Saturday, 19 February 2022

CRESTED BEAUTY: PARASAUROLOPHUS

A delightful red crested hadrosaur
What do elephants, whales and duckbill dinosaurs have in common? A huge trumpeting sound. That's right.

Parasaurolophus was one of the last of the duckbills to roam the Earth and their great crests were the original trumpets. 

We now know that their bizarre head adornments help them produce a low B-Flat or Bb. This is the same B-Flat you hear wind ensembles tune to with the help of their tuba, horn or clarinet players. 

You can image these crested dinosaurs signaling the morning reveille, joy or sounding the alarm over great distances with their bugle-like calls to the other plant-eating members of their herd. 

These herbivorous ornithopod dinosaurs lived in what is now North America — and possibly Asia — during the Late Cretaceous, about 76.5–73 million years ago. 

Parasaurolophus had an interesting jaw structure with dental batteries containing hundreds of teeth that allowed these plant-eaters to tackle their meals with a sort of grinding motion analogous to chewing. 

With all that grinding came significant wear and tear on their specialized dentition so they evolved to have extra teeth waiting in reserve. They dined on plants from the ground up to a height of 4 metres or 13 feet. Once chosen, they would bite their chosen vegetarian meal, begin grinding and any extra green, leafy bits were held in their jaws by a cheek-like organ.  

Hadrosaur Eggs
As noted by the awesome American, cowboy hat-wearing palaeontologist Bob Bakker, lambeosaurines have narrower beaks than hadrosaurines, implying that Parasaurolophus and its relatives fed more selectively than their broad-beaked, crestless counterparts.

Parasaurolophus was a hadrosaurid, part of a diverse family of Cretaceous dinosaurs known for their range of bizarre head adornments. This genus is known for its large, elaborate cranial crest, which at its largest forms a long curved tube projecting upwards and back from the skull. 

Charonosaurus from China, which may have been its closest relative, had a similar skull and potentially a similar crest. Visual recognition of both species and sex, acoustic resonance, and thermoregulation has been proposed as functional explanations for the crest beyond its trumpeting roar. 

It may have produced low-frequency noises, similar to elephants, that you and I wouldn't hear but help them keep in touch over vast distances. The infrasounds of elephants are between 1 to 20 Hertz and can be heard by the herd up to 10 kilometres away. 

Enter Charles H. Sternberg in New Mexico

Charles H. Sternberg, American Palaeontologist
In 1921, Charles H. Sternberg recovered a partial skull (PMU.R1250) from what is now known as the slightly younger Kirtland Formation in San Juan County, New Mexico. 

Sternberg was an American fossil collector and palaeontologist active in the field from 1876 to 1928. He collected fossils for a whose who of famous folk and museums including Edward Drinker Cope and Othniel C. Marsh, and for the British Museum, the San Diego Natural History Museum and other museums. 

He sent his specimen to Uppsala, Sweden, where Carl Wiman described it as a second species, P. tubicen, in 1931. The specific epithet is derived from the Latin tǔbǐcěn  or trumpeter

A second, nearly complete P. tubicen skull (NMMNH P-25100) was found in New Mexico in 1995. Using computed tomography scanning of the skull, Robert Sullivan and Thomas Williamson gave the genus a thorough analysis and interpretation of its anatomy and taxonomy, including various hypothesis for the functions of its crest. Williamson later published an independent review of the remains challenging the previous taxonomic placement.

John Ostrom described another good specimen (FMNH P27393) from New Mexico as P. cyrtocristatus in 1961. Ostrom was an American palaeontologist who revolutionized our understanding of dinosaurs in the 1960s. 

His find from New Mexico included a partial skull with a short, rounded crest, and much of the postcranial skeleton except for the feet, neck, and parts of the tail. Its specific name was derived from the Latin curtus "shortened" and cristatus "crested." The specimen was reported as being found at the top of the Fruitland Formation but was likely from the base of the overlying Kirtland Formation. 

The range of this species was expanded in 1979, when David B. Weishampel and James A. Jensen described a partial skull with a similar crest (BYU 2467) from the Campanian-age Kaiparowits Formation of Garfield County, Utah. Since then, another skull has been found in Utah with the short/round P. cyrtocristatus crest morphology.



References:
  • Abel, Othenio (1924). "Die neuen Dinosaurierfunde in der Oberkreide Canadas". Jarbuch Naturwissenschaften (in German). 12 (36): 709–716. Bibcode:1924NW.....12..709A. doi:10.1007/BF01504818.
  • Bakker, R.T. (1986). The Dinosaur Heresies: New Theories Unlocking the Mysteries of Dinosaurs and their Extinction. William Morrow. p. 194. ISBN 978-0-8217-2859-8.
  • Benson, R.J.; Brussatte, S.J.; Anderson; Hone, D.; Parsons, K.; Xu, X.; Milner, D.; Naish, D. (2012). Prehistoric Life. Dorling Kindersley. p. 342. ISBN 978-0-7566-9910-9.
  • Brett-Surman, Michael K.; Wagner, Jonathan R. (2006). "Appendicular anatomy in Campanian and Maastrichtian North American hadrosaurids". In Carpenter, Kenneth (ed.). Horns and Beaks: Ceratopsian and Ornithopod Dinosaurs. Bloomington and Indianapolis: Indiana University Press. pp. 135–169. ISBN 978-0-253-34817-3.
  • Carr, T.D.; Williamson, T.E. (2010). "Bistahieversor sealeyi, gen. et sp. nov., a new tyrannosauroid from New Mexico and the origin of deep snouts in Tyrannosauroidea". Journal of Vertebrate Paleontology. 30 (1): 1–16. doi:10.1080/02724630903413032.

Friday, 18 February 2022

BOAS, ANNIE SPENCER, LUCY HOMISKANIS, CADWALLADER AND LYON

In 1885, at the age of twenty-seven, Franz Boas received the assignment of cataloguing a First Nation mask, which the explorer Johan Adrian Jacobsen had purchased on northern Vancouver Island and sent back to the Royal Museum of Ethnology. 

Boas was a German-born American anthropologist who spent considerable time on the west coast — much of it with my extended family. 

During the previous year, the museum had seized upon the German Empire’s expansion to assemble the world’s largest collection of bones and curios from “vanishing” cultures.

But this mask was no artefact of the past. It was in use until the moment its owner removed it from her box of treasures. 

The mask belonged to Lucy Homiskanis known as T’łaliłi’lakw, the wife of George Hunt (1864-1932), first born son of Robert Hunt and Mary Ebbets. Lucy had contributed to her husband’s ascent among the Kwakiutl of Fort Rupert by displaying her dances—property rights that Hunt, the son of HBC Factor Robert Hunt and his highborn Tlingit wife— Mary Ebbets, Anisalaga, mixed with wealth, rhetoric, and political genius to join the Kwakiutl nobility.

As a teenager Lucy had disappeared while digging for clams, leaving only a pile of clothes on the beach. For a month she was thought to be gone—until the winter ceremonies when the dance leaders of Fort Rupert called the people to their secret spot in the woods to compose two songs for the supposedly vanished girl. 

That night a Killer Whale dancer appeared in the house, spouting water from his blowhole. Suddenly he pulled a hidden string, splitting his face in two and revealing the form of a supernatural Monster Fish said to have taken the girl away. Following this transformation, and shocking those who thought her gone, Lucy emerged to dance, enacting her role as a bearer of wealth for her family.

Boas, who printed a picture of this mask in 1897, would not learn the identity of its owner, much less the dramatic story of Lucy’s disappearance and reappearance, until the early 1920s, when Lucy had been dead for more than a decade. 

George Hunt, now approaching his seventies, sent Boas a list of corrections to their monumental, coauthored ethnography. Almost as if posing a counter-point to the classifying outlook Boas expressed in his title for the book, The Social Organization and the Secret Societies of the Kwakiutl Indians,

George Hunt titled his latest work “name of the masks on the Book and who there Belong to.” 

In each sentence, Hunt contradicted Boas’s pursuit of the typical and tribal with an account of the personal and particular—beginning with his own family. “This mask,” Hunt wrote Boas, “was my wife's Killer Whale mask.”

It was Hunt, it turns out, who had sent the mask to Germany. 

