Kermode or Spirit Bear, Ursus americanus kermodei |
Sunday, 5 May 2024
CANADA'S GREAT BEARS: TLA'YI
Saturday, 4 May 2024
DARWIN: A TASTE FOR STUDIES
Chelonia. Schildkröten by Ernst Haeckel, 1904 |
The English naturalist, Charles Darwin belonged to an elite men's club dedicated to tasting exotic meats. In his first book, Darwin wrote almost three times as much about dishes like armadillo and tortoise urine as he did on the biogeography of his Galapagos finches.
From his great love of gastronomy, I am surprised any of his tasty specimens made it back from his historic voyage on the HMS Beagle — particularly the turtles.
One of the most famous scientific meals occurred one Saturday evening on the 13th of January, 1951. This was at the 47th Explorers Club Annual Dinner (ECAD) when members purportedly dined on a frozen woolly mammoth.
Commander Wendell Phillips Dodge was the promotor of the banquet. He sent out press notices proclaiming the event's signature dish would be a selection of prehistoric meat. Whether Dodge did this simply to gain attendees or play a joke remains a mystery.
The prehistoric meat was supposedly found at Woolly Cove on Akutan in the Aleutians Islands of Alaska, USA, by the eminent polar explorers' Father Bernard Rosecrans Hubbard, American geologist, explorer sometimes called the Glacier Priest, and polar explorer Captain George Francis Kosco of the United States Navy.
Fried Tarantula & Goat Eyeballs
This much-publicized meal captured the public’s imagination and became an enduring legend and source of pride for the Club, popularizing an annual menu of exotics that continues today. The Club is well-known for its notorious hors d’oeuvres like fried tarantulas and goat eyeballs as it is for its veritable whose who of notable members — Teddy Roosevelt, Neil Armstrong, Buzz Aldrin, Roy Chapman Andrews, Thor Heyerdahl, James Cameron.
The Yale Peabody Museum holds a sample of meat preserved from the 1951 meal, interestingly labelled as a South American Giant Ground Sloth, Megatherium, not Mammoth. The specimen of meat from that famous meal was originally designated BRCM 16925 before a transfer in 2001 from the Bruce Museum to the Yale Peabody Museum of Natural History (New Haven, CT, USA) where it gained the number YPM MAM 14399.
The specimen is now permanently deposited in the Yale Peabody Museum with the designation YPM HERR 19475 and is accessible to outside researchers. The meat was never fixed in formalin and was initially stored in isopropyl alcohol before being transferred to ethanol when it arrived at the Peabody Museum. DNA extraction occurred at Yale University in a clean room with equipment reserved exclusively for aDNA analyses.
In 2016, Jessica Glass and her colleagues sequenced a fragment of the mitochondrial cytochrome-b gene and studied archival material to verify its identity, which if genuine, would extend the range of Megatherium over 600% and alter views on ground sloth evolution.
Mammoth, Megatherium — Green Sea Turtle
Their results showed that the meat was not Mammoth or Megatherium, but a bit of Green Sea Turtle, Chelonia mydas. So much for elaborate legends. The prehistoric dinner was likely meant as a publicity stunt.
Glass's study emphasizes the value of museums collecting and curating voucher specimens, particularly those used for evidence of extraordinary claims. Not so long before Glass et al. did their experiment, a friend's mother (and my kayaking partners) served up a venison steak from her freezer to dinner guests in Castlegar that hailed from 1978. Tough? Inedible? I have it on good report that the meat was surprisingly divine.
Reference: Glass, J. R., Davis, M., Walsh, T. J., Sargis, E. J., & Caccone, A. (2016). Was Frozen Mammoth or Giant Ground Sloth Served for Dinner at The Explorers Club?. PloS one, 11(2), e0146825. https://doi.org/10.1371/journal.pone.0146825
Image: Chelonia. Schildkröten by Ernst Haeckel, 1904, Prints & Photographs Division, Library of Congress, LC-DIG-ds-07619.
Join the Explorer's Club
Fancy yourself an explorer who should join the club? Here is a link to their membership application. The monied days of old are still inherent, but you will be well pleased to learn you can now join for as little as $50 US.
Link: https://www.explorers.org/wp-content/uploads/Membership-Application_2021-11-19.pdf
Friday, 3 May 2024
LOWER LIAS LYTOCERAS
Lytoceras sp. Photo: Craig Chivers |
The concretion prior to prep |
Thursday, 2 May 2024
KAZAKHSTAN ANAHOPLITES
Present-day Kazakhstan is made up of several micro continental blocks that were broken up in the Cambrian and then crushed back together then smashed up against Siberia and came to rest where we find them today.
Mangyshlak or Mangghyshlaq Peninsula is a large peninsula located in western Kazakhstan. It borders on the Caspian Sea in the west and with the Buzachi Peninsula, a marshy sub-feature of the main peninsula, in the northeast. The Tyuleniy Archipelago lies off the northern shores of the peninsula.
