Saturday, 5 February 2022

THERIZINOSAURUS: CRETACEOUS SCYTHE LIZARD

The Scythe Lizard Therizinosaurus
The slow-moving but massive fellow you see here is Therizinosaurus. He belonged to a genus of sizable therizinosaurid that lived during the Late Cretaceous, 70 million years ago. 

These big beasties reached up to 10 metres in length and likely weighed over 3,000 kg. They lumbered along with their unusually long arms pulling down and munching on vegetation in what is now the Nemegt Formation in the Nemegt Valley of Asia. 

While there are several species of Therizinosauridae, including several from North America, the massive Asian therizinosaurids are known from a single type species Therizinosaurus cheloniformis or scythe lizard found in the Gobi Desert.

In 1918, a very fortuitous Palaeontological Field Expedition to the Mongolian Gobi Desert by the USSR Academy of Sciences found the remains of a giant, turtle-like reptile near the remains of a large carnivorous dinosaur. 

Later, In 1948, another expedition was launched to retrace the work of the USSR expedition. More of the fossil bones were collected and together with those originally collected in 1918, were written up as the type specimen of Therizinosaurus described by Soviet palaeontologist Evgeny Aleksandrovich Maleev in 1954.  You may recall that Maleeve was the fellow who described the ankylosaur Talarurus and the theropod Tarbosaurus.

The genus is best known for its gigantic manual unguals or claw bones, from which it gets its name. 

Therizinosaurus was a colossal therizinosaur that could grow up to 9–10 m (30–33 ft) long and weigh possibly over 3 t (3,000 kg). Like other therizinosaurs, it would have been a slow-moving, long-necked high browser equipped with a rhamphotheca (horny beak) and a wide torso for food processing. 

The forelimbs were particularly robust and had three fingers that bore unguals which, unlike other relatives, were very stiffened, elongated, and only had significant curvatures at the tips.

Therizinosaurus had the longest known manual unguals of any land animal, reaching above 50 cm (500 mm) in length. Its hindlimbs ended in four functionally weight-bearing toes differing from other theropod groups in which the first toe was reduced to a dewclaw and also resembling the unrelated sauropodomorphs.

It was one of the last and the largest representative of its unique group, the Therizinosauria (formerly known as Segnosauria; the segnosaurs). During and after its original description in 1954, Therizinosaurus had rather complex relationships due to the lack of complete specimens and relatives at the time. 

Maleev thought the remains of Therizinosaurus to belong to a large turtle-like reptile, and also named a separate family for the genus: Therizinosauridae. Later on, with the discovery of more complete relatives, Therizinosaurus and kin were thought to represent some kind of Late Cretaceous sauropodomorphs or transitional ornithischians, even though at some point it was suggested that it may have been a theropod. 

After years of taxonomic debate, nevertheless, they are now placed in one of the major dinosaur clades, Theropoda, specifically as maniraptorans. Therizinosaurus is widely recovered within Therizinosauridae by most analyses and with more recent specimens found in Utah and New Mexico.

The unusual arms and body anatomy (extrapolated after relatives) of Therizinosaurus have been cited as an example of convergent evolution with chalicotheriines and other primarily herbivorous mammals, suggesting similar feeding habits. 

Their elongated hand claws were more useful when pulling vegetation within reach rather than being used for active attack or defence because of their fragility, however, they may have had some role for intimidation. Its arms also were particularly resistant to stress, which suggests a robust use of these limbs. Therizinosaurus was a very tall animal, likely having reduced competition over the foliage in its habitat and outmatching predators like Tarbosaurus.

Thursday, 3 February 2022

EAGER FORMATION: TUZOIA

This specimen of the arthropod Tuzoia sp. is from the Lower Cambrian Eager Formation of British Columbia. 

Tuzoia is an extinct genus of large bivalved arthropod known from Early to Middle Cambrian marine environments in what is now the Burgess Shale, Emu Bay Shale, Kaili, the Rockslide Formation, the Spence Shale, Wheeler Formation, and Marjum Formation, and the Kinzers Formation. 

As you can see here, they are also found in the Lower Cambrian Eager Formation near Cranbrook British Columbia. 

This particular specimen is from the Rifle Range outcrop near Cranbrook where you can also find numerous fragments and complete specimens of the olenellid trilobites Ollenellus sp. and the larger, more robust Wanneria dunnae, along with Mesonacis eagerensis (Best, 1952).

The site outcrops at a few locations as you head east out of Cranbrook towards Fort Steele. The first trilobites were discovered with the building of the Kootenay Highway connecting Cranbrook to Fort Steele and beyond. Several other localities, including the outcrops at the Silhouette Rife Range — which is literally on a Rifle Range where folks go to shoot at things — is a shade older than the Middle Cambrian Burgess Shale but the fauna here is much less varied. 

The site has been known and collected since the 1920s. Back in the day, fossil collecting was a family affair with folks heading out in their lightly coloured finery to picnic and surface collect the eroding exposures. Cranbrook local, Clement Hungerford Pollen was an engineer and avocational palaeontologist. He promoted collecting the exposures of the Eager Formation around 1921. As a pedigreed Englishman of considerable means, he had invested in the Kootenay Central Railway, revitalizing the town by opening up railway access within the region.

Wednesday, 2 February 2022

BARNACLES: K'WIT'A' A

One of the most interesting and enigmatic little critters we find at the seashore are barnacles. They cling to rocks deep in the sea and at the waters' edge, closed to our curiosity, their domed mounds like little closed beaks shut to the water and the world.

They choose their permanent homes as larvae, sticking to hard substrates that will become their permanent homes for the rest of their lives. It has taken us a long time to find how they actually stick or what kind of "glue" they were using.

Remarkably, the barnacle glue sticks to rocks in a similar way to how red cells bind together. Red blood cells bind and clot with a little help from some enzymes. 

These work to create long protein fibres that first blind, clot then form a scab. The mechanism barnacles use, right down to the enzyme, is very similar. That's especially interesting as about a billion years separate our evolutionary path from theirs.

So, with the help of their clever enzymes, they can affix to most anything – ship hulls, rocks, and even the skin of whales. If you find them in tidepools, you begin to see their true nature as they open up, their delicate feathery finger-like projections flowing back and forth in the surf.

One of my earliest memories is of playing with them in the tidepools on the north end of Vancouver Island. It was here that I learned their many names. In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest, the word for barnacles is k̕wit̕a̱'a — and if it is a very small barnacle it is called t̕sot̕soma — and the Kwak'wala word for glue is ḵ̕wa̱dayu.

Tuesday, 1 February 2022

DARWIN: A TASTE FOR STUDIES

Chelonia. Schildkröten by Ernst Haeckel, 1904
Care for some tarantula with that walrus? No? how about some Woolly mammoth?

While eating study specimens is not de rigueur today, it was once common practice for researchers in the 1700-1880s. 

The English naturalist, Charles Darwin belonged to an elite men's club dedicated to tasting exotic meats. In his first book, Darwin wrote almost three times as much about dishes like armadillo and tortoise urine as he did on the biogeography of his Galapagos finches. 

From his great love of gastronomy, I am surprised any of his tasty specimens made it back from his historic voyage on the HMS Beagle — particularly the turtles.

One of the most famous scientific meals occurred one Saturday evening on the 13th of January, 1951. This was at the 47th Explorers Club Annual Dinner (ECAD) when members purportedly dined on a frozen woolly mammoth. 

Commander Wendell Phillips Dodge was the promotor of the banquet. He sent out press notices proclaiming the event's signature dish would be a selection of prehistoric meat. Whether Dodge did this simply to gain attendees or play a joke remains a mystery. 

The prehistoric meat was supposedly found at Woolly Cove on Akutan in the Aleutians Islands of Alaska, USA, by the eminent polar explorers' Father Bernard Rosecrans Hubbard, American geologist, explorer sometimes called the Glacier Priest, and polar explorer Captain George Francis Kosco of the United States Navy.

