![]() |
Puffbird similar to Fossil Birds found at Driftwood Canyon |
Metasequoia, the Dawn Redwood |
![]() |
A Tapir showing off his prehensile nose trunk |
![]() |
Puffbird similar to Fossil Birds found at Driftwood Canyon |
Metasequoia, the Dawn Redwood |
![]() |
A Tapir showing off his prehensile nose trunk |
![]() |
Steller's Jay, Cyanocitta stelleri |
![]() |
Upper Cretaceous Haslam Formation Motocross Pit near Brannen Lake |
![]() |
Upper Cretaceous Haslam Formation Motocross Pit near Brannen Lake |
![]() |
Candoceras yokoyama, Photo: John Fam, VanPS |
![]() |
Pennsylvanian Coal Age Ecosystem, 300-Million-Years-Old |
References & further reading:
Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/
Image: Hylonomus lyelli, Una ricostruzione di ilonomo by Matteo De Stefano/MUSEThis file was uploaded by MUSE - Science Museum of Trento in cooperation with Wikimedia Italia., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=48143186
Image: Arthropleura: Par Tim Bertelink — Travail personnel, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=48915156
Joggins Map: Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/
University of California Berkeley doctoral student Larry Taylor published some clever findings on how fossil barnacles hitched a ride on the backs of humpback and grey whales millions of years ago and used this data to reconstruct the migrations of ancient whale populations.
The barnacles record details about the whales’ yearly travels in the fossil record. By following this barnacle trail, Taylor et al. were able to reconstruct migration routes of whales from millions of years in the past.
Today, Humpback whales come from both the Southern Hemisphere (July to October with over 2,000 whales) and the Northern Hemisphere (December to March about 450 whales along with Central America) to Panama (and Costa Rica). They undertake annual migrations from polar summer feeding grounds to winter calving and nursery grounds in subtropical and tropical coastal waters.
One surprising find is that the coast of Panama has been a meeting ground for humpback whales going back at least 270,000 years. To see how the barnacles have travelled through the migration routes of ancient whales, the team used oxygen isotope ratios in barnacle shells and measured how they changed over time with ocean conditions.
Did the whale migrate to warmer breeding grounds or colder feeding grounds? Barnacles retain this information even after they fall off the whale, sink to the ocean bottom, and become fossils. As a result, the travels of fossilized barnacles can serve as a proxy for the journeys of whales in the distant past.
Barnacles can play an important role in estimating paleo-water depths. The degree of disarticulation of fossils suggests the distance they have been transported, and since many species have narrow ranges of water depths, it can be assumed that the animals lived in shallow water and broke up as they were washed down-slope.
Barnacles have few predators, with their one nemesis being whelks—a type of carnivorous sea snail in the family Muricidae. Whelks feasting on barnacles reads like a bit of a horror movie thriller. The whelks bore through the barnacle's shell and ingest digestive enzymes to make a slushy barnacle stew then such up all that barnacle goodness using their proboscis like a bit of a straw.
Not surprisingly then, the offer of catching a lifetime's ride on a passing whale has both evolutionary and survival appeal. Add to that the locals facilitation of feeding on plankton within arms reach—or cirri's reach in their case as they have these lovely feather-like appendages to sweep plankton out of the water—whelk-free. All in all a much more attractive choice than being cemented to a rock on the sea floor.
![]() |
Cretaceous Plant Material / Three Brothers Formation |
![]() |
Capilano River Canyon & Regional Park |
We have known about this gem for a long while now. The fossil was discovered by hikers back in 1935 and later cast by the University of California palaeontologists in 1948.
The Dirty Thirties & The Great Depression
These were the Dirty Thirties and those living in Washington state were experiencing the Great Depression along with the rest of the country and the world. Franklin D. Roosevelt was President of the United States, navigating the States away from laissez-faire economics.
Charmingly, Roosevelt would have his good name honoured by this same park in April of 1946, a few years before researchers at Berkeley would rekindle interest in the site.