Lowlands make up one-third of Kazakhstan’s huge expanse, hilly plateaus and plains account for nearly half, and low mountainous regions about one-fifth. Kazakhstan’s highest point, Mount Khan-Tengri (Han-t’eng-ko-li Peak) at 22,949 feet (6,995 metres), in the Tien Shan range on the border between Kazakhstan, Kyrgyzstan, and China, contrasts with the flat or rolling terrain of most of the republic.
The western and southwestern parts of Kazakhstan are dominated by the low-lying Caspian Depression, which at its lowest point lies some 95 feet below sea level. South of the Caspian Depression are the Ustyurt Plateau and the Tupqaraghan (formerly Mangyshlak) Peninsula jutting into the Caspian Sea.
Vast amounts of sand formed the Greater Barsuki and Aral Karakum deserts near the Aral Sea, the broad Betpaqdala Desert of the interior, and the Muyunkum and Kyzylkum deserts in the south. Most of these desert regions have slight vegetative cover eeking out a slim existence fed by subterranean groundwater.
Depressions filled by salt lakes — whose water has largely evaporated — dot the undulating uplands of central Kazakhstan.
In the north, the mountains reach about 5,000 feet, and there are similar high areas among the Ulutau Mountains in the west and the Chingiz-Tau Range in the east. In the east and southeast, massifs — enormous blocks of crystalline rock — are furrowed by valleys.
The Altai mountain complex to the east sends three ridges into the republic, and, farther south, the Tarbagatay Range is an offshoot of the Naryn-Kolbin complex. Another range, the Dzungarian Alatau, penetrates the country to the south of the depression containing the icy waters of Lake Balkhash. The beautiful Tien Shan peaks rise along the southern frontier with Kyrgyzstan.
As well as lovely ammonite outcrops, dinosaurian material and pterosaur remains are also found in Kazakhstan. The ammonites you see here are in the collections of the deeply awesome Emil Black.
Paleo Coordinates: 44 ° 35'46 ″ 51 ° 52'53″
Wednesday, 1 May 2024
HUMPBACK WHALES: MEGAPTERA NOVAENGLIAE
Baleen whales, the mysticetes, split from toothed whales, the Odontoceti, around 34 million years ago. The split allowed our toothless friends to enjoy a new feeding niche and make their way in a sea with limited food resources. There are fifteen species of baleen whales who inhabit all major oceans. Their number include our humbacks, grays, right whales and the massive blue whale. Their territory runs as a wide band running from the Antarctic ice edge to 81°N latitude. These filter feeders
Humpback whales are rorquals, members of the Balaenopteridae family that includes the blue, fin, Bryde's, sei and minke whales. The rorquals are believed to have diverged from the other families of the suborder Mysticeti during the middle Miocene.
It is one of the larger rorqual species, with adults ranging in length from 12–16 m (39–52 ft) and weighing around 25–30 metric tons (28–33 short tons). The humpback has a distinctive body shape, with long pectoral fins and a knobbly head. It is known for breaching and other distinctive surface behaviours, making it popular with whale watchers and the lucky few who see them from the decks of our local ferries.
Both male and female humpback whales vocalize, but only males produce the long, loud, complex "song" for which the species is famous. Males produce a complex soulful song lasting 10 to 20 minutes, which they repeat for hours at a time. I imagine Gregorian Monks vocalizing their chant with each individual melody strengthening and complimenting that of their peers. All the males in a group produce the same song, which differed in each season. Its purpose is not clear, though it may help induce estrus in females and bonding amongst the males.
Humpback Whale, Megaptera novaeangliae |
Humpbacks are a friendly species that interact with other cetaceans such as bottlenose dolphins. They are also friendly and oddly protective of humans. You may recall hearing about an incident off the Cook Islands a few years back. Nan Hauser was snorkelling and ran into a tiger shark. Two adult humpback whales rushed to her aid, blocking the shark from reaching her and pushing her back towards the shore. We could learn a thing or two from their kindness. We have not been as good to them as they have been to us.
Like other large whales, the humpback was a tasty and profitable target for the whaling industry. My grandfather and uncle participated in that industry out of Coal Harbour on northern Vancouver Island back in the 1950s. So did many of my First Nation cousins. My cousin John Lyon has told me tales of those days and the slippery stench of that work.
Tuesday, 30 April 2024
SUNSETS AND SUPERNOVAE
What is sunlight, actually? Yes, it's light from the Sun but so much more than that. Sunlight is both light and energy. Once it reaches Earth, we call this energy, "insolation," a fancy term for solar radiation. The amount of energy the Sun gives off changes over time in a never-ending cycle.
