Friday, 1 November 2024

GRAY WHALES: ESCHRICHTIUS ROBUSTUS

Young Gray Whale, Eschrichtius robustus
The lovely fellow you see here is a young Gray Whale, Eschrichtius robustus, with a wee dusting of barnacles and his mouth ajar just enough to show his baleen.

Two Pacific Ocean populations are known to exist: one of about 200 individuals whose migratory route is presumed to be between the Sea of Okhotsk off Russia's south coast and southern Korea, and a larger one with a population of about 27,000 individuals in the eastern Pacific.

This second group are the ones we see off the shores of British Columbia as they travel the waters from northernmost Alaska down to Baja California. Gray whale mothers make this journey accompanied by their calves, hugging the shore in shallow kelp beds and providing rare but welcome glimpses of this beauty.

The gray whale is traditionally placed as the only living species in its genus and family, Eschrichtius and Eschrichtiidae, but an extinct species was discovered and placed in the genus in 2017 — the Akishima whale, E. akishimaensis. Some recent DNA analyses suggest that certain rorquals of the family Balaenopteridae, such as the humpback whale, Megaptera novaeangliae, and fin whale, Balaenoptera physalus, are more closely related to the gray whale than they are to some other rorquals, such as minke. Still, others place gray whales as outside the rorqual clade, a kissing cousin if you will.

John Edward Gray placed it in its own genus in 1865, naming it in honour of physician and zoologist Daniel Frederik Eschricht. The common name of the whale comes from its colouration. The subfossil remains of now-extinct gray whales from the Atlantic coasts of England and Sweden were used by Gray to make the first scientific description of a species then surviving only in Pacific waters. The living Pacific species was described by American palaeontologist, Edward Drinker Cope as Rhachianectes glaucus in 1869.

Fin Whale, Balaenoptera physalus
Skeletal comparisons showed the Pacific species to be identical to the Atlantic remains in the 1930s, and Gray's naming has been generally accepted since. Although identity between the Atlantic and Pacific populations cannot be proven by anatomical data, its skeleton is distinctive and easy to distinguish from that of all other living whales.

In 1993, a twenty-seven million-year-old specimen was discovered in deposits in Washington state that represents a new species of early baleen whale. It is especially interesting as it is from a stage in the group’s evolutionary history when baleen whales transitioned from having teeth to filtering food with baleen bristles.

Visiting researcher Carlos Mauricio Peredo studied the fossil whale remains, publishing his research to solidify Sitsqwayk cornishorum (pronounced sits-quake) in the annals of history. The earliest baleen whales clearly had teeth, and clearly still used them. Modern baleen whales have no teeth and have instead evolved baleen plates for filter feeding. Look to the rather good close-up of this young Gray Whale here to see his baleen where once there was a toothy grin.

The baleen is the comb-like strainer that sits on the upper jaw of baleen whales and is used to filter food. We have to ponder when this evolutionary change —moving from teeth to baleen — occurred and what factors might have caused it. Traditionally, we have sought answers about the evolution of baleen whales by turning to two extinct groups: the aetiocetids and the eomysticetids.

The aetiocetids are small baleen whales that still have teeth, but they are very small, and it remains uncertain whether or not they used their teeth. In contrast, the eomysticetids are about the size of an adult Minke Whale and seem to have been much more akin to modern baleen whales; though it’s not certain if they had baleen. Baleen typically does not preserve in the fossil record being soft tissue; generally, only hard tissue, bones and teeth are fossilized.

SHONISAURUS OF NEVADA

The beauties you see here are ichthyosaurs. The largest of their lineage is the genus Shonisaurus who ruled our ancient seas 217 million years ago.

At least 37 incomplete fossil specimens of the marine reptile have been found in hard limestone deposits of the Luning Formation, in far northwestern Nye County of Nevada. This formation dates to the late Carnian age of the late Triassic period when present-day Nevada and parts of the western United States were covered by an ancient ocean.

The first researcher to recognize the Nevada fossil specimens as ichthyosaurs was Siemon W. Muller of Stanford University. He had the work of Sir Richard Owen and others to build on. That being said, there are very few contenders for a species that boasts vertebrae over a foot wide and weighing in at almost 10 kg or 21 lbs. Muller contacted the University of California Museum of Paleontology at Berkeley. Surface collecting by locals continued at the site but no major excavation was planned.

Sir Richard Owen, the British biologist, comparative anatomist and paleontologist, coined the name ichthyopterygia, or "fish flippers," one hundred and fourteen years earlier, but that wee bit of scientific knowledge hadn't made its way west to the general population. The finds at Luning were still, "marine monsters."

Owen, too, was building on research going back to 1699, the very first recorded fossil fragments found of these beasties in Wales. Shortly thereafter, fossil vertebrae were published in 1708 from the Lower Jurassic.

The first complete skeleton was discovered in the early 19th century by Mary Anning and her brother Joseph along the Dorset Jurassic Coast. Mary's find was described by a British surgeon, Sir Everard Home, an elected Fellow of the Royal Society, in 1814. The specimen is now on display at the Natural History Museum in London bearing the name Temnodontosaurus platyodon, or “cutting-tooth lizard.”

In 1821, William Conybeare and Henry De La Beche, a friend of Mary's, published a paper describing three new species of unknown marine reptiles based on the Anning's finds. The Rev. William Buckland would go on to describe two small ichthyosaurs from the Lias of Lyme Regis, Ichthyosaurus communis and Ichthyosaurus intermedius. All of this early work was instrumental in aiding the researchers who would join the project at Luning.

Owen is considered to have been an outstanding naturalist with a remarkable gift for interpreting fossils. Contrary to common belief, advanced study does help with identifying fossils, but what is truly needed is a keen eye. The finds at Luning were blessed to be seen by an enthusiastic local with just that right kind of keen eye.

Almost a quarter of a century after Muller's initial reports, Dr. Charles L. Camp from UCMP received correspondence further detailing the finds from a lovely Mrs. Margaret Wheat of Fallon. She wrote to Camp in September of 1928 to say that she'd been giving the quarry section a bit of a sweep, as you do, and had uncovered a nice aligned section of vertebrae with her broom. The following year, Dr. Charles L. Camp went out to survey the finds and began working on the specimens, his first field season of many, in 1954.

Back in the 1950s, these large marine reptiles were rumoured to be "marine monsters," as the concept of an ichthyosaur was not well understood by the local townsfolk. Excitement soon hit West Union Canyon as the quarry began to reveal the sheer size of these mighty beasts. Four of the specimens were fully excavated. Most of the ichthyosaur bones were left in situ, partially because the work was tremendously difficult, and partially to allow others to see how the specimens were laid down over 200 million years ago.

Camp continued to work with Wheat at the site and brought on Sam Welles and a host of students to help with excavations. The team understood the need for protection at the site. They canvassed the Nevada Legislature to establish the Ichthyosaur Paleontological State Monument. You can see one of the Park Rangers above giving a tour within the lovely Fossil Hut building they built on the site to protect the fossils.

