasaurs, the early history of this taxon is complex and involves the infamous rivalry between two early American palaeontologists, Edward Drinker Cope and Othniel Charles Marsh. Cope wins the day in terms of longevity in his naming of these mighty beasts.

Though many species of Tylosaurus have been named over the years, only a few are now recognized by scientists as taxonomically valid. They are: Tylosaurus proriger (Cope, 1869), from the Santonian and lower to middle Campanian of North America (Kansas, Alabama, Nebraska) and Tylosaurus nepaeolicus (Cope, 1874), from the Santonian of North America (Kansas). Tylosaurus kansasensis, named by Everhart in 2005 from the late Coniacian of Kansas, has been shown to be based on juvenile specimens of T. nepaeolicus.

It is likely that T. proriger evolved as a paedomorphic variety of T. nepaeolicus, retaining juvenile features into adulthood while attaining a much larger adult size.

Along with plesiosaurs, sharks, fish, and other mosasaurs, Tylosaurus was a dominant predator of the Western Interior Seaway during the Late Cretaceous. The genus was among the largest of the mosasaurs — along with Mosasaurus hoffmannii — with the possibly conspecific Hainosaurus bernardi reaching lengths up to 12.2 meters (40 ft), and T. pembinensis reaching comparable sizes. T. proriger, the largest species of Tylosaurus, reached a whopping 14 m (46 ft). While the Dove Creek Mosasaur was half that size, it may be one of T. proriger's smaller cousins.

Photo One: Dove Creek Mosasaur by Heidi Henderson. Courtenay Museum Collection.
Photo Two: Urakawites heteromorph ammonite by Rick Ross. RBCM Collection
Photo Three: T. proriger specimen which was found with a plesiosaur in its stomach. By Ryan Somma - Flickr, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=9004614

Monday, 4 October 2021

HERMIT CRAB: XALA'IS GUGWIS

This little cutie is a hermit crab and he is wearing a temporary home borrowed from one of our mollusc friends. 

His body is a soft, squishy spiral that he eases into the perfect size shell time and time again as he grows. His first choice is always the empty shell of a marine snail but will get inventive in a pinch — nuts, wood, serpulid worm tubes, aluminium cans or wee plastic caps. 

They are inventive, polite and patient. I think of them as I hunt for elusive parking in Kitsilano and watch friends lining up for scarce apartment rentals. 

You see, a hermit crabs' desire for the perfect bit of real estate will have them queueing beside larger shells — shells too large for them — to wait upon a big hermit crab to come along, discard the perfect home and slip into their new curved abode. This is all done in an orderly fashion with the hermit crabs all lined up, biggest to smallest to see who best fits the newly available shell. 

There are over 800 species of hermit crab — decapod crustaceans of the superfamily Paguroidea. Their lineage dates back to the Jurassic, 200 million years ago. Their soft squishy, weakly calcified bodies do not fossilize all that often but when they do the specimens are spectacular. Think of all the species of molluscs these lovelies have had a chance to try on — including ammonites — and all the shells that were never buried in sediment to become fossils because they were harvested as homes.  

On the shores of British Columbia, the hermit crab I come across the most is the Grainyhand hermit crab, Pagurus granosimanus. These wee fellows have tell-tale orange-brown antennae and olive green legs speckled with blue or white dots. 

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, a shell is known as x̱ala̱'is and gugwis means house on the beach. I do not know the Kwak’wala word for hermit crab, so I will think of these cuties as x̱ala̱'is gugwis — envisioning them finding the perfect sized shell on the surf worn shores of Tsax̱is, Fort Rupert, Vancouver Island. 

Sunday, 3 October 2021

LYTOCERAS OF THE LIAS

A gorgeous Lytoceras sp. from within the Middle Lias, Lower Jurassic Bridport Sands, Margaritatus Zone, near the secluded town of Eype, Dorset, England. 

Eype is a small village that hugs the English Channel in southwest Dorset near the town of Bridport on the infamous Jurassic Coast. Picture creamy rust-coloured sand, a shelved shingle bank backed by a massive cliff-face and the constant rush of waves.

Aside from the surf, this is a quiet hamlet and a wonderful place to explore along the pebble beach. You'll want to stay well away from the cliffs as rock slides happen quickly and the debris field is much wider than you would think.   

Prepping these lovelies is a tricky business as the flanges are very delicate. You can see that many of the ornamental rings are intact. The specimen itself is amazing but the level of patience and skill that went into the preparation of this lovely cephalopod is world-class. 

Photo: Specimen: 16 cm (just over 6 inches) at its widest point. Craig Chivers, Natural Selection Fossils. If you would like to see more of Craig's work, head on over to his website: naturalselection fossils.com or check out his Instagram account @naturalselectionfossils. You will drool over the incredible ammonites, marine reptile material and some bivalves — plus some paleo art thrown in for good measure. 

Saturday, 2 October 2021

DORSET LYTOCERAS

A superbly prepped and extremely rare Lytoceras (Suess, 1865) ammonite found as a green ammonite nodule by Matt Cape in the Lower Lias of Dorset. 

Lytoceras are rare in the Lower Lias of Dorset — apart from the Belemnite Stone horizon — so much so that Paul Davis, whose skilled prep work you see here, initially thought it might be a Becheiceras hidden within the large, lumpy nodule. 

One of the reasons these lovelies are rarely found from here is that they are a Mediterranean Tethyian genus. The fossil fauna we find in the United Kingdom are dominated by Boreal Tethyian genera. 

We do find Lytoceras sp. in the Luridum subzone of the Pliensbachian showing that there was an influx of species from the Mediterranean realm during this time. This is the first occurrence of a Lytoceras that he has ever seen in a green nodule and Paul's seen quite a few. 

This absolutely cracking specimen was found and is in the collections of the awesome Matt Cape. Matt recognized that whatever was hidden in the nodule would take skilled and careful preparation using air scribes. Indeed it did. It took more than five hours of time and skill to unveil the lovely museum-worthy specimen you see here. 

We find Lytoceras in more than 1,000 outcrops around the globe ranging from the Jurassic through to the Cretaceous, some 189.6 to 109.00 million years ago. Once this specimen is fully prepped with the nodule material cut or scraped away, you can see the detailed crinkly growth lines or riblets on the shell and none of the expected coarse ribbing. 