Solar flares (hotter) and sunspots (cooler) on the Sun's surface impact the amount of radiation headed to Earth. These periods of extra heat or extra cold (well, cold by Sun standards...) can last for weeks, sometimes months. The beams that reach us and warm our skin are electromagnetic waves that bring with them heat and radiation, by-products of the nuclear fusion happening as hydrogen nuclei fuse and shift violently to form helium, a process that fires every star in the sky.
Our bodies convert the ultraviolet rays to Vitamin D. Plants use the rays for photosynthesis, a process of converting carbon dioxide to sugar and using it to power their growth (and clean our atmosphere!) That process looks something like this: carbon dioxide + water + light energy — and glucose + oxygen = 6 CO2(g) + 6 H2O + photons → C6H12O6(aq) + 6 O2(g).
Photosynthetic organisms convert about 100–115 thousand million metric tonnes of carbon to biomass each year, about six times more power than used us mighty homo sapien sapiens. Our plants, forests and algae soak up this goodness and much later in time, we harvest this energy from fossil fuels.
We've yet to truly get a handle on the duality between light as waves and light as photons. The duality of the two-in-oneness of light; of their waves and alter-ego, particle photons is a physicists delight. Einstein formulated his special theory of relativity in part by thinking about what it would be like to ride around on these waves. What would space look and feel like? How would time occur? It bends the mind to consider. His wave-particle view helped us to understand that these seemingly different forms change when measured. To put this in plain English, they change when viewed, ie. you look them "in the eye" and they behave as you see them.
Light fills not just our wee bit of the Universe but the cosmos as well, bathing it in the form of cosmic background radiation that is the signature of the Big Bang and the many mini-big bangs of supernovae as they go through cycles of reincarnation and cataclysmic death — exploding outward and shining brighter than a billion stars.
In our solar system, once those electromagnetic waves leave the Sun headed for Earth, they reach us in a surprising eight minutes. We experience them as light mixed with the prism of beautiful colours. But what we see is actually a trick of the light. As rays of white sunlight travel through the atmosphere they collide with airborne particles and water droplets causing the rays to scatter.
We see mostly the yellow, orange and red hues (the longer wavelengths) as the blues and greens (the shorter wavelengths) scatter more easily and get bounced out of the game rather early.
Monday, 29 April 2024
WOOLLY MAMMOTHS: ANCIENT SNOW POUGHS
Over time, their body size shrank and their teeth and tusks evolved to take advantage of the tough vegetation available to those few animals who could chew their way through ice and snow and work these tundra grasses into a digestible form.
The enamel plates of their cheek teeth multiplied while the enamel itself became thinner. Tusks slowly took on more of a curved to act as ploughs for the snow.Those smaller than their predecessors, they were still formidable. Their size offered protection against predators once full grown. Sadly for the juveniles, they offered tasty prey to big cats like Homotherium who roamed these ancient grasslands alongside them.
The Mammoths of the Steppe spread to the northern areas of Eurasia, down through Europe, into the British Isles to Spain and crossed over to populate North America via the Bering Isthmus. It was the lowered sea levels during the last Ice Age that exposed dry land between Asia and the Americas. Here in this flat, grassy treeless plain known as the Bering Land Bridge or Isthmus, animals, including humans, could migrate from Europe west into North America.
The woolly mammoth coexisted with our ancestors who made good use of their bones and tusks for tools, housing, art and food. The last of their lineage died out relatively recently on Wrangel Island until 4,000 years ago — a time when we were making our first harps and flutes in Egypt, dams, canals and stone sculptures in Sumer, using numbers for the first time and using tin to make tools.
Saturday, 27 April 2024
THE DUDLEY BUG: ROLLED TRILOBITE
Calymene blumenbachii, sometimes erroneously spelled blumenbachi, is a species of trilobite found in the limestone quarries of the Wren's Nest in Dudley, England.
Nicknamed the Dudley Bug or Dudley Locust by an 18th-century quarryman, it became a symbol of the town and featured on the Dudley County Borough Council coat-of-arms. Calymene blumenbachii is commonly found in Silurian rocks (422.5-427.5 million years ago) and is thought to have lived in the shallow waters of the Silurian, in low energy reefs.
This particular species of Calymene — a fairly common genus in the Ordovician-Silurian — is unique to the Wenlock series in England and comes from the Wenlock Limestone Formation in Much Wenlock and the Wren's Nest in Dudley.
These sites seem to yield trilobites more readily than any other areas on the Wenlock Edge, and the rock here is dark grey as opposed to yellowish or whitish as it appears on other parts of the Edge, just a few miles away, in Church Stretton and elsewhere suggesting local changes in the environment in which the rock was deposited.
The Wenlock Edge quarry is closed now to further collecting but may be open to future research projects. We shall have to wait and see.
Friday, 26 April 2024
CRAB: HEART OF A WARRIOR
Look how epic this little guy is!
He is a crab — and if you asked him, the fiercest warrior that ever lived. While that may not be strictly true, crabs do have the heart of a warrior and will raise their claws, sometimes only millimetres into the air, to assert dominance over their world.
