![]() |
Stromness Whaling Station |

Sunday, 5 January 2025
ERNEST SHACKLETON'S GREAT ADVENTURE
Friday, 3 January 2025
FOSSIL CRAB AT SHELTER POINT VANCOUVER ISLAND
Shelter Point on northern Vancouver Island is a lovely beach site where clastic strata are exposed in the intertidal platform of Oyster Bay.
The site is located just off the Island Highway, about 10 km south of downtown Campbell River and 4 km farther south along the lower Oyster River. Haggart et al. presented an abstract on this locality at the 12th British Columbia Paleontological Symposium, 2018, Courtenay, abstracts; 2018 p. 28-30. I'll pop a link below if you'd like to give it a read.
Shelter Point has been collected since the 1970s. No pre-glacial strata were recognized in this area by Muller and Jeletzky (1970). Richards (1975) described an abundant fauna in the beds at Shelter Point, approximately 2 km north of the Oyster Bay exposures, including the crab Longusorbis and associated ammonites and inoceramid bivalves, and he assigned these beds to the Spray Formation of the Nanaimo Group. This information, combined with the very low dip of the Oyster Bay strata and their general lithological similarity with the coarse clastic strata found commonly in the Nanaimo Group, suggested a Late Cretaceous (Campanian) age of the Oyster Bay strata.
Beginning in the 1980s, fossil collectors from the Vancouver Island Palaeontological Society began amassing significant collections of fossils from the strata of southern Oyster Bay that are found several hundred metres southeast of the local road called Appian Way, thus providing the informal moniker Appian Way Beds for these localized exposures.
While these collections included a great diversity of gastropod, bivalve, nautiloid, scaphopod, echinoderm, and coral specimens, as well as impressive collections of plant materials, much previously undescribed, no taxa found commonly in Campanian strata of the Nanaimo Group were noted in these collections; particularly lacking were ammonites and inoceramid bivalves. For this reason, the hypothesis began to emerge that the Appian Way Beds of Oyster Bay were of younger, post-Cretaceous, age than thought previously.
Just how young, however, has been a source of some controversy, with different parties continuing to favour the traditional Campanian age — based on lithostratigraphy — others a Paleocene age, and still others an Eocene age — based on plant macrofossils.
Fossil Collecting at Shelter Point:
Fossil Collecting at Shelter Point |
Industrious collectors unwilling to wait for the tide have employed rubber boots to wade through knee-deep water — rubber boots are highly recommended in any case — and even headlamps to capitalize on low tides during the night.
Bring eye protection, rain and sun appropriate clothing, hardy footwear and sunscreen to safely enjoy this lovely family trip.
The fossils, mainly the crab, Longusorbis and the straight ammonite Baculites, occur only in the gritty concretions that weather out of the shale. You'll need a rock hammer to see the lovelies preserved inside. Best to hold the concretion in your hand and give it one good tap. Aside from the fossils, check out the local tide pools and sea life in the area. Those less interested in the fossils can look for seals and playful otters basking on the beaches.
References:
Haggart, J. et al. 58 million and 25 years in the making: stratigraphy, fauna, age, and correlation of the Paleocene/Eocene sedimentary strata at Oyster Bay and adjacent areas, southeast Vancouver Island, British Columbia; https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=308471
Thursday, 2 January 2025
FOSSIL AMPHIBIANS OF NOVA SCOTIA
![]() |
Dendrerpeton acadianum, an extinct amphibian |
These little cuties belong to an extinct genus of amphibians who loved wet, swampy wetlands similar to those we find in the bayous of Mississippi today.
Dendrerpeton is the primitive sister-group to a clade of Temnospondyls that includes Trimerorhachoids, the Eryopoids — Ervops, Parioxys, & Sclerocephalus — Zatracheids & Dissorophoids.
This little guy along with finding the first true reptile, Hylonomus lyelli, ancestor of all dinosaurs that would rule the Earth 100 million years later serve as the reference point where animals finally broke free of the water to live on land. This evolutionary milestone recorded at Joggins remains pivotal to understanding the origins of all vertebrate life on land, including our own species.
![]() |
Joggins records life in a once a wet, swampy wetland |
Wednesday, 1 January 2025
SUNSETS AND SUPERNOVAE
What is sunlight, actually? Yes, it's light from the Sun but so much more than that. Sunlight is both light and energy.
Our bodies convert the ultraviolet rays to Vitamin D. Plants use the rays for photosynthesis, a process of converting carbon dioxide to sugar and using it to power their growth (and clean our atmosphere!) That process looks something like this: carbon dioxide + water + light energy — and glucose + oxygen = 6 CO2(g) + 6 H2O + photons → C6H12O6(aq) + 6 O2(g).
Photosynthetic organisms convert about 100–115 thousand million metric tonnes of carbon to biomass each year, about six times more power than used us mighty homo sapien sapiens. Our plants, forests and algae soak up this goodness and much later in time, we harvest this energy from fossil fuels.
We've yet to truly get a handle on the duality between light as waves and light as photons. The duality of the two-in-oneness of light; of their waves and alter-ego, particle photons is a physicists delight. Einstein formulated his special theory of relativity in part by thinking about what it would be like to ride around on these waves. What would space look and feel like? How would time occur? It bends the mind to consider. His wave-particle view helped us to understand that these seemingly different forms change when measured. To put this in plain English, they change when viewed, ie. you look them "in the eye" and they behave as you see them.