Lytoceras sp. Photo: Craig Chivers
If you imagine running your finger along these, you would be tracing the work of decades of growth of these cephalopods. 

While we cannot know their actual lifespans, but we can make a healthy guess. 

The nautilus, their closest living cousins live upwards of 20 years — gods be good — and less than three years if conditions are poor.

The flanges, projecting flat ribs or collars, develop at the edge of the mouth border on the animal's mantle as they grow each new chamber. 

Each delicate flange grows over the course of the ammonites life, marking various points in time and life stages as the ammonite grew. There is a large variation within Lytoceras with regards to flanges. They provide both ornamentation and strength to the shell to protect it from water pressure as they moved into deeper seas.

The concretion prior to prep
This distinctive genus with its evolute shells are found in the Cretaceous marine deposits of: 

Antarctica (5 collections), Austria (19), Colombia (1), the Czech Republic (3), Egypt (2), France (194), Greenland (16), Hungary (25), Italy (11), Madagascar (2), Mexico (1), Morocco (4), Mozambique (1), Poland (2), Portugal (1), Romania (1), the Russian Federation (2), Slovakia (3), South Africa (1), Spain (24), Tanzania (1), Trinidad and Tobago (1), Tunisia (25); and the United States of America (17: Alaska, California, North Carolina, Oregon).

We also find them in Jurassic marine outcrops in:

Austria (15), Canada (9: British Columbia), Chile (6), France (181), Germany (11), Greenland (1), Hungary (189), India (1), Indonesia (1), Iran (1), Italy (50), Japan (14), Kenya (2), Luxembourg (4), Madagascar (2), Mexico (1), Morocco (43), New Zealand (15), Portugal (1), Romania (5), the Russian Federation (1), Slovakia (1), Spain (6), Switzerland (2), Tunisia (11), Turkey (12), Turkmenistan (1), Ukraine (5), the United Kingdom (12), United States (11: Alaska, California) — in at least 977 known collections. 

References:

Sepkoski, Jack (2002). "A compendium of fossil marine animal genera (Cephalopoda entry)". Bulletins of American Paleontology. 363: 1–560. Archived from the original on 2008-05-07. Retrieved 2017-10-18.

Paleobiology Database - Lytoceras. 2017-10-19.

Systematic descriptions, Mesozoic Ammonoidea, by W.J Arkell, Bernhard Kummel, and C.W. Wright. 1957. Treatise on Invertebrate Paleontology, Part L. Geological Society of America and University of Kansas press.

Friday, 1 October 2021

URSIDAE: URSAVUS

Hiking in BC, both grizzly and black bear sightings are common. These majestic beasts live up to 28 years and nearly half the world's population, some 25,000 grizzlies, roam the Canadian wilderness.

Both bear families descend from a common ancestor, Ursavus, a bear-dog the size of a raccoon who lived more than 20 million years ago. Seems an implausible lineage given the size of their very large descendants.

An average Grizzly weighs in around 800 lbs (363 kg), but a recent find in Alaska tops the charts at 1600 lbs (726 kg). 

This mighty beast stood 12' 6' high at the shoulder, 14' to the top of his head and is one of the largest grizzlies ever recorded. This past September, the King of the forest was seen once again in the Washington Cascades -- the first sighting in over 50 years.

Grizzly Bears in First Nation Lore and Language

In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest — or Kwakwaka'wakw, speakers of Kwak'wala — a grizzly bear is known as na̱n and the ornamental grizzly bear headdress worn by the comic Dluwalakha grizzly bear dancers in the Grizzly Bear Dance, Gaga̱lalał, is known as na̱ng̱a̱mł

There is another grizzly bear who features in the Hamatsa dance, known as Nanes Bakbakwalanooksiwae, a high-ranking figure who has no mask — instead, the dancers paint their faces dark red to symbolize a hungry bear mouth and dance in costumes made of bearskin with terrifying long wooden claws.

Thursday, 30 September 2021

TRUTH AND RECONCILIATION

Indian Residential Schools (Click to Enlarge)
More than 150,000 First Nation, Inuit and Metis children were forced to attend Indian Residential Schools. 

This was not to give them an education but to strip them of their culture. It was not lost as a by-product of attending — it was the sole reason for their attending.

Impossible you say. Well, it happened. And we are reaping the fall out to this day.

The legal term Indian is both political & racist. Canada's Indigenous population are First Nation, Métis & Inuit. 

Today, all Canadians share in a historic time of healing, thoughtful dialogue, and helping to bring forth the 94 Calls to Action of the Truth & Reconciliation Commission.

Tuesday, 21 September 2021

BLUE JAY: KWASKWAS

If you live in North American, there is a high probability that you have seen or heard the bird song of the Blue jay, Cyanocitta cristata (Linnaeus, 1758).

Blue Jays are in the family Corvidae — along with crows, ravens, rooks, magpies and jackdaws. They belong to a lineage of birds first seen in the Miocene — 25 million years ago. 

These beautifully plumed, blue, black and white birds can be found across southern Canada down to Florida. The distinctive blue you see in their feathers is a trick of the light. Their pigment, melanin, is actually a rather dull brown. The blue you see is caused by scattering light through modified cells on the surface of the feather as wee barbs.

Blue jays like to dine on nuts, seeds, suet, arthropods and some small vertebrates. 

If you are attempting to lure them to your yard with a bird feeder, they prefer those mounted on trays or posts versus hanging feeders. They will eat most anything you have on offer but sunflower seeds and peanuts are their favourites. 

They have a fondness for acorns and have been credited with helping expand the range of oak trees as the ice melted after the last glacial period.  

Their Binomial name, Cyanocitta cristata means, crested, blue chattering bird. I might have amended that to something less flattering, working in a Latin word or two for shrieks and screams — voce et gemitu or ululo et quiritor. While their plumage is a visual feast, their bird chatter leaves something to be desired. Their cries are quite helpful if you are an animal living nearby and concerned about predators. 

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, a Blue Jay is known as kwa̱skwa̱s. The Kwak’wala word for blue is dzasa and cry is ḵ̕was'id. For interest, the word for bird song in Kwak'wala is t̕sa̱sḵwana


Monday, 20 September 2021

SHORT-BEAKED ECHIDNA

This chunky monkey is a Short-beaked Echidna, Tachyclossus aculeatus, which grows to about the size of an overweight cat. They are native to Australia and New Guinea. 

