Showing posts with label HISTORY. Show all posts
Showing posts with label HISTORY. Show all posts

Thursday, 30 October 2025

DRIFTWOOD CANYON FOSSIL BEDS

Puffbird similar to Fossil Birds found at Driftwood Canyon 
Driftwood Canyon Provincial Park 

Driftwood Canyon Provincial Park covers 23 hectares of the Bulkley River Valley, on the east side of Driftwood Creek, a tributary of the Bulkley River, 10 km northeast of the town of Smithers in northern British Columbia. 

Driftwood Canyon is recognized as one of the world’s most significant fossil beds. 

It provides park users with a fascinating opportunity to understand the area’s evolutionary processes of both geology and biology. The day-use area is open from May 15 to September 2. There is a short, wheelchair-accessible interpretative trail that leads from the parking are to the fossil beds. Pets are welcome on leash. Signs along the trail provide information on fossils and local history. 

Wet'suwet'en First Nation

The parklands are part of the Traditional Territory of the Wet'suwet'en First Nation which includes lands around the Bulkley River, Burns Lake, Broman Lake, and François Lake in the northwestern Central Interior of British Columbia. 

The Wetʼsuwetʼen are part of the Dakelh or Carrier First Nation, and in combination with the Babine First Nation are referred to as the Western Carrier. They speak Witsuwitʼen, a dialect of the Babine-Witsuwitʼen language which, like its sister language Carrier, is a member of the Athabaskan family.

Their oral history or kungax recounts a time when their ancestral village, Dizkle or Dzilke, once stood upstream from the Bulkley Canyon. This cluster of cedar houses on both sides of the river was said to be abandoned because of an omen of impending disaster. The exact location of the village has been lost but their stories live on. 

The neighbouring Gitxsan, collectively the People of Smooth Waters—the Gilseyhu Big Frog Clan, the Laksilyu Small Frog Clan, the Tsayu Beaver Clan, the Gitdumden Wolf and Bear Clan and the Laksamshu Fireweed and Owl Clan—each phratry or kinship group calling the Lax Yip home—33,000 km2 of land and water in northwestern ​British Columbia along the waters of the Skeena River and its tributaries—have a similar tale—though the village in their versions is referred to as Dimlahamid or Temlahan depending on which house group or wilp is sharing the tale—as well as where they are located as dialects differ. 

Gitksan speak Sim'algaxthe real or true language. Within the Gitxsan communities there are two slightly different dialects. The Gyeets (Downriver) dialect spoken in Gijigyukwhla (Gitsegukla), Gitwangax, and Gitanyow—and the Gigeenix (Upriver) dialect is spoken in Ansbayaxw (Kispiox), Sik-E-Dakh and Gitanmaax.

Driftwood Canyon Fossil Beds

Driftwood Canyon's Fossil Beds record life in the earlier portion of the Eocene when British Columbia — and indeed our world — was much warmer than it is today. This site was discovered in the beginning of the 20th century and is now recognized as containing significant fossil material. 

I was speaking this week with a friend and classmate recently from a Traditional Ecological Knowledge course through the University of Northern British Columbia, Jessy, about Driftwood Canyon and the fossil resources found here.

The fossils are tremendous—and their superb preservation—provide a fascinating opportunity to understand the area’s evolutionary processes of both geology and biology over the past fifty million years or so. The fossils themselves are 51.7 million years old and look remarkably like many of the species we recognize today. 

The fossil beds are on the east side of Driftwood Creek, C’ide’Yikwah in Witsuwit’en, which has its headwaters in the main, southwest facing basin of the Babine Mountains. The park that contains these beautiful fossils is fifty-seven years old. 

It was created in 1967 by the generosity of the late Gordon Harvey (1913–1976). He donated the land to protect fossil resources that he truly loved and wanted to see preserved. How Harvey came to be in a position to donate lands once part of a First Nation Traditional Territory will need to be explored deeper. I will share as I learn more about this as I learn more from locals and the local history museum in the coming weeks and months.

Metasequoia, the Dawn Redwood
Exploring the region today, we see a landscape dominated by conifers blanketing the area. 

Forests teem with the aromatic Western Red Cedar, Pacific Silver Fir with its many medicinal properties, the tall and lanky Subalpine Fir with its soft, brittle and quickly decaying wood, the slender scaly Lodgepole Pine, the graceful and slightly forlorn looking Western Hemlock. 