Light fills not just our wee bit of the Universe but the cosmos as well, bathing it in the form of cosmic background radiation that is the signature of the Big Bang and the many mini-big bangs of supernovae as they go through cycles of reincarnation and cataclysmic death — exploding outward and shining brighter than a billion stars.
In our solar system, once those electromagnetic waves leave the Sun headed for Earth, they reach us in a surprising eight minutes. We experience them as light mixed with the prism of beautiful colours. But what we see is actually a trick of the light. As rays of white sunlight travel through the atmosphere they collide with airborne particles and water droplets causing the rays to scatter.
We see mostly the yellow, orange and red hues (the longer wavelengths) as the blues and greens (the shorter wavelengths) scatter more easily and get bounced out of the game rather early.
Tuesday, 31 December 2024
BIOLUMINESCENCE: CHEMICAL POETRY
In the inky blackness of the deep sea, more than 90% of the animals are luminescent. It is quite a startling number but makes good sense when you think of the edge bioluminescence provides.
The ability to generate light helps umpteen animals find mates, attract prey and avoid predation. Handy stuff, light.
What you know about light above the surface does not hold true for the light you see as bioluminescence. Its energy and luminosity come from a chemical reaction.
In a luminescent reaction, two types of chemicals — luciferin and luciferase — combine together. Together, they produce cold light — light that generates less than 20% thermal radiation or heat.
The light you see is produced by a compound called Luciferin. It is the shiny, showy bit in this chemical show. Luciferase acts as an enzyme, the substance that acts as a catalyst controlling the rate of chemical reactions, allowing the luciferin to release energy as it is oxidized. The colour of the light depends on the chemical structures of the chemicals. There are more than a dozen known chemical luminescent systems, meaning that bioluminescence evolved independently in different groups of organisms.
Coelenterazine is the type of luciferin we find in shrimp, fish and jellyfish. Dinoflagellates and krill share another class of unique luciferins, while ostracods or firefleas and some fish have a completely different luciferin.
The luciferase found in dinoflagellates is related to the green chemical chlorophyll found in plants. Bioluminescent dinoflagellates are a type of plankton — teensy marine organisms that make the seaways shimmer like the Milky Way as you swim through them.
Their twinkling lights are brief, each containing about 100 million photons that shine for a tenth of a second. While each individual flicker is here and gone in the wink of an eye, en masse they are awe-inspiring. I have spent many wondrous evenings scuba diving amongst these glittering denizens off our shores.
![]() |
Cotylorhiza Tuberculata Jellyfish |
Bacteria and fireflies have unique luminescent chemistries. Fireflies light up when oxygen combines with calcium, adenosine triphosphate (ATP) and luciferin in the presence of luciferase.
For bacteria, the world stage of luminosity is quite small — and a bit gormless. Just how much light they emit and when is a free-for-all. Not so for the rest of our bioluminescent friends who have very precise control over when they shine and just how bright.
Bioluminescence comes in a variety of colours, from blue through red. The colour is based on the chemistry, which involves a substrate molecule called luciferin, the source of energy that goes into light, and an enzyme called luciferase or photoprotein.
In the ocean, bioluminescence is mostly blue-green or green. You would think that blues and green would not show up all that well in our seas but, surprisingly, they do. While sound travels better through saltwater than air, it is the reverse for light.
Various colours of light do not transmit equally through saltwater. Once we move deeper than the top layer of the ocean warmed by the sun and brimming with nutrients, the epipelagic zone, and move deeper through the mesopelagic, deeper and deeper still to the bathypelagic, frigid abyssalpelagic and finally the deep trenches of the icy pressure and all but inhospitable hadalpelagic, less and less light — until no light — gets through.
It is the twilight of the mesopelagic, 200 - 1000 metres below the surface, that is the sweet spot for most of our bioluminescent friends. Here, only very faint sunlight gets through. The water pressure is higher than at the surface but still lacks the crushing intensity of the lower zones. It is here that bioluminescence becomes a real advantage — good real estate and the showmanship of light pays gold.
We know that the deeper you go in our oceans, less and less sunlight gets through, so if the purpose of bioluminescence is to provide a signal that is noticed by prey, potential mates and predators alike, it is important that the light moves through the seawater, and not be absorbed or scattered — and this plays out in the colours evolved to be seen here.
If you have spent any time underwater, you will know that blue-green light transmits best through seawater. The deeper you go, the colours fade. Gone are the reds and yellows until everything looks brown or blue-green. Because of this, it is no surprise that blue-green is the most common colouring of bioluminescence in our oceans.
There are some exceptions to the blue-green/green colour rule — minuscule planktonic polychaete worms, Tomopteris helgolandica, emit yellow light, and deep-sea fish Malacosteus niger in the family Stomiidae, the barbeled dragonfishes, produce both red and blue.
Malacosteus niger's unique adaptation of producing red bioluminescence is only found in two other deep-sea dwelling creatures, Aristostomias and Pachystomias.
This rare form of bioluminescence can reach up to 700 nm in the deep-sea and cannot be perceived by green and blue bioluminescent organisms — granting M. niger a considerable advantage while hunting at depth.
The red light may function as an invisible searchlight of sorts because most animals in the ocean cannot see red light, while the eyes of M. niger are red-sensitive. It is much easier to find and eat something that cannot see you, particularly if it is lit up like a tasty red holiday snack.