Echidnas are sometimes called spiny anteaters and belong in the family Tachyglossidae (Gill, 1872). They are monotremes, an order of egg-laying mammals. 

There are four species of echidnas living today. They, along with the platypus, are the only living mammals who lay eggs and the only surviving members of the order Monotremata. 

Superficially, they resemble the anteaters of South America and other spiny mammals like porcupines and adorable hedgehogs. They are usually a mix of brown, black and cream in colour. While rare, there have been several reported cases of albino echidnas, their eyes pink and their spines white. Echidnas have long, slender snouts that act as both nose and mouth for these cuties. The Giant Echidna we see in the fossil record had beaks more than double this size.  

Like the platypus, they are equipped with electro sensors, but while the platypus has 40,000 electroreceptors on its bill, the long-beaked echidna has only 2,000. The short-beaked echidna, which lives in a drier environment, has no more than 400 at the tip of its snout.

Echidnas evolved between 20 and 50 million years ago, descending from a platypus-like monotreme. Their ancestors were aquatic, but echidnas have adapted to life on land. Today, they weigh in at about 7 kg today but back in the Pleistocene, they were much larger. The Giant Echnida, Megalibwilia ramsayi was about 10% larger at 10 kg and Zaglossus hacketti was a whopping 30 kg. 

Fossil remains are relatively rare and sadly, incomplete, but they tell us potentially two other species of Echidna thriving in the Pleistocene. We also find Robust Echidna, Zaglossus robustus, in slightly older Miocene aged outcrops in a goldmine in Australia. The Giant Echnida's we find in the fossil record are relatives of the Long-Beaked Echidnas who live in New Guinea today.      

Sunday, 19 September 2021

OKANAGAN HIGHLAND LOCALITIES OF BRITISH COLUMBIA

Fossils from the Okanagan Highlands, an area centred in the Interior of British Columbia, provide important clues to our ancient climate. 

Okanagan Highlands refers to an arc of Eocene lakebed sites that extend from Smithers in the north, down to the fossil site of Republic Washington. 

The grouping includes the fossil sites of Driftwood Canyon, Quilchena, Allenby, Tranquille, McAbee, Princeton and Republic.

These fossil sites range in time from Early to Middle Eocene, and the fossil they contain give us a snapshot of what was happening in this part of the world because of the varied plant fossils they contain.

We can infer the difference in climates between the sites. McAbee was not as warm as some of the other Middle Eocene sites, a fact inferred by what we see and what is conspicuously missing. In looking at the plant species, it has been suggested that the area of McAbee had a more temperate climate, slightly cooler and wetter than other Eocene sites to the south at Princeton, British Columbia and Republic and Chuckanut, Washington. Missing are the tropical Sabal (palm), seen at Princeton and the impressive Ensete (banana) and Zamiaceae (cycad) found at Republic in north-central Washington, in the Swauk Formation near Skykomish and the Chuckanut Formation of northern Washington state.

Friday, 17 September 2021

FOSSIL SEED FERN

These lovely fossil seed ferns are plentiful examples of Neuropteris sp. from Carboniferous outcrops in the Llewellyn Shales of St. Clair, a small, impoverished borough in Schuylkill County, Pennsylvania. 

They are members of the Order Medullosales — closely related to modern-day cycads.

These extinct ferns lived 310 million years ago during the Great Coal Age — a timeframe that includes the Pennsylvanian and Mississippian periods when much of the Earth's coal was formed. 

As ferns, trees and other plant matter decayed, vast deposits of peat accumulated. Floodwaters brought silt deposits, covering and intermingling with the decaying peat. Time and pressure turned that mixture to the coal we mine today. 

Back when they were alive, Pennsylvania was largely a tropical swamp with ferns towering at more than 50 feet high. They dominated the landscape, lived and died a full 185 million years before the first of our lovely flowering plants had even arrived.  

Thursday, 16 September 2021

NORTH SEA DOLPHIN VERTEBRAE: HATSAWE'

A lovely 17 cm deep chocolate brown fossil Bottlenose Dolphin, Tursiops sp. vertebrae found in the Brown Bank area of the North Sea, one of the busiest seaways in the world.

Bottlenose dolphins first appeared during the Miocene and swam the shallow seas of this region. 

We still find them today in warm and temperate seas worldwide though unlike narwhal, beluga and bowhead whales, Bottlenose dolphins avoid the Arctic and Antarctic Circle regions. 

Their name derives from the Latin tursio (dolphin) and truncatus for their characteristic truncated teeth. In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest — and part of my heritage — dolphin are hatsawe'. 

On the north end of Vancouver Island, we have pods of 50-100 Pacific White-Sided dolphins, cousins of the Bottlenose, who frolic and jump alongside your boat if you are out on the water. Similar to their southern cousins, Pacific White-Sided dolphins feed on salmon, herring, pilchards, anchovies, needlefish, squid, shrimp, pollock, sablefish, rock cod and other small fish — a tasty menu that reflects my own. 

Bottlenose dolphins are the most common dolphin species in the Pacific Northwest but do not often venture farther north than Oregon. We have two populations of bottlenose dolphins here, the California coastal population and those that prefer to live offshore. It is as exciting to see them playing in our oceans today as it is to see the fossil remains of their ancestors from the Brown Bank sediments of the North Sea. 

Brown Bank, North Sea, Pleistocene Dredging Area
There are two known fossil species from Italy that include Tursiops osennae (late Miocene to early Pliocene) from the Piacenzian coastal mudstone, and Tursiops miocaenus (Miocene) from the Burdigalian marine sandstone.

Many waterworn vertebrae from the Harbour Porpoise Phocoena sp., (Cuvier, 1816), Bottlenose dolphin Tursiops sp. (Gervais, 1855), and Beluga Whale, Delphinapterus sp. (Lacépède‎, 1804‎) are found by fishermen as they dredge the bottom of the Brown Bank, one of the deepest sections of the North Sea.  

The North Sea is a sea of the Atlantic Ocean located between the United Kingdom, Denmark, Norway, Germany, the Netherlands, Belgium and France. An epeiric sea on the European continental shelf, it connects to the ocean through the English Channel in the south and the Norwegian Sea in the north.

