Friday, 15 April 2022

SHACKLETON'S GREAT ADVENTURE

Stromness Whaling Station
A cautious seal pokes up his head to greet you as you walk the ground of Stromness, an abandoned whaling station on the northern coast of South Georgia Island in the South Atlantic. 

Snuggled at the centre of three harbours on the west side of Stromness Bay, South Georgia, this famous site was the destination of Sir Ernest Shackleton's rescue journey in 1916.

In 1907, a floating factory was built in Stromness Harbour and a land station was added in 1912. 

From 1912 until 1931, Stromness operated as a whaling station — not the proudest moments of our marine overtures. It was later converted into a ship repair yard, machine shop and foundry. From the mid-1930s to 1961, Stromness did minor repairs for a small local customer base then closed down completely, letting nature take back the land and the local animal inhabitants run amock.

The site would gain worldwide recognition with the 1916 landing of Ernest Shackleton and his small crew on the unpopulated southern coast of South Georgia at King Haakon Bay. 

The landing was a Hail Mary moment for the hypothermic men — cold, wet and shivering from an arduous sea voyage in their 22-foot (6.7 m) lifeboat, the James Caird — this was do or die.

Shackleton was on his grandly titled Imperial Trans-Antarctic Expedition, an ambitious and hazardous journey he would embark on in early September 1914, shortly following the outbreak of World War One. This wasn't the ooh-la-la luxurious travel we enjoy today. This was pure rough and tumble — massive ocean swells and bone-shattering storms endured by the hearty. 

Whether or not the aptly named Ernest ever placed his prophetic ad, the words ring true for what the crew endured: "Men Wanted for hazardous journey, small wages, bitter cold, long months of complete darkness, constant danger, safe return doubtful, honor and recognition in case of success." 

Truth in advertising? Generally, we share only the bright blue sky of possibilities, this was the exception to the rule. The adventure was to be a high-risk manoeuvre that could pay off spectacularly — or kill you dead.

He set sail on the Endurance from South Georgia for the Weddell Sea on 5 December, heading for Vahsel Bay. As the ship moved southward navigating through the ice. Deep in the Weddell Sea, conditions gradually grew worse until, on 19 January 1915, Endurance became frozen fast in an ice floe and was abandoned. 

Shackleton refused to pack supplies for more than four weeks, knowing that if they did not reach South Georgia within that time, the boat and its crew would be lost. Shackleton, along with Tom Crean and Frank Worsley, rowed to Elephant Island. Their small craft, the James Caird, was launched on 24 April 1916; during the next fifteen days, it sailed through the waters of the southern ocean, at the mercy of the stormy seas, in constant peril of capsizing. 

On 8 May, thanks to Frank Worsley's navigational skills, the cliffs of South Georgia came into sight. Hope was within sight. Hurricane-force winds prevented the possibility of landing. The party was forced to ride out the storm offshore, in constant danger of being dashed against the rocks.

Finally able to land, the waterlogged men then trekked across South Georgia's mountainous and glaciated interior in an effort to reach help on the populated northern shore of the island.

After 36 hours of crossing the interior, they arrived at the Stromness administration centre, also was the home of the Norwegian whaling station's manager. This building has been dubbed the Villa at Stromness because it represents relative luxury compared to its surroundings. 

Shackleton immediately sent a boat to pick up the three men from the other side of South Georgia while he set to work to organise the rescue of the Elephant Island men. His first three attempts were foiled by sea ice, which blocked the approaches to the island. 

He appealed to the Chilean government, which offered the use of the Yelcho, a small seagoing tug from its navy. Yelcho, commanded by Captain Luis Pardo, and the British whaler Southern Sky reached Elephant Island on 30 August 1916, at which point the men had been isolated there for four and a half months, and Shackleton quickly evacuated all 22 men.

In the decades following its closure, Stromness has been subject to damage from the elements and many of its buildings have been reduced to ruins. 

However, recent efforts have been made to restore the "Villa" and clean up debris from the rest of the site in order to make it safe for visitors. Outside of Stromness is a small whalers' cemetery with 14 grave markers.

Thursday, 14 April 2022

SACRED EARTH: HARRISON LAKE

Located three hours east of Vancouver, most folks head to Harrison Lake to enjoy its crisp waters, soak in the hot springs, camp or four-wheel-drive immersed in rugged scenery, or look for the elusive Sasquatch reported to live in the area. 

But there are some who come to Harrison Lake and miss the town entirely. Instead, they favour the upper west side of the lake and the fossiliferous bounty found here.

Indeed, this is the perfect location for local citizen scientists to strut their stuff. Harrison is a perfect family day trip, where you can discover wonderful marine fossil specimens as complete or partially crushed fossilized shells embedded in rock. 

It is truly amazing that we can find them at all. These beauties range in age from Jurassic to Cretaceous, with most being Lower Callovian, meaning the ammonites here swam our ancient oceans more than 160 million years ago. 

The area around Harrison Lake has been home to the Sts’ailes, a sovereign Coast Salish First Nation for thousands of years. Sts’ailes’ means, “the beating heart,” and it sums up this glorious wilderness perfectly. They describe their ancient home as Xa’xa Temexw or Sacred Earth. 

With the settling of Canada, Geologists began exploring the area in the 1880s, calling upon the Sts’ailes to help them look for coal and a route for the Canadian Pacific Railway. Coal was the aim, but happily, they also found fossils. Sacred Earth, indeed.  

Belemnite Fossils
In my favourite outcrops, you can find large, smooth inflated Jurassic ammonites along with their small grey and brown cousins. 

Further up the road, you will see Cretaceous cigar-shaped squid-like cephalopods called Belemnites, and the bivalve (clam) Buchia — gifts deposited by glaciers. Here are the most common.

Ammonites

Almost all of the ammonite specimens found near Harrison Lake are the toonie sized Cadoceras (Paracadoceras) tonniense with well-preserved outer whorls but flattened inner whorls. We find semi-squished elliptical specimens here, too. If you see a large, smooth, inflated grapefruit-sized ammonite, you are holding a rare prize — a Cadoceras comma ammonite, the macroconch or female of the species.  

Ammonites were predatory, squid-like creatures that lived inside coil-shaped shells. Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. They used these tentacles to snare prey — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunts today.

Within their shells, ammonites had a number of chambers called septa filled with gas or fluid, and they were interconnected through a wee air tube. By pushing air in or out, they were able to control their buoyancy. 

These small but mighty marine predators lived in the last chamber of their shell and continuously built new shell material as they grew. As they added each new chamber, they would move their squid-like body down to occupy the final outside chamber.

Interestingly, ammonites from Harrison Lake are quite similar to the ones found within the lower part of the Chinitna Formation near Cook Inlet, Alaska, and Jurassic Point, Kyuquot, on the west coast of Vancouver Island — some of the most beautiful places on Earth. 

Buchia (bivalve) Clams

The bivalve or clam Buchia are commonly found at Harrison Lake. You will see them cemented together en masse. . They populated Upper Jurassic–Lower Cretaceous waters like a team sport. When they thrived, they really thrived, building up large coquinas of material. Large boulders of Buchia cemented together en masse hitched a ride with the glaciers and were deposited around Harrison Lake. Some kept going and we find similar erratics or glacier-deposited boulders as far south as Washington state. 