Reference: https://latzlab.ucsd.edu/bioluminescence/
Monday, 30 December 2024
VANCOUVER'S HISTORIC STANLEY PARK
![]() |
Totem, Welcome & Mortuary Poles at Stanley Park |
What you are viewing are replicas of First Nation welcome and totem poles that once stood in the park but have been returned to their homes within the province's diverse First Nation communities — or held within museum collections.
Some of the original totems came from Alert Bay on Cormorant Island, near the Port McNeill on the north coast of Vancouver Island.
Others came from communities in Haida Gwaii — and still more from the Wuikinuxv First Nations at Rivers Inlet on British Columbia's central west coast — home of the Great Bear Rainforest with her Spirit Bears.
The exception is the most recent addition carved by Robert Yelton in 2009. Robert is a First Nation carver from the Squamish Nation and his original welcome pole graces Brockton Point, the original settlement site of a group of Squamish-Portuguese settlers.
If you look at the photo above, the lovely chocolate, red and turquoise pole on the right is a replica of the mortuary pole raised to honour the Raven Chief of Skedans or Gida'nsta, the Haida phrase for from his daughter, the title of respect used when addressing a person of high rank. Early fur traders often took the name of the local Chief and used it synonymously as the place names for the sites they visited — hence Skedans from Gida'nsta.
![]() |
Chief Skedans Mortuary Pole |
Upon Chief Skedan's death, the mortuary pole was carved both to honour him and provide his final resting place. Dates are a bit fuzzy, but local accounts have this as sometime between 1870-1878 — and at a cost of 290 blankets or roughly $600 in today's currency.
The great artistry of the pole was much admired by those in the community and those organizing the celebrations for the 1936 Vancouver Golden Jubilee — witnessed by 350,000 newly arrived residents.
Negotiations were pursued and the pole made its way down from Haida Gwaii to Stanley Park in time for the celebrations. The original totem graced Stanley Park for a little over twenty years before eventually making its way back to Haida Gwaii. It was returned to the community with bits of plaster and shoddy paint marring the original. These bits were scraped off and the pole welcomed back with due ceremony.
In 1964, respected and renowned Northwest Coast master carver, Bill Reid, from the Kaadaas gaah Kiiguwaay, Raven/Wolf Clan of T'anuu, Haida Gwaii and Scottish-German descent, was asked to carve this colourful replica.
![]() |
Mountain Goat Detail, Skedans Mortuary Pole |
Don Yeomans, Haida master carver, meticulously recarved the moon crest in 1998. If you have admired the totem pole in the Vancouver Airport, you will have seen some of Yeoman's incredible work.
The crest is Moon with the face, wings, legs and claws of a mighty and proud Thunderbird with a fairly smallish hooked beak in a split design. We have Moon to thank for the tides and for illuminating our darkest nights. As a crest, Moon is associated with transformation and acts as both guardian and protector.
The original pole had a mortuary box that held the Chief's remains. The crest sits atop a very charming mountain goat. I have included a nice close-up here of the replica for you to enjoy.
Mountain Goats live in the high peaks of British Columbia and being so close to the sky, they have the supernatural ability to cross over to the sky world. They are also credited as being spirit guardians and guides to First Nation shamans.
I love his horns and tucked-in cloven hooves. There is another pole being carved on Vancouver Island that I hope to see during its creation that also depicts a Mountain Goat. With permission and in time, I hope to share some of those photos with you.
Mountain Goat is sitting atop Grizzly Bear or Huaji or Xhuwaji’ with little human figures placed in his ears to represent the Chief's daughter and son-in-law, who raised the pole and held a potlatch in his honour.
Beneath the great bear is Seal or Killer Whale in his grasp. The inscription in the park says it is a Killer Whale but I am not sure about that interpretation — both the look and lore make Seal more likely. Perhaps if Killer Whale were within Thunderbird's grasp — maybe.
Though it is always a pleasure to see Killer Whale carved in red cedar, as the first whales came into being when they were carved in wood by a human — or by Raven — then magically infused with the gift of life.
![]() |
Siwash Rock on the northern end of Third Beach, Stanley Park |
Glacial deposits sit atop a mix of clay, sand, cobbles and larger boulders of glacial till.
There are a few areas of exposed volcanics within the park that speak to the scraping of the glaciers as they retreated about 12,500 years ago.
The iconic moss and lichen-coated Siwash Rock on the northern end of Third Beach is one of the more picturesque of these. It is a basaltic and andesitic volcanic rock — a blend of black phenocrysts of augite cemented together with plagioclase, hornblende and volcanic glass that holds a special place in the oral history of the First Nations of this area. The Squamish First Nation, or Sḵwx̱wú7mesh sníchim, hold the word Slhx̱i7lsh for this rock.
They tell a story of a man fishing by the shore who was transformed by the spirit-being X̱áays into this iconic rock near the northern end of Third Beach of Stanley Park. At the time, a permanent First Nation settlement was just a short walk away. The man had his fishing gear with him when he was transformed as he had been fishing near the shore. The hole in the rock is not from the erosion of the tides but the cubby hole where Slhx̱i7lsh, now a rocky sentinel, kept his fishing tackle. And as you know, fishing tackle is valuable. One does not simply throw it away simply because you have been turned to stone.
Images not shown:
Do check out the work of Emily Carr and her paintings of Q:o'na from the 1940s. I'll share a link here but do not have permission to post her works. http://www.emilycarr.org/totems/exhibit/haida/ssintro.htm
Wednesday, 25 December 2024
SVALBARD: ICE, SNOW AND ICHTHYOSAURS
![]() |
Reindeer, Rangifer tarandus |
This Norwegian archipelago sits between mainland Norway and the North Pole.
