Thursday, 5 November 2020

HOLCOPHYLLOCERAS MEDITERRANEUM

There is delightful suturing on this lovely ammonite, Holcophylloceras mediterraneum, (Neumayr 1871) from Late Jurassic (Oxfordian) deposits near Sokoja, Madagasgar.

The shells had many chambers divided by walls called septa. The chambers were connected by a tube called a siphuncle which allowed for the control of buoyancy with the hollow inner chambers of the shell acting as air tanks to help them float.

We can see the edges of this specimen's shell where it would have continued out to the last chamber, the body chamber, where the ammonite lived. Picture a squid or octopus, now add a shell and a ton of water. That's him!

They were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish. They were prolific back in the day, living (and sometimes dying) in schools in oceans around the globe. We find ammonite fossils (and plenty of them) in sedimentary rock from all over the world.

In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past.

For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. Generally, deeper is older, so we use the sedimentary layers rock to match up to specific geologic time periods, rather the way we use tree-rings to date trees. A handy way to compare fossils and date strata across the globe.