500+ Kwakwaka’wakw Ceremonial Objects Send to Berlin 

In 1881, Hunt had served as Jacobsen’s guide, aiding in his collection of the more than five hundred Kwakwaka’wakw ceremonial objects now in Berlin that stirred in Boas visions of a foreign world. “My fancy was first struck,” Boas recalled, “by the flight of imagination exhibited in the works of art of the British Columbians as compared to the severe sobriety of the eastern Eskimo.” 

Sea monsters, fantastical birds of prey, tangle-haired hags assaulted his senses, striking him as strange, “grotesque.” But as he held the masks in hand, noting mouths, eyes, snapping mandibles, faces that divided by the pull of a string to reveal a second face within, Boas realized “what a wealth of thought” lay hidden behind the designs.

Boas’s newfound interest in masks, a layer interposed between the self and the world, was more than a metaphor for his interest in culture. Boas lived behind a kind of mask—a look at his face revealed cracks in the facade: three scars over the eye, one across the nose, and a long, cruel slash from cheek to ear.

Boas had earned his Schmisse while fencing at university between 1877 and 1881 when a revived version of the Judenfrage or Jewish question, posed by the distinguished historian Hein-rich von Treitschke gripped the country, and students rallied to “emancipate the German people from a kind of foreign domination.”

Boas, a secular Jew, fought several duels to defend his honour against attacks from anti-Semites, but his attempt to escape his outsider’s identity, living by the code of his German secret society, marked him as the outsider he did not wish to be.

Few frontal portraits of Boas survive today because he tended to present his profile to the camera, leaving the scarred side in shadow.

The violence inscribed on Boas’s face signified a deeper conflict between his self-image as a romantic explorer and the flesh-and-blood reality of a scientist measuring humans in an age of empire.

Inspired by the globetrotting humanism of Alexander von Humboldt, whose magnum opus,

Cosmos, offered Europeans a vision of New World grandeur, Boas had set off in 1883 to live with the Inuit of Baffin Island, there awakening to the radical variety of human practice, the universality of human experience, and the sordid power performances involved in extracting information about both.

He returned in 1885 to an altered Germany, which had acquired an empire in his absence and now possessed colonies in Africa and the Pacific. The merging of imperial politics and romantic science provoked a profound crisis for Boas now defined at home as the ethnic outsider he had travelled so far to see.

As his mentors, Rudolf Virchow and Adolf Bastian received packets of salted skin, hair, and severed hands from German collectors around the globe, Boas groped for a new self-understanding. 

He came to the conclusion that science must change. Though categorizing experience and generalizing data to form laws of nature could be one way of seeing the world, one must not lose one's sense of feeling. The “effective” search for the inner nature of the thing itself, rather than the way one might define it from the outside, could reveal a different form of truth.

Just as he came to this insight, the Northwest Coast artwork arrived, opening a door to affective perception. Lucy’s transformation mask, representing two faces, linked three states of being, those of the human (Dancer), animal (Killer Whale), and supernatural (Monster Fish) realms. It was an image of interconnection, portraying the relationships of humans with the nonhuman members of an animate cosmos. 

Even as Boas classified the mask, categorizing it by region and tribe, the object escaped his grasp, permeating the borders of being that locked Boas 

in place. This global consciousness remained dead to Boas so long as the mask remained severed from the message. But a potential existed. 

If the mask and the message could be reunited, they would transmit to Boas an Indigenous narrative. Through this opening, this crack in thought danced “die Bella Coola.” In the Hamburg animal merchant Carl Hagenbeck, who would later contribute to the invention of the modern zoo, toured Germany with an exhibition of humans.

Nine Nuxalk dancers from Bella Coola, a village north of Hunt’s home in Kwak’wala land, spent a year performing in zoos, hotels, and theaters across Germany.

The ethnographer Aurel Krause, who had recently returned from a stay with the Tlingit of Alaska, invited Boas to join him on a visit to the performers at Krolls Establishment, the amusement centre where they lived and danced.

The following days proceeded for Boas like a dreamer a vision as the dancers took the artefacts he had been struggling to lock into place and spun them, for a moment, into splendid motion. Donning the masks collected by Hunt, cocking their beaks to the beat, the Nuxalk posed as supernatural cranes and ravens. They rolled up their sleeves to display their scars, explained to Boas that the masks were tied to the secret societies of the Northwest Coast, and described the arduous initiation rituals—an experience to which Boas, a secret society initiate himself, could relate. 

A conversation began. 

The Nuxalk taught Boas their local trade jargon. They sang of love, and of loss, in the Puget Sound hop fields (“Ya, that is good! Ya, that is good! That worthless woman does not like me”).

One man, a skilled storyteller named Nuskilusta, taught Boas the rudiments of the Nuxalk language.

After four days Boas wrote to his fiancée, Marie Krackowizer, that he felt “wie in Himmel,” as if he were in heaven. By the time the group left for Breslau he had recorded four songs, sent a report to the Berliner Tageblatt, described the Nuxalk language, and written a sketch for the American magazine Science.

Boas had found his effective inspiration, a message for his developing medium.

The performers offered Boas an Indigenous education, a Bella Coola Bildung.

Making use of another people’s masks as found objects, they code-switched Boas to their mnemonic logic, transmitting their messages to him. The embodied materialism of this meeting, in which ideas moved through masks, blankets, and even scars, accommodated Boas’s German ideas about culture, for the ornate carvings of the Northwest Coast showed that this so-called “primitive” people, in fact, possessed a richly developed civilization.

When the Nuxalk danced, Boas wrote, “We saw ourselves transported into a foreign world whose outlook, whose customs, have taken a quite different course from ours, but which we must acknowledge as a high cultural state.”

Yet even by altering his judgment, Boas retained the authority to be the judge. A more powerful transformation was underway, one concerning the question of agency.

Transformation Masks

As he studied the artwork displayed by the Nuxalk, Boas noted an aesthetic feature of the Northwest Coast: the eye design.

This “repeated motif” deco-rated nearly every spoon, blanket, and mask that he saw. Boas did not yet know that sight—vision—was a central idea on the Northwest Coast. Visions of encounters with animals and spirits were a form of social currency. By performing visions, elites claimed their ancestral privileges and responsibilities. By experiencing visions, shamans received their healing powers. Stories were visions shared by a teller, pictures painted in words.

Through visions, through the metaphor of vision, the people of the coast depicted themselves as Eyes, not Others: vision seekers, vision speakers. Ultimately it is the person with vision, the person who glimpses a potential that others have missed, who is capable of altering a situation, thus bringing about a transformation. At the heart of this transformation was the idea of a mask. In the European outlook familiar to Boas, a mask concealed: it hid the wearer’s true identity, superimposing a false front. 

For the Nuxalk and for the Kwakwaka’wakw, masks were not merely coverings but skins, part and parcel of the substance beneath. A mask enabled its wearer to alter states, to don a second face. It provided a new way of being and of seeing.

Rather than hiding behind the mask, the people of the Northwest Coast took on the mask’s identity. When they put on their masks, they positioned themselves not as objects of anthropology but as subjects of history. Agents of change, they possessed the power to transform. There is no evidence to suggest that Boas felt tempted to wear one of these masks, thus donning the skin of the Nuxalk and their neighbours, seeing the world through their eyes. If he did so, quietly and out of view, we have no record of it.

We do know that Boas sought the meanings behind the masks. He asked what each design depicted, but the performers from Bella Coola could not tell him. The masks collected by Jacobsen were not their masks, they said. They did not know the stories behind them.

Once intrigued, Boas now found himself confronted by a mystery, and with this mystery, the door opened wider. To findout more, it would be necessary to visit the place where the masks were made. Twenty-five years later Boas would look back upon this moment, the moment of his Bella Coola

Bildung, as the beginning of his own transformation. The performers from Bella Coola, Boas wrote, offered him a chance to “cast a brief glimpse behind the veil that covered the life of these people.

Had it not been for the Nuxalk performers, Boas might very easily have remained at home, where he would have become a professor of geography in Germany and, had he lived long enough, a stumbling stone on the streets of present-day Berlin.

It was due to the influence of Indigenous performers that his life veered in a new direction and began to take consequential shape. 

In 1886, Boas took leave of the museum to travel to the Northwest Coast. “The attraction,” he later wrote, “was irresistible.”

DRIFTED ASHORE HOUSE

Boas arrived on Vancouver Island like a parody of a detective, clutching sketches of the masks as his clues. The only drawback to these clues was that they lacked any connection to a case. Boas envisioned the masks as signs that Natives could connect to referents, lifting the veil that obscured their world of thought. But the masks were not signs. They were property that related the histories of their owners, and knowledge of the designs was limited to the circle whose history they discussed. No one else had a right to talk. 