Crabs are decapod crustaceans of the Phylum Arthropoda.Crabs build their shells from highly mineralized chitin — and chitin gets around. It is the main structural component of the exoskeletons of many of our crustacean and insect friends. Shrimp, crab, and lobster all use it to build their exoskeletons.
Chitin is a polysaccharide — a large molecule made of many smaller monosaccharides or simple sugars, like glucose.
It is handy stuff, forming crystalline nanofibrils or whiskers. Chitin is actually the second most abundant polysaccharide after cellulose. It is interesting as we usually think of these molecules in the context of their sugary context but they build many other very useful things in nature — not the least of these are the hard shells or exoskeletons of our crustacean friends.
Crabs in the Fossil Record
The earliest unambiguous crab fossils date from the Early Jurassic, with the oldest being Eocarcinus from the early Pliensbachian of Britain, which likely represents a stem-group lineage, as it lacks several key morphological features that define modern crabs.
Most Jurassic crabs are only known from dorsal — or top half of the body — carapaces, making it difficult to determine their relationships. Crabs radiated in the Late Jurassic, corresponding with an increase in reef habitats, though they would decline at the end of the Jurassic as the result of the decline of reef ecosystems. Crabs increased in diversity through the Cretaceous and represented the dominant group of decapods by the end.
We find wonderful fossil crab specimens on Vancouver Island. The first I ever collected was at Shelter Point, then again on Hornby Island, down on the Olympic Peninsula and along Vancouver Island's west coast near Nootka Sound. They are, of course, found globally and are one of the most pleasing fossils to find and aggravating to prep of all the specimens you will ever have in your collection. Bless them.
Thursday, 25 April 2024
JURASSIC SEA URCHIN: AM'DA'MA
Holectypus are a genus of extinct echinoids related to modern sea urchins and sand dollars. They were abundant from the Jurassic to the Cretaceous (between 200 million and 65.5 million years ago).
Sea Urchin Detail |
Echinoids are classified by the symmetry of the test, the number and arrangement of plate rows making up the test, and the number and arrangement of respiratory pore rows called petals. Echinoids are divided into two subgroups: regular echinoids, with nearly perfect pentameral (five-part) symmetry; and irregular echinoids with altered symmetry.
Because most echinoids have rigid tests, their ability to fossilize is greater than that of more delicate echinoderms such as starfish, and they are common fossils in many deposits. The oldest echinoids belong to an extinct regular taxon called the Echinocystitoidea.
Wednesday, 24 April 2024
CHUCKANUT DRIVE: EOCENE TROPICAL PARADISE
An amazing array of plants and animals call this coastline home.
Over vast expanses of time, powerful tectonic forces have massaged the western edge of the continent, smashing together a seemingly endless number of islands to produce what we now know as North America and the Pacific Northwest. Intuition tells us that the earth’s crust is a permanent, fixed outer shell – terra firma.
Aside from the rare event of an earthquake or the eruption of Mount St. Helen’s, our world seems unchanging, the landscape constant. In fact, it has been on the move for billions of years and continues to shift each day. As the earth’s core began cooling, some 4.5 billion years ago, plates, small bits of continental crust, have become larger and smaller as they are swept up in or swept under their neighboring plates.
Two hundred million years ago, Washington was two large islands, bits of continent on the move westward, eventually bumping up against the North American continent and calling it home. Even with their new fixed address, the shifting continues; the more extreme movement has subsided laterally and continues vertically.
This ancient wetland provided ideal conditions to preserve the many trees, shrubs & plants that thrived here. Plants are important in the fossil record because they are more abundant and can give us a lot of information about climate, temperature, the water cycle and humidity of the region.
While less abundant, evidence of the animals that called this ancient swamp home are also found here. Rare bird, reptile, and mammal tracks have been immortalized in the outcrops of the Chuckanut Formation. Tracks of a type of archaic mammal of the Orders Pantodonta or Dinocerata (blunt foot herbivores), footprints from a small shorebird, and tracks from an early equid or webbed bird track give evidence to the vertebrates that inhabited the swamps, lakes and river ways of the Pacific Northwest 50 million years ago.
The movement of these celebrity vertebrates was captured in the soft mud on the banks of a river, one of the only depositional environments favorable for track preservation.
Tuesday, 23 April 2024
MAMMOTHS LAST MEAL
Despite this initial review, numerous apocryphal tales exist of dinners made from centuries-old mammoths found frozen whole in clear blocks of ice.
The possibility of cloning is now the major draw of frozen mammoths but the public remains curious about eating prehistoric meat, especially because some modern paleontologists have credibly described tasting mammoth and extinct bison found preserved in permafrost.
Although less publicized today, eating study specimens was once common practice for researchers. Charles Darwin belonged to a club dedicated to tasting exotic meats, and in his first book wrote almost three times as much about dishes like armadillo and tortoise urine than he did on the biogeography of his Galapagos finches.