In 1957, the site was incorporated into the State Park System and Berlin-Ichthyosaur State Park was born. The park Twenty years later, in 1977, the population of Nevada weighed in and the Legislature designated Shonisaurus popularis as the State Fossil of Nevada. Visitors are welcome to collect fossils from the exposures of the Upper Triassic (Early Norian, Kerri Zone) of the Luning Formation, West Union Canyon, just outside Berlin-Ichthyosaur State Park.

Address: State route 844, Austin, NV 89310, United States. Area: 4.58 km². Open 24 hours;
Elevation: 6,975 ft (2,126 m); Tel: +1 775-964-2440; http://parks.nv.gov/parks/berlin-ichthyosaur

Tuesday, 29 October 2024

SAKARA MADAGASGAR: OXFORDIAN OUTCROPS

This big beastie is a superb specimen of the ammonite Lobolytoceras costellatum showing the intricate fractal pattern of its septa. 

This lovely measures to a whopping 230 mm and hails from Oxfordian outcrops near Sakara, Madagascar. Lovingly prepped by the supremely talented José Juárez Ruiz.

Ammonites were predatory, squidlike creatures that lived inside coil-shaped shells. Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. They used these tentacles to snare prey — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunt today.

Catching a fish with your hands is no easy feat, as I'm sure you know. Ammonites did the equivalent, catching prey in their tentacles. They were skilled and successful hunters. They caught their prey while swimming and floating in the water column. 

Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. By pushing air in or out, they were able to control their buoyancy in the water column.

They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.

They were a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs, commonly referred to as ammonites, are more closely related to living coleoids — octopuses, squid, and cuttlefish) then they are to shelled nautiloids such as the living Nautilus species.

Ammonites have intricate and complex patterns on their shells called sutures. The suture patterns differ across species and tell us what time period the ammonite is from. If they are geometric with numerous undivided lobes and saddles and eight lobes around the conch, we refer to their pattern as goniatitic, a characteristic of Paleozoic ammonites.

Ammonites first appeared about 240 million years ago, though they descended from straight-shelled cephalopods called bacrites that date back to the Devonian, about 415 million years ago, and the last species vanished in the Cretaceous–Paleogene extinction event.

They were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish. They were prolific back in the day, living (and sometimes dying) in schools in oceans around the globe. We find ammonite fossils (and plenty of them) in sedimentary rock from all over the world.

In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past.

For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. Generally, deeper is older, so we use the sedimentary layers rock to match up to specific geologic time periods, rather the way we use tree-rings to date trees. A handy way to compare fossils and date strata across the globe.

Monday, 28 October 2024

SMILODON NORTH OF THE 49TH PARALLEL

This fierce predator with the luxurious coat is Smilodon fatalis — a compact but robust killer that weighed in around 160 to 280 kg and was 1.5 - 2.2 metres long.

Smilodon is a genus of the extinct machairodont subfamily of the felids. It is one of the most famous prehistoric mammals and the best known saber-toothed cat. Although commonly known as the saber-toothed tiger, it was not closely related to the tiger or other modern cats.

Up until a few years ago, all the great fossil specimens of this apex predator were found south of us in the United States. That was until some interesting bones from Medicine Hat, Alberta got a second look.

A few years ago, a fossil specimen caught the eye of researcher Ashley Reynolds as she was rummaging through the collections at the Royal Ontario Museum in Toronto. 

Back in the 1960s,  University of Toronto palaeontologist C.S. Churcher and his team had collected and donated more than 1,200 specimens from their many field seasons scouring the bluffs of the South Saskatchewan River near Medicine Hat, Alberta.

Churcher is a delightful storyteller and a palaeontologist with a keen eye. I had the very great pleasure of listening to many of his talks out at the University of British Columbia and a few Vancouver Paleontological Society meetings in the mid-2000s. 

"Rufus" was a thoroughly charming storyteller and shared many of his adventures from the field. 

He moved out to the West Coast for his retirement, first to Gabriola Island then to Victoria, but his keen love of the science kept him giving talks to enthralled listeners keen to hear about his survey of the Dakhleh Oasis in the Western Desert of Egypt, geomorphology, stratigraphy, recent biology, Pleistocene and Holocene lithic cultures, insights learned from Neolithic Islamic pottery to Roman settlements.

The specimens he had collected had been roughly sorted but never examined in detail. Reynolds, who was researching the growth patterns and life histories of extinct cats saw a familiar-looking bone from an ancient cat's right front paw. That tiny paw bone had reached through time and was positively identified as Canada's first Smilodon.

These Apex Predators used their exceptionally long upper canine teeth to hunt large mammals. 

Isotopes preserved in the bones of S. fatalis in the La Brea Tar Pits in California tell us that they liked to dine on bison (Bison antiquus) and camels (Camelops) along with deer and tapirs. Smilodon is thought to have killed its prey by holding it still with its forelimbs and biting it. And that was quite the bite!

Their razor-sharp incisors were arranged in an arch. Once they bit down, the teeth would hold their prey still and stabilize it while the canine bite was delivered — and what a bite that was. They could open their mouths a full 120 degrees.

Smilodon died out at the same time that most North and South American megafauna disappeared, about 10,000 years ago. Its reliance on large animals has been proposed as the cause of its extinction, along with climate change and competition with other species. 

Sunday, 27 October 2024

BEARS OF THE PACIFIC NORTHWEST

A Grizzly Bear takes a rest on a fallen log in Alaska. While stumbling upon them may cause us surprise, they have heard us 
(and smelled us) coming for miles.

If you work or play in the woods of British Columbia, both grizzly and black bear sightings are common.

Nearly half the world's population, some 25,000 Grizzly Bears, roam the Canadian wilderness — of those, 14,000 or more call British Columbia home. These highly intelligent omnivores spend their days lumbering along our coastlines, mountains and forests.

Both bear families descend from a common ancestor, Ursavus, a bear-dog the size of a raccoon who lived more than 20 million years ago. Seems an implausible lineage given the size of their very large descendants. 

An average Grizzly weighs in around 800 lbs (363 kg), but a recent find in Alaska tops the charts at 1600 lbs (726 kg). This mighty beast stood 12' 6' high at the shoulder, 14' to the top of his head and is one of the largest grizzlies ever recorded — a na̱ndzi.

Adult bears tend to live solo except during mating season. Those looking for love congregate from May to July in the hopes of finding a mate. Through adaptation to shifting seasons, the females' reproductive system delays the implantation of fertilized eggs — blastocysts —until November or December to ensure her healthy pups arrive during hibernation. If food resources were slim that year, the newly formed embryo will not catch or attach itself to her uterine wall and she'll try again next year. 

Females reach mating maturity at 4-5 years of age. They give birth to a single or up to four cubs (though usually just two) in January or February. The newborn cubs are cute little nuggets — tiny, hairless, and helpless — weighing in at 2-3 kilograms or 4-8 pounds. They feast on their mother’s nutrient-dense milk for the first two months of life. The cubs stay with their mamma for 18 months or more. Once fully grown, they can run 56 km an hour, are good at climbing trees and swimming and live 20-25 years in the wild. 

A Grizzly bear encounter inspires a humbling appreciation of just how remarkable these massive beasts are. Knowing their level of intelligence, keen memory and that they have a bite force of over 8,000,000 pascals — enough to crush a bowling ball — inspires awe and caution in equal measure. 

