Tuesday 4 January 2022

OLENELLUS OF THE EAGER FORMATION

The partial specimen you see here is an Olenellus trilobite from the Eager Formation near Cranbrook, British Columbia.

It was exciting to crack open the rock and find a specimen, many specimens, more than half a billion years old. It is something we so rarely do but the opportunity is all around us in the many sedimentary rocks that outcrop near the surface around the globe. 

Near Cranbrook, the Eager Formation outcrops at several locations just outside of town. This particular lovely is from the Rifle Range locality and is in my collection at 98-CR-EF042 — meaning it was collected in 1998 and the 42nd find of the day. This is a prolific site and with diligent collecting, you can find many wonderful specimens of scientific and aesthetic value in the course of a day.

The Rifle Range locality sits on the Silhouette Rifle Range — which is literally on a rifle range where folks go to shoot at things.

The fossils we find here are just a shade older than those found at the Burgess Shale. Burgess is Middle Cambrian and the species match the Eager fauna one for one but the Eager fauna are much less varied. 

Olenellus is an extinct genus of redlichiid trilobites, early arthropods, that litter this glorious Cambrian site. Olenellus is the only genus currently recognised in the subfamily Olenellinae. The sister group called the Mesonacinae consists of the genera Mesonacis and Mesolenellus.

Olenellus range in size but are about 5 centimetres or 2.0 inches long on average. They lived during the Botomian and Toyonian stages, Olenellus-zone, 522 to 510 million years ago, in what is currently North America in what was part of the paleocontinent of Laurentia.

Olenellus are both common in and restricted to Early Cambrian rocks — 542 million to 521 million years old — and thus a useful Index Fossil for the Early Cambrian. 

Olenellus had a well-developed head, large and crescentic eyes, and a poorly developed, small tail. The fellow you see had a bit of his tail crushed as he turned to stone.

Trilobites were amongst the earliest fossils with hard skeletons. While they are extinct today, they were the dominant life form at the beginning of the Cambrian and it is what we find as the primary fossil in the fauna of the Eager Formation. 

A slightly crushed lingulida brachiopod
The Eager Formation has produced many beautifully preserved Wanneria, abundant Olellenus and a handful of rare and treasured Tuzoia and Anomalocaris claws. The shale matrix lends itself to amazing preservation. 

The specimens of Wanneria from here are impressively large. Some are up to thirteen centimetres long and ten centimetres wide. You find a mixture of complete specimens and head impressions from years of perfectly preserved moults.

From July 21 to 31, 2015, the Royal Ontario Museum (ROM), under the direction of Dr. Jean-Bernard Caron carried out a palaeontological dig at an exposure of the Eager Formation that outcrops between Cranbrook and  Fort Steele in the East Kootenay Region of British Columbia. 

The team included David George (APS), Dr. Bob Gaines (Pomona College), Dr. Jean-Bernard Caron (ROM), Dr. Gabriela Mangano (University of Saskatchewan), Maryam Akrami (ROM), Darrell Nordby (APS), Joe Moysiuk (University of Toronto), and local, Guy Santucci (APS and project field co-ordinator), and Dr. Mark Webster (University of Chicago).

Dr. Caron was interested in the fauna of the Eager Formation as there is an overlap with the Burgess Shale species — the Eager is a window into time 513 million years ago — 8 million years earlier than the Burgess. 

Lower Cambrian Brachiopod
They found the usual suspects, including multiple specimens of Wanneria dunnae and Olenellus ricei along with the rarer genus Mesonacis, in addition to specimens of the elusive Tuzoia

They also found a block with at least 112 individual trilobites (mostly moulted cephalons) of Olenellus ricei and Wanneria dunnae

The most exciting of their finds included a sponge, Anomalocaris, Morania (a cyanobacterial growth), and a hyolithid similar to the Burgess Haplophrentis.

They also found many trace fossils. There was a particularly fetching 30 cm trace fossil, likely from a large Wanneria, that I hope Dr. Mángano or one of her graduate students lend their gaze — Gabriela is a particularly good writer. 

She is co-editor of Palaios, in addition to being a member of the editorial board of a number of journals, including Journal of Paleontology, Paleontologia Electronica, Palaeogeography Palaeoclimatology Palaeoecology, Ameghiniana, and Revista Brasilera de Paleontologia. Gabriela is a member of the Scientific Board of the UNESCO International Geoscience Program (IGCP), member of the SEPM Board, and Treasurer of the International Ichnological Association. Add all that to extensive fieldwork and supervising over fifteen graduate students and postdoctoral fellows — she's an amazing woman.

Their excavation of the site was thorough — reducing all of the potentially fossil-bearing strata to pieces the size or smaller than a dinner plate. The 2015 team used a backhoe to take off the weathered top layer and get down to the bedrock below.

It has been six years since their visit and we will hopefully see some worthy publications from their efforts. There had been talk of multiple publications stemming from the spectrum of species, a comparison to the Burgess fauna and papers on the trace fossils. I checked in with Joe Moysuik from the University of Toronto who had been on the dig in 2015. To his knowledge, no new papers have yet to be published — though, Caron has been a busy bee on a sexy new nektobenthic suspension feeder from the Burgess material. I am rather hoping their team sorts out the naming of some of the species and gets them to publication so we can finally put them to bed.

Days after my correspondence with Moysuik, Chris Jenkins, a Cranbrook local and huge contributor to our knowledge of Upper Cambrian trilobites, shared an exciting find. 

He and Don Askew had ventured out together for their first fossil field trip of 2021 — and made a rather auspicious start to the year. 

The two had met some 10 years previous when Don, an avid outdoorsman and Jenkins' neighbour, had wandered over to see what all the rocks were about in Jenkins' yard. 

Tales of trilobites and a lifelong friendship ensued. It was also the beginnings of shared fieldwork. This time, it was to outcrops of the Eager Formation just outside of Cranbrook. Together, the two unearthed a three-foot-wide band of Eager Formation bedrock. Not unusual in and of itself — but instead of the usual trilobites — this rock revealed several varieties of Lower Cambrian brachiopods. 

Jenkins shared photos of at least three different types of brachiopods — potentially new fauna for the Eager. Although they superficially resemble the molluscs that make modern seashells, they are not related. Brachiopods were the most abundant and diverse fossil invertebrates of the Paleozoic — over 4500 genera known; the number of species is far greater. So, naturally, we had expected to find brachiopods in the Eager Formation as they were abundant in Lower Cambrian seas — but so far they had eluded us.

And, interestingly, the rock containing the brachiopods is devoid of any trilobite specimens — not a one. Have they found a wee slip of the Eager Formation that records a nearshore environment or have they stumbled across a segment that records another time period altogether?

The brachiopods you see in the photos above are roughly 1/4 inch to 3/4 inches. Should Caron and team return to the site, these new brachiopods will be of great interest as they look to rewrite the geology and palaeontology of the site and region. 

Monday 3 January 2022

FRANZ BOAS WITH THE HUNT FAMILY 1894

This photograph was taken in 1894 of Franz Boas with the Hunt family.

Back row, left to right: Sam Hunt, George Hunt, Mary Ebbets Hunt (Anislaga/Anéin)

(George’s mother), Franz Boas; standing left to right: Lalaxs’a (wife of David Hunt, not pictured), Jonathan Hunt; seated left to right:

Emily Hunt (holding Marion Hunt), Lucy Hunt; kneeling left to right:

Mary Hunt, George Hunt Jr. Photographed by Oregon C. Hastings.

Courtesy of the American Philosophical Society, APS 466.

Sunday 2 January 2022

FOSSIL HUNTRESS — PALAEO SOMMELIÈR

Geeky Palaeo Goodness from the Fossil Huntress — Palaeo Sommelièr — musings in natural history meant to captivate, educate & inspire! Listen to the Fossil Huntress Podcast on Spotify, Apple iTunes & Anchor — Dead Sexy Science for your ears!

Why Palaeo Sommelièr? 

For many years, I used the title Explorer-in-Residence until one day, I noticed that many National Geographic colleagues had adopted it. So, Palaeo Sommelièr was born.