Buchia is used as Index Fossils. Index fossils help us to figure out the age of the rock we are looking at because they are abundant, populate an area en masse, and then die out quickly. In other words, they make it easy to identify a geologic time span.

So what does this mean to you? Now, when you are out and about with friends and discover rocks with Buchia, or made entirely of Buchia, you can say, “Oh, this looks to be Upper Jurassic or Lower Cretaceous. Come take a look! We're likely the first to lay eyes on this little clam since dinosaurs roamed the Earth.” 

Fossil Collecting at Harrison Lake Fossil Field Trip — Getting there

This Harrison Lake site is a great day trip from Vancouver or the Fraser Valley. You will need a vehicle with good tires for travel on gravel roads. Search out the route ahead of time and share your trip plan with someone you trust. If you can pre-load the Google Earth map of the area, you will thank yourself. 

Heading east on from Vancouver, it will take you 1.5-2 hours to reach Harrison Mills. 

Access Forestry Road #17 at the northeast end of the parking lot from the Sasquatch Inn at 46001 Lougheed Hwy, Harrison Mills. From there, it will take about an hour to get to the site. Look for signs for the Chehalis River Fish Hatchery to get you started. 

Drive 30 km up Forestry Road #1, and stop just past Hale Creek at 49.5° N, 121.9° W (paleo-coordinates 42.5° N, 63.4° W) on the west side of Harrison Lake. You will see Long Island to your right. 

The first of the yummy fossil exposures are just north of Hale Creek on the west side of the road. Keep in mind that this is an active logging road, so watch your kids and pets carefully. Everyone should be wearing something bright so they can be easily spotted.

How to Spot the Fossils

The fossils here are easily collected—look in the bedrock and in the loose material that gathers in the ditches. Specimens will show up as either dark grey, grey-brown or black. Look for the large, dark-grey boulders the size of smart cars packed with Buchia. 

And while you are at it, be on the lookout for anything that looks like bone. This site is also ripe for marine reptiles—think plesiosaur, mosasaur and elasmosaur. As a citizen scientist and budding palaeontologist, you might just find something new!

What to Know Before You Go

Fill your gas tank and pack a tasty lunch. As with all trips into British Columbia's wild places, dress for the weather. You will need hiking boots, rain gear, gloves, eye protection, and a good geologic hammer and rock (cold) chisel. 

Wear bright clothing and keep your head covered. Slides are common, and you may start a few if you hike the cliffs. If you are with a group, those collecting below may want to consider hardhats in case of rockfall — chunks of rock the size of your fist up to the size of a grapefruit. They pack a punch. 

Bring a colourful towel or something to put your keepers on. Once you set rock down, it can be hard to find again given the terrain. I take the extra precaution of spraying the ends of my hammers and chisels with yellow fluorescent paint, as I have lost too many in the field. You will also want to bring a camera for the blocks of Buchia that are too big to carry home. 

Identifying Your Treasures

When you have finished for the day, compare your treasures to see which ones you would like to keep. In British Columbia, you are a steward of the fossil, which means they belong to the province, but you can keep them safe. You are not allowed to sell or ship them outside British Columbia without a permit. 

Once you get home, wash and identify your finds. Harrison Lake does not have a large variety of fossil fauna, so this should not be difficult. If your find is coiled and round, it is an ammonite. If it is long and straight, it is a belemnite. And if it looks like a wee fat baby oyster, it is Buchia. This is not always true, but mostly true.

What about collecting fossils in all seasons?. Everyone has a preference. I prefer not to collect in the snow, but I have done it. While sunny days are lovely, it can also be easier to see the specimens when the rock is wet. So, do we do this in the rain? Heck, yeah! 

In torrential rain? 

Yes — once you are hooked, but for your casual friends or the kiddos, the answer is likely no. Choose your battles. They may come with you, but a cold day getting soaked is no fun. 

In time, you will find your inner fossil geek — probably with your first find. And that's just the tip of the iceberg. First, it will be you, then your kids, your friends and then your neighbour. Once you start, it is easy to get hooked. Fossil addiction is real, and the only cure is to get out there and do it some more. You've got this!

References and further information:

A. J. Arthur, P. L. Smith, J. W. H. Monger and H. W. Tipper. 1993. Mesozoic stratigraphy and Jurassic palaeontology west of Harrison Lake, southwestern British Columbia. Geological Survey of Canada Bulletin 441:1-62

R. W. Imlay. 1953. Callovian (Jurassic) ammonites from the United States and Alaska Part 2. The Alaska Peninsula and Cook Inlet regions. United States Geological Survey Professional Paper 249-B:41-108

An overview of the tectonic history of the southern Coast Mountains, British Columbia; Monger, J W H; in, Field trips to Harrison Lake and Vancouver Island, British Columbia; Haggart, J W (ed.); Smith, P L (ed.). Canadian Paleontology Conference, Field Trip Guidebook 16, 2011 p. 1-11 (ESS Cont.# 20110248).


Wednesday, 13 April 2022

SQUAMISH: MOTHER OF WIND

View of the Stawamus Chief from the water 
Eagles, bears and breathtakingly beautiful scenery await those who travel north of Vancouver, British Columbia to the town of Squamish.

Nestled at the head of Howe Sound and surrounded by mountains, Squamish is cradled in natural beauty as only a West Coast community can be. 

Growing in fame as the Outdoor Recreation Capital of Canada, visitors enjoy the breathtaking scenery while hiking, climbing, kicking back or participating in the growing number of attractions to explore in this wilderness community.

The area is home to the Squamish First Nation, the Sk̲wx̲wú7mesh Úxumixw and Lil’wat7ul Nations, both descendants of the Coast Salish First Nations. 

Before Europeans came to the Squamish Valley, the area was inhabited by the local First Nations. One of the first contact they had with European outsiders was in 1792, when Captain George Vancouver came to Squamish to trade near the residential area of Brackendale. At the time, the territory of the Sk̲wx̲wú7mesh Úxumixw Nation and Lil’wat7ul Nation extended from present day Greater Vancouver, past Squamish and Brackendale all the way to Gibson's landing, some 6732 square kilometers.

During the 1850s gold miners came in search of gold and an easier gold route to the Interior. Settlers began arriving in the area in 1889, with the majority of them being farmers relocating to the Squamish Valley. The first school was built in 1893 and the first hotel opened in 1902, on the old dock in Squamish.

Squamish means Mother of the Wind in Coast Salish, an homage to the winds that rise from the north before noon and blow steadily until dusk, making Squamish a top wind surfing destination and host to the annual PRO-AM sailboard races. That same wind blows in a fury down the fjord as (outflow) katabatic winds that bring with them trees and other debris that can cripple a watercraft. I have been hit by them on more than one occasion sailing from Vancouver to Bowen Island.  

The impressive cliff you see in the image above is the Stawamus Chief. It began life as a pool of molten magma deep in the Earth's belly. It rose to the surface and began to cool sometime in the early Cretaceous, 100 million years ago, leaving behind the second largest free standing piece of granite in the world at a staggering 2,297 feet — or over 700 metres. 