They have an indescribable presence. It is likely because of this that these majestic bears show up often in the superb carvings and work of First Nations artists. I have had close encounters with many bears growing up in the Pacific Northwest, meeting them up close and personal in the South Chilcotins and along our many shorelines. 

First Nation Lore and Language

In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest — or Kwakwaka'wakw, speakers of Kwak'wala — a Grizzly bear is known as na̱n

The ornamental carved Grizzly bear headdress was worn by the comic Dluwalakha Grizzly Bear Dancers, Once more from Heaven, in the Grizzly Bear Dance or Gaga̱lalał, is known as na̱ng̱a̱mł

The Dluwalakha dancers were given supernatural treasures or dloogwi which they passed down from generation to generation. 

In the Hamat'sa Grizzly bear dance, Nanes Bakbakwalanooksiwae, no mask was worn. Instead, the dancers painted their faces red and wore a costume of bearskin or t̓ła̱ntsa̱m and long wooden claws attached to their hands. You can imagine how impressive that sight is lit by the warm flickering flames of firelight during a Winter Dance ceremony.

Smoke of the World / Speaking of the Ancestors — Na̱wiła

Kwaguʼł Winter Dancers — Qagyuhl
Should you encounter a black bear and wish to greet them in Kwak'wala, you would call them t̕ła'yi. Kwakiutl First Nations, Smoke of the World, count Grizzly Bears as an ancestor — along with Seagull, Sun and Thunderbird. 

To tell stories of the ancestors is na̱wiła. Each of these ancestors took off their masks to become human and founded the many groups that are now bound together by language and culture as Kwakwaka’wakw. 

The four First Nations who collectively make up the Kwakiutl are the Kwakiutl (Kwágu7lh), K’umk’utis/Komkiutis, Kwixa/Kweeha (Komoyoi) and Walas Kwakiutl (Lakwilala) First Nations. 

There is likely blood of the Lawit’sis in there, too, as they inhabited the village site at Tsax̱is, Fort Rupert before the Kwakiutl made it a permanent home. 

Not all Kwakwaka'wakw dance the Gaga̱lalał, but their ancestors likely attended feasts where the great bear was celebrated. To speak or tell stories of the ancestors is na̱wiła — and Grizzly bear as an ancestor is na̱n helus.

Visiting British Columbia's Great Bears

If you are interested in viewing British Columbia's Great Bears, do check out Indigenous Tourism BC's wonderfully informative website and the culturally-rich wildlife experiences on offer. 

You will discover travel ideas and resources to plan your next soul-powered adventure. To learn more about British Columbia's Great Bears and the continuing legacy of First Nation stewardship, visit: 

Indigenous Tourism BC: https://www.indigenousbc.com

Great Bear Lodge has been offering tours to view the majestic animals of the Pacific Northwest. They keep both the guests and the animals' comfort and protection in mind. I highly recommend their hospitality and expertise. To see their offerings, visit: www.greatbeartours.com

Image: Group of Winter Dancers--Qagyuhl; Curtis, Edward S., 1868-1952, https://lccn.loc.gov/2003652753. 

Note: The Qagyuhl in the title of this photograph refers to the First Nation group, not the dancers themselves. I think our dear Edward was trying to spell Kwaguʼł and came as close as he was able. In Kwak'wala, the language of the Kwaguʼł or Kwakwakaʼwakw, speakers of Kwak'wala, the Head Winter Dancer is called t̕seḵa̱me' — and to call someone a really good dancer, you would use ya̱'winux̱w

Charmingly, when Edward S. Curtis was visiting Tsaxis/T'sakis, he was challenged to a wrestling competition with a Giant Pacific Octopus, Enteroctopus dofleini. George Hunt (1854-1933) had issued the challenge and laughed himself senseless when Edward got himself completely wrapped up in tentacles and was unable to move. Edward was soon untangled and went on to take many more photos of the First Nations of the Pacific Northwest. Things did not go as well for the octopus or ta̱ḵ̕wa. It was later served for dinner or dzaḵwax̱stala, as it seemed calamari was destined for that night's menu.  


Thursday, 24 October 2024

BRONZE BEAUTY: EIFELIAN PARALEJURUS

This bronzed beauty is the Middle Devonian, Eifelian (~395 mya) trilobite, Paralejurus rehamnanus (Alberti, 1970) from outcrops near Issoumour, Alnif, Morocco in North Africa. 

It was the colour of this amazing trilobite that captured the eye of David Appleton in whose collection it now resides. He is an avid collector and coming into his own as a macro photographer. I have shared three of his delightful photos for you here.

It initially thought that the gold we see here was added during prep, particularly considering the colouration of the matrix, but macro views of the surface show mineralization and the veins running right through the specimen into the matrix. There is certainly some repairs but that is common in the restoration of these specimens. Many of the trilobites I have seen from Morocco have bronze on black colouring but not usually this pronounced. Even so, there is a tremendous amount of fine anatomy to explore and enjoy in this wonderfully preserved specimen.  

Paralejurus is a genus of trilobite in the phylum Arthropoda from the Late Silurian to the Middle Devonian of Africa and Europe. These lovelies grew to be up to nine centimetres, though the fellow you see here is a wee bit over half that size at 5.3 cm. 

Paralejurus specimens are very pleasing to the eye with their long, oval outline and arched exoskeletons. 

Their cephalon or head is a domed half circle with a smooth surface.  The large facet eyes have very pleasing crescent-shaped lids. You can see this rather well in the first of the photos here. The detail is quite remarkable.

As you move down from his head towards the body, there is an almost inconspicuous occipital bone behind the glabella in the transition to his burnt bronze thorax.

The body or thorax has ten narrow segments with a clearly arched and broad axial lobe or rhachis. The pygidium is broad, smooth and strongly fused in contrast to the genus Scutellum in the family Styginidae, which has a pygidium with very attractive distinct furrows that I liken to the look of icing ridges on something sweet — though that may just be me and my sweet tooth talking. In Paralejurus, they look distinctly fused — or able to fuse — to add posterior protection against predators with both the look and function of Roman armour.

In Paralejurus, the axillary lobe is rounded off and arched upwards. It is here that twelve to fourteen fine furrows extend radially to complete the poetry of his body design. 

Trilobites were amongst the earliest fossils with hard skeletons and they come in many beautiful forms. While they are extinct today, they were the dominant life form at the beginning of the Cambrian. 

As a whole, they were amongst some of the most successful of all early animals — thriving and diversifying in our ancient oceans for almost 300 million years. The last of their brethren disappeared at the end of the Permian — 252 million years ago. Now, we enjoy their beauty and the scientific mysteries they reveal about our Earth's ancient history.

Photos and collection of the deeply awesome David Appleton. Specimen: 5.3 cm. 

Tuesday, 22 October 2024

TRACKING THROUGH THE TRIASSIC

Grambergia sp. Middle Triassic Ammonoid of  BC, Canada
In the early 1980s, Tim Tozer, Geological Survey of Canada was looking at the spread of marine invertebrate fauna in the Triassic of North America. 

In the western terranes of the Cordillera, marine faunas from southern Alaska and Yukon to Mexico are known from the parts that are obviously allochthonous with regard to the North American plates.