A sommelier (/ˈsɒməljeɪ/ or /sʌməlˈjeɪ/ or /sɒˈmɛlijeɪ/; French pronunciation: ​[sɔməlje]), or wine steward, is a trained and knowledgeable wine professional, normally working in fine restaurants, who specializes in all aspects of wine service as well as wine and food pairing. 

A sommelièr is a fossil steward — a trained and knowledgeable fossil professional, normally working in science communication with a specialization in palaeontology. As I live in British Columbia, and by law, everyone here who finds a fossil is a steward of the fossil, it is the perfect pairing. 

CARNOTAURUS: FLESH-EATING BULL

Carnotaurus sastrei, a genus of large theropod dinosaurs that roamed the southern tip of Argentina, South America during the Late Cretaceous, 72 to 69.9 million years ago. His name means "flesh-eating bull,' and he lives up to it.

This fellow — or at least his robust skull with the short, knobby eyebrow horns and fierce-looking teeth — is on display at the Natural History Museum in Madrid, Spain. For now, he is the only known genus of this species of bipedal predator.

The first specimen of Carnotaurus sastrei was found in Chubut on vast plains between the Andes Mountains and the Atlantic Ocean. A physician, Dr. A'ngel Tailor noticed a large concretion showing some bone fragments. A team led by José F. Bonaparte excavated the find in 1984 as part of a paleontological expedition funded by the Argentine Museum of Natural Sciences.

Sadly, Bonaparte — the Maestro del Mesozoico — passed away the 18th February 20220 at the age of 91. He spent the majority of his career as head of the Vertebrate Palaeontology Division of the Museo Argentino de Ciencias Naturales “Bernardino Rivadavia,” in Buenos Aires. Bonaparte opened up the vertebrate finds of Argentina to the world. He was instrumental in the finding, excavating and naming many iconic dinosaurs — Carnotaurus, Amargasaurus, Abelisaurus, Argentinosaurus, Noasaurus along with the finding of the first fossilised remains of Mesozoic South American mammals. He mentored many palaeontologists who will miss his keen eye and tremendous work ethic — Luis Chiappe, Rodolfo Coria, Agustín Martinelli, Fernando Novas, Jaime Powell, Guillermo Rougier, Leonardo Salgado, Sebastián Apesteguía and many others.

His excavation of Carnotaurus was the first of its kind and he recognized that the skull is quite unusual. Initially, it has a very marine reptile feel — but make no mistake this guy is clearly a terrestrial theropod. He had smallish, underdeveloped arms — teeny by theropod standards. Once you look closer you see his bull-like horns from whence he gets his name — horns that imply battle between rivals for the best meal, sexual partner and to be the one who leads the herd. 

He was covered in leathery skin lined with rows of cone-shaped nodules or bumps. These get larger as they move towards his spine. He had forward-facing eyes, similar to tyrannosaurs like T-rex and smaller theropods like Velociraptor and Troodon — who had better vision even that T-rex — which would have given him the advantage of binocular vision and depth perception. Forward-facing eyes are also quite helpful with nocturnal hunting — think owls and cats — as they take in more light and help with nighttime predation. So perhaps this flesh-eating bull fancied a late-night snack on his menu from time to time.

Species like squirrels, pigeons and crocodiles have eyes on the sides of their heads. They lack the important competitive feature of well-developed depth perception — being able to easily and estimate distance — but perhaps make up for it with a panorama that offers a wider field of view.   

Saturday 1 January 2022

BLACK-SPOTTED YELLOW SEAHORSE

The glorious black-spotted lemon yellow lovely you see here is a seahorse. They are one of the fairytale creatures that I was pleased to see truly exist. These marine lovelies are any of 46 species of small marine fish in the genus Hippocampus. 

Hippocampus comes from the Ancient Greek hippókampos (ἱππόκαμπος) — a cobbling together of híppos (ἵππος) meaning horse and kámpos (κάμπος) meaning sea monster.  

A delightful albeit tad sinister name for these charming wee sea monster horses from our world's shallow tropical and temperate seas. 

Having a head and neck suggestive of a horse, seahorses also feature segmented bony armour, wee tiny, spiny plates from tip to tail. They bob about in seagrasses, gripping with their curled prehensile tails when they want to stay in one place or using their dorsal or back fin to help them move up and down to swim about. Along with the pipefishes and seadragons — Phycodurus and Phyllopteryx — they form the fused jaw family Syngnathidae. The fellow you see here looks like he's nestled in a holiday display. He's not, of course, but it is not such a hard thing to image considering I once believed them to be fictional.

Friday 31 December 2021

CTENOPHORES: COMB JELLIES

Cannibalistic Comb Jellies
This festive lantern looking lovely belongs to a group of invertebrates known as comb jellies.

Comb jellies are named for their unique plates of giant fused cilia, or combs, which run in eight rows up and down the length of their bodies. They are armed with sticky cells or colloblasts, that do not sting but display wonderful bioluminescent colouring as they move through the sea.

Ctenophores or comb jellies are one of the phylogenetically most important and controversial metazoan groups. They are not jellyfish and are not closely related, though they do share some characteristics with the gelatinous members of the subphylum Medusozoa. 

Comb jellies are not picky eaters. Their tastes range to what is at hand, including cannibalizing other comb jellies. They will feast on their kin along with tasty plankton, zooplankton, crustaceans and wee fish.

Interest in their fossil record has been catalysed by spectacularly preserved soft-bodied specimens from Cambrian Lagerstätten of the 518-million-years-old Chengjiang Biota, the 505-million-years-old Burgess Shale and other Burgess Shale-like deposits. 

We find them in the Late Devonian Escuminac Formation at Miguasha National Park, Quebec, Canada — a UNESCO world heritage site famous for its abundance of well-preserved vertebrate fossils including most major evolutionary groups of Devonian lower vertebrates from jawless fish to stem-tetrapods.

Based on morphological similarities of this Canadian fossil with stem-ctenophore fossils from the Cambrian Lagerstätte of the Chinese locality Chengjiang, they have been assessed for their affinity to stem-group ctenophores (dinomischids, Siphusauctum, scleroctenophorans) and early crown-group ctenophores. Modern ctenophores and many fossil forms lack mineralized hard parts, which renders the rare fossils that have been extracted from several Lagerstätten quite remarkable. 

Like the soft bodies of jellyfish and the polyps of hydrozoans and anthozoans, the probability for such soft bodies (or body regions) to become fossilized is extremely low. In spite of this low preservation potential, remains of stem-ctenophores have become known from several Cambrian and younger conservation deposits, and with even older candidate ctenophores in the Ediacaran. 

While Cambrian Lagerstätten have yielded several genera, ctenophore remains are much rarer in the Devonian; in particular, two studies, describing material from the German Hunsrück Slate. 

Bioluminescent Comb Jellies
This Early Devonian material, however, appears to belong to crown ctenophores morphologically similar to living forms such as Pleurobrachia, unlike the stem Cambrian taxa and the new Devonian stem taxon described here.

The most basal stem ctenophores are the dinomischids: sessile benthic petaloid invertebrates, many of which are equipped with a stalk. This group first was described from the Middle Cambrian Burgess Shale. Based on the genus Dinomischus, these early stalked forms were commonly called ‘dinomischids’. 

Zhao et al. shared that dinomischids "form a grade in the lower part of the ctenophore stem group” and include taxa such as Xianguangia, Daihua, and Dinomischus that have hexaradiate-based symmetry (e.g., sixfold, 18-fold). 

Some later, skeletonised stem-ctenophores were termed ‘Scleroctenophora’; ‘scleroctenophorans’ have a shorter stalk, lack the ‘petals’ and have no bracts and might be monophyletic. 

To date, all known dinomischids and scleroctenophorans are Cambrian. Remarkably, analysis of the material described here suggests it is a very late-surviving member of this part of the ctenophore tree, occurring in strata over a hundred million years younger with no intervening known record, thus making it a Lazarus taxon with an extensive ghost lineage. 