One of the most famously strange scientific meals occurred on January 13, 1951, at the 47th Explorers Club Annual Dinner (ECAD) when members purportedly dined on frozen woolly mammoth. The prehistoric meat was supposedly found on Akutan Island in Alaska, USA, by the eminent polar explorers Father Bernard Rosecrans Hubbard, “the Glacier Priest,” and Captain George Francis Kosco of the US Navy.
This much-publicized meal captured the public’s imagination and became an enduring legend and source of pride for the Club, popularizing an annual menu of “exotics” that continues today, making the Club as well-known for its notorious hors d’oeuvres like fried tarantulas and goat eyeballs as it is for its notable members such as Teddy Roosevelt and Neil Armstrong.
The Yale Peabody Museum holds a sample of meat preserved from the 1951 meal, interestingly labelled as a South American Giant Ground Sloth, Megatherium, not Mammoth.
Green Sea Turtle, Chelonia mydas |
The specimen is now permanently deposited in the Yale Peabody Museum with the designation YPM HERR 19475 and is accessible to outside researchers.
In 2016, Jessica Glass and her colleagues sequenced a fragment of the mitochondrial cytochrome-b gene and studied archival material to verify its identity, which if genuine, would extend the range of Megatherium over 600% and alter views on ground sloth evolution. Their results showed that the meat was not Mammoth or Megatherium, but a bit of Green Sea Turtle, Chelonia mydas. So much for elaborate legends.
Reference: Glass, J. R., Davis, M., Walsh, T. J., Sargis, E. J., & Caccone, A. (2016). Was Frozen Mammoth or Giant Ground Sloth Served for Dinner at The Explorers Club?. PloS one, 11(2), e0146825. https://doi.org/10.1371/journal.pone.0146825
Monday, 22 April 2024
FOSSIL FAUNA OF HAIDA GWAII
This specimen is just over 12cm in length, a little under the average of 13.4cm. There are several localities in the islands of Haida Gwaii where Brewericeras can be found — six that I know of and likely plenty more.
The islands of Haida Gwaii lay at the western edge of the continental shelf due west of the central coast of British Columbia.
They form Wrangellia, an exotic tectonostratigraphic terrane that includes Vancouver Island, parts of western British Columbia and Alaska.
It is always interesting to see who was making a living and co-existing in our ancient oceans at the time these fossils were laid down.
We find multiple beautifully preserved specimens of the spiny ammonite, Douvelleiceras spiniferum along with Brewericeras hulenense (shown here), Cleoniceras perezianum and many cycads in concretion.The Lower Jurassic ammonite faunas found at Haida Gwaii are very similar to those found in the Eastern Pacific around South America and in the Mediterranean.
The strata exposed at Maple Island, Haida Gwaii are stratigraphically higher than the majority of Albian localities in Skidegate Inlet. The macrofossil fauna belonged to the Upper part of the Sandstone Member of the Haida formation.
The western end of the island contains numerous well-preserved inoceramids such as Birostrina concentrica and a few rare ammonites of Desmoceras bearskinese.
The eastern shores are home to unusual ammonite fauna in the finer-grained sandstones. Here we find the fossils as extremely hard concretions while others were loose in the shale. Species include Anagaudryceras sacya and Tetragonites subtimotheanus. A large whorl section of the rare Ammonoceratites crenucostatus has also been found here.
Sunday, 21 April 2024
LIVING FOSSILS: PERFECTION CAUGHT IN TIME
Much like (slow) Water Striders (Aquarius remigis), (relatively sluggish) Coelacanth (Latimeria chalumnae) and (the current winner on really slow evolution) Elephant Sharks (Callorhinchus milii), these fellows have a long history in the fossil record with very few anatomical changes.
But slow change provides loads of great information. It makes our new friend, Yunnanolimulus luoingensis, an especially interesting and excellent reference point for how this group evolved.
We can examine their genome today and make comparisons all the way back to the Middle Triassic (with this new find) and other specimens from further back in the Ordovician — 445 million years ago.
These living fossils have survived all five mass extinction events. They are generalists who can live in shallow or deep water and will eat pretty much anything they can find on the seafloor.
The oldest horseshoe crab fossil, Lunataspis aurora, is found in outcrops in Manitoba, Canada. Charmingly, the name means crescent moon shield of the dawn. It was palaeontologist Dave Rudkin and team who chose that romantic name. Finding them as fossils is quite remarkable as their shells are made of protein which does not mineralized like typical fossils.
Even so, the evolution of their exoskeleton is well-documented by fossils, but appendage and soft-tissue preservation are extremely rare.
A new study analyzes details of the appendage and soft-tissue preservation in Yunnanolimulus luoingensis, a Middle Triassic (ca. 244 million years old) horseshoe crab from Yunnan Province, SW China. The remarkable anatomical preservation includes the chelicerae, five pairs of walking appendages, opisthosomal appendages with book gills, muscles, and fine setae permits comparison with extant horseshoe crabs.