Fried Tarantula & Goat Eyeballs

This much-publicized meal captured the public’s imagination and became an enduring legend and source of pride for the Club, popularizing an annual menu of exotics that continues today. The Club is well-known for its notorious hors d’oeuvres like fried tarantulas and goat eyeballs as it is for its veritable whose who of notable members — Teddy Roosevelt, Neil Armstrong, Buzz Aldrin, Roy Chapman Andrews, Thor Heyerdahl, James Cameron.

The Yale Peabody Museum holds a sample of meat preserved from the 1951 meal, interestingly labelled as a South American Giant Ground Sloth, Megatherium, not Mammoth. The specimen of meat from that famous meal was originally designated BRCM 16925 before a transfer in 2001 from the Bruce Museum to the Yale Peabody Museum of Natural History (New Haven, CT, USA) where it gained the number YPM MAM 14399.

The specimen is now permanently deposited in the Yale Peabody Museum with the designation YPM HERR 19475 and is accessible to outside researchers. The meat was never fixed in formalin and was initially stored in isopropyl alcohol before being transferred to ethanol when it arrived at the Peabody Museum. DNA extraction occurred at Yale University in a clean room with equipment reserved exclusively for aDNA analyses.

In 2016, Jessica Glass and her colleagues sequenced a fragment of the mitochondrial cytochrome-b gene and studied archival material to verify its identity, which if genuine, would extend the range of Megatherium over 600% and alter views on ground sloth evolution. 

Mammoth, Megatherium — Green Sea Turtle

Their results showed that the meat was not Mammoth or Megatherium, but a bit of Green Sea Turtle, Chelonia mydas. So much for elaborate legends. The prehistoric dinner was likely meant as a publicity stunt. 

Glass's study emphasizes the value of museums collecting and curating voucher specimens, particularly those used for evidence of extraordinary claims. Not so long before Glass et al. did their experiment, a friend's mother (and my kayaking partners) served up a venison steak from her freezer to dinner guests in Castlegar that hailed from 1978. Tough? Inedible? I have it on good report that the meat was surprisingly divine.

Reference: Glass, J. R., Davis, M., Walsh, T. J., Sargis, E. J., & Caccone, A. (2016). Was Frozen Mammoth or Giant Ground Sloth Served for Dinner at The Explorers Club?. PloS one, 11(2), e0146825. https://doi.org/10.1371/journal.pone.0146825

Image: Chelonia. Schildkröten by Ernst Haeckel, 1904, Prints & Photographs Division, Library of Congress, LC-DIG-ds-07619.

Join the Explorer's Club

Fancy yourself an explorer who should join the club? Here is a link to their membership application. The monied days of old are still inherent, but you will be well pleased to learn you can now join for as little as $50 US.

Link: https://www.explorers.org/wp-content/uploads/Membership-Application_2021-11-19.pdf

Sunday, 30 January 2022

LOWER CAMBRIAN EAGER FORMATION

This specimen of a mature olenellid trilobite, Wanneria dunnae, is from the Lower Cambrian Eager Formation of British Columbia. 

He is from the Rifle Range outcrop near Cranbrook where you can find numerous fragments and complete specimens of the olenellid trilobites Ollenellus sp. and the larger, more robust Wanneria sp. you see here. 

The site outcrops at a few locations as you head east out of Cranbrook towards Fort Steele. 

The first trilobites were discovered with the building of the Kootenay Highway connecting Cranbrook to Fort Steele and beyond. Several other localities, including the outcrops at the Silhouette Rife Range — which is literally on a Rifle Range where folks go to shoot at things — is a shade older than the Middle Cambrian Burgess Shale but the fauna here is much less varied. 

The site has been known and collected since the 1920s. Back in the day, fossil collecting was a family affair with folks heading out in their lightly coloured finery to picnic and surface collect the eroding exposures. Cranbrook local, Clement Hungerford Pollen was an engineer and avocational palaeontologist. 

He promoted collecting the exposures of the Eager Formation around 1921. As a pedigreed Englishman of considerable means, he had invested in the Kootenay Central Railway, revitalizing the town by opening up railway access within the region.

Olenellus ricei, Eager Formation
Olenellus is an extinct genus of redlichiid trilobites, with species of average size (about 5 centimetres or 2.0 inches long). He lived during the Botomian and Toyonian stages, Olenellus-zone, 522 to 510 million years ago, in what is currently North America, part of the paleocontinent Laurentia.

These extinct arthropods are common in Early Cambrian rocks — 542 million to 521 million years old — and thus a useful guide fossil for the Early Cambrian. 

Olenellus had a well-developed semi-circular head, large and crescentic eyes, and a poorly developed, small tail. Telltale features are his fifteen body segments with the third being much longer than the others. The fellow you see had a bit of his tail crushed as he turned to stone.

Trilobites were amongst the earliest fossils with hard skeletons. While they are extinct today, they were the dominant life form at the beginning of the Cambrian and it is what we find as the primary fossil fauna in the Eager Formation. The Eager Formation has produced many beautifully preserved Wanneria, abundant Olellenus and a handful of rare and treasured Tuzoia. The shale matrix lends itself to amazing preservation. The specimens of Wanneria from here are large. Some are up to thirteen centimetres long and ten centimetres wide. You find a mixture of complete specimens and head impressions from years of perfectly preserved moults.

Saturday, 29 January 2022

PLUCKED FROM THE SEA: FOSSIL SEA URCHIN

This beautiful creamy sea biscuit is an echinoid nestled in a clay matrix. Echinoids are classified by the symmetry of the test, the number and arrangement of plate rows making up the test, and the number and arrangement of respiratory pore rows called petals.

Echinoids are divided into two subgroups: regular echinoids, with nearly perfect pentameral (five-part) symmetry; and irregular echinoids with altered symmetry.

The oldest echinoids belong to an extinct regular taxon called the Echinocystitoidea. 

They first appeared in the fossil record in the Late Ordovician. Cidaroids or pencil urchins appear in the Mississippian in the  Carboniferous and were the only echinoids to survive the mass extinction at the Permo-Triassic boundary. 

Echinoids did not become particularly diverse until well after the Permo-Triassic mass extinction. True sea urchins first appear in the Late Triassic, cassiduloids in the Jurassic, and spatangoids or heart urchins in the Cretaceous. Sand dollars, a common and diverse group today, do not make an appearance in the fossil record until the Paleocene.

In echinoids, the skeleton is almost always made up of tightly interlocking plates that form a rigid structure or test — in contrast with the more flexible skeletal arrangements of starfish, brittle stars, and sea cucumbers. Test shapes range from nearly globular, as in some sea urchins, to highly flattened, as in sand dollars. 

Living echinoids are covered with spines, which are movable and anchored in sockets in the test. These spines may be long and prominent, as in typical sea urchins and most have lovely raised patterns on their surface. 

In sand dollars and heart urchins, however, the spines are very short and form an almost felt-like covering. The mouth of most echinoids is provided with five hard teeth arranged in a circle, forming an apparatus known as Aristotle’s lantern.

This wee urchin was photographed near Rosh Hanikrah, Israel on the Lebanese border.

Friday, 28 January 2022

AMMONITE TRACE FOSSIL

This is a particularly fetching trace fossil of an ammonite in a septarian nodule.

Trace fossils or ichnofossils are burrows, footprints, tracks or even faeces left behind by plants and animals that lived long ago. 

Animals may have scurried across a muddy exposure or sea bottom, perhaps eaten a tasty meal then pooped it out — leaving behind clues to how they lived, what they ate and what the environment was like at the time. 

These are wonderfully informative clues to our ancient world.

Thursday, 27 January 2022

NIOBE SCHMIDTI OF NORWAY

Niobe schmidti (Balashova, 1976)
This gorgeous trilobite is an exceptionally well-preserved Niobe schmidti (Balashova, 1976) from middle Ordovician limestone deposits of the Huk Formation, Lysaker member near Oslo, Norway. 

The limestones of the Huk Formation have an extreme geological history and fossils from this formation are usually very difficult to prepare. 

