![]() |
Dr. Victoria Arbour |
Specializing in ankylosaurs—the club-tailed, heavily armored dinosaurs of the Cretaceous—Arbour has become a leading voice in both the scientific community and the public eye, reshaping how we understand dinosaur evolution, biomechanics, and paleobiogeography.
Her research bridges detailed anatomical study with innovative technologies, yielding groundbreaking discoveries about how these ancient creatures lived, fought, and evolved. Charmingly humble and unassuming, she is a delight in the field and in front of the lens.
Victoria Arbour completed her Ph.D. at the University of Alberta under the supervision of renowned paleontologist Dr. Philip Currie. Her early work focused on ankylosaurid dinosaurs, particularly the tail club structures that define the group.
Her doctoral thesis and subsequent studies dissected the biomechanics of ankylosaur tail clubs, demonstrating that these dinosaurs likely used their tails as active weapons—a concept that was previously more speculative than evidenced.
In one of her early papers, Arbour and Currie (2011) reconstructed the tail club’s structure and function using finite element analysis and compared it to weapon systems in modern animals. Her work helped establish ankylosaurs as more than passive tanks; they were dynamic animals capable of delivering powerful, bone-breaking blows to rivals or predators.
New Dinosaurs for a New Generation
Among Arbour’s most significant contributions are the descriptions and naming of several new species of ankylosaurs, including:
Zuul crurivastator (2017): Arbour co-authored the paper describing Zuul, a remarkably complete ankylosaur fossil from Montana. Named after the Ghostbusters monster, Zuul is preserved with intact skin impressions and tail club spikes. The species name, crurivastator, means "destroyer of shins"—a nod to its powerful tail weapon. The find gave paleontologists unprecedented insight into ankylosaur soft tissue, armor arrangement, and injury patterns.
Borealopelta markmitchelli (2017): Although discovered by others, Arbour contributed to the public communication and interpretation of this exceptionally preserved nodosaurid from Alberta’s oil sands. The fossil includes preserved skin and stomach contents, which have helped reconstruct its camouflage strategy and diet.
Ziapelta sanjuanensis (2014): As lead author, Arbour described this ankylosaur from New Mexico, expanding the known diversity of North American ankylosaurs and underscoring biogeographic connections between Canada and the southwestern United States during the Late Cretaceous.
British Columbia’s Dinosaur Heritage
As Curator at the Royal BC Museum, Arbour plays a critical role in paleontology in British Columbia—a province better known for marine reptiles than for terrestrial dinosaurs. Nevertheless, her work has amplified interest in BC’s unique fossil heritage, from the ichthyosaurs of the Peace Region to marine reptiles like the Courtenay Elasmosaur.
Arbour plays a pivotal role in the ongoing research and interpretation of the Courtenay elasmosaur, Elasmosaurus sp., a 13-metre-long marine reptile discovered on Vancouver Island.
Building upon earlier studies, Arbour has applied modern scientific techniques to examine the specimen’s anatomy and paleoecological context. Her work includes detailed analyses of the skull, vertebrae, and limb bones, contributing to a better understanding of the evolutionary relationships and biomechanics of elasmosaurs.
Through comparative research with other North American and global plesiosaur finds, Arbour has helped clarify the taxonomic placement of the Courtenay specimen and its role in the broader picture of Cretaceous marine ecosystems.
Arbour has partnered with local scientists and citizen paleontologists to help elevate BC’s presence on the paleontological map. She has advocated for fossil protection legislation and regularly engages with the public through museum exhibits, interviews, and school outreach.
Technology Meets Deep Time
Arbour is also part of a wave of paleontologists bringing high-tech tools to ancient bones. She frequently uses 3D scanning, photogrammetry, and CT imaging to study fossils in unprecedented detail. These methods allow her to reconstruct the internal anatomy of ankylosaurs, visualize muscle attachment points, and model how these creatures moved and fought.
In her 2020 publication with Mallon and Evans, Arbour examined the distribution of ankylosaur fossils across North America and evaluated their evolutionary history.
Using phylogenetic methods and morphometric analyses, she tracked how isolation and habitat shifts influenced ankylosaur evolution—helping explain why Canada’s ankylosaurs were different from those in the southern U.S.
Champion of Public Science
Beyond her research, Arbour is a passionate advocate for science communication and equity in paleontology. Her Twitter feed, popular talks, and media appearances make complex science accessible and fun. She has written popular articles for The Conversation, participated in CBC’s Quirks & Quarks, and is a familiar face in science outreach events across Canada.
She is a very engaging speaker. For those who joined us for Arbour's engaging talk to the Vancouver Paleontological Society and members of the British Columbia Paleontological Alliance on her fieldwork at the Carbon Creek Basin Dinosaur Trackway—and so many others—will be pleased to hear that she will be delivering a talk on her most recent work at this 15th BCPA Symposium in Courtenay, August 22-25, 2025.
The Carbon Creek Basin site is located just west of Hudson’s Hope in the Peace River area and boasts nearly 1,200 dinosaur tracks from at least 12 different types of dinosaurs—including two dinosaur track types that have not been observed at any other site in the Peace Region. Her talk showcased her work and her spirit in the field—coated in mud, dust and battling blackflies, but smiling through it all in the thrill of discovery.
Her mentorship of young scientists and support for women and underrepresented groups in science has made her a role model in the field. She also contributed to the popular Dinosaurs of Alberta field guide and helped curate exhibits that bring museum visitors face-to-face with ancient life.
Dr. Victoria Arbour’s work continues to deepen our understanding of how dinosaurs lived and interacted in their environments. Her contributions are a testament to the power of curiosity, perseverance, and scientific rigor. In the layered rocks of Alberta and the museum halls of Victoria, her legacy is already well-anchored—and growing with every new discovery.
Here are some key scientific papers authored or co-authored by Dr. Victoria Arbour:
Arbour, V. M., & Currie, P. J. (2011). Ankylosaurid dinosaur tail clubs evolved through stepwise acquisition of key features. Journal of Anatomy, 219(6), 672–685. https://doi.org/10.1111/j.1469-7580.2011.01437.x
Arbour, V. M., Zanno, L. E., & Evans, D. C. (2014). A new ankylosaurid dinosaur from the Judith River Formation of Montana, USA, based on a complete skull and tail club. Royal Society Open Science, 4(5): 161086. https://doi.org/10.1098/rsos.161086
Arbour, V. M., & Evans, D. C. (2017). A new ankylosaurine dinosaur from the Judith River Formation of Montana, USA, based on a complete skull and tail club. Royal Society Open Science, 4: 161086. https://doi.org/10.1098/rsos.161086
Brown, C. M., Henderson, D. M., Vinther, J., Fletcher, I., Sistiaga, A., Herrera, J., & Arbour, V. M. (2017). An exceptionally preserved armored dinosaur reveals the morphology and allometry of keratinous structures. Current Biology, 27(16), 2514–2521.e3. https://doi.org/10.1016/j.cub.2017.06.071
Arbour, V. M., & Evans, D. C. (2020). A new ankylosaurine dinosaur from the Judith River Formation, Montana, USA, and implications for the diversification and biogeography of Late Cretaceous ankylosaurs. PeerJ, 8:e9603. https://doi.org/10.7717/peerj.9603
Arbour, V. M., & Currie, P. J. (2013). Anatomy, evolution, and function of tail clubbing in ankylosaurs (Dinosauria: Ornithischia). Journal of Zoology, 292(2), 111–117. https://doi.org/10.1111/jzo.12033