Lower and upper Triassic faunas of these areas, as well as some that are today up to 63 ° North, have the characteristics of the lower palaeo latitudes. 

In the western Cordillera, these faunas of the lower paleo latitudes can be found up to 3,000 km north of their counterparts on the American plate. This indicates a tectonic shift of significant magnitude. There are marine triads on the North American plate over 46 latitudes from California to Ellesmere Island. 

For some periods, two to three different faunal provinces can be distinguished. The differences in faunal species are linked, not surprisingly, to their palaeolatitude. They are called LPL, MPL, HPL (lower, middle, higher palaeolatitude).

Nevada provides the diagnostic features of the lower (LPL); northeastern British Columbia that of the middle (MPL) and Sverdrup Basin, the large igneous province on Axel Heiberg Island and Ellesmere Island, Nunavut, Canada near the rifted margin of the Arctic Ocean, that of the higher palaeolatitude (HPL).

A distinction between the provinces of the middle and the higher palaeo-situations can not be made for the lower Triassic and lower Middle Triassic (anise). However, all three provinces can be seen in the deposits of Ladin, Kam and Nor.

In the early 2000s, as part of a series of joint UBC, VIPS and VanPS fossil field trips (and then Chair of the VanPS), I explored much of the lower faunal outcrops of northeastern British Columbia. It was my first time seeing many of British Columbia's Triassic outcrops. 

Years later, and fueled by seeing paper after paper correlating the faunal assemblages of BC to those of Nevada, I had the very great pleasure of walking through the Nevada strata with John Fam (VanPS, Vice-Chair), Dan Bowen (VIPS, Chair) and Betty Franklin (VIPS, Goddess of Everything and BCPA, Treasurer) — and witnessing first-hand the correlation between the Nevada fauna and those from the Triassic of British Columbia, Canada.

Triassic ammonoids, West Humboldt Mountains, Nevada, USA
The Nevada faunal assemblages are a lovely match. The quality of preservation at localities like Fossil Hill in the Humboldt Mountains of Nevada, perhaps the most famous and important locality for the Middle Triassic (Anisian/Ladinian) of North America, is truly outstanding.

Aside from sheer beauty and spectacular preservation, the ammonoids and belemnites were tucked in cozily with very well preserved ichthyosaur remains.

Tozer's interest in our marine invert friends was their distribution. How and when did certain species migrate, cluster, evolve — and for those that were prolific, how could their occurrence — and therefore significance — aide in an assessment of plate and terrane movements that would help us to determine paleolatitudinal significance. 

I share a similar interest but not exclusive to our cephalopod fauna. The faunal collection of all of the invertebrates holds appeal.

Middle Triassic (Anisian/Ladinian) Fauna
This broader group held an interest for J.P. Smith who published on the marine fauna in the early 1900s based on his collecting in scree and outcrops of the West Humboldt Mountains, Nevada. He published his first monograph on North American Middle Triassic marine invertebrate fauna in 1914.

N. J. Siberling from the US Geological Survey published on these same Nevada outcrops in 1962. His work included nearly a dozen successive ammonite faunas, many of which were variants on previously described species. Both their works would inform what would become a lifelong piecing together of the Triassic puzzle for Tozer.

If one looks at the fauna and the type of sediment, the paleogeography of the Triassic can be interpreted as follows: a tectonically calm west coast of the North American plate that bordered on an open sea; in the area far from the coast, a series of volcanic archipelagos delivered sediment to the adjacent basins. 

Some were lined or temporarily covered with coral wadding and carbonate banks. Deeper pools were in between. The islands were probably within 30 degrees of the triadic equator. They moved away from the coast up to about 5000 km from the forerunner of the East Pacific Ridge. The geographical situation west of the back was probably similar.

Jurassic and later generations of the crust from near the back have brought some of the islands to the North American plate; some likely to South America; others have drifted west, to Asia. There are indications that New Guinea, New Caledonia and New Zealand were at a northern latitude of 30 ° or more during the Triassic period.

The terranes that now form the western Cordillera were probably welded together and reached the North American plate before the end of the Jurassic period.

Marine Triassic occurs on the North American Plate over a latitudinal spread of 46 degrees, from California to Ellesmere Island. At some intervals of time faunas on the Plate permit the discrimination of two or three provinces with distinctively different coeval faunas. 

The faunal differences are evidently related to paleolatitude and the provinces are designated LPL, MPL, HPL (low, mid, high paleolatitude). Nevada provides the diagnostic characters of the LPL province; northeastern British Columbia the MPL; the Sverdrup Basin the HPL. In the Lower Triassic and early Middle Triassic (Anisian), the distinction between the MPL and HPL provinces cannot be made. All three provinces are recognized in the Ladinian, Carnian and Norian deposits.

Juvavites sp. Geological Survey of Canada. Photo: John Fam
In the western tracts of the Cordillera, the part formed of suspect terranes, apparently allochthonous with respect to the North American Plate, marine faunas are known all the way from southern Alaska and Yukon to Mexico.

Lower and Upper Triassic faunas from these terranes, including some which today are at 63 degrees north, have the characters of the LPL province.

Middle Triassic faunas from the terranes, as presently known, do not contribute significant data. In the terranes of the Western Cordillera, LPL faunas were now up to 3,000 km north of their counterparts on the American Plate. Through the fossil fauna assemblages, we can see this level of tectonic displacement.

Taking into account the faunas and the nature of the rocks, the Triassic paleogeography is interpreted as a tectonically quiet west shore for the North American Plate, bordered by an open sea or ocean; then, well off-shore, a series of volcanic archipelagos shedding sediment into adjacent basins. Some were fringed or intermittently covered by coralline shoals and carbonate banks. Deeper basins were in between. The islands probably were within 30 degrees of the Triassic equator and extended offshore for about 5000 km, to the spreading ridge directly ancestral to the East Pacific Rise. The geography west of the spreading ridge was probably comparable.

Jurassic and later generation of crust at the ridge had driven some of the islands into the North American Plate; some probably to South America; others have gone west to Asia. Evidence is given that northern New Guinea, New Caledonia and New Zealand may have been at a north latitude of 30 degrees or more in the Triassic. The terranes now forming the Western Cordillera had probably amalgamated, and reached the North American Plate, before the end of the Jurassic.

At the end of the Rhaetian (part of the Triassic period), most of the ammonites had died out. These are the lovely coiled molluscs you often see in museums and gift shops that sell fossils. They are a particular favourite of mine and they are both beautiful and useful to tell us much about deep time. The Hettangian, a rather poorly understood 3 million year time interval followed the Triassic-Jurassic mass extinction event.

During the Hettangian, the new or  Neoammonites developed quite quickly. Within a million years, a fairly large, diverse selection of genera and species had risen to fill the void. The gap created by the Triassic-Jurassic extinction event was re-filled and our ability to "read the rocks' to understand their continued movement through tectonic plate shifting recommenced.

Alsatites proaries, Hettangian Ammonite
It is during the Hettangian that the smooth shelled ammonite genus Psiloceras first appears. They span the time between 201.3 ± 0.2 Ma and 199.3 ± 0.3 Ma (million years ago). For my European friends, the Hettangian is the time span in which the marine limestone, shales and clay Lias of western Europe were deposited.