The beige/grey limestones are often heavily cemented to the shelly material, which can be quite fragile.

The rich chocolate coloured specimen you see here was no exception. It presented many challenges in its 26 hours of preparation but each of these was overcome by the patience and skill of Paul Freitag Wolvers at Freitag Fossils. 

I have added a link below with a series of photos so you can walk through the preparation process step by step with Paul. If you have a special specimen you would like prepped, I highly recommend you contact him. His work is outstanding.

Superb prep of this Niobe schmidti (Balashova, 1976)
The shell was partly hollow, very fragile and stuck firmly to the matrix. The positive was assembled from two pieces and much of the shell of the left half of the trilobite had to be transferred over from the negative — no small feat. 

Despite these challenges, the final result is superb. This Niobe schmidti is a museum-quality specimen with exquisite preservation. You can clearly see the lovely terrace lines, pores and eye lenses are excellent to study.  

This specimen hails from the middle Ordovician. The Ordovician lasted almost 45 million years, beginning 488.3 million years ago and ending 443.7 million years ago. 

It was the time in our Earth's history when the area north of the tropics was almost entirely underwater and most of the world's land was collected into the southern supercontinent of Gondwana. Throughout the Ordovician, Gondwana slowly shifted towards the South Pole and much of it remained submerged under an ancient ocean.

Niobe schmidti (Balashova, 1976)
At the time that this fellow was making a living in our ancient seas, he would have been joined by a diverse community of marine invertebrates —graptolites, fellow trilobites, brachiopods and the early vertebrate conodonts. 

These marine communities were joined by red and green algae, primitive fish, cephalopods, corals, crinoids, and gastropods. 

We also find stunning tetrahedral spores similar to those of primitive land plants which tell us who was living on the land at the time.

One of the first specimens of this lovely species I had the pleasure to see was from the Voybokalo Quarry near St. Petersburg in Russia. These outcrops are part of the Kunda Horizon, Lower Ordovician, Asaphus expansus zone and run roughly 468 million years old. 

From the Lower to Middle Ordovician, the Earth was enjoying a mild, humid climate — the weather was warm and the atmosphere contained a significant amount of moisture. 

Once Gondwana finally settled on the South Pole during the Upper Ordovician, massive glaciers formed. These drained the shallow seas and ocean levels dropped. By the end of the Ordovician, 60% of all marine invertebrates and 25% of all life on Earth disappeared as part of the Ordovician mass extinction event. We enjoy many of those species now only as fossils and if we are lucky, preserved in remarkable detail.

Photos & collection: Mark Wolvers. Preparation: Paul Freitag, Freitag Fossils. Specimen: 5.5 cm (2.16 inches). You can see some amazing photos of the transformation of this trilobite throughout Paul's preparation process here: https://freitag-fossils.com/en/niobe-schmidti/

If you click on any of the images, you can see them enlarged to take in all the wonderful detail. 

Reference: UCMP Berkeley / https://ucmp.berkeley.edu

Wednesday, 26 January 2022

TRENT RIVER FOSSIL TURTLE

The Trent River near Courtenay, British Columbia is a hotbed of 85-million-year-old fossil fauna immortalized in stone. 

The bedrock of the Trent River has yielded both marine and terrestrial fossils. 

While you might just gloss over that tidbit of information with a casual nod, consider how unlikely this particular fossil site is. We find fossils of species that lived on the land just metres from those who lived in our ancient oceans — remarkable!

We have found a nearly complete terrestrial helochelydrid turtle, the bones of a juvenile elasmosaur marine reptile and the caudal vertebrae of a Hadrosauroid dinosaur who munched on plants, all within spitting distance of one another.

If you stroll along the Trent solo or as part of a guided tour through the Courtenay Museum, you can walk right up to the Hadrosaur site. It was here many years ago that Mike Trask (whose name may ring a bell as he found the first elasmosaur on the Puntledge River) found bones from a duck-bill dinosaur. Now in Alberta, the province just east of British Columbia, there are areas where if you throw a rock, you'll hit a duck-bill bone, but in British Columbia, they were unheard of. This was not just the first duck-billed dinosaur, it was also the first dinosaur found on Vancouver Island — ever.   

Let's park that little bit of goodness for now and hold your awe and applause for the bounty of the Trent and walk just a wee bit down from the hadrosaur site where you come to the greyish bedrock that looks so plain it seems hardly worth noting, but it was once the resting place of a fossil ratfish, one of the ocean's oddest fish.  

If you head a wee bit upriver, you come to the delineation zone marking the contact between the dark grey marine shales and mudstones of the Haslam Formation where they meet the sandstones of the Comox Formation. 

Fossilized material in the Comox sandstones is less abundant but still well worth a look. If you look closely you begin to see fossilized wood and identifiable fossil plant material. So, hadrosaur, terrestrial, ratfish, marine, then terrestrial plant material. This river just keeps on giving.

Further upstream, there is a small tributary, Idle Creek, where you can find more of this terrestrial material in the sandy shales. A little further up the river, you see more identifiable fossil plants beneath your feet and jungle-like, overgrown snarly trees all around you.

Mesopuzosia sp.; Collection of Rick Ross
If you started your journey at the Trent River Falls and walked west, you pass the infamous Ammonite Alley, where you can find Mesopuzosia sp. and Kitchinites sp. of the Upper Cretaceous (Santonian), Haslam Formation. 

I have included one of the yummy, chocolate coloured Mesopuzosia sp. ammonite found, prepped and photographed by the deeply awesome Rick Ross of the Vancouver Island Palaeontological Society for you to enjoy. 

You are now in the Polytychoceras vancouverense zone. Continuing west, we reach the first of two fossil turtle sites on the river — one terrestrial and one marine. I thought I would share a bit about the terrestrial turtle found here as it is one of my favourite discoveries — after the excitement of the elasmosaur excavated last summer.   

Helochelydrids are a group of poorly known turtles from Late Jurassic to Late Cretaceous deposits in North America and Europe. It is the only known North American member of Helochelydridae.

Naomichelys is known from numerous specimens throughout western North America, most notably the holotype partial shell from the Early Cretaceous Cloverly Formation of Montana and a complete skeleton from the Antlers Formation of Texas. The Cloverly Formation includes a number of vertebrate fossils including a diverse assemblage of dinosaur fossils. the site was designated as a National Natural Landmark by the National Park Service in 1973.

Naomichelys is a member of the family Helochelydridae. We find their fossilized remains in Late Jurassic to Late Cretaceous deposits in North America and Europe. Within North America, only the species Naomichelys speciosa is known from relatively complete material which makes comparisons between specimens from other localities challenging. The delightful Phil Currie along with co-authors Matthew J. Vavrek, Derek W. Larson, Donald B. Brinkman and Courtenay's own Joe Morin described the new species of Helochelydrid terrestrial turtle and put the Trent River near Courtenay, British Columbia on the palaeontological map once again.

The new genus and species of helochelydrid turtle were based on the relatively complete shell from the bedrock of the Trent. This area is a section of the marine Haslam Formation (Santonian) of Vancouver Island, British Columbia, Canada.

The new species is characterized by several distinctive shell features, notably a forward curving process on the anterior portion of the hyoplastra, strongly distinguishing it from N. speciosa

The shell is relatively small — and much smaller than one might expect — but does appear to be from a fully grown individual and not a juvenile, suggesting that the species was generally much smaller than other known helochelydrids.

Previously most records of helochelydrids in North America had been assigned to N. speciosa, regardless of actual diagnosable characters. 

The presence of an additional species of helochelydrid from North America tells us that a greater diversity of the taxon was present than was previously recognized. While the interspecific relationships of helochelydrids remain difficult to fully assess, due to the lack of well-preserved specimens, this new species provides additional geographic and phylogenetic data that aids our understanding of this enigmatic group.

As the rock of the Trent River slowly erodes away, it will be interesting to see what it reveals next. We have now found both marine and terrestrial reptiles along with plants, ammonites and other fossil goodies. Tis a story — and river — to keep an eye on!