Both hiking and fossil collecting was a fine answer to these hard economic times and came with all the delights of discovery with no cost for natural entertainment. And so it was that two fossil enthusiast couples were out looking for petrified wood just south of Dry Falls on Blue Lake in Washington State.
While searching the pillow basalt, the Frieles and Peabodys came across a large hole high up in a cave that had the distinctive shape of an upside-down rhinoceros.
This fossil is interesting in all sorts of ways. First, we so rarely see fossils in igneous rocks. As you might suspect, both magma and lava are very hot. Magma, or molten rock, glows a bright red/orange as it simmers at a toasty 700 °C to 1300 °C (or 1300 °F to 2400 °F) beneath the Earth's surface.
A Rhinoceros Frozen in Lava
During the late Miocene and early Pliocene, repeated basaltic lava floods engulfed about 63,000 square miles of the Pacific Northwest over a period of ten to fifteen million years. After these repeated bathings the residual lava accumulated to more than 6,000 feet.
As magma pushes up to the surface becoming lava, it cools to a nice deep black. In the case of our rhino friend, this is how this unlikely fellow became a fossil. Instead of vaporizing his remains, the lava cooled relatively quickly preserving his outline as a trace fossil and remarkably, a few of his teeth, jaw and bones. The lava was eventually buried then waters from the Spokane Floods eroded enough of the overburden to reveal the remains once more.
![]() |
Diceratherium tridactylum (Marsh, 1875) |
While there are likely many more, we have found fossil remains of Diceratherium, an extinct genus of rhinoceros, in the Miocene of Canada in Saskatchewan, China, France, Portugal, Switzerland, and multiple sites in the United States.
He has also been found in the Oligocene of Canada in Saskatchewan, and twenty-five localities in the United States — in Arizona, Colorado, Florida, Nebraska, North Dakota, Oregon, South Dakota, Washington and Wyoming.
Diceratherium was a scansorial insectivore with two horns and a fair bit of girth. He was a chunky fellow, weighing in at about one tonne (or 2,200 lbs). That is about the size of a baby Humpback Whale or a walrus.
Back in the Day: Washington State 15 Million-Years Ago
He roamed a much cooler Washington state some 15 million years ago. Ice dams blocked large waterways in the northern half of the state, creating reservoirs. Floodwaters scoured the eastern side of the state, leaving scablands we still see today. In what would become Idaho, volcanic eruptions pushed through the Snake River, the lava cooling instantly as it burst to the surface in a cloud of steam.
By then, the Cascades had arrived and we had yet to see the volcanic eruptions that would entomb whole forests up near Vantage in the Takama Canyon of Washington state.
Know Before You Go
You are welcome to go see his final resting site beside the lake but it is difficult to reach and comes with its own risks. Head to the north end of Blue Lake in Washington. Take a boat and search for openings in the cliff face. You will know you are in the right place if you see a white "R" a couple hundred feet up inside the cliff. Inside the cave, look for a cache left by those who've explored here before you. Once you find the cache, look straight up. That hole above you is the outline of the rhino.
If you don't relish the thought of basalt caving, you can visit a cast of the rhino at the Burke Museum in Seattle, Washington. They have a great museum and are pretty sporting as they have built the cast sturdy enough for folk to climb inside.
The Burke Museum
The Burke Museum recently underwent a rather massive facelift and has re-opened its doors to the public. You can now explore their collections in the New Burke, a 113,000 sq. ft. building at 4300 15th Ave NE, Seattle, WA 98105, United States. Or visit them virtually, at https://www.burkemuseum.org/
Photo: Robert Bruce Horsfall - https://archive.org/details/ahistorylandmam00scotgoog, Public Domain, https://commons.wikimedia.org/w/index.php?curid=12805514
Reference: Prothero, Donald R. (2005). The Evolution of North American Rhinoceroses. Cambridge University Press. p. 228. ISBN 9780521832403.