The fishermen use small mesh trawl nets that tend to scoop up harder bits from the bottom. This technique is one of the only ways this Pleistocene and other more recent material is recovered from the seabed, making them relatively uncommon. The most profitable region for fossil mammal material is in the Brown Bank area of the North Sea. I have circled this area on the map below to give you an idea of the region.

Found by Fishermen in the North Sea. Using a small mesh trawl net is often the only time these come up from the seabed, hence they are uncommon. ​Size: 17.0cm. Age: 30-40,000 Years old. 

Wednesday, 15 September 2021

FISHING IN ANCIENT SEAS

If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish. When we find them, it is their hugely varied fossilized shells that we see. 

Rarely is the very soft, squid-like fellow inside preserved so we can easily forget what the entire animal looked like. 

These marine cephalopods were predatory, squid-like creatures that lived inside the coil-shaped shells we find. Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. They used these tentacles to snare prey, — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunt today.

Catching a fish with your hands is no easy feat, as I am sure you know. But the Ammonites were skilled and successful hunters. They caught their prey while swimming and floating in the water column. 

Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube called a siphuncle. By pushing air in or out, they were able to control their buoyancy in the water column.

They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.

We find ammonite fossils, and plenty of them, in sedimentary rock from all over the world. They were prolific breeders that evolved rapidly. 

In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past. 

For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. Generally, deeper is older, so we use the sedimentary layers of rock to match up to specific geologic time periods, rather like the way we use tree rings to date trees.

Monday, 13 September 2021

FOSSIL FAUNA OF HAIDA GWAII

This lovely slate grey and beige ammonite with the fine ribbing is Brewericeras hulenense (Anderson 1938) — a fast-moving, nektonic (no idle floating here!) carnivorous ammonite from the Lower Cretaceous (Albian) of Haida Gwaii, British Columbia, Canada.

This specimen is just over 12cm in length, a little under the average of 13.4cm. There are several localities in the islands of Haida Gwaii where Brewericeras can be found — six that I know of and likely plenty more.

The islands of Haida Gwaii lay at the western edge of the continental shelf due west of the central coast of British Columbia. 

They form Wrangellia, an exotic tectonostratigraphic terrane that includes Vancouver Island, parts of western British Columbia and Alaska.

It is always interesting to see who was making a living and co-existing in our ancient oceans at the time these fossils were laid down. 

We find multiple beautifully preserved specimens of the spiny ammonite, Douvelleiceras spiniferum along with Brewericeras hulenense (shown here), Cleoniceras perezianum and many cycads in concretion.

The Lower Jurassic ammonite faunas found at Haida Gwaii are very similar to those found in the Eastern Pacific around South America and in the Mediterranean. 

The strata exposed at Maple Island, Haida Gwaii are stratigraphically higher than the majority of Albian localities in Skidegate Inlet. The macrofossil fauna belonged to the Upper part of the Sandstone Member of the Haida formation.

The western end of the island contains numerous well-preserved inoceramids such as Birostrina concentrica and a few rare ammonites of Desmoceras bearskinese

The eastern shores are home to unusual ammonite fauna in the finer-grained sandstones. Here we find the fossils as extremely hard concretions while others were loose in the shale. Species include Anagaudryceras sacya and Tetragonites subtimotheanus. A large whorl section of the rare Ammonoceratites crenucostatus has also been found here. 

Saturday, 11 September 2021

STYXOSAURUS: ELASMO-TERROR OF ANCIENT SEAS

Styxosaurus, one of the large plesiosaurs in the family Elasmosauridae, takes on a giant octopus. 

Styxosaurus was an elasmosaur that appeared in the Late Cretaceous. 

The holotype specimen of Styxosaurus snowii was described by S.W. Williston from a complete skull and 20 vertebrae. Elasmosaurs typically have a neck that is at least half the length of the body, composed of 60-72 vertebrae.

They were very successful hunters, outcompeting ichthyosaurs who thrived in the Triassic but were replaced in the Jurassic and Cretaceous by these new aquatic beasties. 

Our ancient seas teemed with these predatory marine reptiles with their long necks and barrel-shaped bodies. Styxosaurus was around 11 metres (36 ft) long — and true to its family Elasmosauridae — about half of the length being composed of its 5.25 metres (17.2 ft) neck. Its sharp teeth were conical and were adapted to puncture and hold rather than to cut; like other plesiosaurs. 

Styxosaurus preferred to gulp down their food whole. They may have taken bits and pieces of a giant octopus similar to the one depicted but would have likely preferred a smaller prey that could be swallowed in one go.

Friday, 10 September 2021

ANCIENT MARINE PREDATORS: PLESIOSAURS

Plesiosaurus were a large, carnivorous air-breathing marine reptile with strong jaws and sharp teeth that moved through the water with four flippers. 

We see them arise in the fossil record some 203 million years ago and then go extinct 66 million years ago.

We had originally thought that this might not be the most aerodynamic design but it was clearly effective as they used the extra set to create a wee vortex that aided in their propulsion. 

In terms of mechanical design, they have a little something in common with an unlikely favourite of mine — dragonflies.

We have recreated plesiosaur movements and discovered that they were able to optimize propulsion to make use of their own wake. As their front flippers paddled in big circular movements, the propelled water created little whirlpools under their bellies. The back flippers would then paddle between these whirlpools pushing the plesiosaur forward to maximal effect. This use of air currents is similar to how dragonflies move through the air. 

They were very successful hunters, outcompeting ichthyosaurs who thrived in the Triassic but were replaced in the Jurassic and Cretaceous by these new aquatic beasties. 

Our ancient seas teemed with these predatory marine reptiles with their long necks and barrel-shaped bodies. Plesiosaurs were smaller than their pliosaur cousins, weighing in at about 450 kg or 1,000 lbs and reaching about 4.5 metres or 15 feet in length. For a modern comparison, they were roughly twice as long as a standard horse or about as long as a good size hippo.

Thursday, 9 September 2021

CANADOCERAS YOKOYAMAI: HASLAM FORMATION

A lovely chunky slate grey handful of an ammonite is Canadoceras yokoyamai from Upper Cretaceous (Early Campanian) outcrops in the Haslam Formation of Vancouver Island, British Columbia, Canada. 

This gorgeous ammonite was found by Tim O'Bear and is now in the collections of the Vancouver Island Palaeontological Society (VIPS), a regional paleontological society based in Courtenay.