What to Know Before You Go — Trent River Walk

The full Trent River Walk is 14.8 kilometres of moderate hiking on a well-maintained trail. You may choose to enjoy the wide, flat beginning section of the loop and leave off the narrower sections of the trail where you need to navigate roots and rock. Dogs on leash are welcome. 

You can do this as a family year-round. The trail provides access to the many collecting areas of the river. Be mindful of slippery rocks and keep your eyes peeled for fossils. To enter the trail and find parking, set 375 Hatton Road, Courtenay, British Columbia, into your GPS. Enjoy!   

Tuesday, 25 January 2022

FOSSIL SALMON OF SKOKOMISH

This toothy specimen is an Oncorhynchus nerka, a Pleistocene Sockeye Salmon from outcrops along the South Fork Skokomish River, Olympic Peninsula, Washington State, USA.

The area is home to the Skokomish — one of nine tribes of the Twana, Coast Salish First Nations in the northern-mid Puget Sound area of western Washington state in the United States. 

Each of the Tribal Nations are known by their locations — Dabop, Quilcene or salt-water people, Dosewallips, Duckabush, Hoodsport, Skokomish or Skoko'bsh, Vance Creek, Tahuya, and Duhlelap or Tule'lalap. The name Skokomish means river people or people of the river in the language of the Twana, sqʷuqʷóbəš or sqWuqWu'b3sH.

Closer to my home farther north in the Pacific Northwest on northern Vancouver Island are the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala. Here, sockeye salmon are known as ma̱łik. You would likely recognize these fossils' modern counterparts from their distinctive red bodies and greenish heads. 

Their descendants had been absent from the Skokomish River for more than a decade up to 2014 when construction to augment the negative impact of the Cushman Reservoir was undertaken to restore their natural habitat.

The fossil specimens include individuals with enlarged breeding teeth and worn caudal fins. It is likely that these salmon acted very similar to their modern counterparts with males partaking in competitive and sneaky tactics to gain access to the sexiest (large and red) females who were ready to mate. These ancient salmon had migrated, dug their nests, spawned and defended their eggs prior to their death. For now, we're referring to the species found here as Oncorhynchus nerka, as they have many of the characteristics of sockeye salmon, but also several minor traits of the Pink Salmon, Oncorhynchus gorbuscha.

I had expected to learn that the locality contained a single or just a few partial specimens, but the fossils beds are abundant with large, 45–70 cm, four-year-old adult salmon concentrated in a beautiful sequence of death assemblages.

Oncorhynchus nerka, Pleistocene Sockeye Salmon
Gerald Smith, a retired University of Michigan professor was shown the specimens and recognized them as Pleistocene, a time when the northern part of North America was undergoing a series of glacial advances and retreats that carved their distinctive signature into the Pacific Northwest.

It looks as though this population diverged from the original species about one million years ago, possibly when the salmon were deposited at the head of a proglacial lake impounded by the Salmon Springs advancement of a great glacier known as the Puget lobe of the Cordilleran Ice Sheet. 

Around 17,000 years ago, this 3,000 foot-thick hunk of glacial ice had made its way down from Canada, sculpting a path south and pushing its way between the Cascade and Olympic Mountains. The ice touched down as far south as Olympia, stilled for a few hundred years, then began to melt.

After the ice began melting and retreating north, the landscape slowly changed —  both the land and sea levels rising — and great freshwater lakes forming in the lowlands filled with glacial waters from the melting ice. The sea levels rose quite considerably, about one and a half centimetres per year between 18,000 and 13,000 years ago. The isostatic rebound (rising) of the land rose even higher with an elevation gain of about ten centimetres per year from 16,000 to 12,500 years ago.

Around 14,900 years ago, sea levels had risen to a point where the salty waters of Puget Sound began to slowly fill the lowlands. Both the land and sea continued to rise and by 5,000 years ago, the sea level was about just over 3 meters lower than it is today. The years following were an interesting time in the geologic history of the Pacific Northwest. The geology of the South Fork Skokomish River continued to shift, undergoing a complicated series of glacial damming and river diversions after these salmon remains were deposited.

Today, we find their remains near the head of a former glacial lake at an elevation of 115 metres on land owned by the Green Diamond Company. The first fossil specimens were found back in 2001 by locals fishing for trout along the South Fork Skokomish River.

Upon seeing the fossil specimens, Smith teamed up with David Montgomery of the University of Washington, Seattle, along with N. Phil Peterson and Bruce Crowley, a Late Oligocene Mysticete specialist from the Burke Museum, to complete fieldwork and author a paper.

The fossil specimen you see here is housed in the Burke Museum collection. They opened the doors to their new building and exhibitions in the Fall of 2019. These photos are by the deeply awesome John Fam from a trip to see the newly opened exhibits this year. If you fancy a visit to the Burke Museum, check out their website here: https://www.burkemuseum.org/.

David B. Williams did up a nice piece on historylink.org on the Salmon of the Puget lowland. You can find his work here: https://www.historylink.org/File/20263

If you'd like to read more of the papers on the topic, check out:

  • Smith, G., Montgomery, D., Peterson, N., and Crowley, B. (2007). Spawning sockeye salmon fossils in Pleistocene lake beds of Skokomish Valley, Washington. Quaternary Research, 68(2), 227-238. doi:10.1016/j.yqres.2007.03.007.
  • Easterbrook, D.J., Briggs, N.D., Westgate, J.A., and Gorton, M.P. (1981). Age of the Salmon Springs Glaciation in Washington. Geology 9, 87–93.
  • Hikita, T. (1962). Ecological and morphological studies of the genus Oncorhynchus (Salmonidae) with particular consideration on phylogeny. Scientific Reports of the Hokkaido Salmon Hatchery 17, 1–97.

If you fancy a read of Crowley's work on Late Oligocene Mysticete from Washington State, you can check out:  Crowley, B., & Barnes, L. (1996). A New Late Oligocene Mysticete from Washington State. The Paleontological Society Special Publications, 8, 90-90. doi:10.1017/S2475262200000927

Monday, 24 January 2022

CRINOIDS — UNDERWATER FLOWERS OR LIVING ANIMALS?

Agaricocrinus splendens
This lovely is Agaricocrinus splendens, an aptly named and wonderfully preserved fossil crinoid. 

Crinoids are one of my favourite echinoderms. It is magical when all the elements come together to preserve a particularly lovely specimen in such glorious detail. 

Crinoids are unusually beautiful and graceful members of the phylum Echinodermata. They resemble an underwater flower swaying in an ocean current. 

But make no mistake they are marine animals. Picture a flower with a mouth on the top surface that is surrounded by feeding arms. Awkwardly, add an anus right beside that mouth. 

Crinoids with root-like anchors are called sea lilies. They have graceful stalks that grip the ocean floor. Those in deeper water have longish stalks up to 3.3 ft or a meter in length. Then there are other varieties that are free-swimming with only vestigial stalks. They make up the majority of this group and are commonly known as feather stars or comatulids. 

Unlike the sea lilies, the feather stars can move about on tiny hook-like structures called cirri. It is these same cirri that allow crinoids to latch to surfaces on the seafloor. Like other echinoderms, crinoids have pentaradial symmetry. The aboral surface of the body is studded with plates of calcium carbonate, forming an endoskeleton similar to that in starfish and sea urchins.

These make the calyx somewhat cup-shaped, and there are few, if any, ossicles in the oral (upper) surface, an area we call the tegmen. It is divided into five ambulacral areas, including a deep groove from which the tube feet project, and five interambulacral areas between them. 

Crinoids are alive and well today. They are also some of the oldest fossils on the planet. We have lovely fossil specimens dating back to the Ordovician — if one ignores the enigmatic Echmatocrinus of the Burgess Shale. And they can be quite plentiful. Crinoid fossils, and in particular disarticulated crinoid columnals, can be so abundant that they at times serve as the primary supporting clasts in sedimentary rocks.