This Hettangian ammonite, Alsatites proaries, is a lovely example of the cephalopods cruising our ancient oceans at that time. Alsatites is an extinct genus of cephalopod belonging to the Ammonite subclass. They lived during the Early Jurassic, Hettangian till the Sinemurian and are generally extremely evolute, many whorled with a broad keel. Or, as described by one of my very young friends, he looks like a coiled snake you make in pottery class.

The Hettangian is an interesting little period of our history. It spans the time between 201.3 ± 0.2 Ma and 199.3 ± 0.3 Ma (million years ago). For my European friends, the Hettangian is the time in which the marine limestone, shales and clay Lias of western Europe were deposited. In British Columbia, Canada, we see the most diverse middle and late Hettangian (Early Jurassic) ammonite assemblages in the Queen Charlotte Islands (Haida Gwaii), an archipelago about 50 km off British Columbia's northern Pacific coast. In total, 53 ammonite taxa are described of which Paradasyceras carteri, Franziceras kennecottense, Pleuroacanthites charlottensis, Ectocentrites pacificus and Curviceras haidae are new.

In general, North American Early Jurassic ammonites are of Tethyan affinity or endemic to the eastern Pacific. For this reason, a separate zonation for the Hettangian and Sinemurian of the Western Cordillera of North America was established. Taylor et al. (2001), wrote up and published on much of this early research though, at the time, very little Canadian information was included.

Longridge, L. M., et al. “Three New Species of the Hettangian (Early Jurassic) Ammonite Sunrisites from British Columbia, Canada.” Journal of Paleontology, vol. 82, no. 1, 2008, pp. 128–139. JSTOR, www.jstor.org/stable/20144175. Accessed 27 Jan. 2020.

Tozer, ET (Tim): Marine Triassic faunas of North America: Their significance for assessing plate and terrane movements. Geol Rundsch 71, 1077-1104 (1982). https://doi.org/10.1007/BF01821119

Danner, W. (Ted): Limestone resources of southwestern British Columbia. Montana Bur. Mines & Geol., Special publ. 74: 171-185, 1976.

Davis, G., Monger, JWH & Burchfiel, BC: Mesozoic construction of the Cordilleran “collage”, central British Columbia to central California. Pacific Coast Paleography symposium 2, Soc. Economic Paleontologists and Mineralogists, Los Angeles: 1-32, 1978.

Gibson, DW: Triassic rocks of the Rocky Mountain foothills and front ranges of northeastern British Columbia and west-central Alberta. Geol. Surv. Canada Bull. 247, 1975.

Photo of the large belemnite (Atractites sp?) and ammonites (Sunrisites & Badouxia) from the Lower Jurassic (Late Hettangian), Last Creek Formation (Castle Pass member), Taseko Lakes area, British Columbia, Canada in the collection of the deeply awesome John Fam.

Photo: A drawer of Juvavites sp. in the collections of the Geological Survey of Canada. These rarely seen Upper Triassic (Carnian to Norian) ammonoids were collected over many decades by geologists of the Geological Survey of Canada from Northeastern British Columbia. Photo care of the deeply awesome John Fam.

Photo: Grambergia sp. from the Early Anisian (Middle Triassic) ammonoid biostratigraphy of northeastern British Columbia, Canada. Collection of Fossil Huntress.

Photo: Alsatites proaries, Coll. Reiter, Neoammoniten, 30 July 2011, 19:26:10

Sunday, 20 October 2024

ALCIDS AUKS: PUFFLINGS AND DUTIFUL PARENTS

Puffins are any of three small species of alcids or auks in the bird genus Fratercula with a brightly coloured beak during the breeding season.

Their sexy orange beaks shift from a dull grey to bright orange when it is time to attract a mate. While not strictly monogamous, most Puffins choose the same mate year upon year producing adorable chicks or pufflings (awe) from their mating efforts.

Female Puffins produce one single white egg which the parents take turns to incubate over a course of about six weeks. Their dutiful parents share the honour of feeding the wee pufflings five to eight times a day until the chick is ready to fly. Towards the end of July, the fledgeling Puffins begin to venture from the safety of their parents and dry land. Once they take to the seas, mom and dad are released from duty and the newest members of the colony are left to hunt and survive on their own.

These are pelagic seabirds that feed primarily by diving in the water. They breed in large colonies on coastal cliffs or offshore islands, nesting in crevices among rocks or in burrows in the soil. Two species, the tufted puffin and horned puffin are found in the North Pacific Ocean, while the Atlantic puffin is found in the North Atlantic Ocean. 

This lovely fellow, with his distinctive colouring, is an Atlantic Puffin or "Sea Parrot" from Skomer Island near Pembrokeshire in the southwest of Wales. Wales is bordered by Camarthenshire to the east and Ceredigion to the northeast with the sea bordering everything else. It is a fine place to do some birding if it's seabirds you're after.

These Atlantic Puffins are one of the most famous of all the seabirds and form the largest colony in Southern Britain. They live about 25 years making a living in our cold seas dining on herring, hake and sand eels. Some have been known to live to almost 40 years of age. They are good little swimmers as you might expect, but surprisingly they are great flyers, too! They are hindered by short wings, which makes flight challenging but still possible with effort. Once they get some speed on board, they can fly up to 88 km an hour.

The oldest alcid fossil is Hydrotherikornis from Oregon dating to the Late Eocene while fossils of Aethia and Uria go back to the Late Miocene. Molecular clocks have been used to suggest an origin in the Pacific in the Paleocene. Fossils from North Carolina were originally thought to have been of two Fratercula species but were later reassigned to one Fratercula, the tufted puffin, and a Cerorhinca species. Another extinct species, Dow's puffin, Fratercula dowi,  was found on the Channel Islands of California until the Late Pleistocene or early Holocene.

The Fraterculini are thought to have originated in the Pacific primarily because of their greater diversity in the region. There is only one extant species in the Atlantic, compared to two in the Pacific. The Fraterculini fossil record in the Pacific extends at least as far back as the middle Miocene, with three fossil species of Cerorhinca, and material tentatively referred to that genus, in the middle Miocene to late Pliocene of southern California and northern Mexico.

Although there no records from the Miocene in the Atlantic, a re-examination of the North Carolina material indicated that the diversity of puffins in the early Pliocene was as great in the Atlantic as it is in the Pacific today. This diversity was achieved through influxes of puffins from the Pacific; the later loss of species was due to major oceanographic changes in the late Pliocene due to closure of the Panamanian Seaway and the onset of severe glacial cycles in the North Atlantic.

Saturday, 19 October 2024

CaCO3 + CO2 + H2O → Ca (HCO3)2

 
Those of you who live near the sea understand the compulsion to collect shells. They add a little something to our homes and gardens.

With a strong love of natural objects, my own home boasts several stunning abalone shells conscripted into service as both spice dish and soap dish.

As well as beautiful debris, shells also played an embalming role as they collect in shell middens from coastal communities. Having food “packaging” accumulate in vast heaps around towns and villages is hardly a modern phenomenon.