It has made Squamish one of the top rock climbing destinations in North America and been the source of inspiration for climbing legends like Peter Croft, Hamish Fraser and Greg Foweraker. 

This majestic peak is said to have been one of the last areas of dry ground during a time of tremendous flooding in the Squamish area. Many cultures have a flood myth in their oral history and the Sk̲wx̲wú7mesh Úxumixw are no exception. They tell of a time when all the world save the highest peaks were submerged and only one of their nation survived. Warned in a vision, a fierce and clever warrior escaped to safety atop Mount Chuckigh, now called Mount Garibaldi, as the flood waters rose. 

An Eagle soars near Squamish, BC
Mount Garibaldi Nch’ḵay̓ is an eroded volcano that sits two and a half kilometers above the town of Squamish, 80 kilometres north of downtown Vancouver. It is an impressive site wrapped around Garibaldi Lake with its beautiful blue-green glacier fed waters.

The glory days of its violent past are now peaceful but its history tells the tale of colliding crustal plates, earthquakes and volcanic activity not so long ago.

After the flood, Eagle, a spiritual messenger from the Creator, came to him with a gift of salmon and told him that the world below was again hospitable and ready for his return. He climbed down the mountain to find his village covered by a layer of silt. 

All his people had perished, but his gods gave him another gift, a second survivor of the flood, a beautiful woman who became his wife. 

The couple shared the story of the Eagle's gift. Today, eagle feathers are given as sacred gifts to symbolize courage, wisdom and honour the commitment of relationships as eagles mate for life.  

If you look to the local mountains, you can see another peak that holds the nesting place of another legend. The Sk̲wx̲wú7mesh Úxumixw and Lil’wat7ul Nations share the story of Thunderbird, a supernatural being that causes thunder and lightning, who roosts atop Black Tusk, a volcanic mountain in the local range.

If you are in Squamish in on the first Sunday after New Year's day, you can honour the eagles by participating in the Annual Brackendale Winter Eagle Count.

If you happen down the Sea to Sky Highway anytime between May to October, stop by the BC Museum of Mining or Squamish Adventure Centre. Both offer wonderful educational programs and cultural insights of the area with additional programs being planned..

The Squamish Lil̓wat Cultural Centre and the Whistler Centre for Sustainably support local Indigenous tourism programs with the hope of igniting indigenous-based social enterprises from communities in the Fraser Valley all the way to Lillooet.

Nch’ḵay̓ (Mt. Garibaldi) / Sxeltskwu7 (Ice Cap Peak on the Ashlu/Elaho divide) / Xwsa7k (Mount Baker in Washington State)

Tuesday, 12 April 2022

KU'MIS WARRIOR CRAB

Look how epic this little guy is! 

He is a crab — and if you asked him, the fiercest warrior that ever lived. While that may not be strictly true, crabs do have the heart of a warrior and will raise their claws, sometimes only millimetres into the air, to assert dominance over their world. 

Crabs are decapod crustaceans of the Phylum Arthropoda. 

In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest, this brave fellow is ḵ̓u'mis — both a tasty snack and familiar to the supernatural deity Tuxw'id, a female warrior spirit. Given their natural armour and clear bravery, it is a fitting role.

They inhabit all the world's oceans, sandy beaches, many of our freshwater lakes and streams. Some few prefer to live in forests.

Crabs build their shells from highly mineralized chitin — and chitin gets around. It is the main structural component of the exoskeletons of many of our crustacean and insect friends. Shrimp, crab, and lobster all use it to build their exoskeletons.

Chitin is a polysaccharide — a large molecule made of many smaller monosaccharides or simple sugars, like glucose. 

It is handy stuff, forming crystalline nanofibrils or whiskers. Chitin is actually the second most abundant polysaccharide after cellulose. It is interesting as we usually think of these molecules in the context of their sugary context but they build many other very useful things in nature — not the least of these are the hard shells or exoskeletons of our crustacean friends.

Crabs in the Fossil Record

The earliest unambiguous crab fossils date from the Early Jurassic, with the oldest being Eocarcinus from the early Pliensbachian of Britain, which likely represents a stem-group lineage, as it lacks several key morphological features that define modern crabs. 

Most Jurassic crabs are only known from dorsal — or top half of the body — carapaces, making it difficult to determine their relationships. Crabs radiated in the Late Jurassic, corresponding with an increase in reef habitats, though they would decline at the end of the Jurassic as the result of the decline of reef ecosystems. Crabs increased in diversity through the Cretaceous and represented the dominant group of decapods by the end.

We find wonderful fossil crab specimens on Vancouver Island. The first I ever collected was at Shelter Point, then again on Hornby Island, down on the Olympic Peninsula and along Vancouver Island's west coast near Nootka Sound. They are, of course, found globally and are one of the most pleasing fossils to find and aggravating to prep of all the specimens you will ever have in your collection. Bless them.


Monday, 11 April 2022

THESCELOSAURUS: THE DAY THE DINOSAURS DIED

Thescelosaurus Leg from Tanis, North Dakota

We live in a remarkable world. For those of us who love palaeontology, we have a huge fondness for animals that lived and died before we ever had a chance to meet them — except through their fossilized bones.

Some of those bones tell the tales of mass extinction events including the one 65 million years ago that took with it our beloved dinosaurs, ammonites and all sorts of wonderful creatures.

Not every animal that has ever lived has left traces of their existence for us to find. We find many, yes, but like the flora and fauna of our extant Earthly creatures, we are finding new ones all the time.

One such beastie is a pterosaur, the first of its kind from North America. A recent find of a perfectly preserved Thescelosaurus leg shows the first evidence of its scaly skin.

These are the latest stunning fossils to emerge from Tanis, a remarkable site in North Dakota, which some scientists think captured the first hours following the crash of the asteroid that killed off the dinosaurs. The fossil finds are remarkable and controversial for many reasons.

Tanis fossils have been boggling — and sometimes aggravating — scientists since 2019, when they were first reported in The New Yorker rather than in a peer-reviewed paper. The latest discoveries are featured in a BBC documentary hosted by iconic naturalist David Attenborough.

https://www.bbc.com/news/science-environment-61013740

Sunday, 10 April 2022

Saturday, 9 April 2022

OH, CORONICERAS!

Coroniceras sp. from Sayward, British Columbia
This yummy Jurassic ammonite with the creamy dark chocolate colouring is from an all but inaccessible site in Sayward, Bonanza Group, Vancouver Island, British Columbia, Canada. 

I passed through Sayward this past week on the way to northern Vancouver Island. It is much as I remember it — rugged, remote and beautiful. Think trees and valleys for as far as the eye can see. 

This area is home to the We Wai Kai and Wei Wai Kum First Nations and lands of the K'omoks whose culture thrives and reflects the natural rugged beauty of the central island region.

He's a Coroniceras sp. with a truly marvellous keel.

By the time these ammonites were being buried in sediment, Wrangellia, the predominately volcanic terrane that now forms Vancouver Island and Haida Gwaii, had made its way to the northern mid-latitudes.

Within the basal part of the sequence, sedimentary beds are found interbedded with lapilli and crystal tuffs. Here you'll see maroon tuffaceous sandstone, orange-grey sandstone, granule sandstone and conglomerate. Within them we find ammonites nestled in with gastropods and pelecypods. 