Palaeozoic sediments yield a growing number of fossil invertebrates with radial symmetries, some being quite enigmatic with body plans differing radically from those of extant organisms.

The morphological similarities to Cambrian forms and the mix of characters regarding overall shape and symmetries render this discovery important. The aims of this study are to describe the only known specimen of this Devonian ctenophore, discuss its phylogenetic and systematic position, and the impact of fossil data for ctenophore affinities, and assess its palaeoecological role.

Thursday 30 December 2021

FRAGILE BEAUTY: FOSSILIZED SCLERACTINIAN CORAL

Scleractinian Fossil Coral, Florida
The delicate wintery beauty you see here is a Scleractinian coral we find first in the fossil record in the Mesozoic. 

Corals first appeared in the Cambrian about 535 million years ago. Fossils are extremely rare until the Ordovician period, 100 million years later, when rugose and tabulate corals became widespread. 

Palaeozoic corals seem to make friends wherever they live and often contain numerous endobiotic symbionts.

Tabulate corals occur in limestones and calcareous shales of the Ordovician and Silurian periods, and often form low cushions or branching masses of calcite alongside rugose corals. 

Their numbers began to decline during the middle of the Silurian period, and they became extinct at the end of the Permian period, 250 million years ago.

Rugose or horn corals became dominant by the middle of the Silurian and became extinct early in the Triassic period. The rugose corals existed in solitary and colonial forms and were also composed of calcite.

The famous Great Barrier Reef is thought to have been laid down about two million years ago. If you have had the pleasure of scuba diving near it to take in its modern wonders, perhaps you will be interested to learn how it was formed. Over long expanses of time, the corals here have broken up, fragmented and died. Sand and rubble accumulate between the corals, and the shells of clams and other molluscs decay to form a gradually evolving calcium carbonate structure to what you view today. 

Coral reefs are extremely diverse marine ecosystems hosting over 4,000 species of fish, massive numbers of cnidarians, molluscs, crustaceans, and many other animals.

Wednesday 29 December 2021

JURASSIC SEA URCHIN: AM'DA'MA

This lovely little biscuit is a Holectypus sea urchin from 120 million-year-old deposits from the Lagniro Formation of Madagascar.

The specimen you see here is in the collections of my beautiful friend Ileana. She and I were blessed to meet in China many years ago and formed an unbreakable bond that happens so few times in one's life. 

Holectypus are a genus of extinct echinoids related to modern sea urchins and sand dollars. They were abundant from the Jurassic to the Cretaceous (between 200 million and 65.5 million years ago).

This specimen is typical of Holectypus with his delicate five-star pattern adorning a slightly rounded test and flattened bottom. The specimen has been polished and was harvested both for its scientific and aesthetic value. 

I have many wonderful memories of collecting their modern cousins that live on the north end of Vancouver Island and along the beaches of Balaklava Island. In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, sea urchins are known as a̱m'da̱'ma and it is this name that I hear in my head when I think of them.

In echinoids, the skeleton is almost always made up of tightly interlocking plates that form a rigid structure or test — in contrast with the more flexible skeletal arrangements of starfish, brittle stars, and sea cucumbers. Test shapes range from nearly globular, as in some sea urchins, to highly flattened, as in sand dollars. 

Sea Urchin Detail
Living echinoids are covered with spines, which are movable and anchored in sockets in the test. These spines may be long and prominent, as in typical sea urchins and most have lovely raised patterns on their surface. 

In sand dollars and heart urchins, however, the spines are very short and form an almost felt-like covering. The mouth of most echinoids is provided with five hard teeth arranged in a circle, forming an apparatus known as Aristotle’s lantern.

Echinoids are classified by the symmetry of the test, the number and arrangement of plate rows making up the test, and the number and arrangement of respiratory pore rows called petals. Echinoids are divided into two subgroups: regular echinoids, with nearly perfect pentameral (five-part) symmetry; and irregular echinoids with altered symmetry.

Because most echinoids have rigid tests, their ability to fossilize is greater than that of more delicate echinoderms such as starfish, and they are common fossils in many deposits. The oldest echinoids belong to an extinct regular taxon called the Echinocystitoidea. 

They first appeared in the fossil record in the Late Ordovician. Cidaroids or pencil urchins appear in the Mississippian (Early Carboniferous) and were the only echinoids to survive the mass extinction at the Permo-Triassic boundary. Echinoids did not become particularly diverse until well after the Permo-Triassic mass extinction event, evolving the diverse forms we find them in today. 

True sea urchins first appear in the Late Triassic, cassiduloids in the Jurassic, and spatangoids or heart urchins in the Cretaceous. Sand dollars, a common and diverse group today, do not make an appearance in the fossil record until the Paleocene. They remain one of my favourite echinoderms and stand tall amongst the most pleasing of the invertebrates.

Tuesday 28 December 2021

LEMURS OF MADAGASCAR

These lovelies are lemurs. They are very social and like to live in groups of half a dozen to up to 30 individuals. A female leads the group, or troop, and will likely have mated with the stinkiest — think sexiest — male. 

Once they breed, mamma will give birth to one to a half dozen pups after a gestation period of about 100 to 107 days. The wee pups cling to mamma's belly for the first few weeks of life then crawl up to live on her back for the next few months. By three to six months, the wee ones are weaned and a year to three years later, this pup will be mature and ready to mate. If all goes well, some species can live up to 30 years — rather a long life in the wild.

Lemurs are mammals of the order Primates, divided into 8 families and consisting of 15 genera and around 100 highly diverse species — 105 to be exact. They are native only to the island of Madagascar.

Most lemurs are relatively small, have a pointed snout, large eyes, and a long tail. They are arboreal, living primarily in trees and nocturnal, preferring to be active at night, snacking on leaves, shoots, fruit, flowers, tree bark, nectar and sap.

Phylogenetic, genetic, and anatomical evidence all suggest that lemurs split from other primates on Africa around 62 million years ago and that the ancestral lemur lineage had dispersed to Madagascar by around 54 million years ago. They must have come over to the island clinging to floating vegetation.

Once on the island, the lemur lineage diversified. Now there are at least 105 species of lemur, all endemic to Madagascar. They range in size from just an ounce and just 9 to 11 cm in the case of the Madame Berthe's mouse lemurs to up to 15 to 22 lbs or 7 to 10 kilograms, in the case of the Indri.

The evolutionary and biogeographic processes experienced by the lemurs are not unusual. Madagascar is home to many groups of endemic organisms with close within-group relationships. The simplest — or most parsimonious — explanation for this pattern is that, like the lemurs, the groups first arrived on the island by dispersal as a single lineage and then rapidly diversified. This diversification was likely spurred on by other geologic and geographic characteristics of Madagascar.

The east coast of the island is lined with a mountain range — and this causes different parts of the island to get drastically different amounts of rain. Hence, the island is made of many different habitat types — from deserts to rainforests — that have shifted and changed over the past 88 million years. This likely provided many opportunities for subpopulations to become isolated and evolve traits for specializing in different niches. And that likely encouraged lineages to diversify.

Today, Madagascar is one of the most diverse places on Earth. Understanding where that diversity comes from requires understanding, not just the living world, but the geologic, geographic, and climactic histories that have shaped the evolution of lineages on the island. Now, human history in the making threatens to undo tens of millions of years of evolution in just a few years of political turmoil — unless safeguards can be put in place to protect Madagascar's unique biota from the instabilities of human institutions.

Cooper, A., Lalueza-Fox, C., Anderson, S., Rambaut, A., Austin, J., and Ward, R. (2001). Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409:704-707.

Goodman, S. M., and Benstead, J. P. (2005). Updated estimates of biotic diversity and endemism for Madagascar. Oryx 39(1):73-77.

Evolution Berkeley: https://evolution.berkeley.edu/evolibrary/news/091001_madagascar

Vences, M., Wollenberg, K. C., Vieites, D. R., and Lees, D. C. (2009). Madagascar as a model region of species diversification. Trends in Ecology and Evolution 24(8):456-465.