Across the landscape you see several species of Spruce, including the impressive Sitka, Picea sitchensis, the world's largest spruce tree who live up to an impressive 800 years. 

The stands of mature Sitka standing here today were just being established in this ground back in 1921 when Smithers was designated as the first incorporated village in British Columbia. They are slow to establish and get going, but once embedded are amongst the fastest growing trees we see on the western edge of Canada, colonizing glacial moraines with their cold resistant stock centuries ago when the glaciers that once covered this land eventually retreated.

Some of the tallest on view would have been mere seedlings, colonizing the glacial moraines centuries ago when the glaciers retreated. Collectively, these conifers tell the tale of the region's cool climate today. 

The Gitsan territory boasts seven of the 14 biogeoclimatic zones of the province—the Alpine Tundra, Spruce-Willow-Birch, Boreal White and Black Spruce, Sub-Boreal Pine-Spruce, Sub-Boreal Spruce, Engelmann Spruce-Subalpine Fir and Interior Cedar-Hemlock. 

The fossil material we find here speaks to a warmer climate in this region's past. We find fossil plants, fish—including specimens of salmon, suckerfish and bowfin, a type of air breathing fish—and insect fossil here—wasps and water striders—fossil plants including Metasequoia, the Dawn Redwood, alder—and interesting vertebrate material. Bird feathers are infrequently collected from the shales; however, two bird body fossils have been found here.

In 1968, a bird body fossil was collected in the Eocene shales of the Ootsa Lake Group in Driftwood Canyon Provincial Park by Pat Petley of Kamloops. 

Pat donated the specimen in 2000 to the Thompson Rivers University (TRU) palaeontology collections. This fossil bird specimen is tentatively identified as the puffbird, Piciformes bucconidae, of the genus Primobucco.

Primobucco is an extinct genus of bird placed in its own family, Primobucconidae. The type species, Primobucco mcgrewi, lived during the Lower Eocene of North America. It was initially described by American paleo-ornithologist Pierce Brodkorb in 1970, from a fossil right-wing, and thought to be an early puffbird. However, the discovery of a further 12 fossils in 2010 indicate that it is instead an early type of roller.

Related fossils from the European Messel deposits have been assigned to the two species P. perneri and P. frugilegus. Two specimens of P. frugilegus have been found with seeds in the area of their digestive tract, which suggests that these birds were more omnivorous than the exclusively predaceous modern rollers. The Driftwood specimen has never been thoroughly studied. If there is a grad student out there looking for a worthy thesis, head on down to the Thompson Rivers University where you'll find the specimen on display.

Another fossil bird, complete with feathers, was collected at Driftwood Canyon in 1970, This one was found by Margret and Albrecht Klöckner who were travelling from Germany. Theirs is a well-travelled specimen, having visited many sites in BC as they toured around, then to Germany and finally back to British Columbia when it was repatriated and donated to the Royal British Columbia Museum in Victoria. 

I am not sure if it is still on display or back in collections, but it was lovingly displayed back in 2008. There is a new grad student, Alexis, looking at Eocene bird feathers down at the RBCM, so perhaps it is once again doing the rounds. 

This second bird fossil is of a long-legged water bird and has been tentatively identified by Dr. Gareth Dyke of the University of Southampton as possibly from the order Charadriiformes, a diverse order of small to medium-ish water birds that include 350 species of gulls, plovers, sandpipers, terns, snipes, and waders. Hopefully, we'll hear more on this find in the future.

A Tapir showing off his prehensile nose trunk
Tapirs and Tiny Hedgehogs

The outcrops at Driftwood Canyon are also special because they record a record of some of the first fossil mammals ever to be found in British Columbia at this pivotal point in time. 

Wee proto-hedgehogs smaller than your thumb lived in the undergrowth of that fossil flora. They shared the forest floor with an extinct tapir-like herbivore in the genus Heptodon that looked remarkably similar to his modern, extant cousins (there is a rather cheeky fellow shown here so you get the idea) but lacked their pronounced snout (proboscis). I am guessing that omission made him the more fetching of his lineage.

In both cases, it was a fossilized jaw bone that was recovered from the mud, silt and volcanic ash outcrops in this ancient lakebed site. And these two cuties are significant— they are the very first fossil mammals we've ever found from the early Eocene south of the Arctic.