While the fossiliferous outcrop is quite small, the Bonanza group is much larger, estimated to be at least 1000 metres thick. The site is quite small and in an active logging area, so the window to collect was limited. The drive up the mountain was thrilling as there had just been heavy rains and the road was washed out and narrowed until it was barely the width of our wheelbase and very, very steep. Closer to the top it narrowed to be just shy of the width of the vehicle — thrilling, to say the least. 

So scary that my passengers all got out as there was a high probability of going head-first over the edge. I was navigating by some handwritten field notes and a wee map on a paper napkin that should have read, "park at the bottom and hike up." 

Did we park at the bottom and hike up? No, we did not. 

The torrential rains of the Pacific Northwest had been working their magic on the hillside and slowly washing out the road until it slowly became more of a trail.

At the base of the hillside all looked well. Giddy for the fossils to come, we ventured off with a truck full of enthusiasm. Within 15 minutes of steep elevation gain, we had a wonderful view of the valley below. We were halfway up the mountain before I realized the error of my ways. The road twisted and turned then slowly narrowed to the width of my tires. Too narrow to turn around, so the only way was up. 

Graham Beard from Qualicum Beach was the fellow who showed me the site and drew the wee map for me. I cannot recall everyone on the trip, but Perry Poon was there — he shot a video of the drive up that he described as thrilling. I have never seen it but would like to one day — and so was Patricia Coutts with her lovely Doberman. 

She and I had just done a trip up to Goldbridge where the cliff we were on had turned into a landslide into a ravine so she was feeling understandably cautious about the power of Mother Nature. Picture the angle, the hood of my jeep riding high and hiding what remained of the road beneath and a lovely stick shift that made you roll backwards a wee bit with every move to put it into gear. So, without being able to see the very narrow path beneath, I had to just keep going. 

Both Perry and Patricia helped with filling in the potholes so my tires would have something to grip. I bent the frame on the jeep heading up and had some explaining to do when I returned it to the car rental place. 

In the end, we found what we were looking for. Memekay yields a mix of ammonites, gastropods and bivalves. 

Many of them are poorly preserved. It was a hell of a ride but well worth the effort as we found some great fossils and with them more information on the palaeontology and geology of Vancouver Island. Just look at the keel on this beauty.

I would share the site information but it is now covered over with debris and inaccessible. One day, this whole region will be developed and the site will be opened up again. Until then, we'll have to enjoy what has been unearthed.

Friday, 8 April 2022

SABRE-TOOTHED SALMON: FOSSILS OF WASHINGTON STATE

This toothy specimen is an Oncorhynchus nerka, a Pleistocene Sockeye Salmon from outcrops along the South Fork Skokomish River, Olympic Peninsula, Washington State, USA.

The area is home to the Skokomish — one of nine tribes of the Twana, Coast Salish First Nations in the northern-mid Puget Sound area of western Washington state in the United States. 

Each of the Tribal Nations are known by their locations — Dabop, Quilcene or salt-water people, Dosewallips, Duckabush, Hoodsport, Skokomish or Skoko'bsh, Vance Creek, Tahuya, and Duhlelap or Tule'lalap. The name Skokomish means river people or people of the river in the language of the Twana, sqʷuqʷóbəš or sqWuqWu'b3sH.

Closer to my home farther north in the Pacific Northwest on northern Vancouver Island are the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala. Here, sockeye salmon are known as ma̱łik. You would likely recognize these fossils' modern counterparts from their distinctive red bodies and greenish heads. 

Their descendants had been absent from the Skokomish River for more than a decade up to 2014 when construction to augment the negative impact of the Cushman Reservoir was undertaken to restore their natural habitat.

The fossil specimens include individuals with enlarged breeding teeth and worn caudal fins. It is likely that these salmon acted very similar to their modern counterparts with males partaking in competitive and sneaky tactics to gain access to the sexiest (large and red) females who were ready to mate. These ancient salmon had migrated, dug their nests, spawned and defended their eggs prior to their death. For now, we're referring to the species found here as Oncorhynchus nerka, as they have many of the characteristics of sockeye salmon, but also several minor traits of the Pink Salmon, Oncorhynchus gorbuscha.

I had expected to learn that the locality contained a single or just a few partial specimens, but the fossils beds are abundant with large, 45–70 cm, four-year-old adult salmon concentrated in a beautiful sequence of death assemblages.

Oncorhynchus nerka, Pleistocene Sockeye Salmon
Gerald Smith, a retired University of Michigan professor was shown the specimens and recognized them as Pleistocene, a time when the northern part of North America was undergoing a series of glacial advances and retreats that carved their distinctive signature into the Pacific Northwest.

It looks as though this population diverged from the original species about one million years ago, possibly when the salmon were deposited at the head of a proglacial lake impounded by the Salmon Springs advancement of a great glacier known as the Puget lobe of the Cordilleran Ice Sheet. 

Around 17,000 years ago, this 3,000 foot-thick hunk of glacial ice had made its way down from Canada, sculpting a path south and pushing its way between the Cascade and Olympic Mountains. The ice touched down as far south as Olympia, stilled for a few hundred years, then began to melt.

After the ice began melting and retreating north, the landscape slowly changed —  both the land and sea levels rising — and great freshwater lakes forming in the lowlands filled with glacial waters from the melting ice. The sea levels rose quite considerably, about one and a half centimetres per year between 18,000 and 13,000 years ago. The isostatic rebound (rising) of the land rose even higher with an elevation gain of about ten centimetres per year from 16,000 to 12,500 years ago.

Around 14,900 years ago, sea levels had risen to a point where the salty waters of Puget Sound began to slowly fill the lowlands. Both the land and sea continued to rise and by 5,000 years ago, the sea level was about just over 3 meters lower than it is today. The years following were an interesting time in the geologic history of the Pacific Northwest. The geology of the South Fork Skokomish River continued to shift, undergoing a complicated series of glacial damming and river diversions after these salmon remains were deposited.

Today, we find their remains near the head of a former glacial lake at an elevation of 115 metres on land owned by the Green Diamond Company. The first fossil specimens were found back in 2001 by locals fishing for trout along the South Fork Skokomish River.

Upon seeing the fossil specimens, Smith teamed up with David Montgomery of the University of Washington, Seattle, along with N. Phil Peterson and Bruce Crowley, a Late Oligocene Mysticete specialist from the Burke Museum, to complete fieldwork and author a paper.

The fossil specimen you see here is housed in the Burke Museum collection. They opened the doors to their new building and exhibitions in the Fall of 2019. These photos are by the deeply awesome John Fam from a trip to see the newly opened exhibits this year. If you fancy a visit to the Burke Museum, check out their website here: https://www.burkemuseum.org/.

David B. Williams did up a nice piece on historylink.org on the Salmon of the Puget lowland. You can find his work here: https://www.historylink.org/File/20263

If you'd like to read more of the papers on the topic, check out:

  • Smith, G., Montgomery, D., Peterson, N., and Crowley, B. (2007). Spawning sockeye salmon fossils in Pleistocene lake beds of Skokomish Valley, Washington. Quaternary Research, 68(2), 227-238. doi:10.1016/j.yqres.2007.03.007.
  • Easterbrook, D.J., Briggs, N.D., Westgate, J.A., and Gorton, M.P. (1981). Age of the Salmon Springs Glaciation in Washington. Geology 9, 87–93.
  • Hikita, T. (1962). Ecological and morphological studies of the genus Oncorhynchus (Salmonidae) with particular consideration on phylogeny. Scientific Reports of the Hokkaido Salmon Hatchery 17, 1–97.