After a week of sodden searching in the labour camps of Victoria, poking his head into tents, sharing pictures, requesting information in the shards of Chinook trade jargon he had learned from the Nuxalk, Boas had come no closer to the meanings that had eluded him in Berlin. He gave up his hunt in order to buy new masks, thus creating a clean set of signs and referents.

As he headed north on an old steamer toward Kwakwaka’wakw country, a case of tobacco and a bolt of cotton by his side, Boas formed the perfect caricature of the white man’s globalization. Money for masks, tobacco for tales, was Europe’s colonial calculus. Boas, no exception, needed masks to fund his trip. His pursuit of “handsome” objects to sell to Bastian in Berlin formed the subtext of his dealings at Newitti, a remote island town off the northern tip of Vancouver Island, twice razed by British gunboats yet still a bastion of the potlatch, the outlawed form of Indigenous governance that took place through a reciprocal exchange of feasts, dances, and most important to Boas, the display of masks.

The potlatch was an answer and an ode to the experience of modernity. It had taken a new form after the smallpox epidemic of 1862 when more than 50 per cent of the people died within a year, some villages vanished, and Northwest Coast peoples faced the possibility of imminent destruction. 

The potlatch was their survival strategy, a gift-giving system that soldered bonds between peoples, redistributed wealth—often in the form of fabricated metal plates known as coppers that were worth thousands of trade blankets—and spread stories across a thousand-mile coastline from the salmon-fishing grounds of the Columbia River to the eulachon harvesting spots by the Nass. 

Through this system of material and intellectual exchange, thousands of people responded to the existential threat that Western networks of power and pathogens posed to their homes, families, and communities. They fashioned a new Indigenous life world, drawing one another into an ongoing conversation that constructed a peaceful, pan coastal community. Because the potlatch system perpetuated Indigenous independence, Canada’s government had banned it in 1884.

But this did not stop the Kwakwaka’wakw, who determined to live—as one chief now put it to Boas—by “the strict law that bids us dance.

The people of Newitti greeted Boas quizzically. Why would a white visitor ask to see the same dances that the white government had only just banned? Boas, compelled to communicate, clarified that he was not a missionary or a government agent but a traveller who had come to learn. “I do not wish to interfere with your celebration,” he promised the head chief, who had called a town meeting, asking the foreigner to explain his purposes. “My people live far away,” Boas said, “and would like to know what people in distant lands do.. . . And so I went and I came here and I saw you eat and drink, sing and dance. And I shall go back and say: ‘See, that is how the people there live. They were good to me and asked me to live with them.’”

In response to the stimulus provided by the people of Newitti, Boas had begun to reconsider his research methods. He talked about himself as the people wanted to see him, not as a collector but as a transmitter of information. During the next week, as Boas put together his 

During the next week, as Boas put together his collection, the people took time out from their dances to chat with the visitor. “Everyone,” Boas wrote, “is most anxious to tell me something.”

By revealing what they valued—their stories—those assembled at Newitti turned Boas from the material products that possessed Western value to the narratives that the objects encoded, which held greater wealth in the Indigenous world. Boas saw the masks in the context of their makers, who expressed their social history in carvings—masks and also poles, posts, family benches, and feasting dishes—all of which related the narratives of their owners.

At night, the head chief of Newitti gathered his people around the fire, where he related legends that Boas scribbled down with the help of a young translator. Sitting on the chief’s settee, carved with the heraldry of his lineage, Boas realized that the designs surrounding him told the history of the house. 

The people of Newitti lived within their narratives, enfolded by their stories. Although Boas styled himself as the intellectual, it was the Kwakwaka’wakw who turned him from objects to ideas.

Boas continued to collect, and he would succeed in paying for his trip by selling his collection (the “best masks available,” he reported home, including, “all the ornaments that belong to one dance”).

But the object of his interest shifted from the masks that brought him there to the storytelling style of theNorthwest Coast. So eager was Boas to hear more stories, and to see stories play out in dances, that he placed his masks at risk to do so, travelling through a severe storm to reach some potlatches at the town of Alert Bay. 

When his guide, blown ashore, refused to venture out again, Boas hired a Native boatman, stowed the masks in his craft, and pushed off into a ferocious wind. They might have died and were once pushed into a rocky peninsula, but somehow Boas and his new pilot managed to catch a friendly gust and steer for the totem poles of Alert Bay. 

A crowd rushed to bring the boat in, Boas springing out so eagerly that his guide burst into laughter. “You were just like a deer,” he said, “so quickly you jumped ashore!” 

Relieved, Boas walked to the dock to find George Hunt’s brother-in-law Stephen Allen Spencer, the owner of the local salmon cannery, whose attention immediately gravitated toward the masks, the constant object of imperial interest. “The first thing he told me,” Boas wrote, “was that my belongings would be locked up.”

Despite all the effort Boas had expended on masks—first to determine the meanings of the masks he had seen in Berlin, then to collect the second group of masks at Newitti, and finally to transport and secure them—his attempt to “cast a glimpse behind the veil” was a failure. 

The masks were not signs that could be lifted out of the Northwest Coast to generate principles. They were mediums, which their owners used to transmit messages. Even as Boas attempted to collect, and by collecting to categorize a culture, the people of the Northwest Coast attempted to communicate, and by communicating to transmit a history that defied categorization. As a result, Boas’s interest began to shift from masks to the mnemonic knowledge they encoded. It was in this context—the play between categorization and communication—that he met the Hunt family and, without realizing it, learned their family story.

Dinner with Stephen Allen Spencer, Harry Tennyson Cadwallader and Alexander Matthew Lyon

On his first night in Alert Bay, after dinner with Stephen Allen Spencer and his two brothers-in-law, each, like Spencer, was married to a sister of Hunt — Boas spent some hours in conversation with Annie Spencer (1856-1924), the younger sister to George (1864-1932) and William (1866-1952) Hunt, who regaled him with First Nation tales. 

“Mrs. Spencer was very gracious and told me many stories,” Boas wrote to Krackowizer, “which I recorded later in the evening.”

Four days later, Boas mentioned in a new note to his fiancée that he had visited Annie Spencer again and asked her to tell more tales. “She relates well and is very gracious,” he emphasized. “Unfortunately she is not well or I should really bother her.”

Nevertheless, Boas trod back to the Spencers’ home the same day. There he found Hunt’s sister either improved or doubly gracious, for she was “kind enough to tell me all I wanted to know. . . . The information I obtained from her was the most valuable I received in Alert Bay.”

The stories of Annie Hunt Spencer (1856-1924) daughter to Mrs. Mary Ebbits, Anisalaga, opened a vista on a narrative legacy linking all the peoples from Yakutat Bay to the Columbia River, who, though divided by physical and linguistic differences and by histories of conflict, held in common a heritage of thought. 

The Raven Cycle

A centrepiece of this heritage was the Raven Cycle, one of the oldest and largest bodies of oral literature in the Americas. In the bards who performed the Raven tales, and who daily altered them, were members not of a single school but of a living tradition whose members had innovated a stance toward the world in response to cycles of change from the Ice Age to the smallpox apocalypse. They had created a body of thought about people’s relationships to one another and to the cosmos, the beings within it, and the capacity of humans to right those relationships.

The star of the drama was Raven, scheming, ravenous, bumbling in his arrogance toward ever-greater disgrace, yet always surviving, evolving, and through his accidents and exploits establishing the present state of affairs.

Born before the earth had acquired its form, it was Raven—Old One, Great Inventor, Chief of the Ancients, Heaven Maker, Giving to the End, Going Around—who established the tools and forms of existence.

With the world veiled in darkness, Raven stole the box that held the sun and opened it, lighting the world by his ingenuity. 

He made man from grass and elderberry bushes, brought salmon to the people, fed the rivers with eulachon. He established the shapes and traits of his fellow animals and gave them their present powers and appearances. And though affairs could hardly change as radically in contemporary times as in the days of beginning, by his actions and infractions Raven pointed toward a way of being human. “So many stories are told about him,” Boas remarked during his first visit to the coast, “that they have a saying that human life is not long enough to tell all of them.”