This meaty cephalopod swam and hunted in our ancient oceans 80-84 million years ago and was once a leading candidate as the provincial fossil of British Columbia — an honour won by Shonisaurus sikanniensis.

The species is named for Matajirō Yokoyama, Professor of Geology and Palaeontology at the Imperial University of Tokyo, Japan. 

Yokoyama was born in the Nagasaki Prefecture on the 14th of June 1860 — the day slavery was abolished in the Neth Indies and the year Abraham Lincoln was elected president of the United States — a move that would lead to the beginning of the US Civil War the following year.

During his early life, the Meiji Restoration would begin the process of transforming Japan into a global imperial power. During the Restoration, Japan rapidly industrialized, adopting Western ideas and production methods. This shift in the cultural focus of his nation allowed him to pursue his studies in science — something encouraged in an emerging nation.

Matajirō Yokoyama (1860-1942)
Yokoyama did some wonderful work on the Cretaceous of Japan and opened up our understanding of the species on Vancouver Island. 

Through his research, we learned of the Japanese fauna and the extent of their occurrence. The range of Canadoceras yokoyamai extended from Alaska, the eastern coast of Vancouver Island, California to Santonian outcrops in the Yezo Group of Hokkaido in Japan’s northern islands. 

Within the Yezo Group, we find Canadoceras yokoyami amongst other ammonites, bivalves — and some wonderful marine reptiles — both mosasaurs and marine turtles.

Given that Canadoceras yokoyami arose, lived and died in a relatively short time frame — geologically speaking — they make excellent Index fossils. They can act as guides as to the age of the rocks in which they are preserved. This is helpful in the field. 

If you were to find a fossil in a rock of unknown age, you can look at the species and guess with relative certainty what age that rock likely is. 

References:

Matsumoto, T., 1954a [for 1953]: The Cretaceous system in the Japanese islands., pp. i–xiv + 1–324, pls. 1–20. The Japanese Society for the Promotion of Scientific Research, Ueno, Tokyo. (Reference No. 0219)

Tanabe, K., Ito, Y., Moriya, K. and Sasaki, T., 2000: Database of Cretaceous ammonite specimens registered in the Department of Historical Geology and Paleontology of the University Museum, University of Tokyo. The University Museum, The University of Tokyo, Material Reports, no. 37, pp. i–iv + 1–509. (Reference No. 0879)

Photo: Matajirō Yokoyama, Professor of Geology, Palaeontology and Mineralogy. 日本語: 横山又次郎 地質学古生物学及鉱物学教授 Tokyo Teikoku Daigaku (Imperial University of Tokyo). Ogawa Shashin Seihanjo, 1900 (reprint, Ryūkei Shosha, 2004).

Wednesday, 8 September 2021

OCEAN SUNFISH: MOLA MOLA

Mola mola (Linnaeus, 1758)
The massive docile ocean sunfish or common mola, Mola mola (Linnaeus, 1758) is one of the two heaviest known bony fish in the world — the other being the southern sunfish of the same genus. 

As a family, Molidae emerged between 45 million and 35 million years ago, well after the dinosaurs disappeared and at a time when whales still had legs. 

A group of pufferfishes — the kissing cousins to the Mola we know today and built like little tanks — left the safety of the coral reefs for the open ocean. 

They evolved and gave rise to Mola about 23 – 20.4 million years ago. These were followed by their still extant cousins, the Ranzania, 16 – 13.8 million years ago. The third genus of extant sunfish, Masturus, has not been identified in the fossil record (Carnevale et al. 2020) though we will keep looking and put that puzzle piece in its place in time.

When they are born, dozens would fit in the palm of your hand — each roughly the size of a pea. When they are youngsters, they are very curious and will swim up to you to take a wee nibble to figure out what you are. My mother had such a harmless bite when she was travelling as a girl. The bite left a tooth embedded in her leg that worked its way out a few weeks later. Not in any way perturbed, she speaks of her encounter fondly. 

As they grow, Mola take on a very roundish look and grow to a massive 247 to 1,000 kg (544 to 2,204 lbs) — that's one and a half times the size of a typical cow and bigger than a Grizzly Bear. The heaviest specimen on record is a bump-head sunfish, Mola alexandrini, caught off Kamogawa, Chiba, Japan, in 1996. It weighed 2,300 kilograms (5,070 pounds) and measured 2.72 metres (8 feet 11 inches) long.

The sheer size and thick skin of an adult of the species deter many smaller predators, but younger fish are vulnerable to predation by bluefin tuna and mahi-mahi. 

Adults are often consumed as tasty snacks by orca, sharks and sea lions — and sadly, by humans, particularly those from Japan, Korea and Taiwan. Fortunately, the EU has banned the sale of common mola and others within the family Molidae. 

Of all the fish we have in our oceans, the common mola or sunfish has the most names I have ever come across. 

Many of the sunfish's various names allude to its round, flattened, moonish or millstone shape. Its scientific name, mola, is Latin for millstone. It is a rather good choice as the fish resembles a millstone you might use for grinding grain, in part because of its grey colour, rough texture, and rounded body. 

Its English name, sunfish, refers to the animal's habit of enjoying the sun's rays as it basks near the surface. Its common names in Dutch, Portuguese, French, Spanish, Catalan, Italian, Russian, Greek, Norwegian, and German — maanvis, peixe lua, Poisson lune, pez luna, peix lluna, Pesce luna, рыба-луна, φεγγαρόψαρο, månefisk and Mondfisch, respectively — mean moonfish, in reference to its round moonish shape. 

In German or auf Deutsch, the common mola is also known as Schwimmender Kopf or swimming head. In Polish, it is named samogłów, meaning head alone or only head, because it lacks a true tail. In Swedish, Danish and Norwegian it is known rather unflatteringly as klumpfisk, in Dutch klompvis, in Finnish möhkäkala — all of which mean lump fish

The Chinese translation of its name is fān chē yú 翻車魚, meaning toppled wheel fish — perhaps as a wee homage to the original Latin mola or millstone. 

By any name, we find these gentle giants cruising through tropical and temperate waters around the world where they have thrived for many millions of years.

Tuesday, 7 September 2021

PHRAGMOTEUTHIS CONOCAUDA

Phragmoteuthis conocauda
A superb specimen of Phragmoteuthis conocauda, (Quenstedt, 1846-49). These ancient marine lovelies had an internal phragmocone and ten arms.