Sunday, 23 January 2022

WOMEN IN GEOSCIENCES: CLEMENTINE HELM BEYRICH

Clementine Helm Beyrich (1825–1896), The Unusual Case Of A Woman Popularizer Of The Geosciences During The Nineteenth Century In Central Europe

Clementine Helm Beyrich (9 October 1825, Delitzsch – 26 November 1896, Berlin) was a widely read author of books for children and young adults who published her works during the period of the German Empire.[1][2]

Clementine Helm was born near Leipzig, as the daughter of the merchant Karl Helm (1785 - 1839) and his wife Henriette (née Schmidt 1794 - 1831). Since both of her parents died during her childhood, two of her maternal uncles successively took care of her. 

After having spent a few years at Merseburg, with the paedagogue Christian Weiss, Clementine Helm moved to Berlin, where she lived with the family of the brother of her former guardian, Christian Samuel Weiss, who was a well-known professor of Mineralogy.

Clementine moved to Berlin to obtain a teaching diploma at the "Königliche Luisenstiftung", a private school offering higher education to girls (see also: Höhere Mädchenschule). Afterwards, she taught at a school for girls for several years. In 1848 she married Heinrich Ernst Beyrich, at the time a student of her uncle's who later became a renowned geologist and palaeontologist, as well as a professor at Berlin University. 

The couple had no children of their own, but adopted Clementine's nieces, Anna (1846 –1906) and Elly (1848–1917), after the death of her sister Wilhelmine Louise in 1851. Letters and diaries confirm that the two girls inspired her foster mother as a writer. In 1896, Clementine Helm died at the age of 71, only one month after her husband had passed away.

Besides scientists, associated with Ernst Beyrich, the families' circle of friends also included a number of novelists like Theodor Fontane and Otto Roquette, as well as the art historian Friedrich Eggers, who knew each other from the Rütli (literary group).

Clementine Helm started her career as an author with the publication of songs for children in 1861. She was the author of more than 40 books, many of which were printed in several editions. Besides books she also published many short stories as well as fairy-tales and was the publisher of various anthologies. In 1895, just a year before her death, she started publishing the annual „Junge Mädchen. Ein Almanach“ together with Frida Schanz who continued publishing it until 1904.

Translations of her works are available in English, French, Dutch and various Scandinavian languages. Her most successful book „Backfischchens Leiden und Freuden“, is an example of the German genre Backfischroman, published in 1863.

Clementine's Legacy

Clementine Helm frequently made use of autobiographical episodes in her writing. Besides that her influence as a teacher was also present. Since she had obtained the highest form of education open to girls in the time of the German Empireone of her aims was to pass some of her knowledge on to her readers. As she was interested in science and biology - and had obviously read the works of Charles Darwin - she specifically made a point to mention his work On the Origin of Species in her novel Dornröschen und Schneewittchen. At the time favourable mention of Darwin's thoughts on evolution were very unusual content for a girls’ novel. Besides the reference to Darwin, the fact that religious topics were largely avoided, indicate that Helm was not particularly pious. On the whole Helm's books were ahead of their time by offering protagonists who were not just well-educated but often interested in natural sciences.

During the nineteenth century the role of women was very much restricted. In the geosciences, women were not able to study and thus even less able to publish. Here the work of one female writer is presented who, due to her upbringing in an intellectual family with close connections to the most celebrated scientists in Prussia/Germany, such as Alexander von Humboldt, the mineralogist Christian Samuel Weiss, Ernst Haeckel and many others, was aware of scientific progress and the discussions of the times. 

Based on her unusual education by teachers and scientists and her intellectual abilities, and knowledge acquired through marriage to a well-established geoscientist, she wrote popular juvenile literature that included geological and palaeontological content. This scientific content was typically woven into fairy tales or novels for adolescent girls and served as a way to spread geoscientific knowledge to a large audience.

Mohr, Barbara A.R. "CLEMENTINE HELM BEYRICH (1825-1896), THE UNUSUAL CASE OF A WOMAN POPULARIZER OF THE GEOSCIENCES DURING THE NINETEENTH CENTURY IN CENTRAL EUROPE." Earth Sciences History, vol. 40, no. 1, Jan. 2021, pp. 84+. Gale Academic OneFile, link.gale.com/apps/doc/A662784433/AONE?u=anon~b9d8b4b9&sid=googleScholar&xid=1b244e18. Accessed 13 Nov. 2021.


Publisher URL: https://meridian.allenpress.com/esh/article/40/1/84/464291/CLEMENTINE-HELM-BEYRICH-1825-1896-THE-UNUSUAL-CASE

DOI: https://doi.org/10.17704/1944-6187-40.1.84

Saturday, 22 January 2022

CANADA'S FIRST SABRE-TOOTHED CAT: SMILODON

This fierce predator with the luxurious coat is Smilodon fatalis — a compact but robust killer that weighed in around 160 to 280 kg and was 1.5 - 2.2 metres long.

Smilodon is a genus of the extinct machairodont subfamily of the felids. It is one of the most famous prehistoric mammals and the best known saber-toothed cat. Although commonly known as the saber-toothed tiger, it was not closely related to the tiger or other modern cats.

Up until a few years ago, all the great fossil specimens of this apex predator were found south of us in the United States. That was until some interesting bones from Medicine Hat, Alberta got a second look.

A few years ago, a fossil specimen caught the eye of researcher Ashley Reynolds as she was rummaging through the collections at the Royal Ontario Museum in Toronto. 

Back in the 1960s,  University of Toronto palaeontologist C.S. Churcher and his team had collected and donated more than 1,200 specimens from their many field seasons scouring the bluffs of the South Saskatchewan River near Medicine Hat, Alberta.

Churcher is a delightful storyteller and a palaeontologist with a keen eye. I had the very great pleasure of listening to many of his talks out at the University of British Columbia and a few Vancouver Paleontological Society meetings in the mid-2000s. 

"Rufus" was a thoroughly charming storyteller and shared many of his adventures from the field. 

He moved out to the West Coast for his retirement, first to Gabriola Island then to Victoria, but his keen love of the science kept him giving talks to enthralled listeners keen to hear about his survey of the Dakhleh Oasis in the Western Desert of Egypt, geomorphology, stratigraphy, recent biology, Pleistocene and Holocene lithic cultures, insights learned from Neolithic Islamic pottery to Roman settlements.

The specimens he had collected had been roughly sorted but never examined in detail. Reynolds, who was researching the growth patterns and life histories of extinct cats saw a familiar-looking bone from an ancient cat's right front paw. That tiny paw bone had reached through time and was positively identified as Canada's first Smilodon.

These Apex Predators used their exceptionally long upper canine teeth to hunt large mammals. 

Isotopes preserved in the bones of S. fatalis in the La Brea Tar Pits in California tell us that they liked to dine on bison (Bison antiquus) and camels (Camelops) along with deer and tapirs. Smilodon is thought to have killed its prey by holding it still with its forelimbs and biting it. And that was quite the bite!

Their razor-sharp incisors were arranged in an arch. Once they bit down, the teeth would hold their prey still and stabilize it while the canine bite was delivered — and what a bite that was. They could open their mouths a full 120 degrees.

Smilodon died out at the same time that most North and South American megafauna disappeared, about 10,000 years ago. Its reliance on large animals has been proposed as the cause of its extinction, along with climate change and competition with other species. 

Thursday, 20 January 2022

LOVE THE WILD: BRITISH COLUMBIA'S ICONIC SPIRIT BEARS

As you walk through British Columbia’s Great Bear Rainforest your footfalls are muffled by lush undergrowth, a crush of salal, fallen needles and wood debris that make up this rich, fertile soil. 

This is not a place to escape the world, but to enter it more deeply.  

This is sacred ground, hallowed ground — though one could say that for every place on Earth — this feels different somehow, older, deeper. 

This is a forest that whispers secrets for those with ears to hear — in the language of the trees, streams and hidden within every bit of underbrush, every perfectly formed Deer fern (Struthiopteris spicant) and Western sword fern, (Polystichum muntum) as you gently bushwhack your way through — honouring a leave no trace ethos.