If you fancy a read of Crowley's work on Late Oligocene Mysticete from Washington State, you can check out:  Crowley, B., & Barnes, L. (1996). A New Late Oligocene Mysticete from Washington State. The Paleontological Society Special Publications, 8, 90-90. doi:10.1017/S2475262200000927

Wednesday, 6 April 2022

INSPIRED BY NATURE / AMMONITE BOUNTY

Argonauticeras besairei, José Juárez Ruiz
An exceptional example of the fractal building of an ammonite septum, in this clytoceratid Argonauticeras besairei from the awesome José Juárez Ruiz.

Ammonites were predatory, squidlike creatures that lived inside coil-shaped shells.

Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. 

They used these tentacles to snare prey, — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunt today.

Catching a fish with your hands is no easy feat, as I am sure you know. But the Ammonites were skilled and successful hunters. They caught their prey while swimming and floating in the water column. 

Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. By pushing air in or out, they were able to control their buoyancy in the water column. They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.

They were a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. 

These molluscs commonly referred to as ammonites are more closely related to living coleoids — octopus, squid, and cuttlefish — than they are to shelled nautiloids such as the living nautilus species.

Ammonoidea can be divided into six orders:

  • Agoniatitida: Lower Devonian - Middle Devonian
  • Clymeniida: Upper Devonian
  • Goniatitida: Middle Devonian - Upper Permian
  • Prolecanitida: Upper Devonian - Upper Triassic
  • Ceratitida: Upper Permian - Upper Triassic
  • Ammonitida: Lower Jurassic - Upper Cretaceous

Ammonites have intricate and complex patterns on their shells called sutures. The suture patterns differ across species and tell us what time period the ammonite is from. 

If they are geometric with numerous undivided lobes and saddles and eight lobes around the conch, we refer to their pattern as goniatitic, a characteristic of Paleozoic ammonites.

If they are ceratitic with lobes that have subdivided tips; giving them a saw-toothed appearance and rounded undivided saddles, they are likely Triassic. For some lovely Triassic ammonites, take a look at the specimens that come out of Hallstatt, Austria and from the outcrops in the Humboldt Mountains of Nevada.

Hoplites bennettiana (Sowby, 1826) Christophe Marot
If they have lobes and saddles that are fluted, with rounded subdivisions instead of saw-toothed, they are likely Jurassic or Cretaceous. If you'd like to see a particularly beautiful Lower Jurassic ammonite, take a peek at Apodoceras. Wonderful ridging in that species.

One of my favourite Cretaceous ammonites is the ammonite, Hoplites bennettiana (Sowby, 1826). 

This beauty is from Albian deposits near Carrière de Courcelles, Villemoyenne, near la région de Troyes (Aube) Champagne in northeastern France.

At the time that this fellow was swimming in our oceans, ankylosaurs were strolling about Mongolia and stomping through the foliage in Utah, Kansas and Texas. Bony fish were swimming over what would become the strata making up Canada, the Czech Republic and Australia. Cartilaginous fish were prowling the western interior seaway of North America and a strange extinct herbivorous mammal, Eobaatar, was snuffling through Mongolia, Spain and England.

In some classifications, these are left as suborders, included in only three orders: Goniatitida, Ceratitida, and Ammonitida. Once you get to know them, ammonites in their various shapes and suturing patterns make it much easier to date an ammonite and the rock formation where it is found.

Ammonites first appeared about 240 million years ago, though they descended from straight-shelled cephalopods called bacrites that date back to the Devonian, about 415 million years ago, and the last species vanished in the Cretaceous–Paleogene extinction event.

They were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish. They were prolific back in the day, living (and sometimes dying) in schools in oceans around the globe. We find ammonite fossils — and plenty of them — in sedimentary rock from all over the world.

In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past.

For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. 

Generally, deeper is older, so we use the sedimentary layers of rock to match up to specific geologic time periods, rather like the way we use tree rings to date trees. A handy way to compare fossils and date strata across the globe.

References: Inoue, S., Kondo, S. Suture pattern formation in ammonites and the unknown rear mantle structure. Sci Rep 6, 33689 (2016). https://doi.org/10.1038/srep33689

https://www.nature.com/articles/srep33689?fbclid=IwAR1BhBrDqhv8LDjqF60EXdfLR7wPE4zDivwGORTUEgCd2GghD5W7KOfg6Co#citeas

Photos: Argonauticeras besairei from the awesome José Juárez Ruiz.

Photo: Hoplites bennettiana from near Troyes, France. Collection de Christophe Marot

Tuesday, 5 April 2022

ANKYLOSAURS: THE LAST OF THE NON-AVIAN DINOSAURS

Ankylosaur — Armoured Plant-Eating Dinosaur
Ankylosaurs were armoured dinosaurs. We find their fossil remains in Cretaceous outcrops in western North America. They were amongst the last of the non-avian dinosaurs.

These sturdy fellows ambled along like little tanks all covered in spiky armour. They munched on foliage and were the original lawn mowers — 68 - 66 million years ago.

They reached about 1.7 m in height and weighed in at 4,800 – 8,000 kg. You can see the club at the end of their tail that they used to defend against predators. It would have packed quite the wallop.
The lovely illustration you see here is by the supremely talented Daniel Eskridge, shared with permission. You can see more of his work at www.fineartbydaniel.com

Monday, 4 April 2022

TRACKING THROUGH THE CAMBRIAN

Pterocephalia norfordi, McKay Group
A lovely Pterocephalia norfordi trilobite from Upper Cambrian, Furongian strata of the McKay Group, East Kootenay Region, southeastern British Columbia, Canada. 

The McKay Group has been explored extensively these past few years by Chris New and Chris Jenkins of Cranbrook, British Columbia. 

Together, these two avid trilobite enthusiasts have opened up considerable knowledge on the exposures, collaborating with researchers Brian Chatterton and Rudy Lerosey-Aubril. They have unearthed many new specimens and several new species. 

Pterocephalia from this region are relatively common. We also find Wujiajiania lyndasmithae along with a host of other Upper Cambrian goodies. 

I collected dozens of well-preserved fully articulated specimens over the course of a week in August 2020, walking in the sacred lands of the Ktunaxa or Kukin ʔamakis First Nations. 

My eyes were good enough to find the specimens themselves, but not as refined as those of Chris Jenkins who spotted the unusual preservation of the embedded gut tract. Brian Chatterton et al. published on it in 1994 and have been following it up year upon year with paper after paper out of these localities. 

Rudy Lerosey-Aubril published a paper in 2017 on phosphatized gut remains — relatively common in this taxon at this site. Lerosey-Aubril’s paper was on an aglaspidid, a combjelly, and the gut of another trilobite. 

Skeletal remains of trilobites are abundant in Palaeozoic rock but soft parts are rarely preserved. 