Monday 27 December 2021

HO HO, OH! IS THAT A DINOSAUR TRACK?

This is a theropod track left by an Allosaurus walking through a muddy bank that turned to stone. These big beasties were large carnosaurian theropod dinosaurs that lived 155 to 145 million years ago.

This track and many others are at Dinosaur Ridge, a segment of the Dakota Hogback in the Morrison Fossil Area National Natural Landmark located in Jefferson County, Colorado, near the town of Morrison and just west of Denver.

The Dinosaur Ridge area is one of the world's most famous dinosaur fossil localities. Along with the dinosaur bones, you find plant fossils, crocodile bones and a variety of reptile tracks. 

In 1877, fossil excavation began at Dinosaur Ridge under the direction of palaeontologist Othniel Charles Marsh. Some of the best-known dinosaurs were found here, including Stegosaurus, Apatosaurus, Diplodocus, and Allosaurus

In 1973, the area was recognized for its uniqueness as well as its historical and scientific significance when it was designated the Morrison Fossil Area National Natural Landmark by the National Park Service. In 1989, the Friends of Dinosaur Ridge was formed to address increasing concerns regarding the preservation of the site and to offer educational programs on the area's resources.

Visit Dinosaur Ridge Morrison Fossil Area National Natural Landmark

Fancy a trip? You can visit these wonderful tracks, the Dinosaur Ridge Exhibit Hall and walk the trails through the tracks. They have put up helpful interpretive signs that explain the local geology, a volcanic ash bed, trace fossils, paleo-ecology, economic development of coal, oil and clay, and many other geologic and paleontological features.

There are two trails and a visitor centre at Dinosaur Ridge. The visitor centre features information on trails and a small gift shop. If you do not pack a lunch, you'll want to visit the Stegosaurus Snack Shack located outside the visitor centre offering coffee, cold drinks, burritos, pretzels and more. It is open from 10am-4pm Mon-Sat and 11am-4pm on Sun from June through August. 

Check updates on their website concerning Covid-19 restrictions. This is a vast site with easy trails so it makes for a great family trip when museums and other indoor facilities are closed.

Know Before You Go

Uncover Colorado: https://www.uncovercolorado.com/landmarks/morrison-golden-fossil-areas-dinosaur-ridge/

Sunday 26 December 2021

AWKWARD AND AWESOME: DIMORPHODON

This remarkable fellow is Dimorphodon — a genus of medium-sized pterosaur from the Early Jurassic. He is another favourite of mine for his charming awkwardness.

You can see this fellow's interesting teeth within his big, bulky skull. Dimorphodon had two distinct types of teeth in their jaws — an oddity amongst reptiles — and also proportionally short wings for their overall size. 

Just look at him. What an amazing beast. We understand their anatomy quite well today, but can you imagine being the first to study their fossils and try to make sense of them. 

The first fossil remains now attributed to Dimorphodon were found in England by fossil collector Mary Anning, at Lyme Regis in Dorset, the United Kingdom in December 1828. While she faced many challenges in her life, she was blessed to live in one of the richest areas in Britain for finding fossils. 

She walked the beaches way back in the early 1800s of what would become the Jurassic Coast UNESCO World Heritage Site. The Jurassic Coast holds some of the most interesting fossils ever found — particularly within the strata of the Blue Lias which date back to the Hettangian-Sinemurian. It is one of the world’s most famous fossil sites. Millions come to explore the eroding coastline looking for treasures that provide delight and inspiration to young and old.

These fossil treasures provide us with tremendous insights into our world 185 million years ago when amazing animals like Dimorphodon ruled the skies. 

Mary's specimen was acquired by William Buckland and reported in a meeting of the Geological Society on 5 February 1829. Six years later, in 1835, William Clift and William John Broderip built upon the work by Buckland to publish in the Transactions of the Geological Society, describing and naming the fossil as a new species. 

As was the case with most early pterosaur finds, Buckland classified the remains in the genus Pterodactylus, coining the new species Pterodactylus macronyx. The specific name is derived from Greek makros, "large" and onyx, "claw", in reference to the large claws of the hand. The specimen, presently NHMUK PV R 1034, consisted of a partial and disarticulated skeleton on a slab — notably lacking the skull. Buckland in 1835 also assigned a piece of the jaw from the collection of Elizabeth Philpot to P. macronyx

Later, the many putative species assigned to Pterodactylus had become so anatomically diverse that they began to be broken into separate genera.

In 1858, Richard Owen reported finding two new specimens, NHMUK PV OR 41212 and NHMUK PV R 1035, again partial skeletons but this time including the skulls. Having found the skull to be very different from that of Pterodactylus, Owen assigned Pterodactylus macronyx its own genus, which he named Dimorphodon

His first report contained no description and the name remained a nomen nudum. In 1859, however, a subsequent publication by Owen provided a description. After several studies highlighting aspects of Dimorphodon's anatomy, Owen finally made NHMUK PV R 1034 the holotype in 1874  — 185 million years after cruising our skies the Dimorphodon had finally fully arrived.

Saturday 25 December 2021

GOD JUL: TRILACINOCERAS NORVEGICUM

Trilacinoceras norvegicum
A lovely example of Trilacinoceras norvegicum (Sweet, 1958), a nektonic carnivorous cephalopod from Ordovician outcrops on Helgö Island, Hovindsholm, Helgøya, Lake Mjosa, Norway.

This has been a site of human habitation for more than 5,000 years. Vikings, kings, traders, farmers —  and geologists have walked these fields.

To give that timeframe a bit of context, that's about the age of Skara Brae, the Neolithic settlement in Orkney, Scotland — and older than Stonehenge which clocks in at 3000 BC to 2000 BC and the Great Pyramids — built around 2560 BC.

For my friend, Gale Bishop, that's about 469 km west or a good 7-hour drive from your ancestral home in Ask, just north of Bergen and just south of Knarvik where many of my relatives live — Hei du!

The fossils found here are part of the Engervik Member, Elnes Formation, Aseri, and date back to the Middle Ordovician, 463.5 - 460.9 million years ago. W. C. Sweet did fossil fieldwork here in the 1950s and published a paper on the Middle Ordovician of the Oslo Region, Norway 10. Nautiloid Cephalopods. Norsk Geologisk Tidsskrift 38:1-178.

Deservedly, Sweetoceras boreale is named for him and is one of the most delightful species names of all time. In the 1960s, Yochelson picked up where Sweet left off, continuing the survey of the Middle Ordovician of the Oslo region. I chose this Trilacinoceras for a holiday post because their curly tops remind me of a wee Norwegian gnome, or Nisse from the Norse niðsi, a dear little relative. My Swedish relatives call them Tomte, a throwback to Saint Birgitta of Sweden in the 1300s.

Helgøya is an island in Mjøsa located in the Ringsaker municipality of Hedmark county, Norway. It was formerly a part of the Nes municipality. 

Long before that, it was the ruling centre for the Kings in Hedmark, where bold men and women held great blót celebrations to Odin and planned raids and expansion into Europe and Russia — roughly A.D. 793 — the beginning of the Viking Age.

Today, it is lush and green and easy to explore — or fish. Mjøsa is Norway's largest lake, as well as one of the deepest lakes in Norway and in Europe. 

Battles have been fought on its waters and its depths hold interesting archaeological and paleontological secrets. They also hold a goodly amount of large and tasty trout, pike, perch, burbot and graylings.

Helgøya is the largest freshwater island in Norway at 18.3 km². The island is delightful to explore and home to 32 farms. One of the most beautiful of these is the Hovinsholm manor. You can visit the farm in both summer and winter — both equally beautiful — and enjoy a café, workshop or their Christmas market. They have lush gardens and some very friendly horses you can pet — or spoil with apples, as you do. The property is massive at 2012 acres, divided into grain, potatoes and forest. It has been home to kings and court. It was a monastery in the Middle Ages from the 5th to the 15th century. Today, Tolle Hoel Slotnæs and his wife, Charlotte Holberg Sveinsen own and run the manor with their three daughters.