One of the world’s northernmost inhabited areas, it is known for its rugged, remote terrain of glaciers and frozen tundra sheltering polar bears, reindeer and Arctic fox.
It is also known for reindeer. The lovelies you see here are all females as the males lose their antlers in the winter. So Rudolf and the rest of Santa's crew who pull his sleigh for him would have all been females as they are pictured with antlers. They are also shown flying across the sky, so the science gets a bit creative.
The Northern Lights or Nordlys are visible during winter, and summer brings the Midnight Sun — sunlight 24 hours a day. Norway or Norge is one of the very few locations where sunset merges into the sunrise, with no darkness in between, creating a soft, captivating twilight in which to view the world.
The Botneheia Formation is made up of dark grey, laminated shales coarsening upwards to laminated siltstones and sandstones. South of the type area, the formation shows four coarsening-upward units.
The formation is named for Botneheia Mountain, a mountain in Nordenskiöld Land at Spitsbergen, Svalbard. It has a height of 522 m.a.s.l., and is located south of Sassenfjorden, east of the valley of De Geerdalen.
![]() |
Svalbard, Norway |
You have to remove the snow cover — or ice if you are impatient or unlucky — to get to the outcrops here. It is well worth the effort. Beneath the icy cover, you find lovely ammonoids and bivalves.
Tastier still, ichthyosaur remains are found here. The first Triassic ichthyosaurs from Svalbard were found in the early 20th century. Now there are quite a few Triassic and Jurassic ichthyosaur species from this archipelago.
Two ichthyosaur specimens have been recovered that are of particular interest. They comprise part of the trunk and the caudal vertebral column respectively.
Some features, such as the very high and narrow caudal and posterior thoracic neural spines, the relatively elongate posterior thoracic vertebrae and the long and slender haemapophyses indicate that they probably represent a member of the family Toretocnemidae.
![]() |
Ichthyosaur Bones |
There is a resident research group working on the Triassic ichthyosaur fauna, the Spitsbergen Mesozoic Research Group.
Lucky for them, they often find the fossil remains fully articulated — the bones having retained their spatial relationship to one another.
Most of their finds are of the tail sections of primitive Triassic ichthyosaurs. In later ichthyosaurs, the tail vertebrae bend steeply downwards and have more of a fish-like look.
In these primitive ancestors, the tail looks more eel-like — bending slightly so that the spines on the vertebrae form more of the tail.
Maisch, Michael W. and Blomeier, Dierk published on these finds back in 2009: Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen Band 254 Heft 3 (2009), p. 379 - 384. Nov 1, 2009.
![]() |
Svalbard, Norway (Norge) |
The first documented travellers to explore Spitsbergen arrived in 1795 as part of a hunting expedition. They included people from the arctic town of Hammerfest in Norway's far north. They were an excellent choice as they were used to barren, inhospitable lands and sailed to discover more.
We know them as the Coast Sámi — a hearty, rugged people probably best known in history for their chieftain, Ottar. He left Hammerfest in the 9th century to visit then join King Alfred the Great's court in a newly forming England.
Expeditions to the remote islands of Svalbard continued into the early 1800s and finally, a settlement was eked out of the cold landscape and slowly expanded to the rest of the islands. While today the islands are called Svalbard, I would have named them for the Norwegian word for remote — fjernkontroll.
![]() |
Aristoptychites euglyphus and Daonella sp. |
Daonella and Monotis are important species for our understanding of biostratigraphy in the Triassic and are useful as Index fossils.
Index fossils are fossils used to define and identify geologic periods or faunal stages. To be truly useful, they need to have a short vertical range, wide geographic distribution and rapid evolutionary development.
Daonellids preferred soft, soupy substrates and we tend to find them in massive shell beds. Generally, if you find one, you find a whole bunch cemented together in coquina. The lovely block you see here is in the collections of the deeply awesome John Fam.
Learning Languages
The Sámi languages (/ˈsɑːmi/ SAH-mee), Sami or Saami, are a group of Uralic languages spoken by the Sámi people in Northern Europe in parts of northern Finland, Norway, Sweden, and extreme northwestern Russia. Of the world's languages, I find them the most difficult for my mind and tongue to wrap around. The Uralic languages will be familiar to you as Hungarian (Magyar nyelv), Finnish and Estonian.
Since my Sámi is terrible, I will share a few words of Norwegian that may come in handy if you visit Svalbard and have a hankering for their tasty fossils or fossiler. To say, ice, snow, reindeer and ichthyosaurs in Norwegian, you would say: is, snø, reinsdyr og ikthyosaurer.
To say, "hello, where can I find fossils?" Use, "Hei, hvor kan jeg finne fossiler?" An expression you may not need but circumstances being what they are, "That is a big polar bear," is "Det er en stor isbjørn." A solid follow-up would be, "nice bear, run..." as "Fin bjørn, løp..." Good luck with that.
Wishing you and yours the very best of the holidays however you celebrate.
Tuesday, 24 December 2024
LOWER LIAS LYTOCERAS
![]() |
Lytoceras sp. Photo: Craig Chivers |
![]() |
The concretion prior to prep |
Sunday, 22 December 2024
ANCIENT ARAGONITE: FOSSIL PEARLS
A simple search will show you a vast array of pearls being used for their ornamental value in cultures from all over the world. I suppose the best answer to why they are appealing is just that they are.