There have been a few papers on trilobite gut remains from Canada and on abundant trilobite faunas of the Kaili Formation of Guizhou, China. 

The Kaili contains one of the earliest middle Cambrian Burgess Shale-type deposits, sharing many faunal elements with the older Chengjiang Biota (Chen 2004; Hou et al. 2004) and the younger Burgess Shale Biota (Briggs et al. 1994). 

The biota, facies description, and regional stratigraphy of the Kaili Biota were discussed and reviewed in Zhao et al. (2002, 2005) and Lin et al. (2005). 

Their colleagues (Zhao et al. 1994b, 1996, 1999, 2001, 2002) have beautifully illustrated many Kaili arthropods with soft-part preservation, but most of their systematic descriptions are yet complete.

References: Chatterton BD, Johanson Z, Sutherland G. 1994. Journal of Paleontology 68:294-305. 

Lin, Jih-Pai. (2007). Preservation of the gastrointestinal system in Olenoides (Trilobita) from the Kaili Biota (Cambrian) of Guizhou, China. Memoirs of the Association of Australasian Palaeontologists. 33. 179-189. 

Top Photo: This specimen was collected by Dan Bowden and photographed by the Huntress. It has been checked for the dark telltale signs of phosphatized gut remains — sadly no luck!

Middle Photo: Warm summer light atop the mountains and my temporary home-sweet-home. Bottom Photo: Upper Cambrian collecting beds beneath Tanglefoot Mountain, McKay Group, East Kootenay Region, British Columbia, Canada.

Sunday, 3 April 2022

BEHIND THE SCENES WITH JULIUS CSOTONYI: PALAEOARTIST

Julius Csotonyi BTS on BC'S FOSSIL BOUNTY
Meet Julius Csotonyi — scientist, natural history illustrator, conservationist and biological sciences graduate with a passion for drawing dinosaurs. 

He got hooked on the palaeontology bug early and has been doodling dinosaurs since childhood. 

Over the years, he has expanded his portfolio to include all branches of scientifically inspired artwork — each of them beautifully rendered. 

He has collaborated on projects with several major museums and book publishers from around the globe, including the National Geographic Society and the Royal Tyrrell Museum, working closely with scientists and drawing from his scientific background. 

An MSc graduate of Ecology and Environmental Biology (University of Alberta), and a PhD graduate in microbiology (University of Manitoba), he has published scientific papers on mutualisms in Utah and some very cool and unusual alien-looking bacteria from deep ocean hydrothermal volcanic vents. 

His scientific background fuels his passion to strive to restore as realistically as possible the curiously alien environments that earth has hosted in its deep past. 

His style spans the gamut from pencil and ink line drawings to watercolour, pastel, 2-dimensional digital illustrations and 3-dimensional digital models. His superbly detailed work encompasses dinosaurs and other prehistoric life, sharks and other living animals, as well as space art, fantasy and science fiction themes.

Julius Csotonyi's Hell Creek Raptor
His paleoart career began with work on two dinosaur encyclopedias with UK author Dougal Dixon. 

His largest projects to date have been a panoramic 75-foot-long mural commissioned for the Houston Museum of Natural Science (HMNS), depicting a Late Cretaceous Montana ecosystem along with a mummified Brachylophosaurus —  Dinosaur Mummy CSI: Cretaceous Science Investigation, 2008. 

He has illustrated many life-sized dinosaur murals — some up to 45 metres or 150 feet long — for the Royal Ontario Museum's 2012 exhibit, Ultimate Dinosaurs; Giants from Gondwana. 

Julius illustrated the 25th anniversary exhibit ('Alberta Unearthed') for the Royal Tyrrell Museum of Paleontology (Drumheller, Alberta, 2010) and most of the new Hall of Paleontology at the HMNS. 

Some of his other projects have included the ceratopsian exhibit for the Royal Tyrrell Museum (2007), a mummified Edmontosaurus for Phillip Manning's 'Grave Secrets of Dinosaurs' (National Geographic Books, 2007) and an African Massospondylus nesting site (Royal Ontario Museum, Toronto, 2010). In addition to books and museum projects, 

Csotonyi accepts private commissions of artwork in a wide range of digital and traditional media. His website, http://csotonyi.com, features a growing portfolio of his work, and some of it is also featured on his science blog, 'Evolutionary Routes'. 

He is appearing in BC'S FOSSIL BOUNTY — airing on TELUS Optik TV & the TELUS YouTube Channel beginning Autumn 2022.

Friday, 1 April 2022

BEHIND THE SCENES ON BC'S FOSSIL BOUNTY: KAY LILLICO — DINOSAUR DOCENT

Behind the Scenes on BC'S FOSSIL BOUNTY
A Sneak Peak Behind the Scenes on BC'S FOSSIL BOUNTY. Meet Kay Lillico — Dinosaur Docent at Dino Lab Inc. 

We caught a sneak peek as our talented Hair & Make Up artist, Kalinda Nelson, preps Kay for the cameras on set @shorelinestudios.

Kay delivered pure gold on her work sharing the science of palaeontology. 

We learned how Kay’s passion for dinosaurs (sexy little raptors) & invertebrates including the arthropod Anomalocaris led her to become a Science Communicator & pursue her dreams at Dino Lab Inc. — and how you can, too!

Kay encourages everyone who is excited by the prospect of palaeontology to keep pursuing knowledge and go after their dreams! Seek out opportunities, really don’t be afraid to get outside of your comfort zone. Her path led her to work at Dino Lab Inc. — an awesome hand's on museum that does educational tours, fossil prep and has real fossils you can visit in person. 

Ever pet a Triceratops? You can at Dino Lab! They are the originators of the hands on dinosaur experience. If you head on over for a tour be sure to check out their Fossil Restoration Lab, Fossil Gallery and palaeontology themed gift shop.

Behind the Scenes on BC'S FOSSIL BOUNTY
Are you interested in learning more about the show? We are very excited to be telling the tale of Vancouver, British Columbia through the lens of palaeontology, geology and artistry!

Vancouver is a magical place. We live in a diverse province edged by mountains, ocean, forests and streams. While our lens is often on the rugged beauty all around us, beneath our feet is yet another world.

Layers of rock hold fossils, each an interface to our deep past. Within each fragment, these ancient beings whisper their secrets, share their life experiences, tell us tales of community, how they made a living, who they rubbed shoulders with (or fins, or seedlings...) and convey the essence of a world long embedded in stone.

Join me as we explore the rich fossil bounty of fossil plants, dinosaurs to mighty marine reptiles and the people who unearth them.

Discover British Columbia's violent past — how plate tectonics, volcanoes and glaciers shaped the land and why we find plant fossils along the Kitsilano foreshore and marine fossils beneath False Creek. Did you know that some female dinosaurs have distinctive bone material that tells us they are just about to give birth or just became new mammas? You will once you see Kay Lillico's episode on Season One of BC's Fossil Bounty.

​Hear from palaeontologists, geologists, geochemists, science organizations, dinosaur docents, palaeoartists and fossil preparators whose work brings our ancient world to life.

Do you love Kay as much as I do? Give her a follow on Instagram @klilly_13 — she’s awesome! Want to learn more about Dino Lab? They are on Instagram at @dino_lab.inc and www.dinolabinc.ca.