Every First Nation of the Northwest Coast was woven into the fabric of the Raven Cycle through the warp and weft of a storytelling practice that linked speakers and listeners—messengers and mediums—within a pattern of call and response. There were no galleries around the fire, no lines dictating who paid and who performed. There were no observers, no outsiders, no Others. People did not merely listen to the Raven Cycle; they took part, asking questions, repeating refrains, goading the storyteller toward feats of ingenuity.

There was saltiness and sport in the Raven tales, sex and waste, greed and hate. The bards were like Raven: they begged, borrowed, stole, and in doing so created. They were origin poets who fostered possibilities by defying the rules of the system they had made.

The stories they told, often ending in just-so pronouncements—explaining, say, how wolves had come to behave so diffidently around humans (“they really became wolves after this,” one storyteller put it)—wove a fabric of thought that embraced every notable rock, tree, and stream in the neighbourhood, encompassing the human community within an animate cosmos. 

"I remember with the greatest pleasure many trips in colourful canoes with Indian guides who did not stop telling tales,” Boas wrote in one account of this storytelling culture for a German audience. 

“It was that mountain peak which alone reached above the waters during the great flood, and from this peak, the earth was populated again. Here, the battle took place in which the stone giants were outwitted and killed by the brave Indians. A dangerous rapid, formed in prehistoric times in a narrow strait, reminds us of the Son of God, who killed and sank a dangerous sea monster into the ocean at that place. Each strange place is woven into a legend.”

Origins of the World through Raven from the North

Yet, while the storytelling tradition of the Northwest Coast had survived long enough to envelop the landscape, the Raven Cycle had emerged from only a portion of it. As Boas’s first conversation with an elderly storyteller in Victoria revealed, only the northern peoples, including George Hunt’s mother’s people, related the origins of the world through the exploits of Raven.

Other peoples credited competing narratives, starring different figures.

Origins of the World through Mink in the South

Among the Kwakiutl people of Fort Rupert, the hero associated with light was not Raven but Mink, the son of the supernatural man who carried the sun across the sky. Much like Raven, Mink possessed an insatiable appetite, but not for food. A priapic scavenger after advantageous marriages, Mink lusted after women.

It was said of the mischievous Mink that he had sliced off a girl’s clitoris and attached it to a branch, wearing it on his forehead as a ludicrous headpiece. On another occasion, he convinced a flock of female ducks to enter the forest and there sit upon a rare type of elongated mushroom, which turned out to be Mink’s penis.

If Raven was Ego, Mink was Id. He pointed toward the urge within, the pre-socialized desire. The Kwakiutl went so far as to envision Mink as a child, given today dreams and pranks. When performing the role of Mink, they revelled in his youth by making the grammatical mistakes of a child.

But there was more than comedy in the Kwakiutl depiction of Mink’s youth, for the child had attained a precious status in a society that now possessed precious few children. 

Among the Kwakwaka’wakw, Mink—T' łisalagi’lakw, or “Born to Be the Sun”— was the most sympathetic of figures, the fatherless child. While the Tlingit tradition was to pass down rights through the matriline, the rights of the Kwakwaka’wakw were passed from father to son, meaning that Mink had to make his own way in the world.

The Kwakwaka’wakw traced the origins of modern times to Mink’s response to his fate. Teased by the other children because he had no father, Mink came home depressed, whereupon his mother related a wondrous tale. Mink did have a father, his mother assured him, and he was not just any father. He was the man who lit up the world by carrying the sun across the sky.

Hoping to meet his father, Mink shot an arrow into the sky, then a second arrow into the back of the first, and a third into the second, constructing a ladder of arrows that he ascended to the Upper World. Warmly greeted by his father, he was invited to try out his future occupation. Mink began well enough, walking calmly across the sky with the sun in his arms, but soon he grew impatient. He began to run, scorching the earth and bringing about a deluge. Disgraced, Mink was thrown to the earth by his father, fated to spend his life among men.

In the Kwakwa ka’wakw version of history, the origin of modern life was a great mistake, an ecological disaster that unleashed a scourge upon humankind.

The hero was a fallen child. His actions warned of the dangers of hubris, a trait ever-present in the avaricious fur trade. But the Kwakwaka’wakw storytellers who related the narrative were careful to show that the disaster did not befall an individual only; it impacted everybody. Mink tales epitomized the dark humour of the Northwest Coast, a tone infused with portentous irony. 

They had bravado, an acute awareness of human foibles, and epic warnings about the transitory nature of greatness—a style that had risen to prominence in a period of existential horror inhabited by many human Minks, many father-less children struggling for survival on a broken coast scorched by smallpox. Transformation—making change—not only created the world, it was what enabled people to make their way in it, negotiating a path through the currents of destruction. 

Mink’s essence as a transformer, as a hero, consisted not in his creation of the apocalypse but in his response to the apocalypse of everyday life. Smaller and weaker than the others, bearing no special talents, Mink survived by his wits—and it was his terrible wit, his deadeye for the jugular, that especially pleased the Kwakiutl of Fort Rupert. 

Tlowitsis First Nation Village of Kalugwis on Turnour Island
Mink, they said, had lived at nearby Turnour Island in Johnstone Strait, where the sons of the Wolf chief had terrorized him, stealing his salmon from his trap. 

Threatened with starvation, Mink grabbed his spear, lay in wait for Wolf’s sons, and slaughtered them. But this was only the beginning of his revenge, for it was the insult, not the injury, that offended Mink—and which he aimed, in turn, to deliver.

By decapitating the eldest son of the Wolf and converting his head into a mask, Mink managed to impersonate his persecutor. In this blood-drenched costume, he arrived at the Wolf chief’s winter ceremonies to perform the dances of his heir. Three times Mink circled the fire, displaying the Wolf’s winter dances. On the fourth circuit he revealed his true form, throwing off his mask to mock his host: “Yahai, yahai, Mink wears as his cap the face of the son of the Wolf!” 

This was genocide: Mink had assassinated the Wolf’s heirs, taken their dances, and arrived at the crucial moment to deliver the coup de grâce. When he raised the head of his enemy, Mink announced a new future for his descendants, the Kwakiutl. This, it was said, was the origin of the winter dances that Boas had come to see.

At the centre of the dances was a single mask: a mask that allowed Mink to assume the form and take the name of a Wolf. Only by wearing this mask could Mink cross a boundary, enter the realm of the Wolves, and claim his prize. Mink transformed not because he was born to do so, but because he possessed vision. He saw and seized his chance to act, writing for himself a new history. 

Although the Mink stories emerged from an ancient tradition, that tradition had altered as Indigenous people reshaped it into something new. Mink’s actions were an outgrowth of and an answer to the experience of modernity. The tales Boas studied as generalities, looking for ideas that defined social groups, were the product of personal genealogies, formulated by storytellers whose innovations shaped the intellectual material of the coast to their purposes. 

This was especially true of the Hunt family, possessed of numerous storytellers, including Annie Hunt Spencer. Among the tales she shared with Boas was one about Raven and Mink, which would come to be of such importance to Boas that the story is worth recounting in full.

The first part of the story relates an adventure of Raven and Mink, who met at the Nass River, made friends, and decided to wander the earth together. (This was where Robert Hunt and Mary Ebbets had met and married, and Mary's mother had drowned)

Because they had no means of getting across the ocean, they were forced to rely on their wits. Coming upon Whale, they mentioned their desire to cross the water. “Won’t you take us across?” they asked. Whale opened his mouth and Raven and Mink stepped in. They had not been inside the Whale for long when Raven pinched Mink, who let out a scream. “Why does the little one cry?” Whale asked. 

When Raven replied that Mink was hungry, Whale generously offered a piece of himself. “I have lots of meat,” he said. “Cut him off a piece.” Raven and Mink soon finished their meal, whereupon Raven pinched Mink again. “What’s happening now?” Whale asked. “The little one is hungry,” Raven said. “Take as much as you want,” Whale consented, “only don’t cut my throat, because that would kill me" — whereupon Raven cut Whale's throat.