Many First Nations sites were inhabited continually for centuries. The discarded shells and scraps of bone from their food formed enormous mounds, called middens. Left over time, these unwanted dinner scraps transform through a quiet process of preservation.

Time and pressure leach the calcium carbonate, CaCO3, from the surrounding marine shells and help “embalm” bone and antler artifacts that would otherwise decay. Useful this, as antler makes for a fine sewing tool when worked into a needle. Much of what we know around the modification of natural objects into tools comes from this preservation.

Calcium carbonate is a chemical compound that shares the typical properties of other carbonates. CaCO3 is common in rocks and shells and is a useful antacid for those of you with touchy stomachs. In prepping fossil specimens embedded in limestone, it is useful to know that it reacts with stronger acids, releasing carbon dioxide: CaCO3(s) + 2HCl(aq) → CaCl2(aq) + CO2(g) + H2O(l)

For those of you wildly interested in the properties of CaCO3, may also find it interesting to note that calcium carbonate also releases carbon dioxide on when heated to greater than 840°C, to form calcium oxide or quicklime, reaction enthalpy 178 kJ / mole: CaCO3 → CaO + CO2.

Calcium carbonate reacts with water saturated with carbon dioxide to form the soluble calcium bicarbonate. Bone already contains calcium carbonate, as well as calcium phosphate, Ca2, but it is also made of protein, cells and living tissue.

Decaying bone acts as a sort of natural sponge that wicks in the calcium carbonate displaced from the shells. As protein decays inside the bone, it is replaced by the incoming calcium carbonate, making makes the bone harder and more durable.

The shells, beautiful in their own right, make the surrounding soil more alkaline, helping to preserve the bone and turning the dinner scraps into exquisite scientific specimens for future generations.

Wednesday, 16 October 2024

NEVADA: AMMONOIDS AND CONODONTS

Nevada is a wonderful place to explore our palaeontological history. The state spans a broad spectrum of exposures showcasing the depth of geologic time. It is an interesting cross-section of young and old — and interestingly, a lovely comparison to the Triassic outcrops in British Columbia.

Exposures of the Upper Triassic, Early Norian, Kerri zone, Luning formation, West Union Canyon, just outside Berlin-Ichthyosaur State Park, Nevada.

The Berlin-Ichthyosaur State Park in central Nevada is a very important locality for the understanding of the Carnian-Norian boundary (CNB) in North America.

Rich ammonoid faunas from this site within the Luning Formation were studied by Silberling (1959) and provided support for the definition of the Schucherti and Macrolobatus zones of the latest Carnian, which are here overlain by well-preserved faunas of the earliest Norian Kerri Zone. Despite its importance, no further investigations have been done at this site during the last 50 years.

Jim Haggart, Mike Orchard and Paul Smith collaborated on a project that took them down to Nevada to look at the conodonts and ammonoids; the group then published a paper, "Towards the definition of the Carnian/Norian Boundary: New data on Ammonoids and Conodonts from central Nevada," which you can find in the proceedings of the 21st Canadian Paleontology Conference; by Haggart, J W (ed.); Smith, P L (ed.); Canadian Paleontology Conference Proceedings no. 9, 2011 p. 9-10.

They conducted a bed-by-bed sampling of ammonoids and conodonts in West Union Canyon during October 2010. The eastern side of the canyon provides the best record of the Macrolobatus Zone, which is represented by several beds yielding ammonoids of the Tropites group, together with Anatropites div. sp. conodont faunas from both these and higher beds are dominated by ornate 'metapolygnthids' that would formerly have been collectively referred to Metapolygnathus primitius, a species long known to straddle the CNB. Within this lower part of the section, they resemble forms that have been separated as Metapolygnathus mersinensis. Slightly higher, forms close to 'Epigondolella' orchardi and a single 'Orchardella' n. sp. occur. This association can be correlated with the latest Carnian in British Columbia.

Ammonoids of the Luning Formation
Higher in the section, the ammonoid fauna shows a sudden change and is dominated by Tropithisbites. Few tens of metres above, but slightly below the first occurrence of Norian ammonoids Guembelites jandianus and Stikinoceras, two new species of conodonts (Gen et sp. nov. A and B) appear that also occur close to the favoured Carnian/Norian boundary at Black Bear Ridge, British Columbia. Stratigraphically higher collections continue to be dominated by forms close to M. mersinensis and 'E.' orchardi.

The best exposure of the Kerri Zone is on the western side of the West Union Canyon. Ammonoids, dominated by Guembelites and Stikinoceras div. sp., have been collected from several fossil-bearing levels. Conodont faunas replicate those of the east section. The collected ammonoids fit perfectly well with the faunas described by Silberling in 1959, but they differ somewhat from the coeval faunas of the Tethys and Canada.

The genus Gonionotites, very common in the Tethys and British Columbia, is for the moment unknown in Nevada. More in general, the Upper Carnian faunas are dominated by Tropitidae, while Juvavitidae are lacking.

After years of reading about the correlation between British Columbia and Nevada, I had the very great pleasure of walking through these same sections in October 2019 with members of the Vancouver Paleontological Society and Vancouver Island Palaeontological Society. It was with that same crew that I had originally explored fossil sites in the Canadian Rockies in the early 2000s. Those early trips led to paper after paper and the exciting revelations that inspired our Nevada adventure.

Tuesday, 15 October 2024

JELLYFISH: DANCERS OF THE DEEP

This lovely ocean dancer—with her long delicate tentacles or lappets and thicker ruched oral arms—is a jellyfish. 

Her brethren are playing in the waters of the deep all over the world, from surface waters to our deepest seas — and they are old. They are some of the oldest animals in the fossil record.

Jellyfish, or sea jellies, are the informal common names given to the medusa-phase or adult phase of certain gelatinous members of the subphylum Medusozoa, a major part of the phylum Cnidaria — closely related to anemones and corals.

While the name is embedded, Jellyfish are not fish at all. They evolved millions of years before true fish. The oldest conulariid scyphozoans appeared between 635 and 577 million years ago in the Neoproterozoic of the Lantian Formation, a 150-meter-thick sequence of rocks deposited in southern China. 

Others are found in the youngest Ediacaran rocks of the Tamengo Formation of Brazil, c. 505 mya, through to the Triassic. Cubozoans and hydrozoans appeared in the Cambrian of the Marjum Formation in Utah, USA, c. 540 million years ago.

I have seen all sorts of their brethren growing up on the west coast of Canada. I have seen them in tide pools, washed up on the beach and swam amongst thousands of Moon Jellyfish while scuba diving in the Salish Sea. Their movement in the water is marvelous.  

In the Kwak̓wala language of the Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, jellyfish are known as ǥaǥisama—enjoyed as a tasty snack or used as bait to entice larger marine animals.

The watercolour ǥaǥisama you see here in dreamy pink and white is but one colour variation. They come in blue, purple, orange, yellow and clear — and are often luminescent. They produce light by the oxidation of a substrate molecule, luciferin, in a reaction catalyzed by a protein, luciferase.

Saturday, 12 October 2024

NATURAL DYES: INDIGO

Natural dyes are dyes or colourants derived from plants, invertebrates, or minerals. The colours they give us range from muddy to vibrant and have been used to enhance our visual world for many years.