How can we be sure of the timing? The fossil outcrops here are found within an ancient lakebed. Volcanic eruptions 51 million years ago put loads of fine dust into the air that settled then sank to the bottom of the lake, preserving the specimens that found their way here — leaves, insects, birds, mammals.

As well as turning the lake into a fossil making machine—water, ash, loads of steady sediment to cover specimens and stave off predation—the volcanic ash contains the very chemically inert—resistant to mechanical weathering—mineral zircon which we can date with uranium/lead (U/Pb). 

The U/Pb isotopic dating technique is wonderfully accurate and mighty helpful in dating geologic events from volcanic eruptions, continental movements to mass extinctions. This means we know exactly when these lovelies were fossilized and, in turn, their significance.

Know Before You Go

If you fancy a visit to Driftwood Canyon Park, the park is accessible from Driftwood Road from Provincial Highway 16. You are welcome to view and photograph the fossils found here but collecting is strictly forbidden. 

Driftwood Canyon is recognized as one of the world’s most significant fossil beds. It provides park users with a fascinating opportunity to understand the area’s evolutionary processes of both geology and biology. The day-use area is open from May 15 to September 2. There is a short, wheelchair-accessible interpretative trail that leads from the parking are to the fossil beds. Pets are welcome on leash. Signs along the trail provide information on fossils and local history. 

Below a cliff face at the end of the trail is a viewing area that has interpretive information and viewing area overlooking Driftwood Creek.

This park proudly operated by Mark and Anais Drydyk
Email: kermodeparks@gmail.com / Tel: 1 250 877-1482 or 1 250 877-1782

Palaeo Coordinates: Latitude: 50° 51' 59" N / Longitude: 116° 27' 37" W
Lat/Long (dec): 50.86665,-116.46042 / GUID: d3a6bd3e-68d6-42cf-9b2c-d20a30576988

Driftwood Canyon Provincial Park Brochure: 
https://bcparks.ca/explore/parkpgs/driftwood_cyn/driftwood-canyon-brochure.pdf?v=1638723136455

Sheila Peters: Driftwood Creek – and the ways we cross it; here Sheila Peters shares a wonderful lived history which I have not had the pleasure to yet fully explore as of 09 February 2025. I do recommend you checking out her post as it contains information and photographs worthy of a newcomers visit to the area.
Link: https://sheilapeters.com/tag/peavine-harvey/


Monday, 27 October 2025

WILD EQUINE BEAUTY: ICELANDIC HORSES

Icelandic Horses
These beauties are Icelandic horses who graced me with their energy and spirit for a series of feel-good photoshoots along the southern coast of Iceland earlier this month. 

The Icelandic horse is a living link to an ancient lineage—compact, sure-footed, and enduring as the land it calls home. 

Though today’s Icelandic horses are domesticated, their story begins millions of years earlier, deep in the fossil record of the horse family, Equidae.

Horses first evolved in North America around 55 million years ago during the Eocene epoch. The earliest known ancestor, Eohippus (also called Hyracotherium), was a small, forest-dwelling animal no larger than a fox. 

Over tens of millions of years, its descendants—Mesohippus, Merychippus, Pliohippus—grew larger and adapted to open grasslands, developing longer legs and single-toed hooves suited for running. 

Icelandic Horses
Fossils of these transitional species are found in abundance across the Great Plains of the United States and in the Miocene deposits of Nebraska and Wyoming.

By the late Pliocene, around three million years ago, horses crossed the Bering land bridge into Eurasia. The genus Equus—to which all modern horses, donkeys, and zebras belong—emerged and spread rapidly. 

Fossils of Equus ferus, the wild ancestor of the domestic horse, are found across Europe and Asia. Horses later vanished from North America during the Late Pleistocene extinctions about 10,000 years ago, only to return with humans during the Age of Exploration.

The Icelandic horse descends directly from the hardy Scandinavian ponies brought to Iceland by Norse settlers in the 9th and 10th centuries CE. Protected by the island’s isolation and a millennium of careful breeding, it retains many primitive features—thick coats, strong bones, and an extra gait known as the tölt. 

While the fossil record of Equus does not include fossils from Iceland itself—its geologic strata are too young for that—the genetic and morphological heritage of these small but mighty horses is a living testament to a 55-million-year evolutionary journey.