The occurrence of Carcinoscorpius-type claspers on the first and second walking legs in male individuals of Y. luoingensis tells us that simple chelate claspers in males are plesiomorphic for horseshoe crabs, and the bulbous claspers in Tachypleus and Limulus are derived.
As an aside, if you hadn't seen an elephant shark before and were shown a photo, you would likely say, "that's no freaking shark." You would be wrong, of course, but it would be a very clever observation.
Callorhinchus milii look nothing like our Great White friends and they are not true sharks at all. Rather, they are ghost sharks that belong to the subclass Holocephali (chimaera), a group lovingly known as ratfish. They diverged from the shark lineage about 400 million years ago.
If you have a moment, do a search for Callorhinchus milii. The odd-looking fellow with the ironic name, kallos, which means beautiful in Greek, sports black blotches on a pale silver elongate body. And their special feature? It is the fishy equivalent of business in the front, party in the back, with a dangling trunk-like projection at the tip of their snout and well-developed rectal glands near the tail.
As another small point of interest with regards to horseshoe crabs, John McAllister collected several of these while working on his MSc to see if they had microstructures similar to trilobites (they do) and whether their cuticles were likewise calcified. He found no real calcification in their cuticles, in fact, he had a rather frustrating time getting anything measurable to dissolve in acid in his hunt for trace elements.
Likewise, when looking at oxygen isotopes (16/18) to get a handle on water salinity and temperature, his contacts at the University of Waterloo had tons of fun getting anything at all to analyze. It made for some interesting findings. Sadly, for a number of reasons, he abandoned the work, but you can read his very interesting thesis here: https://dr.library.brocku.ca/handle/10464/1959
Ref: Hu, Shixue & Zhang, Qiyue & Feldmann, Rodney & Benton, Michael & Schweitzer, Carrie & Huang, Jinyuan & Wen, Wen & Zhou, Changyong & Xie, Tao & Lü, Tao & Hong, Shuigen. (2017). Exceptional appendage and soft-tissue preservation in a Middle Triassic horseshoe crab from SW China. Scientific Reports. 7. 10.1038/s41598-017-13319-x.
Saturday, 20 April 2024
INKY BEAUTY: AMMONITE OF PONGO DE MANSERICHE
If you look closely, you can see that this specimen shows a pathology, a slight deviation to the side of the siphonal of the ammonite. We see Prolyelliceras from the Albian to Middle Albian from five localities in Peru.
The canyons of the Amazon River system in the eastern ranges of the Andes of Peru are known by the Indian name pongo.
The most famous of these is the Pongo de Manseriche, cut by the Marañon River through the eastern range of the Andes, where it emerges from the cordillera into the flat terrane of the Amazon Basin. The fossil exposures here are best explored by boat. The reality of the collecting is similar to the imagined. I was chatting with Betty Franklin, VIPS, about this. They float along and pick up amazing specimen after amazing specimen. When the water rises, the ammonites are aided in their erosion out of the cliffs.
The Pongo de Manseriche lies nearly 500 miles upstream from Iquitos, and consequently nearly 3,000 miles above the mouth of the Amazon River. It is situated in the heart of the montaña, in a vast region the ownership of which has long been in dispute between Peru and Ecuador, but over which neither country exercises any police or other governmental control. There is an ancient tradition of the indigenous people of the vicinity that one of their gods descended the Marañón and another ascended the Amazon to communicate with him. Together they opened the pass called the Pongo de Manseriche.
Reference: M. M. Knechtel. 1947. Cephalopoda. In: Mesozoic fossils of the Peruvian Andes, Johns Hopkins University Studies in Geology 15:81-139
W. J. Kennedy and H. C. Klinger. 2008. Cretaceous faunas from Zululand and Natal, South Africa. The ammonite subfamily Lyelliceratinae Spath, 1921. African Natural History 4:57-111. The beauty you see here is in the collection of the deeply awesome José Juárez Ruiz.
Friday, 19 April 2024
EXPLORING WRANGELLIA: HAIDA GWAII
They form part of Wrangellia, an exotic tectonostratigraphic terrane that includes Vancouver Island, parts western British Columbia and Alaska.
The Geological Survey of Canada sponsored many expeditions to these remote islands and has produced numerous reference papers on this magnificent terrain, exploring both the geology and palaeontology of the area.
The praise was well-earned and foreshadowed his significant contributions to come. Sixteen years later, he wrote up and published his observations on a strange Mount Stephen fossil that resembled a kind of headless shrimp with poorly preserved appendages.
Whiteaves work on the palaeontology of Haida Gwaii provided excellent reference tools, particularly his work on the Cretaceous exposures and fauna that can be found there.
One of our fossil field trips was to the ruggedly beautiful Cretaceous exposures of Lina Island. We had planned this expedition as part of our “trips of a lifetime.”