The majority of natural dyes are vegetable dyes from plant sources — roots, berries, bark, leaves, and wood — and other biological sources such as fungi and lichens.

Archaeologists have found evidence of textile dyeing dating back to the Neolithic period. 

In China, dyeing with plants, barks and insects has been traced back more than 5,000 years and by all accounts is our first attempt at the practice of chemistry.

The essential process of dyeing changed little over time. Typically, the dye material is put in a pot of water and then the textiles to be dyed are added to the pot, which is heated and stirred until the colour is transferred. Sometimes, we use workers with stout marching legs to mix this up.

Traditional dye works still operate in many parts of the world. There is a revival of using natural indigo in modern Egypt — although their indigo dye is mostly imported. The same is true further south in Sudan. They've been importing cloth from Upper Egypt as far back as we have written records and continue the practice of the cloth and dye imports today. Clean white cotton is more the style of western Sudan and Chad, but they still like to throw in a bit of colour.

Traditional Dye Vats
So do the folk living in North Africa. Years ago, I was travelling in Marrakesh and saw many men with noticeably orange, blueish or purplish legs. It wasn't one or two but dozens of men and I'd wondered why this was.

My guide took me to the top of a building so I could look down on rows and rows of coloured vats. In every other one was a man marching in place to work the dye into the wool. Their legs took on the colour from their daily march in place in huge tubs of liquid dye and sheared wool. 

This wool would be considered textile fibre dyed before spinning — dyed in the wool — but most textiles are yarn-dyed or piece-dyed after weaving. In either case, the finished product is quite fetching even if the dyer's legs are less so. 

Many natural dyes require the use of chemicals called mordants to bind the dye to the textile fibres; tannin from oak galls, salt, natural alum, vinegar, and ammonia from stale urine were staples of the early dyers.

Many mordants and some dyes themselves produce strong odours. Urine is a bit stinky. Not surprisingly, large-scale dyeworks were often isolated in their own districts.

Woad, Isatis tinctoria
Plant-based dyes such as Woad, Isatis tinctoria, indigo, saffron, and madder were raised commercially and were important trade goods in the economies of Asia and Europe. 

Across Asia and Africa, patterned fabrics were produced using resist dyeing techniques to control the absorption of colour in piece-dyed cloth.

Dyes such as cochineal and logwood, Haematoxylum campechianum, were brought to Europe by the Spanish treasure fleets, and the dyestuffs of Europe were carried by colonists to America.

Throughout history, people have dyed their textiles using common, locally available materials, but scarce dyestuffs that produced brilliant and permanent colours such as the natural invertebrate dyes. Crimson kermes became highly prized luxury items in the ancient and medieval world. Red, yellow and orange shades were fairly easy to procure as they exist as common colourants of plants. It was blue that people sought most of all and purple even more so.

Indigofera tinctoria, a member of the legume or bean family proved just the trick. This lovely plant —  named by the famous Swedish botanist Carl Linneaus, the father of formalized binomial nomenclature — grows in tropical to temperate Asia and subtropical regions, including parts of Africa.

The plants contain the glycoside indican, a molecule that contains a nitrogenous indoxyl molecule with some glucose playing piggyback. 

Indigo dye is a product of the reaction of indoxyl by a mild oxidizing agent, usually just good old oxygen.

To make the lovely blue and purple dyes, we harvest the plants and ferment them in vats with urine and ash. The fermentation splits off the glucose, a wee bit of oxygen mixes in with the air (with those sturdy legs helping) and we get indigotin — the happy luxury dye of royalty, emperors and kings.

While much of our early dye came from plants — now it is mostly synthesized — other critters played a role. Members of the large and varied taxonomic family of predatory sea snails, marine gastropod mollusks, commonly known as murex snails were harvested by the Phoenicians for the vivid dye known as Tyrian purple.

While the extant specimens maintained their royal lineage for quite some time; at least until we were able to manufacture synthetic dyes, it was their fossil brethren that first captured my attention. There are about 1,200 fossil species in the family Muricidae. 

They first appear in the fossil record during the Aptian of the Cretaceous. Their ornate shells fossilize beautifully. I first read about them in Addicott's Miocene Gastropods and Biostratigraphy of the Kern River Area, California. It is a wonderful survey of 182 early and middle Miocene gastropod taxa.

References:

George E. Radwin and Anthony D'Attilio: The Murex shells of the World, Stanford University press, 1976, ISBN 0-8047-0897-5

Pappalardo P., Rodríguez-Serrano E. & Fernández M. (2014). "Correlated Evolution between Mode of Larval Development and Habitat in Muricid Gastropods". PLoS ONE 9(4): e94104. doi:10.1371/journal.pone.0094104

Miocene Gastropods and Biostratigraphy of the Kern River Area, California; United States Geological Survey Professional Paper 642  

Friday, 11 October 2024

TIKTAALIK: FOSSIL FISHAPODS

Qikiqtania wakei, a fishapod & relative to tetrapods
You will likely recall the amazing tetrapodomorpha fossil found on Ellesmere Island in the Canadian Arctic in 2004, Tiktaalik roseae

These were advanced forms transitional between fish and the early labyrinthodonts playfully referred to as fishapods — half-fish, half-tetrapod in appearance and limb morphology. 

Up to that point, the relationship of limbed vertebrates (tetrapods) to lobe-finned fish (sarcopterygians) was well known, but the origin of significant tetrapod features remained obscure for the lack of fossils that document the sequence of evolutionary changes — until Tiktaalik

While Tiktaalik is technically a fish, this fellow is as far from fish-like as you can be and still be a card-carrying member of the group. 

Interestingly, while Neil Shubin and crew were combing the icy tundra for Tiktaalik, another group was trying their luck just a few kilometres away. 

A week before the eureka moment of Tiktaalik's discovery, Tom Stewart and Justin Lemberg unearthed material that we now know to be a relative of Tiktaalik's. 

Meet Qikiqtania wakei, a fishapod and close relative to our dear tetrapods — and cousin to Tiktaalik — who shares features in the flattened triangular skull, shoulders and elbows in the fin. 

Qikiqtania (pronounced kick-kick-TAN-ee-ya)
But, and here’s the amazing part, its upper arm bone (humerus) is specialised for open water swimming, not walking. 

The story gets wilder when we look at Qikiqtania’s position on the evolutionary tree— all the features for this type of swimming are newly evolved, not primitive. 

This means that Qikiqtania secondarily reentered open water habitats from ancestors that had already had some aspect of walking behaviour. 

And, this whole story was playing out 365 million years ago — the transition from water to land was going both ways in the Devonian.

Why is this exciting? You and I descend from those early tetrapods. We share the legacy of their water-to-land transition and the wee bony bits in their wrists and paddles that evolved to become our hands. I know, mindblowing!

Thomas Stewart and Justin Lemberg put in thousands of hours bringing Qikiqtania to life. 

The analysis consisted of a long path of wild events— from a haphazard moment when it was first spotted, a random collection of a block that ended up containing an articulated fin, to a serendipitous discovery three days before Covid lockdowns in March 2020.