In this temperate rainforest live some of the oldest and largest stands of timber on the planet. As you explore deeper, each breath you take is filled with moist air mingled with the smells of decaying vegetation and fresh growth, new rain and the deep earthy musk of fungi busily at work on the forest floor. The forest itself has a leave no trace mentality in part. 

Every visible bit of life is a mix of old and new, the fungi breaking down the plant and animal remains, repurposing their life-giving nutrients. It is because of this that we find so few fossils within a rainforest. They are here but not in the way we might think to look for them, at least not with our eyes in the macro-world. Their lineage lives on at the micro-level, bits and pieces embedded within the trees, animals and soil — they form this regions' goût de terroir, the essence of an abiding woodland sphere.

The animals that call this forest home live amidst multistoried canopies of Sitka spruce (Picea stichensis), western red cedar (Thuja plicata), western hemlock (Tsuga heterophylla), amabilis fir (Abies amabilis) and Douglas-fir (Pseudotsuga menziesii) — each of these pillars of the forest are woven together by salal, lichen and a rich mycorrhizal network beneath the ground. The trees here talk to one another using these fungal networks that connect individual trees and plants together to help transfer water, carbon, nitrogen, nutrients and minerals from the earth to needle and leaf.

You are walking through time, each footfall retracing history and those that have come before you, both human and animal. 

British Columbia's Spirit Bears

Deep in this ancient forest where moss overflows every surface and wilderness abounds, British Columbia's Spirit Bear — Ursus americanus kermodei — reigns supreme. 

Spirit Bears are a subspecies of American Black Bear that lives in the Central and North Coast regions of British Columbia, Canada. And as we've learned, they are not always black. They come in red, rust, brown and cinnamon. And a few of their number are a lovely cream tinged white that make them look like they have been dusted with honey. 

There are roughly 650,000 black bears of all colours roaming our forests, swamps and streams — meaning there is a good chance of running into them if you spend any amount of time in the wild. Full-grown, they can run 48 kilometres (30 miles)  an hour and smell food up to 32 kilometres (20 miles) away.

With their excellent hearing, black bears usually know you are near well before you realize the same and generally take care to avoid you. While most spend their days in the wilds of our province far from the hum and thrum of civilization, those that come in contact with humans often tend to want to check our garbage and hiking supplies for tasty snacks — hey, a free meal is a free meal.    

In British Columbia, we share our province with nearly half of all black bears and grizzly bears that reside in Canada. Both bear families descend from a common ancestor, Ursavus, a bear-dog the size of a raccoon who lived more than 20 million years ago. Seems an implausible lineage given the size of their very large descendants.

These intelligent, long-lived mammals (up to 28 years) hold a special place within our culture and in First Nation mythology in particular — celebrated in art, dance and song. 

In the Language of the Kwakwaka'wakw

In the Kwak'wala language of the Kwakiutl or Kwakwaka'wakw First Nations of the Pacific Northwest, the word for black bear is t̕ła'yi. I will ask the word for Spirit Bears as I do not know it.

These beautiful Brown Bears are not brown at all, as you have seen, but pale. Not albino but lacking in pigment. Their colouring stems from a recessive mutant gene — meaning that if they receive two copies it triggers a single, nonsynonymous nucleotide substitution that halts all melanin production. Think of it as turning off the tap that gives these bears their colour. 

Pale but not colourless, they have pigmented eyes and skin but no colour in their fur. These gentle giants are the Official Provincial Mammal of British Columbia and for good reason. Their distinctive coats make them the perfect ambassador for our province.  

Spirit Bears live in the Great Bear Rainforest on British Columbia's north and central coast alongside the Kitasoo/Xai’xais First Nation who call the Kermode moskgm’ol or white bear. The Kitasoo/Xai’xais have a legend that tells of Goo-wee, Raven making one in every ten black bears white to remind us of the time glaciers blanketed the land then slowly retreated — and their thaw giving rise to the bounty we harvest today.   

Visiting British Columbia's Great Bears

If you are interested in viewing British Columbia's Great Bears, do check out Indigenous Tourism BC's wonderfully informative website and the culturally-rich wildlife experiences on offer. You will discover travel ideas and resources to plan your next soul-powered adventure. To learn more about British Columbia's Great Bears and the continuing legacy of First Nation stewardship, visit: 

Indigenous Tourism BC: https://www.indigenousbc.com

Great Bear Lodge has been offering tours to view the majestic animals of the Pacific Northwest. They keep both the guests and the animals' comfort and protection in mind. I highly recommend their hospitality and expertise. To see their offerings, visit: www.greatbeartours.com

Wednesday, 19 January 2022

ARTURIA OF THE PACIFIC

This lovely Lower Miocene nautiloid is Aturia angustata collected on the foreshore near Clallam Bay, Olympic Peninsula, northwestern Washington. 

I have been exploring Washington State for many years. It is rugged, windswept and has amazing fossil exposures all along its northern edge. The area goes by the name of the Olympic Peninsula and it is a wilderness playground. The sites I usually visit are Majestic Beach for its rare but prized fossil whale bone.

Further west are the beach exposures that have fossil echinoids in matrix and Ghost shrimp claws in concretion. There is a clay mine that holds wonderful nautiloids like the creamy Aturia you see here. Sometimes they are cemented together and come out whole. Sometimes calcified and show yellow, brown and white when you hold them to the light. Further up are the beach exposures along Clallam Bay.

Aturia is an extinct genus of Paleocene to Miocene nautilids within Aturiidae, a monotypic family, established by Campman in 1857 for Aturia Bronn, 1838, and is included in the superfamily Nautilaceae in Kümmel, 1964.

Aturia is characterized by a smooth, highly involute, discoidal shell with a complex suture and subdorsal siphuncle. 

Their shells are rounded ventrally and flattened laterally; the dorsum is deeply impressed. The suture is one of the most complex within Nautiloidea. It has a broad flattened ventral saddle, narrow pointed lateral lobes, broad rounded lateral saddles, broad lobes on the dorso-umbilical slopes, and a broad dorsal saddle divided by a deep, narrow median lobe. 

The siphuncle is moderate in size and located subdorsally in the adapical dorsal flexure of the septum. Based on the feeding and hunting behaviours of living nautiluses, Aturia most likely preyed upon small fish and crustaceans. It is well worth exploring the exposures at Clallam Bay. The local clay quarry is on private land so you would need to seek permission. I have also seen calcified beauties of this species collected from river sites within the Olympic Peninsula range, though I have not explored these myself.

Tuesday, 18 January 2022

GRANDMA BETTY HENDERSON NEE HUNT

This beautiful woman is my grandmother, Betty Henderson (neé Hunt) wearing her signature blue and posing for me in her comfy reading chair in Nanaimo just above the harbour. I think of her there, knitting, reading to me and telling stories of the world and our heritage growing up.

I have been feeling a deep pang for my grandmother, Betty. Seeing her surrounded by family. Exuding quiet pride. Such a powerhouse. Something about Autumn feels like I should be off to visit her. She is much missed. 

My memories from here are from my childhood. I lived about half a mile from here on the old Hudson’s Bay site. 

My father Gordon Fredrick Henderson met my Norwegian mother, Diana (Dee) Eikanger in Vancouver. He moved her up the coast. Way up. Then when my sister Sonja was born promised to move her closer to town. 

His vision of closer and her vision of closer were not an exact match. They travelled down the coast to Port Hardy on the north end of Vancouver Island. Outside of Port Hardy is Fort Rupert, Tsaxis (back when Betty’s Store was the only store) outside of that is the beach community at Stories Beach with ten houses, past my godfather Hereditary Chief Peter Knox’s house & the other Kwakwaka'wakw houses... up the hill to our new house with neighbours that included a resident eagle & a small graveyard of ancestors. Yes, closer to town. 

Love that man. 

When we lived there, the original Hudson's Bay Company Fort was rubble. It was built back in 1849 to be a centre for the fur trade and to protect a nearby coalfield. It was the centre of a battle in 1865 when the charming folk from the British Royal Navy bombed the beach and village. Houses were rebuilt & history moved on. 