With great sandstone beach exposures, the fossil-rich (Albian to Cenomanian) Haida formation provided ample specimens, some directly in the bedding planes and many in concretion. Many of the concretions contained multiple specimens of typical Haida Formation fauna, providing a window into this Cretaceous landscape.
It is always interesting to see who was making a living and co-existing in our ancient oceans at the time these fossils were laid down. We found multiple beautifully preserved specimens of the spiny ammonite, Douvelleiceras spiniferum along with Brewericeras hulenense, Cleoniceras perezianum and many cycads in concretion.
Douvelliceras spiniferum, Cretaceous Haida Formation |
Missing from this trip log are tales of Rene Savenye, who passed away in the weeks just prior. While he wasn't there in body, he was with us in spirit. I thought of him often on the mist-shrouded days of collecting.
The genus Douvilleiceras range from Middle to Late Cretaceous and can be found in Asia, Africa, Europe and North and South America.
Thursday, 18 April 2024
HUNTING NEUTRINOS AND DARK MATTER
The Homestake Gold Mine in Lawrence County, South Dakota was a going concern from about 1876 to 2001.
The mine produced more than forty million troy ounces of gold in its one hundred and twenty-five-year history, dating back to the beginnings of the Black Hills Gold Rush.
To give its humble beginnings a bit of context, Homestake was started in the days of miners hauling loads of ore via horse and mule and the battles of the Great Sioux War. Folk moved about via horse-drawn buggies and Alexander Graham Bell had just made his first successful telephone call.
Wyatt Earp was working in Dodge City, Kansas — he had yet to get the heck outta Dodge — and Mark Twain was in the throes of publishing The Adventures of Tom Sawyer. — And our dear Thomas Edison had just opened his first industrial research lab in Menlo Park. The mine is part of the Homestake Formation, an Early Proterozoic layer of iron carbonate and iron silicate that produces auriferous greenschist gold. What does all that geeky goodness mean? If you were a gold miner it would be music to your ears. They ground down that schist to get the glorious good stuff and made a tiny wee sum doing so. But then gold prices levelled off — from 1997 ($287.05) to 2001 ($276.50) — and rumblings from the owners started to grow. They bailed in 2001, ironically just before gold prices started up again.
But back to 2001, that levelling saw the owners look to a new source of revenue in an unusual place. One they had explored way back in the 1960s in a purpose-built underground laboratory that sounds more like something out of a science fiction book. The brainchild of chemist and astrophysicists, John Bahcall and Raymond Davis Jr. from the Brookhaven National Laboratory in Upton, New York, the laboratory was used to observe solar neutrinos, electron neutrinos produced by the Sun as a product of nuclear fusion
Wednesday, 17 April 2024
AMMONITES FROM THE GAULT
This matrix you see here is the Gault Clay, known locally as the Blue Slipper. This fine muddy clay was deposited 105-110 million years ago during the Lower Cretaceous (Upper and Middle Albian) in a calm, fairly deep-water continental shelf that covered what is now southern England and northern France.
Lack of brackish or freshwater fossils indicates that the gault was laid down in open marine environments away from estuaries. The maximum depth of the Gault is estimated 40-60m a figure which has been reached by the presence of Borings made by specialist Algal-grazing gastropods and supported by a study made by Khan in 1950 using Foraminifera. Estimates of the surface water temperatures in the Gault are between 20-22°c and 17-19°c on the seafloor. These estimates have been reached by bulk analysis of sediments which probably register the sea surface temperature for calcareous nanofossils.
It is responsible for many of the major landslides around Ventnor and Blackgang the Gault is famous for its diverse fossils, mainly from mainland sites such as Folkestone in Kent.
Folkestone, Kent is the type locality for the Gault clay yielding an abundance of ammonites, the same cannot be said for the Isle of Wight Gault, however, the south-east coast of the island has proved to be fossiliferous in a variety of ammonites, in particular, the Genus Hoplites, Paranahoplites and Beudanticeras.
While the Gault is less fossiliferous here on the island it can still produce lovely marine fossils, mainly ammonites and fish remains from these muddy mid-Cretaceous seas. The Gault clay marine fossils include the ammonites (such as Hoplites, Hamites, Euhoplites, Anahoplites, and Dimorphoplites), belemnites (such as Neohibolites), bivalves (notably Birostrina and Pectinucula), gastropods (including the lovely Anchura), solitary corals, fish remains (including shark teeth), scattered crinoid remains, and crustaceans (look for the crab Notopocorystes).
Occasional fragments of fossil wood may also be found. The lovely ammonite you see here is from the Gault Clays of Folkstone. Not all who name her would split the genus Euhoplites. There’s a reasonable argument for viewing this beauty as a very thick form of E. loricatus with Proeuhoplites being a synonym of Euhoplites. Collected, photographed and prepped by Thomas Miller. Approx 35mm across.