Reference: O. C. Marsh. 1875. Notice of new Tertiary mammals, IV. American Journal of Science 9(51):239-250
Lincoln, Roosevelt and Recovery from The Great Depression
Rural Tennessee has electricity for the same reason Southeast Alaska has totem parks. In order to help the nation recover from The Great Depression, President Franklin D. Roosevelt, created a number of federal agencies to put people to work. From 1938-1942 more than 200 Tlingit and Haida men carved totem poles and cleared land for the Civilian Conservation Corps in an effort to create “totem parks” the federal government hoped would draw travelers to Alaska.
This odd intersection of federal relief, Alaska Native art and marketing is the subject of Emily L. Moore’s book “Proud Raven, Panting Wolf: Carving Alaska’s New Deal Totem Parks.”
This effort to bring poles out of abandoned villages includes the Lincoln Pole being moved to Saxman Totem Park by the Civilian Conservation Corps (CCC), who established the Saxman Totem Park in 1938.
The top carving on the Lincoln Pole bears a great likeness of Abraham Lincoln. According to the teachings of many Tlingit elders, this carving was meant to represent the first white man seen in Tlingit territory in the 18th century.
A century later, in the 1880s, one of my ancestors from the Gaanax.ádi Raven clan of the Tongass Tlingit commissioned the pole to commemorate our ancestor's pride to have seen this first white man—which has become a Gaanax.ádi crest—using a photograph of Abraham Lincoln as the model.
It is important not only for these various readings of the crests but also because it claims Gaanax.ádi clan territory before the first Europeans and budding Americans came to these shores—territory that Tlingit carvers who were re-carving the pole in the 1940s were trying to assert to the U.S. government as sovereign land.
Interestingly, another pole in that same park is the Dogfish Pole, carved for Chief Ebbits Andáa, Teikweidi, Valley House. The Chief Ebbits Memorial Pole—the Dogfish Kootéeyaa Pole—was raised in 1892 in Old Tongass Village in honour of a great man, Head Chief of the Tongass and my ancestor. It was then moved, re-carved and re-painted at Saxman Totem Park in 1938 as part of Roosevelt's program—and it due to be re-carved again this year.
It tells the story of his life and the curious way he became Ebbits as he was born Neokoots. He met and traded with some early American fur traders. One of those traders was a Mister Ebbits. The two became friends and sealed that friendship with the exchanging of names.
If you would like to read more about that pole and others, I recommend, The Wolf and the Raven, by anthropologist Viola Garfield and architect Linn Forrest (my talented cousin), published in 1961 and still in print as I ordered a copy for a friend just this year.
![]() |
Humpback Whale, Megaptera novaeangliae |
![]() |
Cibelella Coronata / Photo: Alexei Molchanov |
The oldest conulariid scyphozoans appeared between 635 and 577 mya in the Neoproterozoic of the Lantian Formation in China. Others are found in the youngest Ediacaran rocks of the Tamengo Formation of Brazil, c. 505 mya, through to the Triassic. Cubozoans and hydrozoans appeared in the Cambrian of the Marjum Formation in Utah, USA, c. 540 mya.
I have seen all sorts of their brethren growing up on the west coast of Canada in tide pools, washed up on the beach and swam amongst thousands of Moon Jellyfish while scuba diving in the Salish Sea. Their pulsating movements are marvellous.
In the Kwak̓wala language of the Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, jellyfish are known as ǥaǥisama.
The dreamy blue and purple ǥaǥisama you see here is but one of a large variety of colours and designs. Jellyfish come in bright yellow, orange, clear with pink spots and are often luminescent.
![]() |
Stromness Whaling Station |
Shelter Point on northern Vancouver Island is a lovely beach site where clastic strata are exposed in the intertidal platform of Oyster Bay.
The site is located just off the Island Highway, about 10 km south of downtown Campbell River and 4 km farther south along the lower Oyster River. Haggart et al. presented an abstract on this locality at the 12th British Columbia Paleontological Symposium, 2018, Courtenay, abstracts; 2018 p. 28-30. I'll pop a link below if you'd like to give it a read.