If you make your way to Paris, France and happen to visit the Louvre's Persian Gallery, do take a boo at one of the oldest pearl necklaces in existence — the Susa necklace. It hails from a 2,400-year-old tomb of long lost Syrian Queen. It is a showy piece with three rows of 72 pearls per strand strung upon a bronze wire.
A queen who truly knew how to accessorize.
I imagine her putting the final touches of her outfit together, donning the pearls and making an entrance to wow the elite of ancient Damascus. The workmanship is superb, intermixing pure gold to offset the lustre of the pearls. It is precious and ancient, crafted one to two hundred years before Christ. Perhaps a gift from an Egyptian Pharaoh or from one of the Sumerians, Eblaites, Akkadians, Assyrians, Hittites, Hurrians, Mitanni, Amorites or Babylonian dignitaries who sued for peace but brought war instead.
Questions, good questions, but questions without answers. So, what can we say of pearls? We do know what they are and it is not glamorous. Pearls form in shelled molluscs when a wee bit of sand or some other irritant gets trapped inside the shell, injuring the flesh. As a defensive and self-healing tactic, the mollusc wraps it in layer upon layer of mother-of-pearl — that glorious shiny nacre that forms pearls.
They come in all shapes and sizes from minute to a massive 32 kilograms or 70 pounds. While a wide variety of our mollusc friends respond to injury or irritation by coating the offending intruder with nacre, there are only a few who make the truly gem-y pearls.These are the marine pearl oysters, Pteriidae and a few freshwater mussels. Aside from Pteriidae and freshwater mussels, we sometimes find less gem-y pearls inside conchs, scallops, clams, abalone, giant clams and large marine gastropods.
Pearls are made up mostly of the carbonate mineral aragonite, a polymorphous mineral — the same chemical formula but different crystal structure — to calcite and vaterite, sometimes called mu-calcium carbonate. These polymorphous carbonates are a bit like Mexican food where it is the same ingredients mixed in different ways. Visually, they are easy to tell apart — vaterite has a hexagonal crystal system, calcite is trigonal and aragonite is orthorhombic.
As pearls fossilize, the aragonite usually gets replaced by calcite, though sometimes by vaterite or another mineral. When we are very lucky, that aragonite is preserved with its nacreous lustre — that shimmery mother-of-pearl we know and love.
Molluscs have likely been making pearls since they first evolved 530 million years ago. The oldest known fossil pearls found to date, however, are 230-210 million years old.
This was the time when our world's landmass was concentrated into the C-shaped supercontinent of Pangaea and the first dinosaurs were calling it home. In the giant ancient ocean of Panthalassa, ecosystems were recovering from the high carbon dioxide levels that fueled the Permian extinction. Death begets life. With 95% of marine life wiped out, new species evolved to fill each niche.
While this is where we found the oldest pearl on record, I suspect we will one day find one much older and hopefully with its lovely great-great grandmother-of-pearl intact.
Saturday, 21 December 2024
MIDDENS AND WEST COAST OYSTERS: T'LOXT'LOX
![]() |
While rare today, these are British Columbia’s only native oyster.
Had you been dining on their brethren in the 1800s or earlier, it would have been this species you were consuming. Middens from Port Hardy to California are built from Ostrea lurida.
These wonderful invertebrates bare their souls with every bite. Have they lived in cold water, deep beneath the sea, protected from the sun's rays and heat? Are they the rough and tumble beach denizens whose thick shells tell us of a life spent withstanding the relentless pounding of the sea? Is the oyster in your mouth thin and slimy having just done the nasty—spurred by the warming waters of Spring?
Is this oyster a local or was it shipped to your current local and, if asked, would greet you with "Kon'nichiwa?" Not if the beauty on your plate is indeed Ostrea lurida.
![]() |
Oyster in Kwak'wala is t̕łox̱t̕łox̱ |
The area is home to the Nuu-chah-nulth First Nations who have consumed this species boiled or steamed for thousands of years. Here these ancient oysters not only survive but thrive — building reefs and providing habitat for crab, anemones and small marine animals.
Oysters are in the family Ostreidae — the true oysters. Their lineage evolved in the Early Triassic — 251 - 247 million years ago.
In the Kwak̓wala language of the Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest and my family, an oyster is known as t̕łox̱t̕łox̱.
I am curious to learn if any of the Nuu-chah-nulth have a different word for an oyster. If you happen to know, I would be grateful to learn.
Wednesday, 18 December 2024
CHARLES DARWIN: A TASTE FOR STUDIES
![]() |
Chelonia. Schildkröten by Ernst Haeckel, 1904 |
The English naturalist, Charles Darwin belonged to an elite men's club dedicated to tasting exotic meats. In his first book, Darwin wrote almost three times as much about dishes like armadillo and tortoise urine as he did on the biogeography of his Galapagos finches.
From his great love of gastronomy, I am surprised any of his tasty specimens made it back from his historic voyage on the HMS Beagle — particularly the turtles.
One of the most famous scientific meals occurred one Saturday evening on the 13th of January, 1951. This was at the 47th Explorers Club Annual Dinner (ECAD) when members purportedly dined on a frozen woolly mammoth.
Commander Wendell Phillips Dodge was the promotor of the banquet. He sent out press notices proclaiming the event's signature dish would be a selection of prehistoric meat. Whether Dodge did this simply to gain attendees or play a joke remains a mystery.
The prehistoric meat was supposedly found at Woolly Cove on Akutan in the Aleutians Islands of Alaska, USA, by the eminent polar explorers' Father Bernard Rosecrans Hubbard, American geologist, explorer sometimes called the Glacier Priest, and polar explorer Captain George Francis Kosco of the United States Navy.