Phragmoteuthis is a genus of extinct coleoid cephalopod known from the late Triassic to the Lower Jurassic. Its soft tissue has been preserved wonderfully. Some rare specimens contain intact ink sacs, arm hooks, and others, gills.

There are some wonderful specimens from the Carnian, Late Triassic outcrops near Lunz, in Lower Austria with wee arm hooks and ink sacs, though the ink now looks like an agglomerate of grains. 

In Toarcian deposits in Southwestern Germany, we find fragments of Phracmoteuthis concocauda with bits of gill preserved. They look remarkably like the gills of octopod and vampyromorph colcoids.

Palaeontologist Jurji (Jura) Jeletzky characterized phragmoteuthids as having a large tripartite, fanlike pro-ostracum forming the longest portion of the shell, attached to about three-quarters of the circumference of a comparatively small breviconic phragmocone with short camerae and superficially belemnitid-like siphuncle.

Add that to an absent or much-reduced rostrum at the apical part of the phragmocone, belemnite-like arm hooks, an ink sack, beaks resembling those of recent teuthids, and a muscular mantle.

Think early squid. These are their great great grandparents. 

This specimen is in the collections of the University of Oslo Natural History Museum, Norway's oldest and largest museum of natural history in the lovely neighbourhood of Tøyen near Grünerløkka in Oslo. If you visit, check out the nearby Munch Museum to see some of Edvard Munch's work.

Monday, 6 September 2021

Sunday, 5 September 2021

FIRST NATION POLES IN STANLEY PARK

Totem, Welcome & Mortuary Poles at Stanley Park
If you visit Brockton Point in Stanley Park, there are many carved red cedar First Nation poles for you to admire.  

What you are viewing are replicas of First Nation welcome and totem poles that once stood in the park but have been returned to their homes within the province's diverse First Nation communities — or held within museum collections. 

Some of the original totems came from Alert Bay on Cormorant Island, near the Port McNeill on the north coast of Vancouver Island. Others came from communities in Haida Gwaii — and still more from the Wuikinuxv First Nations at Rivers Inlet on British Columbia's central west coast — home of the Great Bear Rainforest with her Spirit Bears.

The exception is the most recent addition carved by Robert Yelton in 2009. Robert is a First Nation carver from the Squamish Nation and his original welcome pole graces Brockton Point, the original settlement site of a group of Squamish-Portuguese settlers.  

If you look at the photo above, the lovely chocolate, red and turquoise pole on the right is a replica of the mortuary pole raised to honour the Raven Chief of Skedans or Gida'nsta, the Haida phrase for from his daughter, the title of respect used when addressing a person of high rank. Early fur traders often took the name of the local Chief and used it synonymously as the place names for the sites they visited — hence Skedans from Gida'nsta.

Chief Skedans Mortuary Pole
Chief Skedans, or Qa'gials qe'gawa-i, to his children, lived in Ḵ’uuna Llnagaay, or village at the edge, in Xaayda Kil — a village on the exposed coast of Louise Island — now a Haida Heritage Site.  

There are some paintings you may have seen by Emily Carr of her visits to the site in 1912, She used the phonetic Q'una from Q:o'na to describe both the place name and title of her work. 

Carr's paintings of the totems have always looked to me to be a mash-up — imagine if painter Tamara de Lempicka and photographer Edward Curtis had a baby — not pretty, but interesting.

Some called this area, Huadju-lanas or Xu'adji la'nas, which means Grizzly-Bear-Town, in reference to resident grizzly bear population and their adornment of many totems and artwork by the local artists.

Upon Chief Skedan's death, the mortuary pole was carved both to honour him and provide his final resting place. Dates are a bit fuzzy, but local accounts have this as sometime between 1870-1878 — and at a cost of 290 blankets or roughly $600 in today's currency. 

The great artistry of the pole was much admired by those in the community and those organizing the celebrations for the 1936 Vancouver Golden Jubilee — witnessed by  350,000 newly arrived residents.

Negotiations were pursued and the pole made its way down from Haida Gwaii to Stanley Park in time for the celebrations. The original totem graced Stanley Park for a little over twenty years before eventually making its way back to Haida Gwaii. It was returned to the community with bits of plaster and shoddy paint marring the original. These bits were scraped off and the pole welcomed back with due ceremony. 

In 1964, respected and renowned Northwest Coast master carver, Bill Reid, from the Kaadaas gaah Kiiguwaay, Raven/Wolf Clan of T'anuu, Haida Gwaii and Scottish-German descent, was asked to carve this colourful replica. 

Mountain Goat Detail, Skedans Mortuary Pole
Reid carved the totem onsite in Stanley Park with the help of German carver Werner True. Interestingly, though I looked at length for information on Werner True, all I can find is that he aided Bill Reid on the carving for a payment of $1000.

Don Yeomans, Haida master carver, meticulously recarved the moon crest in 1998. If you have admired the totem pole in the Vancouver Airport, you will have seen some of Yeoman's incredible work. 

The crest is Moon with the face, wings, legs and claws of a mighty and proud Thunderbird with a fairly smallish hooked beak in a split design. We have Moon to thank for the tides and illuminating our darkest nights. As a crest, Moon is associated with transformation and acting as both guardian and protector.

The original pole had a mortuary box that held the Chief's remains. The crest sits atop a very charming mountain goat. I have included a nice close-up here of the replica for you to enjoy. 

Mountain Goats live in the high peaks of British Columbia and being so close to the sky, they have the supernatural ability to cross over to the sky world. They are also credited as being spirit guardians and guides to First Nation shamans.

I love his horns and tucked in cloven hooves. There is another pole being carved on Vancouver Island that I hope to see during its creation that also depicts a Mountain Goat. With permission and in time, I hope to share some of those photos with you. 

Mountain Goat is sitting atop Grizzly Bear or Huaji or Xhuwaji’ with little human figures placed in his ears to represent the Chief's daughter and son-in-law, who raised the pole and held a potlatch in his honour. 

Beneath the great bear is Seal or Killer Whale in his grasp. The inscription in the park says it is a Killer Whale but I am not sure about that interpretation — both the look and lore make Seal more likely. Perhaps if Killer Whale were within Thunderbird's grasp — maybe

Though it is always a pleasure to see Killer Whale carved in red cedar, as the first whales came into being when they were carved in wood by a human — or by Raven — then magically infused with the gift of life.