Isaiah Lorado Wilner; Yale University Press; Chapter Title: Transformation Masks: Recollecting the Indigenous Origins of Global Consciousness; Chapter Author(s): Isaiah Lorado Wilner; Book Title: Indigenous Visions; Book Subtitle: Rediscovering the World of Franz Boas; Book Editor(s): Ned Blackhawk, Isaiah Lorado Wilner; Published by: Yale University Press. (2018) 

Stable URL: http://www.jstor.org/stable/j.ctt22h6qn7.5 

This content downloaded from 128.208.76.182 on Tue, 12 Jun 2018 21:42:52 UTCAll use subject to http://about.jstor.org/terms
https://www.academia.edu/36833396/Transformation_Masks_Recollecting_the_Indigenous_Origins_of_Global_Consciousness

https://www.bgc.bard.edu/files/FB-BC_Studies_(2019.05.14).pdf

Alexander Mathew Lyon (1863-1950); Harry Tennyson Cadwallader (1874-1932)

Thursday, 17 February 2022

AVES: LIVING DINOSAURS

Cassowary, Casuariiformes
Wherever you are in the world, it is likely that you know your local birds. True, you may call them des Oiseaux, pássaros or uccelli — but you'll know their common names by heart.

You will also likely know their sounds. The tweets, chirps, hoots and caws of the species living in your backyard.

Birds come in all shapes and sizes and their brethren blanket the globe. It is amazing to think that they all sprang from the same lineage given the sheer variety. 

If you picture them, we have such a variety on the planet — parrots, finches, wee hummingbirds, long-legged waterbirds, waddling penguins and showy toucans. 

But whether they are a gull, hawk, cuckoo, hornbill, potoo or albatross, they are all cousins in the warm-blooded vertebrate class Aves. The defining features of the Aves are feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweight skeleton. The best features, their ability to dance, bounce and sing, are not listed, but it is how I see them in the world.

These modern dinosaurs live worldwide and range in size from the 5 cm (2 in) bee hummingbird to the 2.75 m (9 ft) ostrich. 

There are about ten thousand living species, more than half of which are passerine, or "perching" birds. Birds have wings whose development varies according to species; the only known groups without wings are the extinct moa and elephant birds.

Wings evolved from forelimbs giving birds the ability to fly
Wings, which evolved from forelimbs, gave birds the ability to fly, although further evolution has led to the loss of flight in some birds, including ratites, penguins, and diverse endemic island species. 

The digestive and respiratory systems of birds are also uniquely adapted for flight. Some bird species of aquatic environments, particularly seabirds and some waterbirds, have further evolved for swimming.

Wee Feathered Theropod Dinosaurs

We now know from fossil and biological evidence that birds are a specialized subgroup of theropod dinosaurs, and more specifically, they are members of Maniraptora, a group of theropods that includes dromaeosaurs and oviraptorids, amongst others. As palaeontologists discover more theropods closely related to birds, the previously clear distinction between non-birds and birds has become a bit muddy.

Recent discoveries in the Liaoning Province of northeast China, which include many small theropod feathered dinosaurs — and some excellent arty reproductions — contribute to this ambiguity. 

Still, other fossil specimens found here shed a light on the evolution of Aves. Confuciusornis sanctus, an Early Cretaceous bird from the Yixian and Jiufotang Formations of China is the oldest known bird to have a beak.

Like modern birds, Confuciusornis had a toothless beak, but close relatives of modern birds such as Hesperornis and Ichthyornis were toothed, telling us that the loss of teeth occurred convergently in Confuciusornis and living birds.

The consensus view in contemporary palaeontology is that the flying theropods, or avialans, are the closest relatives of the deinonychosaurs, which include dromaeosaurids and troodontids.

Together, these form a group called Paraves. Some basal members of this group, such as Microraptor, have features that may have enabled them to glide or fly. 

The most basal deinonychosaurs were wee little things. This raises the possibility that the ancestor of all paravians may have been arboreal, have been able to glide, or both. Unlike Archaeopteryx and the non-avialan feathered dinosaurs, who primarily ate meat, tummy contents from recent avialan studies suggest that the first avialans were omnivores. Even more intriguing...

Avialae, which translates to bird wings, are a clade of flying dinosaurs containing the only living dinosaurs, the birds. It is usually defined as all theropod dinosaurs more closely related to modern birds — Aves — than to deinonychosaurs, though alternative definitions are occasionally bantered back and forth.

The Earliest Avialan: Archaeopteryx lithographica

Archaeopteryx, bird-like dinosaur from the Late Jurassic
Archaeopteryx lithographica, from the late Jurassic Period Solnhofen Formation of Germany, is the earliest known avialan that may have had the capability of powered flight. 

However, several older avialans are known from the Late Jurassic Tiaojishan Formation of China, dating to about 160 million years ago.

The Late Jurassic Archaeopteryx is well-known as one of the first transitional fossils to be found, and it provided support for the theory of evolution in the late 19th century. 

Archaeopteryx was the first fossil to clearly display both traditional reptilian characteristics — teeth, clawed fingers, and a long, lizard-like tail—as well as wings with flight feathers similar to those of modern birds. It is not considered a direct ancestor of birds, though it is possibly closely related to the true ancestor.

Unlikely yet true, the closest living relatives of birds are the crocodilians. Birds are descendants of the primitive avialans — whose members include Archaeopteryx — which first appeared about 160 million years ago in China.

DNA evidence tells us that modern birds — Neornithes — evolved in the Middle to Late Cretaceous, and diversified dramatically around the time of the Cretaceous–Paleogene extinction event 66 mya, which killed off the pterosaurs and all non-avian dinosaurs.

In birds, the brain, especially the telencephalon, is remarkably developed, both in relative volume and complexity. Unlike most early‐branching sauropsids, the adults of birds and other archosaurs have a well‐ossified neurocranium. In contrast to most of their reptilian relatives, but similar to what we see in mammals, bird brains fit closely to the endocranial cavity so that major external features are reflected in the endocasts. What you see on the inside is what you see on the outside.

This makes birds an excellent group for palaeoneurological investigations. The first observation of the brain in a long‐extinct bird was made in the first quarter of the 19th century. However, it was not until the 2000s and the application of modern imaging technologies that avian palaeoneurology really took off.

Understanding how the mode of life is reflected in the external morphology of the brains of birds is but one of several future directions in which avian palaeoneurological research may extend.

Although the number of fossil specimens suitable for palaeoneurological explorations is considerably smaller in birds than in mammals and will very likely remain so, the coming years will certainly witness a momentous strengthening of this rapidly growing field of research at the overlap between ornithology, palaeontology, evolutionary biology and the neurosciences.

Reference: Cau, Andrea; Brougham, Tom; Naish, Darren (2015). "The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc (Dinosauria, Maniraptora): Dromaeosaurid or flightless bird?". PeerJ. 3: e1032. doi:10.7717/peerj.1032. PMC 4476167. PMID 26157616.

Reference: Ivanov, M., Hrdlickova, S. & Gregorova, R. (2001) The Complete Encyclopedia of Fossils. Rebo Publishers, Netherlands. p. 312

Wednesday, 16 February 2022

THE MIGHTY MARINE REPTILES

This well-preserved partial ichthyosaur was found in the Blue Lias shales by Lewis Winchester-Ellis in 2018. The vertebrae you see are from the tail section of this marine reptile.

The find includes stomach contents that tell us a little about how this particular fellow liked to dine.

As with most of his brethren, he enjoyed fish and cephalopods. Lewis found fishbone and squid tentacle hooklets in his belly. Oh yes, these ancient cephies had grasping hooklets on their tentacles. I am picturing them wiggling all ominously. The hooklets were the only hard parts of the animal preserved in this case as the softer parts of this ancient calamari were fully or partially digested before this ichthyosaur met his end.

Ichthyosaurus was an extinct marine reptile first described from fossil fragments found in 1699 in Wales. Shortly thereafter, fossil vertebrae were published in 1708 from the Lower Jurassic and the first member of the order Ichthyosauria to be discovered.

To give that a bit of historical significance, this was the age of James Stuart, Jacobite hopeful to the British throne. While scientific journals of the day were publishing the first vertebrae ichthyosaur finds, he was avoiding the French fleet in the Firth of Forth off Scotland. This wasn’t Bonnie Prince Charlie, this was his Dad. Yes, that far back.

Though not often referenced in the literature, the very first well-articulated ichthyosaur skeleton was discovered in 1749 by the German physician, Albert Mohr. Mohr found the fossil specimen near Bad Boll in Upper Swabia, a municipality in the district of Göppingen in Baden-Württemberg, Germany. But at the time, Mohr did not realize exactly what he had found. He thought the bones to be those of a fish — possibly a shark or ray. Georg Friedrich Jaeger wrote up a monograph in 1824 celebrating — and slightly inflating the interpretation of Mohr's work — though Jaeger's manuscript was produced in Latin so not often referenced in an ever Anglicized field of science.