Fried Tarantula & Goat Eyeballs
This much-publicized meal captured the public’s imagination and became an enduring legend and source of pride for the Club, popularizing an annual menu of exotics that continues today. The Club is well-known for its notorious hors d’oeuvres like fried tarantulas and goat eyeballs as it is for its veritable whose who of notable members — Teddy Roosevelt, Neil Armstrong, Buzz Aldrin, Roy Chapman Andrews, Thor Heyerdahl, James Cameron.
The Yale Peabody Museum holds a sample of meat preserved from the 1951 meal, interestingly labelled as a South American Giant Ground Sloth, Megatherium, not Mammoth. The specimen of meat from that famous meal was originally designated BRCM 16925 before a transfer in 2001 from the Bruce Museum to the Yale Peabody Museum of Natural History (New Haven, CT, USA) where it gained the number YPM MAM 14399.
The specimen is now permanently deposited in the Yale Peabody Museum with the designation YPM HERR 19475 and is accessible to outside researchers. The meat was never fixed in formalin and was initially stored in isopropyl alcohol before being transferred to ethanol when it arrived at the Peabody Museum. DNA extraction occurred at Yale University in a clean room with equipment reserved exclusively for aDNA analyses.
In 2016, Jessica Glass and her colleagues sequenced a fragment of the mitochondrial cytochrome-b gene and studied archival material to verify its identity, which if genuine, would extend the range of Megatherium over 600% and alter views on ground sloth evolution.
Mammoth, Megatherium — Green Sea Turtle
Their results showed that the meat was not Mammoth or Megatherium, but a bit of Green Sea Turtle, Chelonia mydas. So much for elaborate legends. The prehistoric dinner was likely meant as a publicity stunt.
Glass's study emphasizes the value of museums collecting and curating voucher specimens, particularly those used for evidence of extraordinary claims. Not so long before Glass et al. did their experiment, a friend's mother (and my kayaking partners) served up a venison steak from her freezer to dinner guests in Castlegar that hailed from 1978. Tough? Inedible? I have it on good report that the meat was surprisingly divine.
Reference: Glass, J. R., Davis, M., Walsh, T. J., Sargis, E. J., & Caccone, A. (2016). Was Frozen Mammoth or Giant Ground Sloth Served for Dinner at The Explorers Club?. PloS one, 11(2), e0146825. https://doi.org/10.1371/journal.pone.0146825
Image: Chelonia. Schildkröten by Ernst Haeckel, 1904, Prints & Photographs Division, Library of Congress, LC-DIG-ds-07619.
Join the Explorer's Club
Fancy yourself an explorer who should join the club? Here is a link to their membership application. The monied days of old are still inherent, but you will be well pleased to learn you can now join for as little as $50 US.
Link: https://www.explorers.org/wp-content/uploads/Membership-Application_2021-11-19.pdf
Saturday, 14 December 2024
BARNACLES: K'WITA'A
They choose their permanent homes as larvae, sticking to hard substrates that will become their permanent homes for the rest of their lives. It has taken us a long time to find how they actually stick or what kind of "glue" they were using.
Remarkably, the barnacle glue sticks to rocks in a similar way to how red cells bind together. Red blood cells bind and clot with a little help from some enzymes.
These work to create long protein fibres that first blind, clot then form a scab. The mechanism barnacles use, right down to the enzyme, is very similar. That's especially interesting as about a billion years separate our evolutionary path from theirs.
So, with the help of their clever enzymes, they can affix to most anything – ship hulls, rocks, and even the skin of whales. If you find them in tidepools, you begin to see their true nature as they open up, their delicate feathery finger-like projections flowing back and forth in the surf.
One of my earliest memories is of playing with them in the tidepools on the north end of Vancouver Island. It was here that I learned their many names. In the Kwak'wala language of the Pacific Northwest, the word for barnacles is k̕wit̕a̱'a — and if it is a very small barnacle it is called t̕sot̕soma — and the Kwak'wala word for glue is ḵ̕wa̱dayu.
Wednesday, 11 December 2024
OF LAND AND SEA
Some dipped a toe or two into freshwater ponds, but make no mistake, they were terrestrial. Each of these animals had ancestors that tried out the sea and decided to stay. They evolved and employed a variety of adaptations to meet their new saltwater challenges. Some adapted legs as fins, others became more streamlined, and still, others developed specialized organs to extract dissolved oxygen from the water through their skin or gills. The permutations are endless.
Returning to the sea comes with a whole host of benefits but some serious challenges as well. Life at sea is very different from life on land. Water is denser than air, impacting how an animal moves, sees and hears. More importantly, it impacts an air-breathing animal's movement on a pretty frequent basis. If you need air and haven't evolved gills, you need to surface frequently. Keeping your body temperature at a homeostatic level is also a challenge as water conducts heat much better than air. Even with all of these challenges, the lure of additional food sources and freedom of movement kept those who tried the sea in the sea and they evolved accordingly.
Most major animal groups appear for the first time in the fossil record half a billion years ago. We call this flourishing of species the Cambrian Explosion. While this was a hugely intense period of species radiation, the evolutionary origins of animals are likely to be significantly older. About 700 million years ago the Earth was covered in ice and snow. This was an ice age so intense we refer to this time in our ancient history as Snowball Earth. Once that ice receded, it exposed rocks that contained a variety of weird and wonderful fossils that speak to ancient animals that are only now being studied.