Hovinsholm, Helgøya, Lake Mjosa, Norway
Helgøya means holy island, in Norwegian. There is a lovely double meaning here and such layered history. The manor, in its various iterations, has been on this site since the 1500s. They had their own Christian manor church until 1612.

On the southern tip of the island, there is an old pagan temple to the Norse Gods, Thor, Frigg, Loki, Hod, Heimdall, Tyr, and Baldur.

Here, farmers of the area would gather at four blót sacrifices a year that followed the seasons — one for each of the winter solstice, spring equinox, summer solstice and autumn equinox. Animals would be sacrificed, their blood splattered on altars, walls and folk around them. Toasts were made. The first was in honour of Thor or Odin, “to the king and victory.” 

Odin, although nominally chief of the gods, was more the god of aristocrats. If a king were toasting, particularly a Danish King, it would be for Odin. If you look at place names in Scandinavia, you'll see him conspicuously absent in favour of Thor, the god of the common man.

When the farmers at Helgøya were shouting Skål, it was likely for Thor. The toasting and drinking continued with cups emptied for Njörd and Freyr and Freyja in the hope of securing a prosperous future. 

Finally, personal pledges (and beer-soaked boasts) would be made to undertake great exploits, Valknut — to die well in battle — and finally to kinsmen laid to rest now drinking with the gods in Valhalla. Weapons, jewellery and tools were thrown into the lake as offerings.

If they were gathering for Jol (Old Norse), Jul (Norwegian) or the Yule blót, they'd also make a large sun wheel (picture a circle with a cross in the middle), carve it up with runes, set it on fire and roll it down a hill. 

It was quite a celebration with the festivities going on for three days and nights. With the formalities over, people did as people do  — drink, sing, boast, play games and find someone to bed down with — Gods be good.

Thor and Odin are still going strong nearly 1,000 years after the end of the Viking Age. You'd think that the old Nordic religion — the belief in the Norse gods — disappeared with the introduction of Christianity. That is not the case. There are still folk in Denmark (Odin-lovers) and Norway (Thor's their guy) who follow the old Norse religion and worship its ancient gods — right down to the splatter.

If you visit Norway at Christmas, Jul (Yule), you'll find much more of the pagan than the Christian in the festivities. King Haakon, old Haakon the Good, Hákon Góði or Håkon den Gode,  moved the Winter Solstice or Yule, Jul, Jol blót over to match up with the Christian holiday on December 25th in his attempts to introduce Christianity in the 10th century. Both traditions are still celebrated but without an overtly religious tone.

Old traditions run deep, animals are still sacrificed (but without all the splatter), bread is baked, houses cleaned, beer is abundant and fires warmth the hearth.

After all the drinking, toasting and feasting at the Jul blót, leftover food was not cleaned up but left overnight for the little relatives. Though shy, Nisse like a good feast and failing to offer them their tithe brings ill-fortune.

But we started this journey together admiring a lovely (and oddly festive) Ordovician cephalopod. Go on, picture him in red and white with a little beard. If you fancy a visit to the Ordovician outcrops, you can find them at Nes-Hamar, Norway. 60.0° N, 11.2° E: paleo-coordinates 33.7° S, 10.3° W. Look for gastropods (five known species) and cephalopods (at least 15 species).

If you'd like to visit the burial mound of Haakon the Good, you'll want to head to Seim, Hordaland, about 10 km north of Knarvik. Good 'ol Haakon may have tried to bring Christianity to Norway but he died full Viking — taking an arrow at the Battle of Fitjar. Many of my rellies live in Knarvik. 

We have enjoyed many a sunny afternoon feasting at the Håkonarspelet summer festivals and exploring Haakon's burial mound at Håkonhaugen in Seim.

If you're more of the manor type, you can stop by Hovinsholm gård, Helgøyvegen 850, 2350 Nes på Hedmarken, Norway. 

If you're curious and want to see the farmstead, head on over to: https://www.skafferiet.no/about. 

If you need to square things up with Odin, you're on your own.

E. L. Yochelson. 1963. The Middle Ordovician of the Oslo Region, Norway. 15. Monoplacophora and Gastropoda. Norsk Geologisk Tidsskrift 43 (2):133-213.

Friday 24 December 2021

ICE, SNOW, REINDEER AND ICHTHYOSAURS: SVALBARD

Reindeer, Rangifer tarandus 
Ice, Snow, Reindeer & Ichthyosaurs — Svalbard is just what I imagine my version of Valhalla to be like, without all the mead, murder and mayhem. 

This Norwegian archipelago sits between mainland Norway and the North Pole. 

One of the world’s northernmost inhabited areas, it is known for its rugged, remote terrain of glaciers and frozen tundra sheltering polar bears, reindeer and Arctic fox. 

It is also known for reindeer. The lovelies you see here are all females as the males lose their antlers in the winter. So Rudolf and the rest of Santa's crew who pull his sleigh for him would have all been females as they are pictured with antlers. They are also shown flying across the sky, so the science gets a bit creative.

The Northern Lights or Nordlys are visible during winter, and summer brings the Midnight Sun — sunlight 24 hours a day. Norway or Norge is one of the very few locations where sunset merges into the sunrise, with no darkness in between, creating a soft, captivating twilight in which to view the world. 

The Botneheia Formation is made up of dark grey, laminated shales coarsening upwards to laminated siltstones and sandstones. South of the type area, the formation shows four coarsening-upward units. 

The formation is named for Botneheia Mountain, a mountain in Nordenskiöld Land at Spitsbergen, Svalbard. It has a height of 522 m.a.s.l., and is located south of Sassenfjorden, east of the valley of De Geerdalen. 

Svalbard, Norway
I was asked recently if folk head out in the torrential rain or ice and snow to fossil collect. I would generally say yes for those where the potential prize always outweighs the weather. For Svalbard, it is a resounding yes. 

You have to remove the snow cover — or ice if you are impatient or unlucky — to get to the outcrops here. It is well worth the effort. Beneath the icy cover, you find lovely ammonoids and bivalves. 

Tastier still, ichthyosaur remains are found here. The first Triassic ichthyosaurs from Svalbard were found in the early 20th century. Now there are quite a few Triassic and Jurassic ichthyosaur species from this archipelago.

Two ichthyosaur specimens have been recovered that are of particular interest. They comprise part of the trunk and the caudal vertebral column respectively. 

Some features, such as the very high and narrow caudal and posterior thoracic neural spines, the relatively elongate posterior thoracic vertebrae and the long and slender haemapophyses indicate that they probably represent a member of the family Toretocnemidae. 

Ichthyosaur Bones
Numerous ichthyosaur finds are known from the underlying Lower Triassic Vikinghøgda Formation and the overlying Middle to Upper Triassic Tschermakfjellet Formation, the new specimens help to close a huge gap in the fossil record of the Triassic ichthyosaurs from Svalbard. 

There is a resident research group working on the Triassic ichthyosaur fauna, the Spitsbergen Mesozoic Research Group. 

Lucky for them, they often find the fossil remains fully articulated — the bones having retained their spatial relationship to one another. 

Most of their finds are of the tail sections of primitive Triassic ichthyosaurs. In later ichthyosaurs, the tail vertebrae bend steeply downwards and have more of a fish-like look. 

In these primitive ancestors, the tail looks more eel-like — bending slightly so that the spines on the vertebrae form more of the tail. 

Maisch, Michael W. and Blomeier, Dierk published on these finds back in 2009: Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen Band 254 Heft 3 (2009), p. 379 - 384. Nov 1, 2009.

Svalbard, Norway (Norge)
Svalbard was so remote that there were no Inuit or First Nation settlements. It is certainly possible an earlier people came through these islands, but they did not leave any trace of their travels. 

The first documented travellers to explore Spitsbergen arrived in 1795 as part of a hunting expedition. They included people from the arctic town of Hammerfest in Norway's far north. They were an excellent choice as they were used to barren, inhospitable lands and sailed to discover more. 