Friday, 24 October 2025

THE FOSSIL CLIFFS OF JOGGINS, EASTERN CANADA

Hylonomus lyelli, Ancestor of all dinosaurs
The fossil cliffs at Joggins are one of Canada's gems, now a UNESCO World Heritage Site, you can visit to see our ancient world frozen in time. 

Preserved in situ is a snapshot of an entire food chain of a terrestrial Pennsylvanian Coal Age wetland.

The outcrop holds fossil plant life — including impressive standing lycopsid trees that formed the framework of these wetlands — decomposing detritivores in the invertebrates and tetrapods, the predatory carnivores of the day.

The Coal Age trees were fossilized where they stood 300-million-years ago with the remains of the earliest reptiles entombed within. The preservation is quite marvelous with the footprints of creatures who once lived in these wetlands are frozen where they once walked and the dens of amphibians are preserved with remnants of their last meal. 

Nowhere is a record of plant, invertebrate and vertebrate life within now fossilized forests rendered more evocatively. The fossil record at Joggins contains 195+ species of plants, invertebrates and vertebrates. The fossil plant life became the vast coal deposits for which this period of Earth's history is named. 

Recorded in the rock are vertebrate and invertebrate fauna both aquatic and terrestrial. This broad mix of specimens gives us a view into life back in the Pennsylvanian and sets us up to understand their ecological context.
Pennsylvanian Coal Age Ecosystem, 300-Million-Years-Old
The fossil record includes species first defined at Joggins, some of which are found nowhere else on Earth. 

It was here that Sir Charles Lyell, with Sir William Dawson, founder of modern geology, discovered tetrapods, amphibians and reptiles entombed in the upright fossil trees. 

Later work by Dawson would reveal the first true reptile, Hylonomus lyelli, ancestor of all dinosaurs that would rule the Earth 100 million years later. 

This tiny reptile serves as the reference point where animals finally broke free of the water to live on land. This evolutionary milestone recorded at Joggins remains pivotal to understanding the origins of all vertebrate life on land, including our own species. 

Sir Charles Lyell, author of Principles of Geology, first noted the exceptional natural heritage value of the Joggins Fossil Cliffs, calling them “...the finest example in the world of a natural exposure in a continuous section ten miles long, occurs in the sea cliffs bordering a branch of the Bay of Fundy in Nova Scotia.” Indeed, the world-famous Bay of Fundy with its impressive tides, the highest in the world, and stormy nature exposed much of this outcrop. 

Geological accounts of the celebrated coastal section at Joggins first appear in the published literature in 1828–1829, by Americans C.T. Jackson and F. Alger, and by R. Brown and R. Smith, managers for the General Mining Association in the Sydney and Pictou coal fields. Brown and Smith’s account is the first to document the standing fossil trees.

Joggins Fossil Cliffs Map (Click to Enlarge)
Plan Your Joggins Fossil Cliffs Staycation

Joggins Fossil Cliffs is a Canadian gem — and they welcome visitors. They offer hands-on learning and discovery microscope activities in their Fossil Lab.

You can explore interpretive displays in the Joggins Fossil Centre before heading out to the beach and cliffs with an interpreter.

Their guided tours of the fossil site include an educational component that tells you about the geology, ecology, palaeontology and conservation of this very special site. 

Joggins / Chegoggin / Mi'kmaq L'nu

We know this area as Joggins today. In Mi'kmaw, the language spoken in Mi'kma'ki, the territory of the Mi'kmaq L'nu, the area bears another name, Chegoggin, place of fishing weirs.

Booking Your Class Field Trip

If you are a teacher and would like to book a class field trip, contact the Director of Operations via the contact information listed below. They will walk you through Covid safety and discuss how to make your visit educational, memorable and fun.

Know Before You Go — Tides rule access, but a little rain does not...

The Bay of Fundy has the highest tides in the world. Beach walks are scheduled according to the tides and run regardless of the weather. Good low tides but raining, the beach walk goes on. Lovely and sunny but with a high tide, the beach walk must wait. 

Dress for the weather, as the walking tours will not be cancelled in the event of rain. Should severe weather be a factor, bookings may need to be rescheduled at the discretion of the Joggins staff.

Any questions about booking your school field trip? Feel free to email:  operations@jogginsfossilcliffs.net or call: 1 (902) 251-2727 EXT 222.