When Franz Boas arrived in Tsaxis in 1886 on a collecting expedition for the Royal Museum of Ethnology in Berlin, he made Xwamdasbe' his first destination. Boas illustrated four of the named houses in the village in his first major scholarly book, published in 1895, "Secret Societies of the Kwakiutl Indians." Franz was a bit of a marketing showboat. 

Kwakwaka'wakw masks collected at Xwamdasbe' for the Ethnology Museum in Berlin by J. Adrian Jacobsen were illustrated by Boas. Two masks of note — Raven & Sea Monster for the Hamatsa Dance — are amongst the oldest & finest of this form in any collection worldwide. Hopefully, the masks, coppers & lost Chilkat Naaxein blankets will eventually find their way home.

On a family note, when my sister and I were a bit older there were many trips back & forth to Salhus, Knarvik & Eikanger Hordaland, Norway so it did even out in the end. A̱'ex'idalamase'x̱us 'nalax̱

Monday, 17 January 2022

FOSSIL DETECTIVES WANTED: HARRISON LAKE

Located three hours east of Vancouver, most folks head to Harrison Lake to enjoy its crisp waters, soak in the hot springs, camp or four-wheel-drive immersed in rugged scenery, or look for the elusive Sasquatch reported to live in the area. 

But there are some who come to Harrison Lake and miss the town entirely. Instead, they favour the upper west side of the lake and the fossiliferous bounty found here.

Indeed, this is the perfect location for local citizen scientists to strut their stuff. Harrison is a perfect family day trip, where you can discover wonderful marine fossil specimens as complete or partially crushed fossilized shells embedded in rock. 

It is truly amazing that we can find them at all. These beauties range in age from Jurassic to Cretaceous, with most being Lower Callovian, meaning the ammonites here swam our ancient oceans more than 160 million years ago. 

The area around Harrison Lake has been home to the Sts’ailes, a sovereign Coast Salish First Nation for thousands of years. Sts’ailes’ means, “the beating heart,” and it sums up this glorious wilderness perfectly. They describe their ancient home as Xa’xa Temexw or Sacred Earth. 

With the settling of Canada, Geologists began exploring the area in the 1880s, calling upon the Sts’ailes to help them look for coal and a route for the Canadian Pacific Railway. Coal was the aim, but happily, they also found fossils. Sacred Earth, indeed.  

Belemnite Fossils
In my favourite outcrops, you can find large, smooth inflated Jurassic ammonites along with their small grey and brown cousins. 

Further up the road, you will see Cretaceous cigar-shaped squid-like cephalopods called Belemnites, and the bivalve (clam) Buchia — gifts deposited by glaciers. Here are the most common.

Ammonites

Almost all of the ammonite specimens found near Harrison Lake are the toonie sized Cadoceras (Paracadoceras) tonniense with well-preserved outer whorls but flattened inner whorls. We find semi-squished elliptical specimens here, too. If you see a large, smooth, inflated grapefruit-sized ammonite, you are holding a rare prize — a Cadoceras comma ammonite, the macroconch or female of the species.  

Ammonites were predatory, squid-like creatures that lived inside coil-shaped shells. Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. They used these tentacles to snare prey — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunts today.

Within their shells, ammonites had a number of chambers called septa filled with gas or fluid, and they were interconnected through a wee air tube. By pushing air in or out, they were able to control their buoyancy. 

These small but mighty marine predators lived in the last chamber of their shell and continuously built new shell material as they grew. As they added each new chamber, they would move their squid-like body down to occupy the final outside chamber.

Interestingly, ammonites from Harrison Lake are quite similar to the ones found within the lower part of the Chinitna Formation near Cook Inlet, Alaska, and Jurassic Point, Kyuquot, on the west coast of Vancouver Island — some of the most beautiful places on Earth. 

Buchia (bivalve) Clams

The bivalve or clam Buchia are commonly found at Harrison Lake. You will see them cemented together en masse. . They populated Upper Jurassic–Lower Cretaceous waters like a team sport. When they thrived, they really thrived, building up large coquinas of material. Large boulders of Buchia cemented together en masse hitched a ride with the glaciers and were deposited around Harrison Lake. Some kept going and we find similar erratics or glacier-deposited boulders as far south as Washington state. 

Buchia is used as Index Fossils. Index fossils help us to figure out the age of the rock we are looking at because they are abundant, populate an area en masse, and then die out quickly. In other words, they make it easy to identify a geologic time span.

So what does this mean to you? Now, when you are out and about with friends and discover rocks with Buchia, or made entirely of Buchia, you can say, “Oh, this looks to be Upper Jurassic or Lower Cretaceous. Come take a look! We're likely the first to lay eyes on this little clam since dinosaurs roamed the Earth.” 

You will impress the pants off them — very high-five worthy.

Fossil Collecting at Harrison Lake Fossil Field Trip — Getting there

This Harrison Lake site is a great day trip from Vancouver or the Fraser Valley. You will need a vehicle with good tires for travel on gravel roads. Search out the route ahead of time and share your trip plan with someone you trust. If you can pre-load the Google Earth map of the area, you will thank yourself. 

Heading east on from Vancouver, it will take you 1.5-2 hours to reach Harrison Mills. 

Access Forestry Road #17 at the northeast end of the parking lot from the Sasquatch Inn at 46001 Lougheed Hwy, Harrison Mills. From there, it will take about an hour to get to the site. Look for signs for the Chehalis River Fish Hatchery to get you started. 

Drive 30 km up Forestry Road #1, and stop just past Hale Creek at 49.5° N, 121.9° W (paleo-coordinates 42.5° N, 63.4° W) on the west side of Harrison Lake. You will see Long Island to your right. 

The first of the yummy fossil exposures are just north of Hale Creek on the west side of the road. Keep in mind that this is an active logging road, so watch your kids and pets carefully. Everyone should be wearing something bright so they can be easily spotted.

How to Spot the Fossils

The fossils here are easily collected—look in the bedrock and in the loose material that gathers in the ditches. Specimens will show up as either dark grey, grey-brown or black. Look for the large, dark-grey boulders the size of smart cars packed with Buchia. 

And while you are at it, be on the lookout for anything that looks like bone. This site is also ripe for marine reptiles—think plesiosaur, mosasaur and elasmosaur. As a citizen scientist and budding palaeontologist, you might just find something new!

What to Know Before You Go

Fill your gas tank and pack a tasty lunch. As with all trips into British Columbia's wild places, dress for the weather. You will need hiking boots, rain gear, gloves, eye protection, and a good geologic hammer and rock (cold) chisel. 

Wear bright clothing and keep your head covered. Slides are common, and you may start a few if you hike the cliffs. If you are with a group, those collecting below may want to consider hardhats in case of rockfall — chunks of rock the size of your fist up to the size of a grapefruit. They pack a punch. 

Bring a colourful towel or something to put your keepers on. Once you set rock down, it can be hard to find again given the terrain. I take the extra precaution of spraying the ends of my hammers and chisels with yellow fluorescent paint, as I have lost too many in the field. You will also want to bring a camera for the blocks of Buchia that are too big to carry home. 

Identifying Your Treasures

When you have finished for the day, compare your treasures to see which ones you would like to keep. In British Columbia, you are a steward of the fossil, which means they belong to the province, but you can keep them safe. You are not allowed to sell or ship them outside British Columbia without a permit. 

Once you get home, wash and identify your finds. Harrison Lake does not have a large variety of fossil fauna, so this should not be difficult. If your find is coiled and round, it is an ammonite. If it is long and straight, it is a belemnite. And if it looks like a wee fat baby oyster, it is Buchia. This is not always true, but mostly true.

What about collecting fossils in all seasons?. Everyone has a preference. I prefer not to collect in the snow, but I have done it. While sunny days are lovely, it can also be easier to see the specimens when the rock is wet. So, do we do this in the rain? Heck, yeah! 

In torrential rain? 