Not long after Mohr's discovery, another fairly well-articulated skeleton was discovered by Mary Anning & her brother Joseph along the Dorset Jurassic Coast. Joseph had mistakenly, but quite reasonably, taken the find for an ancient crocodile. Mary excavated the specimen a year later and it was this and others that she found that would supply the research base others would publish on.

Mohr does not often get credited — those accolades usually go to Mary Anning. Mary's find was described by a British surgeon, Sir Everard Home, an elected Fellow of the Royal Society, in 1814. The specimen is now on display at the Natural History Museum in London bearing the name Temnodontosaurus platyodon, or “cutting-tooth lizard.”

In 1821, William Conybeare and Henry De La Beche, a friend of Mary's, published a paper describing three new species of unknown marine reptiles based on Anning's finds.

The Rev. William Buckland would go on to describe two small ichthyosaurs from the Lias of Lyme Regis, Ichthyosaurus communis and Ichthyosaurus intermedius, in 1837.

Lithography from William Buckland's 1824 Paper
Remarkable, you'll recall that he was a theologian, geologist, palaeontologist AND Dean of Westminster. It was Buckland who published the first full account of a dinosaur in 1824, coining the name, Megalosaurus

Here is an image from that 1824 publication showing a lithograph of the anterior extremity of the right lower jaw of the Megalosaurus from Stonesfield near Oxford. 

The Age of Dinosaurs and Era of the Mighty Marine Reptile had begun. Ichthyosaurs have been collected in the Blue Lias near Lyme Regis and the Black Ven Marls. More recently, specimens have been collected from the higher succession near Seatown. Paddy Howe, Lyme Regis Museum geologist, found a rather nice Ichthyosaurus breviceps skull a few years back. A landslip in 2008 unveiled some ribs poking out of the Church cliffs and a bit of digging revealed the ninth fossil skull ever found of a breviceps, with teeth and paddles to boot.

Specimens have since been found in Europe in Belgium, England, Germany, Switzerland and in Indonesia. Many tremendously well-preserved specimens come from the limestone quarries in Holzmaden, southern Germany.

Ichthyosaurs ranged from quite small, just a foot or two, to well over twenty-six metres in length and resembled both modern fish and dolphins.

Dean Lomax and Sven Sachs, both active — and delightful — vertebrate palaeontologists, have described a colossal beast, Shonisaurus sikanniensis from the Upper Triassic (Norian) Pardonet Formation of northeastern British Columbia, Canada, measuring 3-3.5 meters in length. The specimen is now on display in the Royal Tyrrell Museum of Palaeontology in Alberta, Canada. It was this discovery that tipped the balance in the vote, making it British Columbia's Official Fossil. 

Ichthyosaurs have been found at other sites in British Columbia, on Vancouver Island and Haida Gwaii but Shonisaurus tipped the ballot. The first specimens of Shonisaurus were found in the 1990s by Peter Langham at Doniford Bay on the Somerset coast of England. 

Roy Chapman Andrews, AMNH 1928 Expedition to the Gobi Desert
Dr. Betsy Nicholls, Rolex Laureate Vertebrate Palaeontologist from the Royal Tyrrell Museum, excavated the type specimen of Shonisaurus sikanniensis over three field sessions in one of the most ambitious fossil excavations ever ventured. 

Her efforts from 1999 through 2001, both in the field and lobbying back at home, paid off. Betsy published on this new species in 2004, the culmination of her life’s work and her last paper as we lost her to cancer in the autumn of that year. 

I recently connected with the awesome John-Paul (JP) Zonneveld, Professor, Palaeontologist, Sedimentary Geologist and Field Scientist at the University of Alberta, who worked with Betsy on the original Shonisaurus sikanniensis site many years ago. "She was an awesome person, a dear friend and an outstanding field scientist." I could not agree more. Betsy was pure delight.

Charmingly, Betsy had a mail correspondence with Roy Chapman Andrews, former director of the American Museum of Natural History, going back to the late 1950s as she explored her potential career in palaeontology. Do you recall the AMNH’s sexy paleo photos of expeditions to the Gobi Desert in southern Mongolia in China in the early 20th century? You would remember if you had seen them. Roy Chapman Andrews was the lead on that trip. His photos are what fueled the flames of my own interest in palaeontology.

Shonisaurus popularise
We have found at least 37 specimens of Shonisaurus in Triassic outcrops of the Luning Formation in the Shoshone Mountains in northwestern Nye County of Nevada, USA. The finds go back to the 1920s. They were later brought back into the spotlight by the collecting efforts of Margaret Wheat of Fallon and Dr C. L. Camp, UCMP, in the 1950s.  

The aptly named Shonisaurus popularis became the Nevada State Fossil in 1977. Our Shoni got around. Isolated remains have been found in a section of sandstone in Belluno, in the Eastern Dolomites, Veneto region of northeastern Italy. The specimens were published by Vecchia et al. in 2002. And for a time, Shonisaurus was the largest ichthyosaurus known.

Move over, Shoni, as a new marine reptile find competes with the Green Anaconda, Eunectes murinus, and the Blue Whale, Balaenoptera musculus, for size at a whopping twenty-six (26) metres. The find is the prize of fossil collector turned co-author, Paul de la Salle, who — you guessed it — found it in the lower part of the intertidal area that outcrops strata from the latest Triassic Westbury Mudstone Formation of Lilstock on the Somerset coast. He contacted Dean Lomax and Judy Massare who became co-authors on the paper.

The find and conclusions from their paper put the dinosaur bones from the historic Westbury Mudstone Formation of Aust Cliff, Gloucestershire, UK site into full reinterpretation.

And remember the Ichthyosaur communis the good Reverend Buckland described back in 1837? Dean Lomax was the first to describe a wee baby. A wee baby ichthyosaur! Awe. I know, right? He and palaeontologist Nigel Larkin published this adorable first in the journal of Historical Biology in 2017.

They had teamed up previously on another first back in 2014 when they completed the reconstruction of an entire large marine reptile skull and mandible in 3D, then graciously making it available to fellow researchers and the public. The skull and braincase in question were from an Early Jurassic, and relatively rare, Protoichthyosaurus prostaxalis. The specimen had been unearthed in Warwickshire back in the 1950s. Unlike most ichthyosaur finds of this age, it was not compressed and allowed the team to look at a 3D specimen through the lens of computerized tomography (CT) scanning. 

Another superb three-dimensional ichthyosaur skull was found near Lyme Regis by fossil hunter-turned-entrepreneur-local David Sole and prepped by the late David Costain. I am rather hoping it went into a museum collection as it would be wonderful to see the specimen studied, imaged, scanned and 3D printed for all to share. 

Lomax and Sven Sachs also published on an embryo from one of the largest ichthyosaurs known, a new species named Ichthyosaurus somersetensis. Their paper in the ACTA Palaeontologica Polonica from 2017, describes the third embryo known for Ichthyosaurus and the first to be positively identified to species level. The specimen was collected from the Lower Jurassic strata (lower Hettangian, Blue Lias Formation) of Doniford Bay, Somerset, UK and is housed in the collection of the Niedersächsisches Landesmuseum (Lower Saxony State Museum) in Hannover, Germany.

We have learned a lot about them in the time we've been studying them. We now have thousands of specimens, some whole, some as bits and pieces. Many specimens that have been collected are only just now being studied and the tools we are using to study them are getting better and better.

While they resembled fish and dolphins, Ichthyosaurs were large marine reptiles belonging to the order known as Ichthyosauria or Ichthyopterygia. In 2018, Benjamin Kear and his team were able to study ichthyosaur remains at the molecular level, Their findings suggest ichthyosaurs had skin and blubber quite similar to our modern dolphins.

While ichthyosaurs evolved from land-dwelling, lung-breathing reptiles, they returned to our ancient seas and evolved into the fish-shaped creatures we find in the fossil record today.

Their limbs fully transformed into flippers, sometimes containing a very large number of digits and phalanges. Their flippers tell us they were entirely aquatic as they were not well-designed for use on land. And it was their flippers that first gave us the clue that they gave birth to live young; a find later confirmed by fossil embryo and wee baby ichy finds.