We know them as the Coast Sámi — a hearty, rugged people probably best known in history for their chieftain, Ottar. He left Hammerfest in the 9th century to visit then join King Alfred the Great's court in a newly forming England. 

Expeditions to the remote islands of Svalbard continued into the early 1800s and finally, a settlement was eked out of the cold landscape and slowly expanded to the rest of the islands. While today the islands are called Svalbard, I would have named them for the Norwegian word for remote — fjernkontroll.

Aristoptychites euglyphus and Daonella sp.
This marvellous block is filled with Aristoptychites (syn = Arctoptychites) euglyphus (Mojsisovics, 1886) and Daonella sp., oyster-like clams or bivalves from the Middle Triassic, Ladinian, rugged windswept outcrops at the top of the Daonella Shales, Botneheia Formation, Spitzbergen, Edgeøya and Barentsøya, eastern Svalbard, Norway. 

Daonella and Monotis are important species for our understanding of biostratigraphy in the Triassic and are useful as Index fossils. 

Index fossils are fossils used to define and identify geologic periods or faunal stages. To be truly useful, they need to have a short vertical range, wide geographic distribution and rapid evolutionary development.

Daonellids preferred soft, soupy substrates and we tend to find them in massive shell beds. Generally, if you find one, you find a whole bunch cemented together in coquina. The lovely block you see here is in the collections of the deeply awesome John Fam. 

Learning Languages

The Sámi languages (/ˈsɑːmi/ SAH-mee), Sami or Saami, are a group of Uralic languages spoken by the Sámi people in Northern Europe in parts of northern Finland, Norway, Sweden, and extreme northwestern Russia. Of the world's languages, I find them the most difficult for my mind and tongue to wrap around. The Uralic languages will be familiar to you as Hungarian (Magyar nyelv), Finnish and Estonian. 

Since my Sámi is terrible, I will share a few words of Norwegian that may come in handy if you visit Svalbard and have a hankering for their tasty fossils or fossiler. To say, ice, snow, reindeer and ichthyosaurs in Norwegian, you would say: is, snø, reinsdyr og ikthyosaurer

To say, "hello, where can I find fossils?" Use, "Hei, hvor kan jeg finne fossiler?" An expression you may not need but circumstances being what they are, "That is a big polar bear," is "Det er en stor isbjørn." A solid follow-up would be, "nice bear, run..." as "Fin bjørn, løp..." Good luck with that.

Wishing you and yours the very best of the holidays however you celebrate. 

Thursday 23 December 2021

DINOFLAGELLATES: TEENSY OCEAN STARS

This showy Christmas Cracker is a Dinoflagellate

The showy royal blue Christmas cracker looking fellow you see here is a dinoflagellate. 

Bioluminescent dinoflagellates are a type of plankton — teensy marine organisms that make the seaways shimmer as you swim through them or the tide crashes them against the shore. 

The first modern dinoflagellate was described by Baker in 1753, the first species was formally named by Muller in 1773. 

The first fossil forms were described by Ehrenberg in the 1830s from Cretaceous outcrops. More dinoflagellates have lived, died and gone extinct than there are living today. We know them mainly from fossil dinocysts dating back to the Triassic. They are one of the most primitive of the eukaryotic group with a fossil record that may extend into the Precambrian. They combine primitive characteristics of prokaryotes and advanced eukaryotic features.

The luciferase found in dinoflagellates is related to the green chemical chlorophyll found in plants. Their twinkling lights are brief, each containing about 100 million photons that shine for only a tenth of a second. While each individual flicker is here and gone in the wink of an eye, en masse they are breathtaking. I have spent several wondrous evenings scuba diving amongst these glittering denizens off our shores. What you know about light above the surface does not hold true for the light you see as bioluminescence. Its energy and luminosity come from a chemical reaction. 

In a luminescent reaction, two types of chemicals — luciferin and luciferase — combine together. Together, they produce cold light — light that generates less than 20% thermal radiation or heat. 

The light you see is produced by a compound called Luciferin. It is the shiny, showy bit in this chemical show. Luciferase acts as an enzyme, the substance that acts as a catalyst controlling the rate of chemical reactions, allowing the luciferin to release energy as it is oxidized. 

The colour of the light depends on the chemical structures of the chemicals. There are more than a dozen known chemical luminescent systems, indicating that bioluminescence evolved independently in different groups of organisms.

Coelenterazine is the type of luciferin we find in shrimp, fish and jellyfish. Dinoflagellates and krill share another class of unique luciferins, while ostracods or firefleas and some fish have a completely different luciferin — but all produce lights of various colours to great effect.  

Tuesday 21 December 2021

AIOLOCERAS OF MADAGASCAR

Aioloceras besairiei (Collingnon, 1949)
A stunning example of the internal suturing with calcite infill in this sliced Aioloceras besairiei (Collingnon, 1949) ammonite from the Upper Cretaceous (Lower Albian) Boeny region of Madagascar. 

This island country is 400 kilometres off the coast of East Africa in the Indian Ocean and a wonderful place to explore off the beaten track.

Madagascar has some of the most spectacular of all the fossil specimens I have ever seen. This beauty is no exception. The shell has a generally small umbilicus, arched to acute venter, and typically at some growth stage, falcoid ribs that spring in pairs from umbilical tubercles, usually disappearing on the outer whorls. I had originally had this specimen marked as a Cleoniceras besairiei, except Cleoniceras and Grycia are not present in Madagascar. 

This lovely, seen in cross-section, is now far from home and in the collection of a wonderful friend. It is an especially lovely example of the ammonite, Aioloceras besairiei, making it a beudanticeratinae. Cleoniceras and Grycia are the boreal genera. If you'd like to see (or argue) the rationale on the name, consider reading Riccardi and Medina's riveting work from back in 2002, or Collingnon from 1949.

The beauty you see here measures in at a whopping 22 cm, so quite a handful. This specimen is from the youngest or uppermost subdivision of the Lower Cretaceous. I'd originally thought this locality was older, but dating reveals it to be from the Lower Albian, so approximately 113.0 ± 1.0 Ma to 100.5 ± 0.9 Ma.

Aioloceras are found in the Cretaceous of Madagascar at geo coordinates 16.5° S, 45.9° E: paleo-coordinates 40.5° S, 29.3° E.; and in four localities in South Africa: at locality 36, near the Mzinene River at 28.0° S, 32.3° E: paleo-coordinates 48.6° S, 7.6° E. 

We find them near the Mziene River, at a second locality north of Hluhluwe where the Mzinene Formation overlies the Aptian-Albian Makatini Formation at 28.0° S, 32.3° E: paleo-coordinates 48.6° S, 7.6° E; and at Haughton Z18, on the Pongola River in the Albian III, Tegoceras mosense beds at 27.3° S, 32.2° E: paleo-coordinates 48.0° S, 7.8° E.

If you happen to be trekking to Madagascar, know that it's big. It’s 592,800 square kilometres (or  226,917 square miles), making it the fourth-largest island on the planet — bigger than Spain, Thailand, Sweden and Germany. The island has an interesting geologic history.

Although there has been a geological survey, which was active extending back well into French colonial times, in the non-French-speaking world our geological understanding of the island is still a bit of a mystery. 

Plate tectonic theory had its beginnings in 1915 when Alfred Wegener proposed his theory of "continental drift." 

Wegener proposed that the continents ploughed through the crust of ocean basins, which would explain why the outlines of many coastlines (like South America and Africa) look like they fit together like a puzzle. Half a century after Wegener there is still no agreement as to whether in continental reconstructions Madagascar should be placed adjacent to the Tanzanian coast to the north (e.g., McElhinny and Embleton,1976), against the Mozambique-Natal coast (Flores 1970), or basically left where it is (Kent 1974, Nairn 1978).

There have been few attempts apart from McKinley’s (1960) comparison of the Karoo succession of southwestern Tanzania with that of Madagascar to follow the famous geological precept of “going to sea.” One critical reason is that although there may be a bibliography of several thousand items dealing with Madagascan geology as Besairie (1971) claims, they are items not generally available to the general public. The vital information gained of the geology of the offshore area by post-World War II petroleum exploration has remained largely proprietary. 