Yes — once you are hooked, but for your casual friends or the kiddos, the answer is likely no. Choose your battles. They may come with you, but a cold day getting soaked is no fun. 

In time, you will find your inner fossil geek — probably with your first find. And that's just the tip of the iceberg. First, it will be you, then your kids, your friends and then your neighbour. Once you start, it is easy to get hooked. Fossil addiction is real, and the only cure is to get out there and do it some more. You've got this!

References and further information:

A. J. Arthur, P. L. Smith, J. W. H. Monger and H. W. Tipper. 1993. Mesozoic stratigraphy and Jurassic palaeontology west of Harrison Lake, southwestern British Columbia. Geological Survey of Canada Bulletin 441:1-62

R. W. Imlay. 1953. Callovian (Jurassic) ammonites from the United States and Alaska Part 2. The Alaska Peninsula and Cook Inlet regions. United States Geological Survey Professional Paper 249-B:41-108

An overview of the tectonic history of the southern Coast Mountains, British Columbia; Monger, J W H; in, Field trips to Harrison Lake and Vancouver Island, British Columbia; Haggart, J W (ed.); Smith, P L (ed.). Canadian Paleontology Conference, Field Trip Guidebook 16, 2011 p. 1-11 (ESS Cont.# 20110248).


Friday, 14 January 2022

ANCIENT OCTOPUS: KEUPPIA

A sweet as you please example of Keuppia levante (Fuchs, Bracchi & Weis, 2009), an extinct genus of octopus that swam our ancient seas back in the Cretaceous. 

The dark black and brown area you see here is his ink sac which has been preserved for a remarkable 95 million years.

This cutie is in the family Palaeoctopodidae, and one of the earliest representatives of the order Octopoda — and perhaps my favourite fossil. It was this perfect specimen that inspired the logo for the Fossil Huntress brand.  

These ancient marine beauties are in the class Cephalopoda making them relatives of our modern octopus, squid and cuttlefish.

There are two species of Keuppia, Keuppia hyperbolaris and Keuppia levante, both of which we find as fossils. We find their remains, along with those of the genus Styletoctopus, in Cretaceous-age Hâqel and Hjoula localities in Lebanon. 

For many years, Palaeoctopus newboldi (Woodward, 1896) from the Santonian limestones at Sâhel Aalma, Lebanon, was the only known pre‐Cenozoic coleoid cephalopod believed to have an unambiguous stem‐lineage representative of Octobrachia fioroni

With the unearthing of some extraordinary specimens with exquisite soft‐part preservation in the Lebanon limestones, our understanding of ancient octopus morphology has blossomed. The specimens are from the sub‐lithographical limestones of Hâqel and Hâdjoula, in northwestern Lebanon. These localities are about 15 km apart, 45 km away from Beirut and 15 km away from the coastal city of Jbail. Fuchs et al. put a nice little map in their 2009 paper that I've included and referenced here.

Palaeoctopus newboldi had a spherical mantle sac, a head‐mantle fusion, eight equal arms armed with suckers, an ink sac, a medially isolated shell vestige, and a pair of (sub‐) terminal fins. The bipartite shell vestige suggests that Palaeoctopus belongs to the octopod stem‐lineage, as the sister taxon of the Octopoda, the Cirroctopoda, is characterized by an unpaired clasp‐like shell vestige (Engeser 1988; Haas 2002; Bizikov 2004).

It is from the comparisons of Canadian fauna combined with those from Lebanon and Japan that things really started to get interesting with Octobrachia. Working with fossil specimens from the Campanian of Canada, Fuchs et al. (2007a ) published on the first record of an unpaired, saddle‐shaped shell vestige that might have belonged to a cirroctopod. 

Again from the Santonian–Campanian of Canada and Japan, Tanabe et al. (2008) reported on at least four different jaw morphotypes. Two of them — Paleocirroteuthis haggarti (Tanabe et al., 2008) and Paleocirroteuthis Pacifica  (Tanabe et al ., 2008) — have been interpreted as being of cirroctopod type, one of octopod type, and one of uncertain octobrachiate type. 

Interestingly Fuchs et al. have gone on to describe the second species of Palaeoctopus, the Turonian Palaeoctopus pelagicus from limestones at Vallecillo, Mexico. While more of this fauna will likely be recovered in time, their work is based solely on a medially isolated shell vestige.

Five new specimens have been found in the well-known Upper Cenomanian limestones at Hâqel and Hâdjoula in Lebanon that can be reliably placed within the Octopoda. Fuchs et al. described these exceptionally well‐preserved specimens and discuss their morphology in the context of phylogeny and evolution in their 2008 paper (2009 publishing) in the Palaeontology Association Journal, Volume 51, Issue 1.

The presence of a gladius vestige in this genus shows a transition from squid to octopus in which the inner shell has divided into two parts in early forms to eventually be reduced to lateralized stylets, as can be seen in Styletoctopus.

The adorable fellow you see here with his remarkable soft-bodied preservation and inks sack and beak clearly visible is Keuppia levante. He hails from Late Cretaceous (Upper Cenomanian) limestone deposits near Hâdjoula, northwestern Lebanon. The vampyropod coleoid, Glyphiteuthis abisaadiorum n. sp. is also found at this locality. This specimen is about 5 cm long.

Fuchs, D.; Bracchi, G.; Weis, R. (2009). "New octopods (Cephalopoda: Coleoidea) from the Late Cretaceous (Upper Cenomanian) of Hâkel and Hâdjoula, Lebanon". Palaeontology. 52: 65–81. doi:10.1111/j.1475-4983.2008.00828.x.

Photo one: Fossil Huntress. Figure Two: Topographic map of north‐western Lebanon with the outcrop area in the upper right-hand corner. Fuchs et al, 2009.  

Thursday, 13 January 2022

LOVE THE WILD: DECAPODA / KU'MIS

Look how epic this little guy is! 

He is a crab — and if you asked him, the fiercest warrior that ever lived. While that may not be strictly true, crabs do have the heart of a warrior and will raise their claws, sometimes only millimetres into the air, to assert dominance over their world. 

Crabs are decapod crustaceans of the Phylum Arthropoda. 

In the Kwak'wala language of the Kwakwaka'wakw of the Pacific Northwest, this brave fellow is ḵ̓u'mis — both a tasty snack and familiar to the supernatural deity Tuxw'id, a female warrior spirit. Given their natural armour and clear bravery, it is a fitting role.

They inhabit all the world's oceans, sandy beaches, many of our freshwater lakes and streams. Some few prefer to live in forests.

Crabs build their shells from highly mineralized chitin — and chitin gets around. It is the main structural component of the exoskeletons of many of our crustacean and insect friends. Shrimp, crab, and lobster all use it to build their exoskeletons.

Chitin is a polysaccharide — a large molecule made of many smaller monosaccharides or simple sugars, like glucose. 

It is handy stuff, forming crystalline nanofibrils or whiskers. Chitin is actually the second most abundant polysaccharide after cellulose. It is interesting as we usually think of these molecules in the context of their sugary context but they build many other very useful things in nature — not the least of these are the hard shells or exoskeletons of our crustacean friends.

Crabs in the Fossil Record

The earliest unambiguous crab fossils date from the Early Jurassic, with the oldest being Eocarcinus from the early Pliensbachian of Britain, which likely represents a stem-group lineage, as it lacks several key morphological features that define modern crabs. 

Most Jurassic crabs are only known from dorsal — or top half of the body — carapaces, making it difficult to determine their relationships. Crabs radiated in the Late Jurassic, corresponding with an increase in reef habitats, though they would decline at the end of the Jurassic as the result of the decline of reef ecosystems. Crabs increased in diversity through the Cretaceous and represented the dominant group of decapods by the end.

We find wonderful fossil crab specimens on Vancouver Island. The first I ever collected was at Shelter Point, then again on Hornby Island, down on the Olympic Peninsula and along Vancouver Island's west coast near Nootka Sound. They are, of course, found globally and are one of the most pleasing fossils to find and aggravating to prep of all the specimens you will ever have in your collection. Bless them.