Shelter Point has been collected since the 1970s. No pre-glacial strata were recognized in this area by Muller and Jeletzky (1970). Richards (1975) described an abundant fauna in the beds at Shelter Point, approximately 2 km north of the Oyster Bay exposures, including the crab Longusorbis and associated ammonites and inoceramid bivalves, and he assigned these beds to the Spray Formation of the Nanaimo Group. This information, combined with the very low dip of the Oyster Bay strata and their general lithological similarity with the coarse clastic strata found commonly in the Nanaimo Group, suggested a Late Cretaceous (Campanian) age of the Oyster Bay strata.
Beginning in the 1980s, fossil collectors from the Vancouver Island Palaeontological Society began amassing significant collections of fossils from the strata of southern Oyster Bay that are found several hundred metres southeast of the local road called Appian Way, thus providing the informal moniker Appian Way Beds for these localized exposures.
While these collections included a great diversity of gastropod, bivalve, nautiloid, scaphopod, echinoderm, and coral specimens, as well as impressive collections of plant materials, much previously undescribed, no taxa found commonly in Campanian strata of the Nanaimo Group were noted in these collections; particularly lacking were ammonites and inoceramid bivalves. For this reason, the hypothesis began to emerge that the Appian Way Beds of Oyster Bay were of younger, post-Cretaceous, age than thought previously.
Just how young, however, has been a source of some controversy, with different parties continuing to favour the traditional Campanian age — based on lithostratigraphy — others a Paleocene age, and still others an Eocene age — based on plant macrofossils.
Fossil Collecting at Shelter Point:
Fossil Collecting at Shelter Point |
Industrious collectors unwilling to wait for the tide have employed rubber boots to wade through knee-deep water — rubber boots are highly recommended in any case — and even headlamps to capitalize on low tides during the night.
Bring eye protection, rain and sun appropriate clothing, hardy footwear and sunscreen to safely enjoy this lovely family trip.
The fossils, mainly the crab, Longusorbis and the straight ammonite Baculites, occur only in the gritty concretions that weather out of the shale. You'll need a rock hammer to see the lovelies preserved inside. Best to hold the concretion in your hand and give it one good tap. Aside from the fossils, check out the local tide pools and sea life in the area. Those less interested in the fossils can look for seals and playful otters basking on the beaches.
References:
Haggart, J. et al. 58 million and 25 years in the making: stratigraphy, fauna, age, and correlation of the Paleocene/Eocene sedimentary strata at Oyster Bay and adjacent areas, southeast Vancouver Island, British Columbia; https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=308471
![]() |
Dendrerpeton acadianum, an extinct amphibian |
These little cuties belong to an extinct genus of amphibians who loved wet, swampy wetlands similar to those we find in the bayous of Mississippi today.
Dendrerpeton is the primitive sister-group to a clade of Temnospondyls that includes Trimerorhachoids, the Eryopoids — Ervops, Parioxys, & Sclerocephalus — Zatracheids & Dissorophoids.
This little guy along with finding the first true reptile, Hylonomus lyelli, ancestor of all dinosaurs that would rule the Earth 100 million years later serve as the reference point where animals finally broke free of the water to live on land. This evolutionary milestone recorded at Joggins remains pivotal to understanding the origins of all vertebrate life on land, including our own species.
![]() |
Joggins records life in a once a wet, swampy wetland |
In the inky blackness of the deep sea, more than 90% of the animals are luminescent. It is quite a startling number but makes good sense when you think of the edge bioluminescence provides.
The ability to generate light helps umpteen animals find mates, attract prey and avoid predation. Handy stuff, light.
What you know about light above the surface does not hold true for the light you see as bioluminescence. Its energy and luminosity come from a chemical reaction.
In a luminescent reaction, two types of chemicals — luciferin and luciferase — combine together. Together, they produce cold light — light that generates less than 20% thermal radiation or heat.