They thrived during much of the Mesozoic era; based on fossil evidence, they first appeared around 250 million years ago (Ma) and at least one species survived until about 90 million years ago into the Late Cretaceous.

During the early Triassic period, ichthyosaurs evolved from a group of unidentified land reptiles that returned to the sea. They were particularly abundant in the Late Triassic and Early Jurassic before being replaced as a premier aquatic predator by another marine reptilian group, the Plesiosauria, in the later Jurassic and Cretaceous periods.

In the Late Cretaceous, ichthyosaurs were hard hit by the Cenomanian-Turonian anoxic event. As the deepest benthos layers of the seas became anoxic, poisoned by hydrogen sulphide, deep water marine life died off. This caused a cascade that wreaked havoc all the way up the food chain. At the end of that chain were our mighty predaceous marine reptiles. Bounty turned to scarcity and a race for survival began. The ichthyosaurs lost that race as the last lineage became extinct. It may have been their conservative evolution as a genus when faced with a need for adaptation to the world in which they found themselves and/or being outcompeted by early mosasaurs.

There are promising discoveries coming out of strata from the Cretaceous epeiric seas of Texas, USA from Nathan E. Van Vranken. His published paper from 2017, "An overview of ichthyosaurian remains from the Cretaceous of Texas, USA," looks at ichthyosaurian taxa from the mid-Cretaceous (Albian–Cenomanian) time interval in North America with an eye to ichthyosaurian distribution and demise.

Image One: The find and photos are all credited to Lewis Winchester-Ellis. Thank you for sharing your tremendous specimen with us. Lewis did much of the preparation of the specimen, removing the majority of the matrix. The spectacular final prep is credited to Lizzie Hingley, Stonebarrow Fossils, Oxfordshire. Her skill with an air scribe is unparalleled.

Link to Lomax Paper: https://journals.plos.org/plosone/article…

Link to Nathan's Paper: https://www.tandfonline.com/…/10.1080/03115518.2018.1523462…

Nicholls Paper: E. L. Nicholls and M. Manabe. 2004. Giant ichthyosaurs of the Triassic - a new species of Shonisaurus from the Pardonet Formation (Norian: Late Triassic) of British Columbia. Journal of Vertebrate Paleontology 24(4):838-849 [M. Carrano/H. Street]

Image Two: Lithography from William Buckland's "Notice on the Megalosaurus or great Fossil Lizard of Stonesfield", 1824. Anterior extremity of the right lower jaw of the Megalosaurus from Stonesfield near Oxford. Mary Morland (later Buckland; 1797–1857) - Plate 40 (XL) of William Buckland: Notice on the Megalosaurus or great Fossil Lizard of Stonesfield. Transactions of the Geological Society of London. Series 2, vol. 1, no. 2, 1824, S. 390–396 (digital copy at geolsoc.org.uk).

HOME, E. (1814) Some Account of the Fossil Remains of an Animal more nearly allied to Fishes than any of the Other Classes of Animals. Phil. Trans. R. Soc. Lond. 104, 571- 577.

JAEGER, G.F. (1824) De Ichthyosauri sive Proteosauri fossils speciminibus in Agro Bollensi in Wurtembergia repertis. Stuttgart.

LHUYD, E. (1699) Lithophylacii Britannici Ichnographia. London.


Monday, 14 February 2022

NO GOOD DEED GOES UNPUBLISHED

In 1987, Wesley Wehr, a paleobotanist (and dear friend) who specialized in the fossil plants of the Okanagan Highlands of British Columbia and Republic, Washington published a paper with Jack Wolfe on Middle Eocene dicotyledonous plants from Republic. 

In it, they named a new species of early Eocene fossil linden leaf for Kirk Johnson, now Director of the Smithsonian National Museum of Natural History, but then a young man with a keen eye for fossils. 

The species is Tilia johnsoni and it lives now at the Burke Museum in Seattle, Washington.

Kirk had found the leaf at the corner lot fossil site in Republic, Washington and generously given it to Wehr and Wolfe. 

The duo named the specimen for Kirk both because of his generosity and because he was someone they much admired. Me, too!

Palaeontological Lecture Series:  

Kirk Johnson is one of the speakers we will be hosting via Zoom later this year. Visit www.fossiltalksandfieldtrips.com

In the early 2000s, Wes Wehr was working on his last book, The Accidental Collector: Art, Fossils, and Friendship. In it, he weaves together all of the polite mentions briefly noted in his published papers into their larger stories and contexts. His tale in meeting Kirk is included. 

Wes was an extraordinary human being and delightful orator who knew how to tell a good story. Ours were over dinner and in the field, cherished because they are now lost in time. He could thrill you with a tale or tidbit about art, history, music or fossils.  

Photo: A single leaf from the extinct Tilia johnsoni. 49 million years old, Klondike Mountain Formation, Republic, Washington. Stonerose Interpretive Center Collections; Kevmin.

Sunday, 13 February 2022

2022 PALAEONTOLOGY LECTURE SERIES — DANNA STAAF — CEPHALOPODS ARE THE NEW DINOSAURS

Join us this afternoon to hear from Danna Staaf, the Cephalopodiatrist to hear her lecture, Cephalopods are the New Dinosaurs.

Cephalopods, Earth's first truly substantial animals, are still among us. Their fascinating family tree is a whose-who of squid, octopus, cuttlefish, nautilus, ammonites and their brethren. They number more than 800 species with new species still being found.

As the inventors of swimming, cephalopods presided over the sea for millions of years. When fish eventually evolved jaws, a marine superpower, the cephalopods had to up their game.  

​Some cephalopods evolved defensive spikes. Others abandoned their shells entirely, opening the floodgates for a tidal wave of innovation — masterful camouflage, fin-supplemented jet propulsion, ink-spraying and intelligence we have yet to fully understand. 

How did this Apex Predator of our ancient seas become the world's tastiest snack? We'll talk through the science of these wonderful adaptations then open up the floor to questions.

Danna is a wealth of knowledge with a strong sense of curiosity and play. If you have a pressing question on Lovecraft’s Cthulhu Mythos, what was going on with the heteromorphs or if squid originated from space (gosh, are they aliens?) then this is your chance to satisfy your curiosity.

Danna's talk will be recorded and uploaded to YouTube for all to re-watch at their leisure. We are super excited to kick-off the 2022 Palaeontological Lecture Series with Danna. Her talk is sure to delight. 

Join us this afternoon, Sunday, February 13, 2022, at 2PM PST. Visit www.fossiltalksandfieldtrips.com to see the full 2022 Lecture Season and access the free Zoom link to her talk.

ABOUT DANNA STAAF

For her PhD, Danna studied baby squid at Hopkins Marine Station of Stanford University. She is a delightful science educator who writes about science, with a particular penchant for marine biology. She also writes science fiction and fantasy. Sometimes writes for grown-ups and sometimes for kids. 

She is a talented artist who draws comics, technical illustrations, calligraphy, and origami. She lives in San Jose, California, with her husband, kids, cats, plants and likely a lot of art supplies. You can find her on Twitter, Instagram, and Facebook. I have added all her social links and links to her books and newsletter on the Fossil Talks & Field Trips site. Enjoy!

Saturday, 12 February 2022

MEGATHERIUM: SLOTH

In 1788, this magnificent specimen of a Megatherium sloth was sent to the Royal Cabinet of Natural History from the Viceroyalty of Rio de la Plata.

The megaterios were large terrestrial sloths belonging to the group, Xenarthra. These herbivores inhabited large areas of land on the American continent. Their powerful skeleton enabled them to stand on their hind legs to reach leaves high in the trees, a huge advantage given the calories needed to be consumed each day to maintain their large size.

Avocados were one of the food preferences of our dear Giant ground sloths. They ate then pooped them out, spreading the pits far and wide. The next time you enjoy avocado toast, thank this large beastie. One of his ancestors may have had a hand (or butt) in your meal.

In 1788, Bru assembled the skeleton as you see it here. It is exhibited at the Museo Nacional De Ciencias Naturales in Madrid, Spain, in its original configuration for historic value. If you look closely, you can see it is not anatomically correct. But all good palaeontology is teamwork. Based upon the drawings of Juan Bautista Bru, George Cuvier used this specimen to describe the species for the very first time.

Friday, 11 February 2022

BUMBLEBEE: HAMDZALAT'SI

This fuzzy yellow and black striped fellow is a bumblebee in the genus Bombus sp., family Apidae. We know him from our gardens where we see them busily lapping up nectar and pollen from flowers with their long hairy tongues.