References & further reading:

Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/

Image: Hylonomus lyelli, Una ricostruzione di ilonomo by Matteo De Stefano/MUSEThis file was uploaded by MUSE - Science Museum of Trento in cooperation with Wikimedia Italia., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=48143186

Image: Arthropleura: Par Tim Bertelink — Travail personnel, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=48915156

Joggins Map: Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/

Sunday, 19 October 2025

PHAEOLUS SCHWEINITZII: THE BILLION-YEAR HUE

Phaeolus schweinitzii
A popular and widely used fungus for making natural dyes is the dyer’s polypore, Phaeolus schweinitzii, sometimes called the velvet-top fungus.

It’s a large, woody bracket fungus often found growing at the base of conifers, especially pines and spruces. 

When used in dyeing, it produces an impressive range of colours — from bright yellows and golds to rich browns and olive greens, depending on the mordant (the fixative used, such as alum, iron, or copper).

Among natural dyers like myself, Phaeolus schweinitzii is especially beloved because it’s common, easy to identify, and produces reliably beautiful hues — truly one of nature’s master colourists.

Other interesting dye fungi include:
  • Dermocybe (Cortinarius) species – These vividly coloured mushrooms yield brilliant reds, oranges, and purples, though some species are rare or toxic and should be handled with care.
  • Hypholoma fasciculare (Sulphur Tuft) – Produces bright yellows.
  • Inonotus hispidus – Can give orange to reddish-brown tones.
Phaeolus schweinitzii
Fungi like Phaeolus schweinitzii belong to an ancient lineage with roots deep in Earth’s history. 

The earliest fossil evidence of fungi dates back over 900 million years, with well-preserved examples from the Proterozoic and early Cambrian periods showing that fungal life was already thriving long before plants colonised land. 

Fossilised wood from the Devonian (around 400 million years ago) reveals evidence of wood-decaying fungi much like today’s bracket forms — the ancestors of modern polypores. 

These early decomposers helped shape entire ecosystems, breaking down tough plant material and recycling nutrients, paving the way for the lush forests that followed.

It is awe inspiring to consider that when we are working with Phaeolus schweinitzii, you are creating colour in collaboration with a lineage nearly a billion years old — part of the ancient chemistry that connects the forest floor to the fabric of human culture.

Friday, 17 October 2025

THE SCIENCE OF SHELLS, CALCIUM AND COASTAL PRESERVATION

These past few years, I have found myself exploring the western edge of central Vancouver Island—the traditional, unceded territory of the Kʼómoks First Nation more and more.

This is a land where the forest meets the sea in a symphony of cedar, fir, and arbutus, their driftwood limbs worn smooth by the relentless rhythm of Pacific waves.

It’s easy to see why people have called this rugged coastline home for millennia.

Anyone who lives by the ocean knows the magnetic pull of natural treasures—smooth stones, curious fossils, and shells that beg to be picked up and admired.

These are nature’s souvenirs, tokens of geologic and biological processes that have been shaping our planet for hundreds of millions of years. My own home, a small shrine to these curiosities, features several abalone shells that now serve as nacre dishes for ceremony and collections of beach-found beauty.

But shells are far more than decoration. In coastal archaeology, they tell a story—of diet, settlement, and preservation. For countless generations, Indigenous coastal communities left behind shell middens—accumulations of discarded shells, bones, and other remnants of daily life. Far from simple refuse, these middens are time capsules.

Comox Foreshore, Kʼómoks First Nation / Photo: Kat Frank
As the shells break down, calcium carbonate (CaCO₃) leaches into the surrounding material, creating an alkaline environment that slows decay and can “embalm” organic matter like bone and antler. 

This remarkable natural chemistry is one reason we know so much about early toolmaking traditions—antler needles, for instance, survive beautifully in such conditions.

Calcium carbonate is one of Earth’s most abundant compounds, forming chalk, limestone, and marble. It’s the same substance that makes up seashells, coral skeletons, and even the exoskeletons of tiny marine plankton. In chemistry, CaCO₃ is a mild base—it neutralizes acids, which is why it’s found in antacids like Tums.

When exposed to stronger acids, it reacts to release carbon dioxide, as in the reaction:

CaCO₃(s) + 2HCl(aq) → CaCl₂(aq) + CO₂(g) + H₂O(l)

At high heat (above 840°C), calcium carbonate decomposes into quicklime (CaO) and carbon dioxide—a reaction used for thousands of years in lime kilns.