Jack Wonfor shared a wealth of information on the Gault and has many lovely examples of the ammonites found here in his collections. If you wish to know more about the Gault clay a publication by the Palaeontological Association called 'Fossils of the Gault clay' by Andrew S. Gale is available in Dinosaur Isle's gift shop.
There is a very good website maintained by Fred Clouter you can look at for reference. It also contains many handy links to some of the best fossil books on the Gault Clay and Folkstone Fossil Beds. Check it out here: http://www.gaultammonite.co.uk/
Tuesday, 16 April 2024
BACK IN THE USSR: BEADANTICERAS OF THE NORTHERN CAUCASUS
This area of the world has beautiful fossil specimens with their distinct colouring. The geology and paleontological history of the region are fascinating as is its more recent history.
The territory of present Krasnodar Krai was inhabited as early as the Paleolithic, about 2 million years ago. It was inhabited by various tribes and peoples since ancient times. There were several Greek colonies on the Black Sea coast, which later became part of the Kingdom of the Bosporus. In 631, the Great Bulgaria state was founded in the Kuban. In the 8th-10th centuries, the territory was part of Khazaria.
In 965, the Kievan Prince Svyatoslav defeated the Khazar Khanate and this region came under the power of Kievan Rus, Tmutarakan principality was formed. At the end of the 11th century, in connection with the strengthening of the Polovtsy and claims of Byzantium, Tmutarakan principality came under the authority of the Byzantine emperors (until 1204).
In 1243-1438, this land was part of the Golden Horde. After its collapse, Kuban was divided between the Crimean Khanate, Circassia, and the Ottoman Empire, which dominated in the region. Russia began to challenge the protectorate over the territory during the Russian-Turkish wars.
In 1783, by decree of Catherine II, the right-bank Kuban and Taman Peninsula became part of the Russian Empire after the liquidation of the Crimean Khanate. In 1792-1793, Zaporozhye (Black Sea) Cossacks resettled here to protect new borders of the country along the Kuban River.During the military campaign to establish control over the North Caucasus (Caucasian War of 1763-1864), in the 1830s, the Ottoman Empire for forced out of the region and Russia gained access to the Black Sea coast.
Prior to the revolutionary events of 1917, most of the territory of present Krasnodar Krai was occupied by the Kuban region, founded in 1860. In 1900, the population of the region was about 2 million people. In 1913, it ranked 2nd by the gross harvest of grain, 1st place for the production of bread in the Russian Empire.
The Kuban was one of the centres of resistance after the Bolshevik revolution of 1917. In 1918-1920, there was a non-Bolshevik Kuban People’s Republic. In 1924, North-Caucasian krai was founded with the centre in Rostov-on-Don. In 1934, it was divided into Azov-Black Sea krai (Rostov-on-Don) and North Caucasus krai (Stavropol).
September 13, 1937, the Azov-Black Sea region was divided into the Rostov region and Krasnodar Krai that included Adygei autonomous oblast. During the Second World War, the region was captured by the Germans. After the battle for the Caucasus, it was liberated. There are about 1,500 monuments and memorials commemorating heroes of the war on the territory of Krasnodar Krai.
The lovely block you see here is in the collections of the awesome John Fam, Vice-Chair of the Vancouver Paleontological Society in British Columbia, Canada.
Monday, 15 April 2024
TURTLE SHELLS: HOME SWEET ARMOUR
When we look to the oldest known members of the turtle lineage, Proterochersis and Proganochelys, found as fossils in 210 million-year-old outcrops in present-day Germany and Poland. Like the turtles we find today, these stem-turtles already had fully formed shells — special bony or cartilaginous shell that originates in their ribs. It is a useful adaptation to help deter predators as their soft interior makes for a tasty snack.
Turtle armour is made of dermal bone and endochondral bones from their vertebrae and rib cage. It is fundamentally different from the armour seen on our other vertebrate friends and the design creates some unique features in turtles.
Because turtle ribs fuse together with some of their vertebrae, they have to pump air in and out of the lungs with their leg muscles.
Another unusual feature in turtles is their limb girdles, pectoral and pelvic, which have come to lie within their rib cage, a feature that allows some turtles to pull their limbs inside the shell for protection.Armadillos have armour formed by plates of dermal bone covered in relatively small, overlapping epidermal scales called scutes, composed of bone with a covering of horn. In crocodiles, their exoskeletons form their armour, similar to ankylosaurs. A bit of genius design, really. It is made of protective dermal and epidermal components that begin as rete Malpighii: a single layer of short, cylindrical cells that lose their nuclei over time as they transform into a horny layer.
Depending on the species and age of the turtle, turtles eat all kinds of food including seagrass, seaweed, crabs, jellyfish, and shrimp,. That tasty diet shows up in the composition of their armour as they have oodles of great nutrients to work with. The lovely example you see here is from the Oxford Museum collections.