Funding is supported by TELUS STORYHIVE & DINO LAB INC. BC'S FOSSIL BOUNTY — SEASON ONE airs on TELUS Optik TV and the TELUS YouTube Channel Autumn 2022.

Wednesday, 30 March 2022

URSUS NURSERY: BLACK BEARS / TLA'YI

Look at how this protective mamma bear holds her cub in her arms to give him a bit of a wash. 

Her gentle maternal care is truly touching. This mamma has spent late Autumn to Spring in a cave, having birthed them while still hibernation and staying in the den to feed them on her milk.

Black bear cubs stay with their mamma for the first one to three years of their lives while she protects them and teaches them how to thrive in the wild using their keen sense of smell, hearing, vision and strength. Once they are old enough, they will head off into the forest to live solo until they are ready to mate and start a family of their own. 

Mating is a summer affair with bears socializing shoulder to shoulder with potential mates. Once they have mated, black bears head off on their own again to forage and put on weight for their winter hibernation. If the black bear lives in the northern extent of their range, hibernation lasts longer — they will stay in their dens for seven to eight months longer than their southern counterparts. For those that enjoy the warmer climes in the south, hibernation is shorter. If food is available year-round, the bears do not hibernate at all.

The American black bear, Ursus americanus, is native to North America and found in Canada and the United States. 

They are the most common and widely distributed of the three bear species found in Canada. 

There are roughly 650,000 roaming our forests, swamps and streams — meaning there is a good chance of running into them if you spend any amount of time in the wild. 

Full-grown, these fuzzy monkeys will be able to run 48 kilometres (30 miles)  an hour and smell food up to 32 kilometres (20 miles) away.

With their excellent hearing, black bears usually know you are near well before you realize the same and generally take care to avoid you. Those that come in contact with humans often tend to want to check our garbage and hiking supplies for tasty snacks — hey, a free meal is a free meal.    

In British Columbia, we share our province with nearly half of all black bears and grizzly bears that reside in Canada. The 120,000 - 150,000 black bears who live in the province keep our Conservation Officers busy. They account for 14,000 - 25,000 of the calls the service receives each year. Most of those calls centre around their curiosity for the tasty smells emanating from our garbage. They are omnivores with vegetation making up 80-85% of their diet, but they are flexible around that — berries and seeds, salmon or Doritos — bears eat it all. 

And, as with all wild animals, diet is regional. In Labrador, the local black bear population lives mostly on caribou, rodents and voles. In the Pacific Northwest, salmon and other fish form a large part of the protein in their diet versus the bees, yellow jackets and honey others prefer. The braver of their number have been known to hunt elk, deer and moose calves — and a few showy bears have taken on adults of these large mammals. 

Bears hold a special place within our culture and in First Nation mythology in particular — celebrated in art, dance and song. In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest, the word for black bear is t̕ła'yimother is a̱bas and łaxwa̱lap̓a means to love each other

Kermode or Spirit Bear, Ursus americanus kermodei
From the photos here you can see that black bears are not always black —  ranging in colour from cinnamon to brown, tan, blonde, red — and even white. 

The Kermode or Spirit Bear, Ursus americanus kermodei, a subspecies of black bear found only in British Columbia — and our official provincial mammal — is a distinctive creamy white. 

They are not albinos, their colouring stems from a recessive mutant gene — meaning that if they receive two copies it triggers a single, nonsynonymous nucleotide substitution that halts all melanin production. Well, not all. They have pigmented eyes and skin but no colour in their fur. The white colour is an advantage when you are hunting salmon by day. Salmon will shy away from their black cousins knowing their intention is to enjoy them as a tasty snack. 

Spirit Bears live in the Great Bear Rainforest on British Columbia's north and central coast alongside the Kitasoo/Xai’xais First Nation who call the Kermode moskgm’ol or white bear.

The Kitasoo/Xai’xais have a legend that tells of Goo-wee, Raven making one in every ten black bears white to remind us of the time glaciers blanketed the land then slowly retreated — their thaw giving rise to the bounty we harvest today.  

Black bears of any colour are a wee bit smaller than their brown bear or grizzly bear cousins, with males weighing in at 45 to 400 kilograms (100 to 900 pounds) and females ranging from 38 to 225 kilograms (85 to 500 pounds). 

Small by relative standards but still very large animals. And they are long-lived or at least can be. Bears in captivity can live up to 30 years but those who dwell in our forests tend to live half as long or less from a mixture of local hazards and humans. 

Reference: Wild Safe BC: https://wildsafebc.com/species/black-bear/


Tuesday, 29 March 2022

FOSSIL FIELD TRIP: CRETACEOUS CAPILANO RIVER

Cretaceous Plant Material / Three Brothers Formation
Vancouver has a spectacular mix of mountains, forests, lowlands, inlets and rivers all wrapped lovingly by the deep blue of the Salish Sea. 

When we look to the North Shore, the backdrop is made more spectacular by the Coast Mountains with a wee bit of the Cascades tucked in behind.

If you were standing on the top of the Lion's Gate Bridge looking north you would see the Capilano Reservoir is tucked in between the Lions to the west and Mount Seymour to the east on the North Shore. 

The bounty of that reservoir flows directly into your cup. If you look down from the reservoir you see the Capilano River as it makes its way to the sea and enters Burrard Inlet.

The Capilano River on Vancouver's North Shore flows through the Coast Mountains and our coastal rainforest down to the Capilano watershed en route to Burrard Inlet. The headwaters are at the top of Capilano up near Furry Creek. They flow down through the valley, adding in rainwater, snowmelt and many tributaries before flowing into Capilano Lake. The lake in turn flows through Capilano Canyon and feeds into the Capilano River.

Capilano Watershed & Reservoir
Sacred First Nations Land

This area was once the exclusive domain of the Coast Salish First Nations —  xʷmə?kʷəyəm (Musqueam), Skwxwú7mesh (Squamish), and səlilwətaɬ (Tsleil-Waututh) Nations until the early 1800s. 

The Musqueam First Nation are traditional hən̓q̓əmin̓əm̓ speaking people who number a strong and thriving 1,300. Many live today on a wee slip of their traditional territory just south of Marine Drive near the mouth of the Fraser River. 

The Secwepemc or Shuswap First Nations are a collective of 17 bands occupying the south-central part of British Columbia. Their ancestors have lived in the interior of BC, the Secwepemc territories, for at least 10,000 years.

The Coast Salish First Nations have lived in this region for thousands of years — from the mouth of the Columbia River in Oregon to north of Bute Inlet.  

It is to the Squamish Nation that we owe the name of Capilano. In Sḵwx̱wú7mesh snichim or Skwxwú7mesh, their spoken language, Kia'palano/Capilano means beautiful river. Chief Kia'palano (c. 1854-1910) was the Chief of the Squamish Nation from 1895-1910 — known as the Chief of this beautiful river area — Sa7plek.
 
The Cleveland Dam — Capilano River Regional Park

Many things have changed since then, including the Capilano River's path, water levels and sediment deposition. For the salmon who used this path to return home and those who depended on them, life has been forever altered by our hands.