Without this data to draw upon, our understanding remains incomplete. I don't actually mind a bit of a mystery here. It is interesting to speculate on how these geologic puzzle pieces fit together and wait for the big reveal. Still, we have good old Besairie from his 1971, Geologie de Madagascar, and a later précis (Besairie, 1973).

We do know that Madagascar was carved off from the African-South American landmass early on. The prehistoric breakup of the supercontinent Gondwana separated the Madagascar–Antarctica–India landmass from the Africa–South America landmass around 135 million years ago. Madagascar later split from India about 88 million years ago, during the Late Cretaceous, so the native plants and animals on the island evolved in relative isolation. 

It is a green and lush island country with more than its fair share of excellent fossil exposures. Along the length of the eastern coast runs a narrow and steep escarpment containing much of the island's remaining tropical lowland forest. If you could look beneath this lush canopy, you'd see rocks of the Precambrian age stretching from the east coast all the way to the centre of the island. The western edge is made up of sedimentary rock from the Carboniferous to the Quaternary.

Red-Tailed Lemurs, Waiwai & Hedgehog
Madagascar is a biodiversity hotspot. Just as Darwin's finches on the Galápagos were isolated, evolving into distinct species (hello, adaptive radiation), over 90% of the wildlife from Madagascar is found nowhere else. 

The island's diverse ecosystems, like so many on this planet, are threatened by Earth's most deadly species, homo sapien sapiens. 

We arrived back in 490 CE and have been chopping down trees and eating our way through the island's tastier populations ever since. Still, they have cuties like this Red-Tailed Lemur. Awe, right?

Today, beautiful outcrops of wonderfully preserved fossil marine fauna hold appeal for me. The material you see from Madagascar is distinctive — and prolific.

Culturally, you'll see a French influence permeating the language, architecture and legal process. There is a part of me that pictures these lovely Lemurs chatting away in French. "Ah, la vache! Regarde le beau fossile, Hérissonne!"

We see the French influence because good 'ol France invaded sleepy Madagascar back in 1883, during the first Franco-Hova War. Malagasy (the local Madagascarian residents) were enlisted as troops, fighting for France in World War I.  During the Second World War, the island was the site of the Battle of Madagascar between the Vichy government and the British. By then, the Malagasy had had quite enough of colonization and after many hiccuping attempts, reached full independence in 1960. Colonization had ended but the tourist barrage had just begun. You can't stop progress.

If you're interested in learning more about this species, check out the Treatise on Invertebrate Paleontology, Part L (Ammonoidea). R.C. Moore (ed). Geological Soc of America and Univ. Kansas Press (1957), p L394. Or head over to look at the 2002 paper from Riccardi and Medina. 2002. Riccardi, A., C. & Medina, F., A. The Beudanticeratinae and Cleoniceratinae (Ammonitina) from the Lower Albian of Patagonia in Revue de Paléobiologie - 21(1) - Muséum d’Histoire Naturelle de la ville de Genève, p 313-314 (=Aioloceras besairiei (COLLIGNON, 1949). You have Bertrand Matrion to thank for the naming correction. Good to have friends in geeky places!

Collignon, M., 1933, Fossiles cenomaniens d’Antmahavelona (Province d’ Analalave, Madagascar), Ann. Geol. Serv. Min. Madagascar, III, 1934 Les Cephalopods du Trias inferieur de Madagascar, Ann. Paleont. XXII 3 and 4, XXII 1.

Besairie, H., 1971, Geologie de Madagascar, 1. Les terrains sedimentaires, Ann. Geol. Madagascar, 35, p. 463.

J. Boast A. and E. M. Nairn collaborated on a chapter in An Outline of the Geology of Madagascar, that is very readable and cites most of the available geologic research papers. It is an excellent place to begin a paleo exploration of the island.

If you happen to parle français, check out: Madagascar ammonites: http://www.ammonites.fr/Geo/Madagascar.htm

Monday 20 December 2021

CRINOIDS: BEAUTIES OF ECHINODERMATA

Uintacrinus socialis from Utah, USA
Crinoids are one of my favourite echinoderms. It is magical when all the elements come together to preserve a particularly lovely specimen in such glorious detail. 

If you look closely at the detail here you can see a stunning example of Upper Cretaceous, Santonian age, Uintacrinus socialis — named by O.C. Marsh for the Uinta Mountains of Utah nearly 150 years ago.  

These lovelies are best known from the Smoky Hills Niobrara Formation of central Kansas.

Crinoids are unusually beautiful and graceful members of the phylum Echinodermata. They resemble an underwater flower swaying in an ocean current. 

But make no mistake they are marine animals. Picture a flower with a mouth on the top surface that is surrounded by feeding arms. Awkwardly, add an anus right beside that mouth. 

Crinoids with root-like anchors are called sea lilies. They have graceful stalks that grip the ocean floor. Those in deeper water have longish stalks up to 3.3 ft or a meter in length. Then there are other varieties that are free-swimming with only vestigial stalks. They make up the majority of this group and are commonly known as feather stars or comatulids. 

Unlike the sea lilies, the feather stars can move about on tiny hook-like structures called cirri. It is these same cirri that allow crinoids to latch to surfaces on the seafloor. Like other echinoderms, crinoids have pentaradial symmetry. The aboral surface of the body is studded with plates of calcium carbonate, forming an endoskeleton similar to that in starfish and sea urchins.

These make the calyx somewhat cup-shaped, and there are few, if any, ossicles in the oral (upper) surface, an area we call the tegmen. It is divided into five ambulacral areas, including a deep groove from which the tube feet project, and five interambulacral areas between them. 

Crinoids are alive and well today. They are also some of the oldest fossils on the planet. We have lovely fossil specimens dating back to the Ordovician — if one ignores the enigmatic Echmatocrinus of the Burgess Shale. And they can be quite plentiful. Crinoid fossils, and in particular disarticulated crinoid columnals, can be so abundant that they at times serve as the primary supporting clasts in sedimentary rocks.

Thursday 16 December 2021

PROSAUROLOPHUS MAXIMUS

Reconstruction of Prosaurolophus maximus
Prosaurolophus maximus was a large-headed duckbill dinosaur, or hadrosaurid, in the ornithischian family Hadrosauridae.

The most complete Prosaurolophus maximus specimen had a massive skull an impressive 0.9 metres (3.0 ft) long that graced a skeleton about 8.5 metres (28 ft) long. 

He had a small, stout, triangular crest in front of his eyes. The sides of the crest are concave, forming depressions. 

The crest grew isometrically — without changing in proportion — throughout the lifetime of each individual, leading one to wonder if Prosaurolophus had had a soft tissue display structure such as inflatable nasal sacs. We see this feature in hooded seals, Cystophora cristata, who live in the central and western North Atlantic today. Prosaurolophus maximus may have used their inflatable nasal sac for a display to warn a predator or to entice the ladies, attracting the attention of a female.

When this good looking fellow was originally described by Brown, Prosaurolophus maximus was known only from a skull and jaw. Half of the skull was badly weathered at the time of examination, and the level of the parietal was distorted and crushed upwards to the side. You can imagine that these deformations in preservation created some grief in the final description.

The different bones of the skull are easily defined with the exception of the parietal and nasal bones. Brown found that the skull of the already described genus Saurolophus was very similar overall, just smaller than the skull of Prosaurolophus maximus. The unique feature of a shortened frontal in lambeosaurines is also found in Prosaurolophus maximus, and the other horned hadrosaurines Brachylophosaurus, Maiasaura, and Saurolophus. Although they lack a shorter frontal, the genera Edmontosaurus and Shantungosaurus share an elongated dentary structure.

Prosaurolophus maximus, Ottawa Museum of Nature
Patches of preserved skin are known from two juvenile specimens, TMP 1998.50.1 and TMP 2016.37.1; these pertain to the ventral extremity of the ninth through fourteenth dorsal ribs, the caudal margin of the scapular blade, and the pelvic region. 