In a more natural setting, decaying bone absorbs calcium carbonate from surrounding shells.

The process gradually replaces the bone’s original organic components, strengthening it and making it more resistant to decay—a miniature version of fossilization.

Over centuries, the shells even enrich the soil, increasing alkalinity and preserving a record of meals, tools, and lives once lived along these shores.

Abalone have a surprisingly ancient and fascinating lineage in the fossil record! These marine gastropods belong to the genus Haliotis, within the family Haliotidae, and are part of the larger molluscan class Gastropoda—the same great evolutionary family that includes snails, limpets, and whelks.

The oldest confirmed Haliotis fossils appear in rocks from the Cretaceous, roughly 100 to 70 million years ago. Fossils have been found in marine deposits in places such as Europe, Japan, California, and New Zealand, showing that by the Late Cretaceous, abalones were already widely distributed across the world’s shallow coastal seas.

Comox Glacier viewed from the foreshore
Their distinctive ear-shaped shells and the characteristic row of respiratory holes (used for breathing and expelling waste) make them relatively easy to identify in the fossil record. 

While the earliest fossil abalone were generally smaller and less ornamented than modern species, their overall body plan hasn’t changed much—a testament to a highly successful design.

Abalones descend from ancient archaeogastropods, an early and primitive lineage of marine snails.

Over millions of years, they specialized for life clinging to rocky shorelines, developing their broad, muscular “foot” and strong grip to withstand crashing surf.

Their shell structure—a mix of aragonite and protein arranged in microscopic tiles—became one of the toughest biological materials known, inspiring modern materials science.

Because abalone shells are made of nacre (mother-of-pearl), they fossilize beautifully when conditions are right, sometimes preserving their iridescence even after tens of millions of years.

That shimmering interior you see in a beach-found abalone shell? It’s built of the same mineral layers that have been dazzling paleontologists since the age of the dinosaurs.

The second/central photo of shells from Comox, shared here by my cousin Kat Frank of the Kʼómoks First Nation, captures that same enduring beauty—a reminder that science, art, and culture are all written in the language of nature’s chemistry.

Wednesday, 15 October 2025

PAPIKA MOUNTAIN WHISTLERS: MARMOTS

High in the misty alpine meadows of British Columbia’s Coast Mountains, the much beloved marmot, Marmota vancouverensis, whistles its name to the Pacific wind. 

These plump, chocolate-brown rodents—often mistaken for oversized squirrels by first-time hikers—are Canada’s most endangered mammal and one of the rarest in the world. 

With their expressive faces, social chatter, and luxurious fur coats, they’ve become beloved mascots of the region, yet their story stretches far beyond the ski hills—deep into the Ice Age and the fossil record.

Marmots live only in a few scattered pockets of alpine habitat on Vancouver Island. 

They’re burrowers by trade, digging deep tunnels into the rocky soil of meadows that blossom with lupines and sedges in summer. Above ground, they’re social creatures—touching noses, grooming one another, and giving high-pitched warning whistles whenever a golden eagle or wandering cougar appears on the horizon. 

They fatten themselves through the brief mountain summer, storing energy for their long, seven-month hibernation beneath the snow.

Each colony is a close-knit family unit, with older marmots helping younger ones learn where to dig and when to hide. They even recognize one another’s voices, an important trick when you’re living in echoing valleys where one chirp can bounce for kilometres.

The marmot’s lineage reaches far back into the Pleistocene, around 2.6 million to 11,700 years ago. Fossil evidence from North America shows that their ancestors, early marmotine rodents, thrived across cooler steppe and tundra landscapes when glaciers waxed and waned over the continent. 

Fossilized marmot bones—particularly jaw and skull fragments—have been found in Ice Age deposits in Yukon, Alaska, and Alberta, revealing that marmots were already well adapted to cold, alpine life long before modern humans reached the Pacific Northwest.

The Whistler marmot’s closest relatives today include the hoary marmot (Marmota caligata) and the Olympic marmot (Marmota olympus), both descendants of those hardy Ice Age pioneers. Genetic studies suggest that the Whistler marmot’s ancestors became isolated on Vancouver Island after sea levels rose at the end of the last glaciation, creating an island-bound species uniquely suited to its misty mountaintop home.