We have Ernest Albert Cleveland to thank for the loss of that salmon but can credit him with much of our drinking water as it is caught and stored by the dam that bears his name. It was his vision to capture the bounty from the watershed and ensure it made its way into our cups and not the sea. 

Both the water and a good deal of sediment from the Capilano would flow into Burrard Inlet if not held back by the 91-metre concrete walls of the Cleveland Dam. While it was not Ernest's intention, his vision and dam had a secondary impact. In moving the mouth of the Capilano River he altered the erosion pattern of the North Shore and unveiled a Cretaceous Plant Fossil outcrop that is part of the Three Brothers Formation.

Capilano River Canyon & Regional Park
Know Before You Go

The fossil site is easily accessible from Vancouver and best visited in the summer months when water levels are low. 

The level of preservation of the fossils is quite good. The state in which they were fossilized, however, was not ideal. They look to have been preserved as debris that gathered in eddies in a stream or delta.

There are Cretaceous fossils found only in the sandstone. You will see exposed shale in the area but it does not contain fossil material. 

Interesting, but again not fossiliferous, are the many granitic and limestone boulders that look to have been brought down by glaciers from as far away as Texada Island. Cretaceous plant material (and modern material) found here include Poplar (cottonwood)  Populus sp. Bigleaf Maple, Acer machphyllum, Alder, Alnus rubra, Buttercup  Ranvuculus sp., Epilobrium, Red cedar, Blackberry and Sword fern.

Capilano Fossil Field Trip:

From downtown Vancouver, drive north through Stanley Park and over the Lion’s Gate Bridge. Take the North Vancouver exit toward the ferries. Turn right onto Taylor Way and then right again at Clyde Avenue. Look for the Park Royal Hotel. Park anywhere along Clyde Avenue.

From Clyde Avenue walk down the path to your left towards the Capilano River. Watch the water level and tread cautiously as it can be slippery if there has been any recent rain. Look for beds of sandstone about 200 meters north of the private bridge and just south of the Highway bridge. The fossil beds are just below the Whytecliff Apartment high rises. Be mindful of high water and slippery rocks.

Visiting the Capilano Watershed and Reservoir:

Visitors can see the reservoir from Cleveland Dam at the north end of Capilano River Regional Park. You can also visit the Capilano River Hatchery, operated below Cleveland Dam since 1971.


Monday, 28 March 2022

GEOLOGY OF THE EAST KOOTENAY REGION

The East Kootenay region on the south-eastern edge of British Columbia is a land of colossal mountains against a clear blue sky. 

That is not strictly true, of course, as this area does see its fair share of rain and temperature extremes — but visiting in the summer every view is a postcard of mountainous terrain.

Rocks from deep within the Earth's crust underlie the entire East Kootenay region and are commonly exposed in the areas majestic mountain peaks, craggy rocky cliffs, glaciated river canyons, and rock cuts along the highways. Younger Ice Age sediments blanket much of the underlying rock.

I've been heading to the Cranbrook and Fernie area since the early 1990s. My interest is the local geology and fossil history that these rocks have to tell. I'm also drawn to the warm and welcoming locals who share a love for the land and palaeontological treasures that open a window to our ancient past.  

Cranbrook is the largest community in the region and is steeped in mining history and the opening of the west by the railway. It is also a stone's throw away from Fort Steele and the Lower Cambrian exposures of the Eager Formation. These fossil beds rival the slightly younger Burgess Shale fauna and while less varied, produce wonderful examples of olenellid trilobites and weird and wonderful arthropods nearly half a billion years old. 

Labiostria westriopi, McKay Group
The Lower Cambrian Eager Formation outcrops at a few localities close to Fort Steele, many known since the early 1920s, and up near Mount Grainger near the highway. 

Further east, the Upper Cambrian McKay Group near Tanglefoot Mountain is a palaeontological delight with fifteen known outcrops that have produced some of the best-preserved and varied trilobites in the province — many of them new species. 

The McKay Formation also includes Ordovician outcrops sprinkled in for good measure.

Other cities in the area and the routes to and from them produce other fossil fauna from Kimberley to Fernie and the district municipality of Invermere and Sparwood. This is an arid country with native grasslands and forests of semi-open fir and pine. Throughout there are a host of fossiliferous exposures from Lower Cretaceous plants to brachiopods. 

The area around Whiteswan Lake has wonderful large and showy Ordovician graptolites including Cardiograptus morsus and Pseudoclimacograptus angustifolius elongates — some of our oldest relatives. A drive down to Flathead will bring you to ammonite outcrops and you can even find Eocene fresh-water snails in the region. 

The drive from Cranbrook to Fernie is about an hour and change through the Cambrian into the Devonian which flip-flops and folds over revealing Jurassic exposures. 

Fernie Ichthyosaur Excavation, 1916
The Crowsnest Highway into Fernie follows Mutz Creek. From the highway, you can see the Fernie Group and the site along the Elk River where an ichthyosaur was excavated in 1916. 

The Fernie Formation is Jurassic. It is present in the western part of the Western Canada Sedimentary Basin in western Alberta and northeastern British Columbia. 

It takes its name from the town of Fernie, British Columbia, and was first defined by W.W. Leach in 1914. The town of Fernie is rimmed by rugged mountains tipped with Devonian marine outcrops. In essence, all these mountains are upside down with the oldest layers flipped to the top and a good 180 million years older than those they sit upon. 

Before they were mountains, these sedimentary rocks were formed as sediment collected in a shallow sea or inland basin. About 360 million years ago, the rocks that you see in Fernie today were down near the equator. They road tectonic plates, pushing northeast smashing into the coastline of what would become British Columbia. A little push here, shove there — compression and thrust faulting — and the rock was rolled over on its head — repeatedly. But that is how mountains are often formed, though not usually pushed so hard that they flip over. But still, it is a slow, relentless business. 

Cretaceous Plant Material, Fernie, BC
Within Fernie, there are small exposures of Triassic and Jurassic marine outcrops. East of the town there are Cretaceous plant sites, and of course, the Jurassic 1.4-metre Titanites occidentalis ammonite up on Coal Mountain.

The regional district's dominant landform is the Rocky Mountain Trench, which is flanked by the Purcell Mountains and the Rocky Mountains on the east and west, and includes the Columbia Valley region. The southern half of which is in the regional district — its northern half is in the Columbia-Shuswap Regional District. 

The regional district of Elk Valley in the southern Rockies is the entryway to the Crowsnest Pass and an important coal-mining area. 

Other than the Columbia and Kootenay Rivers, whose valleys shape the bottomlands of the Rocky Mountain Trench, the regional districts form the northernmost parts of the basins of the Flathead, Moyie and Yahk Rivers. 

The Moyie and Yahk are tributaries of the Kootenay, entering it in the United States, and the Flathead is a tributary of the Clark Fork into Montana.

Photo One: Tyaughton Mountain, Mckay Group taken by Dan Bowden via drone; Photo Two: Labiostria westriopi, Upper Cambrian McKay Group, Site ML (1998); John Fam Collection; Photo Three: Ichthyosaur Excavation, Fernie, British Columbia, 1916; Photo Four: Cretaceous Plant Fossils, east of Fernie towards Coal Mountain. The deeply awesome Guy Santucci as hand-model for scale.