Small basement scales (scales that make up the majority of the skin surface), 3–7 millimetres (0.12–0.28 in) in diameter, are preserved on these patches - this is similar to the condition seen in other saurolophine hadrosaurs.

More uniquely, feature scales (larger, less numerous scales which are interspersed within the basement scales) around 5 millimetres (0.20 in) wide and 29 millimetres (1.1 in) long are found interspersed in the smaller scales in the patches from the ribs and scapula (they are absent from the pelvic patches). 

Similar scales are known from the tail of the related Saurolophus angustirostris (on which they have been speculated to indicate pattern), and it is considered likely adult Prosaurolophus would've retained the feature scales on their flanks like the juveniles.

Image: Three-dimensional reconstruction of Prosaurolophus maximus. Created using the skull reconstructions in the original description as reference. (Fig. 1 and 3 in Brown 1916). According to Lull and Wright (1942), the muzzle was restored too long in its original description. The colours and/or patterns, as with nearly all reconstructions of prehistoric creatures, are speculative. Created & uploaded to Wikipedia by Steveoc 86.

Tuesday 14 December 2021

AMMOLITE: LOVE, GREED AND GLORY

Ammolite from the Bearpaw Formation
Ammolite is an opal-like organic gemstone found primarily along the eastern slopes of the Rocky Mountains of North America. 

The mining of ammolite is a serious business. I happened upon a locality while in search of fossilized oysters along the St. Mary's River in Alberta. It was one of the few times that I have ever been shot at. 

They sunk the wee boat I was using as a raft to haul my finds but I will give them credit for firing warning shots and not actually trying to hit me. With that, I can safely say that ammolite inspires strong emotions amongst fossil collectors — love, greed and glory. 

It is made of the fossilized shells of ammonites, which in turn are composed primarily of aragonite, the same mineral contained in shell nacre, with a microstructure inherited from the shell. It is one of few biogenic gemstones along with amber and pearl.

The chemical composition of ammolite is variable. Aside from aragonite, it may include a mix of calcite, silica, pyrite or wee bits and pieces of other minerals. The shell itself may contain a number of trace elements based on the chemical composition of the original sediments where it was fossilized and chemical goodies carried in from groundwater. Most anything can be found in the mix, but primarily we see aluminium, barium, chromium, copper, iron, magnesium, manganese, strontium, titanium, and vanadium. 

Its crystallography is orthorhombic, a seven-sided crystal system. Its hardness is 3.5–4.5, and its specific gravity is 2.60–2.85. The refractive index of Canadian material (as measured via sodium light, 589.3 nm) is as follows: α 1.522; β 1.672–1.673; γ 1.676–1.679; biaxial negative. Under ultraviolet light, ammolite may fluoresce a mustard yellow.

Ammolite comes from the fossil shells of the Upper Cretaceous disk-shaped ammonites Placenticeras meeki and Placenticeras intercalare, and to a lesser degree, the cylindrical baculite, Baculites compressus. The ammonites that form our Alberta ammolite inhabited a prehistoric, inland subtropical sea that bordered the Rocky Mountains — the Cretaceous Western Interior Seaway. 

As the cephalopods died, they sank to the bottom and were buried by layers of bentonitic mud that eventually became shale. Many gem-quality ammonites are found within siderite concretions. These sediments preserved the aragonite of the shells, preventing them from converting to calcite.

Ammolite: Colourful Microstructure of Aragonite
An iridescent opal-like play of colour is shown in fine specimens in shades of yellow, orange, red, green and gold. 

The iridescence is due to the microstructure of the aragonite: unlike most other gems, whose colours come from light absorption, the iridescent colour of ammolite comes from interference with the light that rebounds from stacked layers of thin platelets that make up the aragonite. 

The thicker the layers, the more reds and greens are produced; the thinner the layers, the more blues and violets predominate. Reds and greens are the most commonly seen colours, owing to the greater fragility of the finer layers responsible for the blues. 

When freshly quarried, these colours are not especially dramatic; the material requires polishing and other treatments to reveal the specimen's full-colour potential.

Ammolite itself is quite thin, generally 0.5–0.8 millimetres (0.02–0.03 inches) thick. This thin coating covers a matrix typically made up of grey to brown shale, chalky clay, or limestone. Truly, when you find these ammonites in the field, they do not look like much. They are perhaps a nice shape but often matte grey and unappealing until prepared.  

Frost shattering of these specimens is common. If left exposed to the elements the thin ammolite tends to crack and flake. Prolonged exposure to sunlight can also lead to bleaching of the generally intense colouration. The cracking results in a tessellated appearance, sometimes described as a "dragon skin" or referred to as a stained glass window pattern. 

Ammolite mined from deeper deposits may be entirely smooth or with a rippled surface. Occasionally a complete ammonite shell is recovered with its structure well-preserved: fine, convoluted lines delineate the shell chambers, and the overall shape is suggestive of a nautilus. While these shells may be as large as 90 centimetres (35.5 inches) in diameter, the iridescent ammonites — as opposed to the pyritized variety — are typically much smaller. Most fossilized shells have had their aragonite pseudomorphously replaced by calcite or pyrite, making the presence of ammolite particularly uncommon.

In 1981, ammolite was given official gemstone status by the World Jewellery Confederation (CIBJO), the same year commercial mining of ammolite began. It was designated the official gemstone of the City of Lethbridge, Alberta in 2007.

Ammolite is also known as aapoak — Kainah for "small, crawling stone" — gem ammonite, calcentine, and Korite. The latter is a Trade name given to the gemstone by the Alberta-based mining company Korite. Roughly half of all ammolite deposits are contained within the Kainah (Kainaiwa) reserve, and its inhabitants play a major role in ammolite mining. Marcel Charbonneau and his business partner Mike Berisoff were the first to create commercial doublets of the gem in 1967. They went on to form Ammolite Minerals Ltd.

Monday 13 December 2021

BELEMNITES: SQUID-LIKE CEPHALOPODS

Lower Jurassic Belemnites, Photo: Georg Laki
Belemnitida is an extinct order of squid-like cephalopods that swam our ancient seas from the Late Triassic to Late Cretaceous. 

Unlike squid, belemnites had an internal skeleton that made up the cone and it is this hard part that we often find fossilized. 

The parts are, from arms to tip: the tongue-shaped pro-ostracum, the conical phragmocone, and the pointy guard.  

When you find these as fossils, it is not intuitive as to what kind of animal they came from. This is the internal hard part of a rather soft, squishy squid-like fellow. 

Because the softer bits are often scavenged and decay, we rarely see them fossilized. Instead, we get what looks like a pointy selection of cigar-shaped goodies that are all that is left of these marine cephalopods. 

We find this fossil in many places around the world. Some friends shared where they have personally found them which I thought might be of interest to you. Arno Martini has found them in northern California, Anne Glenn finds them in Wyoming, Marco Valentin has an enviable collection from Hannover, Misburg, Germany, Juanjo Ugalde Robledo finds them in La Rioja, Spain, Barbara Hnb finds them in Normandy, Patrick Buster finds them in the Navesink Formation of New Jersey, Kim Pervis shared a monograph on Mississippian Belemnites by Rousseau. 

Georg Laki has collected many of their number in the Early Jurassic (Sinemurian/Pliensbachian) of South Luxembourg at Gasperich. I included a photo of Georg's belemnites (with permission) here for you to enjoy. He has a lovely collection that shows the variety of these fossils. 

Anatomy of a Belemnite Fossil

Other notable finds are from Scott Carpenter and his daughter who collect them on the Jurassic Coast, Gabriel Santos who collects them in Peniche, Portugal and Rossi Franco shared a belemnite he found in the building materials used to construct the Bank of Italy in Genoa. 

There are also some wonderfully preserved plates of multiple Jurassic belemnites from Mistelgau, Germany you may want to take a boo at. Imagine slate grey to honey brown Youngibelus and Paxillosus clusters on a beige matrix. Quite stunning. 

I have found them around British Columbia, as has Lloyd Rempel, including at Harrison Lake, British Columbia, Canada.