The light you see is produced by a compound called Luciferin. It is the shiny, showy bit in this chemical show. Luciferase acts as an enzyme, the substance that acts as a catalyst controlling the rate of chemical reactions, allowing the luciferin to release energy as it is oxidized. The colour of the light depends on the chemical structures of the chemicals. There are more than a dozen known chemical luminescent systems, meaning that bioluminescence evolved independently in different groups of organisms.
Coelenterazine is the type of luciferin we find in shrimp, fish and jellyfish. Dinoflagellates and krill share another class of unique luciferins, while ostracods or firefleas and some fish have a completely different luciferin.
The luciferase found in dinoflagellates is related to the green chemical chlorophyll found in plants. Bioluminescent dinoflagellates are a type of plankton — teensy marine organisms that make the seaways shimmer like the Milky Way as you swim through them.
Their twinkling lights are brief, each containing about 100 million photons that shine for a tenth of a second. While each individual flicker is here and gone in the wink of an eye, en masse they are awe-inspiring. I have spent many wondrous evenings scuba diving amongst these glittering denizens off our shores.
![]() |
Cotylorhiza Tuberculata Jellyfish |
Bacteria and fireflies have unique luminescent chemistries. Fireflies light up when oxygen combines with calcium, adenosine triphosphate (ATP) and luciferin in the presence of luciferase.
For bacteria, the world stage of luminosity is quite small — and a bit gormless. Just how much light they emit and when is a free-for-all. Not so for the rest of our bioluminescent friends who have very precise control over when they shine and just how bright.
Bioluminescence comes in a variety of colours, from blue through red. The colour is based on the chemistry, which involves a substrate molecule called luciferin, the source of energy that goes into light, and an enzyme called luciferase or photoprotein.
In the ocean, bioluminescence is mostly blue-green or green. You would think that blues and green would not show up all that well in our seas but, surprisingly, they do. While sound travels better through saltwater than air, it is the reverse for light.
Various colours of light do not transmit equally through saltwater. Once we move deeper than the top layer of the ocean warmed by the sun and brimming with nutrients, the epipelagic zone, and move deeper through the mesopelagic, deeper and deeper still to the bathypelagic, frigid abyssalpelagic and finally the deep trenches of the icy pressure and all but inhospitable hadalpelagic, less and less light — until no light — gets through.
It is the twilight of the mesopelagic, 200 - 1000 metres below the surface, that is the sweet spot for most of our bioluminescent friends. Here, only very faint sunlight gets through. The water pressure is higher than at the surface but still lacks the crushing intensity of the lower zones. It is here that bioluminescence becomes a real advantage — good real estate and the showmanship of light pays gold.
We know that the deeper you go in our oceans, less and less sunlight gets through, so if the purpose of bioluminescence is to provide a signal that is noticed by prey, potential mates and predators alike, it is important that the light moves through the seawater, and not be absorbed or scattered — and this plays out in the colours evolved to be seen here.
If you have spent any time underwater, you will know that blue-green light transmits best through seawater. The deeper you go, the colours fade. Gone are the reds and yellows until everything looks brown or blue-green. Because of this, it is no surprise that blue-green is the most common colouring of bioluminescence in our oceans.
There are some exceptions to the blue-green/green colour rule — minuscule planktonic polychaete worms, Tomopteris helgolandica, emit yellow light, and deep-sea fish Malacosteus niger in the family Stomiidae, the barbeled dragonfishes, produce both red and blue.
Malacosteus niger's unique adaptation of producing red bioluminescence is only found in two other deep-sea dwelling creatures, Aristostomias and Pachystomias.
This rare form of bioluminescence can reach up to 700 nm in the deep-sea and cannot be perceived by green and blue bioluminescent organisms — granting M. niger a considerable advantage while hunting at depth.
The red light may function as an invisible searchlight of sorts because most animals in the ocean cannot see red light, while the eyes of M. niger are red-sensitive. It is much easier to find and eat something that cannot see you, particularly if it is lit up like a tasty red holiday snack.
Reference: https://latzlab.ucsd.edu/bioluminescence/