Dr Frankie Dunn, a palaeontologist and an Early Career Research Fellow at the Oxford University Museum of Natural History and Merton College is one of the folks who are examining this early history of some of our first animals. Her research focuses on the origin and early evolution of animals and particularly on the fossil record of the late Ediacaran Period (570 – 540 million years ago). Dr Dunn's research is exploring ancient species like the long-extinct Rangeomorpha to help understand how animal body plans evolved in deep time well before the divergence of the extant (living) animal lineages.
Andy Temple (bless him) sent me a link for an online talk Dr Dunn is giving, The Chronicles of Charnia, Wed, June 17th at 7PM. She's based in Oxford so adjust your timezone accordingly. The talk is free but booking is required. Here's the link: https://event.webinarjam.com/
This is an interesting article from Alicia Ault writing for the Smithsonian who interviewed Nick Pysenson and Neil Kelley about some of their research that touches on this area. They published a paper on it in the journal Science. Here's the link: https://science.sciencemag.org/content/348/6232/aaa3716
And Ault's work is definitely worth a read: https://www.smithsonianmag.com/smithsonian-institution/take-deep-dive-reasons-land-animals-moved-seas-180955007/
Thursday, 5 December 2024
HOLLARDOPS: LE MAÎTRE
Hollardops sp. Devonian Trilobite |
The genus underwent reclassification in 1997 and emerged as Hollardops. We find this extinct arthropod in present-day Morocco. They share similarities with Greenops of New York and Canada but are generally larger than most Greenops species.
Hollardops have schizochroal eyes and a glabella that is slightly raised on the surface of the cephalon. Genal spines extend from the cephalon and extend to approximately the 6th thoracic segment.
Hollardops has eleven thoracic segments and also has five pairs of spines extending from the segments of the pygidium. Length ranges from approximately 3 to 9 cm.
Palaeo Coordinates — If you are a keen bean to head out in search of this lovely yourself, head to the Tazoulait Formation at Jbel (Jebel) Oufatène 30.8374368°N 4.9018067°W and Issimour 30.9669834°N 5.0373266°W SE of Alnif, western of Oued Alnif, Ma'ider region, Morocco.
Sunday, 1 December 2024
THE RHINO AND THE GREAT DEPRESSION
We have known about this gem for a long while now. The fossil was discovered by hikers back in 1935 and later cast by the University of California palaeontologists in 1948.
The Dirty Thirties & The Great Depression
These were the Dirty Thirties and those living in Washington state were experiencing the Great Depression along with the rest of the country and the world. Franklin D. Roosevelt was President of the United States, navigating the States away from laissez-faire economics.
Charmingly, Roosevelt would have his good name honoured by this same park in April of 1946, a few years before researchers at Berkeley would rekindle interest in the site.
Both hiking and fossil collecting was a fine answer to these hard economic times and came with all the delights of discovery with no cost for natural entertainment. And so it was that two fossil enthusiast couples were out looking for petrified wood just south of Dry Falls on Blue Lake in Washington State.
While searching the pillow basalt, the Frieles and Peabodys came across a large hole high up in a cave that had the distinctive shape of an upside-down rhinoceros.
This fossil is interesting in all sorts of ways. First, we so rarely see fossils in igneous rocks. As you might suspect, both magma and lava are very hot. Magma, or molten rock, glows a bright red/orange as it simmers at a toasty 700 °C to 1300 °C (or 1300 °F to 2400 °F) beneath the Earth's surface.
A Rhinoceros Frozen in Lava
During the late Miocene and early Pliocene, repeated basaltic lava floods engulfed about 63,000 square miles of the Pacific Northwest over a period of ten to fifteen million years. After these repeated bathings the residual lava accumulated to more than 6,000 feet.
As magma pushes up to the surface becoming lava, it cools to a nice deep black. In the case of our rhino friend, this is how this unlikely fellow became a fossil. Instead of vaporizing his remains, the lava cooled relatively quickly preserving his outline as a trace fossil and remarkably, a few of his teeth, jaw and bones. The lava was eventually buried then waters from the Spokane Floods eroded enough of the overburden to reveal the remains once more.
![]() |
Diceratherium tridactylum (Marsh, 1875) |
While there are likely many more, we have found fossil remains of Diceratherium, an extinct genus of rhinoceros, in the Miocene of Canada in Saskatchewan, China, France, Portugal, Switzerland, and multiple sites in the United States.
He has also been found in the Oligocene of Canada in Saskatchewan, and twenty-five localities in the United States — in Arizona, Colorado, Florida, Nebraska, North Dakota, Oregon, South Dakota, Washington and Wyoming.
Diceratherium was a scansorial insectivore with two horns and a fair bit of girth. He was a chunky fellow, weighing in at about one tonne (or 2,200 lbs). That is about the size of a baby Humpback Whale or a walrus.
Back in the Day: Washington State 15 Million-Years Ago
He roamed a much cooler Washington state some 15 million years ago. Ice dams blocked large waterways in the northern half of the state, creating reservoirs. Floodwaters scoured the eastern side of the state, leaving scablands we still see today. In what would become Idaho, volcanic eruptions pushed through the Snake River, the lava cooling instantly as it burst to the surface in a cloud of steam.
By then, the Cascades had arrived and we had yet to see the volcanic eruptions that would entomb whole forests up near Vantage in the Takama Canyon of Washington state.