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, bumblebees are known as ha̱mdzalat̕si — though I wonder if this is actually the word for a honey bee, Apis mellifera, as ha̱mdzat̕si is the word for beehive.

I have a special fondness for all bees and look for them both in the garden and in First Nation art.

Bumblebees habit of rolling around in flowers gives us a sense that these industrious insects are also playful. In First Nation art they provide levity — comic relief along with their cousins the mosquitoes and wasps — as First Nation dancers wear masks made to mimic their round faces, big round eyes and pointy stingers. A bit of artistic license is taken with their forms as each mask may have up to six stingers. The dancers weave amongst the watchful audience and swoop down to playfully give many of the guests a good, albeit gentle, poke. 

Honey bees actually do a little dance when they get back to the nest with news of an exciting new place to forage — truly they do. Bumblebees do not do a wee bee dance when they come home pleased with themselves from a successful foraging mission, but they do rush around excitedly, running to and fro to share their excitement. They are social learners, so this behaviour can also signal those heading out to join them as they head back to the particularly good patch of wildflowers. 

Bumblebees are quite passive and usually sting in defence of their nest or if they feel threatened. Female bumblebees can sting several times and live on afterwards — unlike honeybees who hold back on their single sting as its barbs hook in once used and their exit shears it off, marking their demise.

They are important buzz pollinators both for our food crops and our wildflowers. Their wings beat at 130 times or more per second, literally shaking the pollen off the flowers with their vibration. 

And they truly are busy bees, spending their days fully focussed on their work. Bumblebees collect and carry pollen and nectar back to the nest that may be as much as 25% to 75% of their body weight. 

And they are courteous — as they harvest each flower, they mark them with a particular scent to help others of their group know that the nectar is gone. 

The food they bring back to the nest is eaten to keep the hive healthy but is not used to make honey as each new season's queen bees hibernate over the winter and emerge reinvigorated to seek a new hive each Spring. She will choose a new site, primarily underground depending on the bumblebee species, and then set to work building wax cells for each of her fertilised eggs. 

Bumblebees are quite hardy. The plentiful hairs on their bodies are coated in oils that provide them with natural waterproofing. They can also generate more heat than their smaller, slender honey bee cousins, so they remain productive workers in cooler weather.    

We see the first bumblebees arise in the fossil record 100 million years ago and diversify alongside the earliest flowering plants. Their evolution is an entangled dance with the pollen and varied array of flowers that colour our world. 

We have found many wonderful examples within the fossil record, including a rather famous Eocene fossil bee found by a dear friend and naturalist who has left this Earth, Rene Savenye.

His namesake, H. Savenyei, is a lovely fossil halictine bee from Early Eocene deposits near Quilchena, British Columbia — and the first bee body-fossil known from the Okanagan Highlands — and indeed from Canada. 

It is a fitting homage, as bees symbolize honesty, playfulness and willingness to serve the community in our local First Nation lore and around the world — something Rene did his whole life.

Wednesday, 9 February 2022

VANCOUVER ISLAND'S FOSSIL TREASURES: TRENT RIVER PALAEONTOLOGY

Dan Bowen, Chair, VIPS, Trent River
The rocks that make up the Trent River on Vancouver Island were laid down south of the equator as small, tropical islands. They rode across the Pacific heading north and slightly east over the past 85 million years to where we find them today.

The Pacific Plate is an oceanic tectonic plate that lies beneath the Pacific Ocean. And it is massive. At 103 million km2 (40 million sq mi), it is the largest tectonic plate and continues to grow fed by volcanic eruptions that piggyback onto its trailing edge.

This relentless expansion pushes the Pacific Plate into the North American Plate. The pressure subducts it beneath our continent where it then melts back into the earth. Plate tectonics are slow but powerful forces. 

The island chains that rode the plates across the Pacific smashed into our coastline and slowly built the province of British Columbia. And because each of those islands had a different origin, they create pockets of interesting and diverse geology.

It is these islands that make up the Insular Belt — a physio-geological region on the northwestern North American coast. It consists of three major island groups — and many smaller islands — that stretches from southern British Columbia up into Alaska and the Yukon. These bits of islands on the move arrived from the Late Cretaceous through the Eocene — and continues to this day.

The rocks that form the Insular Superterrane are allochthonous, meaning they are not related to the rest of the North American continent. The rocks we walk over along the Trent River are distinct from those we find throughout the rest of Vancouver Island, Haida Gwaii, the rest of the province of British Columbia and completely foreign to those we find next door in Alberta.

To discover what we do find on the Trent takes only a wee stroll, a bit of digging and time to put all the pieces of the puzzle together. The first geological forays to Vancouver Island were to look for coal deposits, the profitable remains of ancient forests that could be burned to the power industry.

Jim Monger and Charlie Ross of the Geological Survey of Canada both worked to further our knowledge of the complex geology of the Comox Basin. They were at the cutting edge of west coast geology in the 1970s. It was their work that helped tease out how and where the rocks we see along the Trent today were formed and made their way north.

We know from their work that by 85 million years ago, the Insular Superterrane had made its way to what is now British Columbia. 

The lands were forested much as they are now but by extinct genera and families. The fossil remains of trees similar to oak, poplar, maple and ash can be found along the Trent and Vancouver Island. We also see the lovely remains of flowering plants such as Cupanities crenularis, figs and breadfruit.

Heading up the river, you come to a delineation zone that clearly marks the contact between the dark grey marine shales and mudstones of the Haslam Formation where they meet the sandstones of the Comox Formation. Fossilized material is less abundant in the Comox sandstones but still contains some interesting specimens. Here you begin to see fossilized wood and identifiable fossil plant material.

Further upstream, there is a small tributary, Idle Creek, where you can find more of this terrestrial material in the sandy shales. As you walk up, you see identifiable fossil plants beneath your feet and jungle-like, overgrown moss-covered, snarly trees all around you.

Walking west from the Trent River Falls at the bottom, you pass the infamous Ammonite Alley, where you can find Mesopuzosia sp. and Kitchinites sp. of the Upper Cretaceous (Santonian), Haslam Formation. Minding the slippery green algae covering some of the river rocks, you can see the first of the Polytychoceras vancouverense zone.

Continuing west, you reach the first of two fossil turtle sites on the river — amazingly, one terrestrial and one marine. If you continue, you come to the Inland Island Highway.

The Trent River has yielded some very interesting marine specimens, and significant terrestrial finds. We have found a wonderful terrestrial helochelydrid turtle, Naomichelys speciosa, and the caudal vertebrae of a Hadrosauroid dinosaur. Walking down from the Hadrosaur site you come to the site of the fossil ratfish find — one of the ocean's oddest fish.

Ratfish, Hydrolagus Collie, are chimaera found in the north-eastern Pacific Ocean today. The fossil specimen from the Trent would be considered large by modern standards as it is a bruiser in comparison to his modern counterparts. 

This robust fellow had exceptionally large eyes and sex organs that dangled enticingly between them. You mock, but there are many ratfish who would differ. While inherently sexy by ratfish standards, this fellow was not particularly tasty to their ancient marine brethren (or humans today) — so not hugely sought after as a food source or prey.

A little further again from the ratfish site we reach the contact of the two Formations. The rocks here have travelled a long way to their current location. With them, we peel away the layers of the geologic history of both the Comox Valley and the province of British Columbia.

The Trent River is not far from the Puntledge, a river whose banks have also revealed many wonderful fossil specimens. The Puntledge is also the name used by the K'ómoks First Nation to describe themselves. They have lived here since time immemorial. Along with Puntledge, they refer to themselves as Sahtloot, Sasitla and Ieeksun.

References: Note on the occurrence of the marine turtle Desmatochelys (Reptilia: Chelonioidea) from the Upper Cretaceous of Vancouver Island Elizabeth L. Nicholls Canadian Journal of Earth Sciences (1992) 29 (2): 377–380. https://doi.org/10.1139/e92-033; References: Chimaeras - The Neglected Chondrichthyans". Elasmo-research.org. Retrieved 2017-07-01.

Directions: If you're keen to explore the area, park on the side of Highway 19 about three kilometres south of Courtenay and hike up to the Trent River. Begin to look for parking about three kilometres south of the Cumberland Interchange. There is a trail that leads from the highway down beneath the bridge which will bring you to the Trent River's north side.