Siwash Rock on the northern end of Third Beach, Stanley Park
The ground these totems sit upon is composed of plutonic, volcanic and sedimentary layers of rock and exhibits the profound influences of glaciation and glacial retreat from the last ice age. 

Glacial deposits sit atop as a mix of clay, sand, cobbles and larger boulders of glacial till. 

There are a few areas of exposed volcanics within the park that speak to the scraping of the glaciers as they retreated about 12,500 years ago. 

The iconic moss and lichen coated Siwash Rock on the northern end of Third Beach is one of the more picturesque of these. It is a basaltic and andesitic volcanic rock — a blend of black phenocrysts of augite cemented together with plagioclase, hornblende and volcanic glass.

Images not shown: 

Do check out the work of Emily Carr and her paintings of Q:o'na from the 1940s. I'll share a link here but do not have permission to post her works. http://www.emilycarr.org/totems/exhibit/haida/ssintro.htm

Saturday, 4 September 2021

STANLEY PARK: HIDDEN HISTORY

Anavitrinella pampinaria / Dan Bowden Photography
A Common grey moth of the family Geometridae. We begin to see them in the fossil record some 200 million years ago. 

These lovelies live in North America from Mexico to Alaska and do a wonderful job at camouflage. 

While not a perfect hiding spot, this fellow has chosen to settle in for the evening on a young yellow cedar tree, Chamaecyparis nootkatensis, in Vancouver's Stanley Park — a 405-hectare urban forest in Vancouver, B.C. that became a provincial park in 1887. 

This area was once the exclusive domain of the Coast Salish First Nations —  xʷmə?kʷəyəm (Musqueam), Skwxwú7mesh (Squamish), and səlilwətaɬ (Tsleil-Waututh) Nations until the early 1800s. 

Blending into that mix in the mid-1800s was a group of mixed Portuguese-Squamish settlers who called the eastern shores of the park at Brockton Point home from the mid-1800s to the 1930s. 

Brockton Point. City of Vancouver Archives, CVA 677-228
On the park's northern shores, there were well established Squamish First Nations villages — Whoi Whoi known today as Lumberman's Arch and Chaythos, which we now call Prospect Point. 

There was also a well-established Hawaiian settlement at Kanaka Ranch closer to the park's entrance near Coal Harbour. 

Many individuals from Vancouver's growing Chinese population lived peacefully alongside squirrels, coyotes, racoons and other wildlife within the natural beauty of the park. Enticed to British Columbia by the lure of gold but finding the riches far less than expected, they took to the forest in Stanley Park to make out of the way homes for themselves. That, of course, did not last. All of the residents in and around the newly minted park were ousted with ill regard for their welfare. 

You may know of one of the families, Khatsahlano, from whence my community of Kitsilano gets its name. August Jack Khatsahlano (July 16, 1877 – June 5, 1971), lived in Whoi Whoi alongside eleven other families. August Jack Khatsahlano or X̱ats'alanexw, was born in the village of Xwayxway on the peninsula that is now Stanley Park, Vancouver/Chaythoos, British Columbia.

He was the son of Supple Jack "Khay- Tulk" of Chaythoos and Sally "Owhaywat" from the Yekwaupsum Reserve north of Squamish, British Columbia. His grandfather was Chief Khahtsahlano of Senakw (Snauq or Sun'ahk) who migrated from his home at Toktakanmic on the Squamish River to Chaythoos, from whence he inherited his name. The suffix lan-ogh means man. In an interview with Vancouver's first archivist, Khatsahlano recounts:

Stanley Park, Vancouver, BC
“When they make [the] Stanley Park road, we were eating [breakfast] in our house. Someone make noise outside; chop our house. We were inside the house when the surveyors came along, and they chop the corner of our house while we were eating inside.”

You can imagine taking just what you can carry and walking into the unknown of where you will sleep that night and make a home in the future. It saddens me that we treat people so poorly, historically and now. 

We also treat our wildlife poorly. There are plans to capture and kill the coyotes in Stanley Park today as they are a nuisance to those visiting the park. We might consider that we are a nuisance to them. 

The only real winners in Stanley Park are the trees, birds and insects, including lovelies like this grey moth. In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest and part of my heritage, yellow cedar is dixw, and a moth is ma̱stła̱ḵ̕wa or ma̱stła̱ḵ̕wani

The thin, greyish-brown and scaly bark provides a pretty good cover. He was caught unawares and photographed beautifully by the hugely talented, Dan Bowden on a visit to the city.

Friday, 3 September 2021

HETEROMORPH AMMONITE: AINOCERAS

A wee baby deep chocolate Ainoceras sp. heteromorph ammonite from Vancouver Island. This adorable corkscrew-shaped ammonite is an extinct marine mollusc related to squid and octopus.  

Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. By pushing air in or out, they were able to control their buoyancy in the water column. These little cuties were predators who hunted in Cretaceous seas.

They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber. 

Not all ammonites have this whacky corkscrew design. Most are coiled and some are even shaped like massive paperclips. This one is so remarkable, so joyously perfect my internal thesaurus can’t keep up.

Thursday, 2 September 2021

ABALONE: GWA'LIT'SA

Abalone is the common name for a group of large marine snails — gastropod molluscs in the genus Haliotis, family Haliotidae.

Haliotis once contained six subgenera but these are now grouped together as alternate representations of Haliotis

In the Pacific Northwest, our rocky shores are home to the Northern or Pinto abalone, Haliotis kamtschatkana

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, abalone are known as gwa'lit̕sa.

They range from Mexico to Alaska and are the only abalone species found in Washington state, British Columbia and Alaska. Abalone prefer to live amongst the cold waters and high surf of rocky reef habitats. They are easily harvested as their sweet spot is water between 3-18 meters or 10-60 feet deep.  

The shells of abalones have a low, open spiral structure, and are characterized by several open respiratory pores in a row near the shell's outer edge. The thick inner layer of the shell is composed of nacre or mother-of-pearl. Their iridescent nacre is gorgeous and runs from white to blue to green. Both their meat and their shells are highly prized. 

The Northern or Pinto abalone is protected today. Those looking to use the shell for decorative purposes must now look to California or New Zealand. The California abalone is more colourful than its northern cousin and has long been preferred by First Nations artists, particularly for the large earrings favoured by women of rank amongst First Nation clans.