Both teams acknowledge the profound debt owed to the individuals, organizations and indigenous communities where they had the privilege to work — Grise Fiord and Resolute Bay— Ellesmere Island in Nunavut, the largest and northernmost territory of Canada. 

Part of that debt is honoured in the name chosen for this new miraculous species. 

Aerial View of Ellesmere Island
The generic name, Qikiqtania (pronounced kick-kick-TAN-ee-ya), is derived from the Inuktitut words Qikiqtaaluk and Qikiqtani which are the traditional place name of the region where the fossil was discovered. 

The specific name, wakei, is in memory of the evolutionary biologist David Wake — colleague, mentor and friend. 

He was a professor of integrative biology and Director and curator of herpetology at the Museum of Vertebrate Zoology at the University of California, Berkeley who passed away in April 2021. 

Wake is known for his work on the biology and evolution of salamanders and vertebrate evolutionary biology. 

If you look at the photo on the left you can imagine visiting these fossil localities in Canada's far north.

Qikiqtania was found on Inuit land and belongs to the community. Thomas Stewart and his colleagues were able to conduct this research because of the generosity and support of individuals in the hamlets of Resolute Bay and Grise Fiord, the Iviq Hunters and Trappers of Grise Fiord, and the Department of Heritage and Culture, Nunavut.

To them, on behalf of the larger scientific community — Nakurmiik. Thank you! 

Here is the link to Tom Stewart's article in The Conversation & paper in Nature that dropped yesterday:

  1. Stewart, Thomas A.; Lemberg, Justin B.; Daly, Ailis; Daeschler, Edward B.; Shubin, Neil H. (2022-07-20). "A new elpistostegalian from the Late Devonian of the Canadian Arctic". Naturedoi:10.1038/s41586-022-04990-wISSN 0028-0836.
  2. Stewart, Thomas. "Meet Qikiqtania, a fossil fish with the good sense to stay in the water while others ventured onto land" The Conversation. Retrieved 2022-07-20.

Image One: An artist’s vision of Qikiqtania enjoying its fully aquatic, free-swimming lifestyle. Alex Boersma, CC BY-ND

Image Two: A new elpistostegalian from the Late Devonian of the Canadian Arctic, T. A. Stewart, J. B. Lemberg, A. Daly, E. B. Daeschler, & N. H. Shubin.

A huge shout out to the deeply awesome Neil Shubin who shared that the paper had been published and offered his insights on what played out behind the scenes!

Thursday, 10 October 2024

AURORA BOREALIS: DANCING ATOMS

If you live in the northern hemisphere, you stand a very good chance of seeing the aurora borealis this evening. 

Their glorious dancing lights will be most visible in the darkest hours on Canada's west coast with their brilliance tapering off over the next few days. 

Away from the light pollution, you will see the swirling of the dance and as you head north, the colours will become more and more vibrant.

The Earth has a magnetic field with north and south poles. The lights we see are the result of severe storms that push protons past their normal threshold around these two polar regions.  

The magnetic field of the Earth is surrounded by the magnetosphere which keeps most of the particles from the Sun from hitting the Earth. Some of these particles from the solar wind enter the atmosphere at one million miles per hour. The auroras occur when highly charged electrons from the solar wind interact with elements in the Earth's atmosphere and become trapped in the Earth's magnetic field. 

We see them as an undulating visual field of red, yellow, green, blue and purple dancing high in the Earth's atmosphere — about 100 to 400 kilometres above us. The green is the result of millions of oxygen atoms dancing like gleeful children as they decay back to their original state. 

The red is also caused by oxygen atoms but because those atoms are higher up in the atmosphere we register much of their vivid colour as green or reddish-green because of our poorly developed eyesight and lower red light emissions. 

Nitrogen atoms are a bit more standoffish. They get in on the action but only if the storm winds are very strong as it takes quite a hard hit to excite them. 

If you have been in the quiet northern regions for an aurora storm, you can hear their clapping sounds. On cold, clear nights, with light wind, a temperature inversion can form. This happens when a layer of relatively warm air creates a blanket over a shallow layer of cold air. 

Solar winds excite the atoms in the inversion layer, with opposite charges building up in the colder layer near the ground. When the aurora increases in intensity, geomagnetic disturbances travel down through the atmosphere causing the two layers to spark. 

We hear that electric discharge or spark as a click, click, click, clapping or banging sound. 

All science aside, what we see from these rare energetic interactions is one of the most beautiful of all-natural phenomena — Earth's polar lights, the aurora borealis in the north and the aurora australis, near the south pole.

The aurora borealis is best viewed in the north, of course, and many of my relatives have a bird's-eye view. To the Tlingit First Nation of Alaska, the aurora is Gis'óok. In Norway, the aurora is Nordlys — and by any name, spectacular. 

AURORA CAM

Explore.org have a live Aurora Cam and a ton of others that are equally interesting. To view, visit their site at: https://explore.org/livecams/zen-den/northern-lights-cam / Aurora Watch: https://auroraforecast.com/

Interested to learn more about the Sound of the Aurora? Give Meteorologist Michael Karow's thoughts a gander: https://weatherology.com/trending/articles/Sound-Aurora.html

Sunday, 6 October 2024

TEMPERATURES, SAND AND SEX: GREEN SEA TURTLES

What do temperature, sand and sex have in common?

Well, for the Green Sea Turtle—everything. When these cuties are still in their shells incubating, the temperature of the sand surrounding them determines their sex. 

Boy or girl? 

Warm sand produces females and cooler sand hatches out male Green Sea Turtles.

The Green Sea Turtle, Chelonia mydas, also known as the Green Turtle, Black Sea Turtle or Pacific Green Turtle is a species in the family Cheloniidae.

It is the only species in the genus Chelonia. Its range extends throughout tropical and subtropical seas around the world, with two distinct populations in the Atlantic and Pacific Oceans, but it is also found in the Indian Ocean. 

The common name refers to the usually green fat found beneath its carapace, not to the colour of its carapace, which is olive to black.

This sea turtle's dorsoventrally flattened body is covered by a large, teardrop-shaped carapace; it has a pair of large, paddle-like flippers. It is usually lightly coloured, although in the eastern Pacific populations' parts of the carapace can be almost black. Unlike other members of its family, such as the hawksbill sea turtle, C. mydas is mostly herbivorous. The adults usually inhabit shallow lagoons, feeding mostly on various species of seagrasses. The turtles bite off the tips of the blades of seagrass, which keeps the grass healthy and these aquatic vegans in top shape..

Like other sea turtles, green sea turtles migrate long distances between feeding grounds and hatching beaches. Many islands worldwide are known as Turtle Island due to green sea turtles nesting on their beaches. Females crawl out on beaches, dig nests and lay eggs during the night. Later, hatchlings emerge and scramble into the water. Those that reach maturity may live to 80 years in the wild.

Researchers at the Senckenberg Research Institute in Frankfurt, Germany discovered the remains of the oldest fossilized sea turtle known to date. Remains from a new species, Desmatochelys padillai sp, including fossilized shell and bones have been found at two outcrops near Villa de Leyva, Colombia. 

The find was published in the journal PaleoBios, dates the reptile at 120 million years old – 25 million years older than any previously known specimen of this beautiful and long-lived turtle.