Know Before You Go
You are welcome to go see his final resting site beside the lake but it is difficult to reach and comes with its own risks. Head to the north end of Blue Lake in Washington. Take a boat and search for openings in the cliff face. You will know you are in the right place if you see a white "R" a couple hundred feet up inside the cliff. Inside the cave, look for a cache left by those who've explored here before you. Once you find the cache, look straight up. That hole above you is the outline of the rhino.
If you don't relish the thought of basalt caving, you can visit a cast of the rhino at the Burke Museum in Seattle, Washington. They have a great museum and are pretty sporting as they have built the cast sturdy enough for folk to climb inside.
The Burke Museum
The Burke Museum recently underwent a rather massive facelift and has re-opened its doors to the public. You can now explore their collections in the New Burke, a 113,000 sq. ft. building at 4300 15th Ave NE, Seattle, WA 98105, United States. Or visit them virtually, at https://www.burkemuseum.org/
Photo: Robert Bruce Horsfall - https://archive.org/details/ahistorylandmam00scotgoog, Public Domain, https://commons.wikimedia.org/w/index.php?curid=12805514
Reference: Prothero, Donald R. (2005). The Evolution of North American Rhinoceroses. Cambridge University Press. p. 228. ISBN 9780521832403.
Reference: O. C. Marsh. 1875. Notice of new Tertiary mammals, IV. American Journal of Science 9(51):239-250
Lincoln, Roosevelt and Recovery from The Great Depression
Rural Tennessee has electricity for the same reason Southeast Alaska has totem parks. In order to help the nation recover from The Great Depression, President Franklin D. Roosevelt, created a number of federal agencies to put people to work. From 1938-1942 more than 200 Tlingit and Haida men carved totem poles and cleared land for the Civilian Conservation Corps in an effort to create “totem parks” the federal government hoped would draw travelers to Alaska.
This odd intersection of federal relief, Alaska Native art and marketing is the subject of Emily L. Moore’s book “Proud Raven, Panting Wolf: Carving Alaska’s New Deal Totem Parks.”
This effort to bring poles out of abandoned villages includes the Lincoln Pole being moved to Saxman Totem Park by the Civilian Conservation Corps (CCC), who established the Saxman Totem Park in 1938.
The top carving on the Lincoln Pole bears a great likeness of Abraham Lincoln. According to the teachings of many Tlingit elders, this carving was meant to represent the first white man seen in Tlingit territory in the 18th century.
A century later, in the 1880s, one of my ancestors from the Gaanax.ádi Raven clan of the Tongass Tlingit commissioned the pole to commemorate our ancestor's pride to have seen this first white man—which has become a Gaanax.ádi crest—using a photograph of Abraham Lincoln as the model.
It is important not only for these various readings of the crests but also because it claims Gaanax.ádi clan territory before the first Europeans and budding Americans came to these shores—territory that Tlingit carvers who were re-carving the pole in the 1940s were trying to assert to the U.S. government as sovereign land.
Interestingly, another pole in that same park is the Dogfish Pole, carved for Chief Ebbits Andáa, Teikweidi, Valley House. The Chief Ebbits Memorial Pole—the Dogfish Kootéeyaa Pole—was raised in 1892 in Old Tongass Village in honour of a great man, Head Chief of the Tongass and my ancestor. It was then moved, re-carved and re-painted at Saxman Totem Park in 1938 as part of Roosevelt's program—and it due to be re-carved again this year.
It tells the story of his life and the curious way he became Ebbits as he was born Neokoots. He met and traded with some early American fur traders. One of those traders was a Mister Ebbits. The two became friends and sealed that friendship with the exchanging of names.
If you would like to read more about that pole and others, I recommend, The Wolf and the Raven, by anthropologist Viola Garfield and architect Linn Forrest (my talented cousin), published in 1961 and still in print as I ordered a copy for a friend just this year.
Thursday, 28 November 2024
TRACKING WHALES WITH BARNACLES
University of California Berkeley doctoral student Larry Taylor published some clever findings on how fossil barnacles hitched a ride on the backs of humpback and grey whales millions of years ago and used this data to reconstruct the migrations of ancient whale populations.
The barnacles record details about the whales’ yearly travels in the fossil record. By following this barnacle trail, Taylor et al. were able to reconstruct migration routes of whales from millions of years in the past.
Today, Humpback whales come from both the Southern Hemisphere (July to October with over 2,000 whales) and the Northern Hemisphere (December to March about 450 whales along with Central America) to Panama (and Costa Rica). They undertake annual migrations from polar summer feeding grounds to winter calving and nursery grounds in subtropical and tropical coastal waters.
One surprise find is that the coast of Panama has been a meeting ground for humpback whales going back at least 270,000 years. To see how the barnacles have travelled through the migration routes of ancient whales, the team used oxygen isotope ratios in barnacle shells and measured how they changed over time with ocean conditions.
Did the whale migrate to warmer breeding grounds or colder feeding grounds? Barnacles retain this information even after they fall off the whale, sink to the ocean bottom, and become fossils. As a result, the travels of fossilized barnacles can serve as a proxy for the journeys of whales in the distant past.
Barnacles can play an important role in estimating paleo-water depths. The degree of disarticulation of fossils suggests the distance they have been transported, and since many species have narrow ranges of water depths, it can be assumed that the animals lived in shallow water and broke up as they were washed down-slope.
Barnacles have few predators. Their one nemesis is the whelk. It seems that catching a lifetime's ride on a passing whale would have extended their ability to feed on plankton in a variety of settings whelk-free and likely live longer than they might have cemented to something closer to the seafloor.