Tuesday, 31 August 2021

AIOLOCERAS BESAIRIEI: VIPS COLLECTION

Aioloceras besairiei (Collingnon, 1949)
Beauty is a stimulant that is administered through the eyes.

And just look at this beauty. This gorgeous burnt orange and creamy visual feast is the ammonite Aioloceras besairiei (Collingnon, 1949) from the Upper Cretaceous (Lower Albian) Boeny region of Madagascar. 

This is specimen #00783B in the collections of the Vancouver Palaeontological Society, (VIPS). The chambers have a wonderful calcite filling best viewed by carefully slicing these specimens in two. 

There is a small imperfection near the centre that renders this ammonite its signature mark of perfection. This lovely is in my care as a study specimen. 

Madagascar is an island country is about 400 kilometres off the coast of East Africa in the Indian Ocean and a wonderful place to explore off the beaten track. Exotic, beautiful and geologically interesting — it remains high on my bucket list to explore. 

Madagascar has some of the most pleasing of all the fossil specimens I have ever seen. This beauty is no exception. The shell has a generally small umbilicus, arched to acute centre and falcoid ribs that spring in pairs from the umbilical tubercles then disappear on the outer whorls. Take that magical body plan with its pleasing symmetry and add an infilling with spectacular calcite — spectacular! 

It is rightfully Aioloceras besairiei — and correctly labelled as such by the VIPS — but some specimens I have looked at earlier were marked as a Cleoniceras besairiei. This is impossible, of course, as Cleoniceras and Grycia are not present in Madagascar. This lovely, seen in cross-section, is now far from home and in my collection to enjoy for a time before returning to Courtenay on Vancouver Island. 

Aioloceras besairiei are within beudanticeratinae. Cleoniceras and Grycia are the boreal genera. If you would like to see — or argue — the rationale on the name, consider reading Riccardi and Medina's riveting work from back in 2002, or Collingnon from 1949.

The beauty you see here measures in at a whopping 23 cm. It hails from the youngest or uppermost subdivision of the Lower Cretaceous. I had originally thought this locality was older, but dating reveals it to be from the Lower Albian, approximately 113.0 ± 1.0 Ma to 100.5 ± 0.9 Ma. This locality produces ammonites that are beyond measure in their singular beauty. 

Aioloceras are found in the Cretaceous of Madagascar at geo coordinates 16.5° S, 45.9° E: paleo-coordinates 40.5° S, 29.3° E.; and in four localities in South Africa: at locality 36, near the Mzinene River at 28.0° S, 32.3° E: paleo-coordinates 48.6° S, 7.6° E. 

We find them near the Mziene River, at a second locality north of Hluhluwe where the Mzinene Formation overlies the Aptian-Albian Makatini Formation at 28.0° S, 32.3° E: paleo-coordinates 48.6° S, 7.6° E; and at Haughton Z18, on the Pongola River in the Albian III, Tegoceras mosense beds at 27.3° S, 32.2° E: paleo-coordinates 48.0° S, 7.8° E.

If you happen to be trekking to Madagascar, know that it's big. It is 592,800 square kilometres (or  226,917 square miles), making it the fourth-largest island on the planet — bigger than Spain, Thailand, Sweden and Germany. So, enjoy your time and wear comfortable shoes. 

If you are interested in learning more about this species, check out the Treatise on Invertebrate Paleontology, Part L (Ammonoidea). R.C. Moore (ed). Geological Soc of America and Univ. Kansas Press (1957), p L394. Or head over to look at the 2002 paper from Riccardi and Medina. 2002. Riccardi, A., C. & Medina, F., A. The Beudanticeratinae and Cleoniceratinae (Ammonitina) from the Lower Albian of Patagonia in Revue de Paléobiologie - 21(1) - Muséum d’Histoire Naturelle de la ville de Genève, p 313-314 (=Aioloceras besairiei (COLLIGNON, 1949). You have Bertrand Matrion to thank for the naming correction. Good to have friends in geeky places!

Collignon, M., 1933, Fossiles cenomaniens d’Antmahavelona (Province d’ Analalave, Madagascar), Ann. Geol. Serv. Min. Madagascar, III, 1934 Les Cephalopods du Trias inferieur de Madagascar, Ann. Paleont. XXII 3 and 4, XXII 1.

Besairie, H., 1971, Geologie de Madagascar, 1. Les terrains sedimentaires, Ann. Geol. Madagascar, 35, p. 463.

J. Boast A. and E. M. Nairn collaborated on a chapter in An Outline of the Geology of Madagascar, that is very readable and cites most of the available geologic research papers. It is an excellent place to begin a paleo exploration of the island.

If you happen to parle français, check out: Madagascar ammonites: http://www.ammonites.fr/Geo/Madagascar.htm

Sunday, 29 August 2021

BLUE DRAGON SEA SLUG

This otherwordly fellow, straight out of a novel, is Glaucus atlanticus — the Blue Dragon Sea Slug. And what an amazing wee little dragon this is. Folk sometimes refer to them as sea swallow, blue angel, blue glaucus, dragon slug, blue dragon, blue sea slug and blue ocean slug. 

By any name, they are a very pleasing addition to our planet. Glaucus atlanticus are a species of small, blue sea slug, a pelagic aeolid nudibranch — a shell-less gastropod mollusc in the family Glaucidae.

Nudibranchs likely date back as far as the Early Jurassic, some180 million years ago. This was around the time that the supercontinent of Pangea was breaking apart to form the modern continents and the Atlantic and Indian Oceans. The date is an estimate built upon the evolutionary lineages of their closest relatives, in part because the soft-bodied nature of nudibranchs means they do not fossilize well.

These sea slugs are pelagic — they float upside down by using the surface tension of the water to stay up near the surface where they drift along, carried by the winds and ocean currents. Glaucus atlanticus makes use of countershading: the blue side of their body faces upwards, blending in with the blue of the water. The silver/grey side of the sea slugs faces downwards, blending in with the sunlight reflecting on the ocean's surface when viewed facing upwards underwater, helping them avoid becoming a tasty snack.

Glaucus atlanticus feed on other pelagic creatures, including the Portuguese man o' war and other venomous siphonophores. This sea slug stores stinging nematocysts from the siphonophores within its own tissues as a defence against predators. Humans handling the slug may receive a very painful and potentially dangerous sting. Good on you little Dragon!