A Comeback Story

Once reduced to fewer than 30 individuals in the wild, the Whistler marmot is making a slow but steady comeback thanks to dedicated breeding and reintroduction programs. Today, over 200 roam the high meadows once more. Their cheerful whistles echo through the alpine air—sometimes feeling like a bit of heckling as you meander up the trails or stop to photograph the scenery—but always a welcome sound.

In Kwak'wala, the language of the many Kwakwaka'wakw First Nations of Vancouver Island, marmots are known as papika — the perfect word to describe these cute, fuzzy, chunky monkeys!

Thursday, 9 October 2025

NUNAVUT: LAND OF ICE AND SNOW

A lone polar bear moves with quiet power across the snow and sea ice of Nunavut, its massive paws spreading its weight to keep it light atop the frozen surface. 

These apex predators have roamed the Arctic for hundreds of thousands of years, evolving from brown bear ancestors to master the shifting icescapes of the Pleistocene. 

Their range once spread wider during colder glacial ages, but Nunavut remains a stronghold of their territory, a place where bears still hunt seals, den in snowdrifts, and continue an ancient lineage intertwined with the rhythms of ice, ocean, and sky.

Nunavut, Canada’s northernmost territory, is a land that wears deep time on its sleeve. Its stark landscapes—wind-scoured ridges, icy fjords, and tundra plains—may appear empty at first glance, but beneath this silence lies one of Earth’s richest archives of geological and paleontological history. 

Stretching across nearly two million square kilometers of Arctic terrain, Nunavut preserves rocks that span more than three billion years, recording the birth of continents, the rise of early life, and the survival of animals through ancient seas and ice ages.

Nunavut’s remarkable geology and paleontology, from the planet’s earliest beginnings to Ice Age megafauna, tracing how this northern land has shaped and preserved Earth’s story.

Nunavut’s rocks are among the oldest on Earth. Much of its bedrock belongs to the Canadian Shield, a vast geological core of North America composed of Archean and Proterozoic rocks more than 2.5 to 3.9 billion years old. 

In regions such as the Acasta Gneiss Complex, which straddles the Northwest Territories and Nunavut, scientists have found rocks dated to around 4.0 billion years—nearly as old as the Earth itself.

These rocks tell the story of Earth’s early crustal formation, long before the emergence of complex life. They preserve the remnants of volcanic arcs, ancient oceans, and the slow suturing of microcontinents into larger continental plates. 

The geology of Nunavut is not uniform but instead a patchwork quilt of greenstone belts, granitic intrusions, and sedimentary basins, each marking different chapters in the planet’s tectonic evolution.

During the Paleozoic Era (541–252 million years ago), much of Nunavut lay beneath shallow tropical seas. Thick accumulations of limestone and shale from this time preserve fossils that record the explosion of marine biodiversity—from trilobites and brachiopods to early corals and cephalopods. Later, in the Mesozoic and Cenozoic Eras, tectonic shifts, rifting, and glaciation sculpted the modern Arctic landscape. 

Glacial scouring during the Pleistocene left behind U-shaped valleys, moraines, and eskers, reshaping the terrain and influencing how fossils are exposed today.

Cambrian Seas and the Rise of Early Life — Some of Nunavut’s most important paleontological treasures come from the Cambrian Period (541–485 million years ago). At sites such as Northwest Ellesmere Island, researchers have uncovered trilobites, archaeocyathids (reef-building sponges), and early echinoderms that once thrived in warm equatorial seas. These fossils highlight Nunavut’s role in documenting the Cambrian Explosion, the evolutionary burst when most major animal groups first appeared in the fossil record.

Devonian Coral Reefs — During the Devonian Period (419–359 million years ago), the region hosted extensive reef systems, comparable to modern-day Great Barrier Reef environments. Fossil corals, stromatoporoids (sponge-like reef builders), and early fishes—including the armored placoderms—have been found in the limestone deposits of Nunavut’s Arctic islands. These fossils provide insights into marine biodiversity during the so-called “Age of Fishes,” when vertebrates began diversifying rapidly.

Qikiqtania, a remarkable fossil fish discovered on southern Ellesmere Island in Nunavut, closely related to Tiktaalik, the famous “fishapod” that represents a key step in the transition from water to land is one of Nunavut's most significant Devonian fossils. Dating to about 375 million years ago in the Late Devonian, Qikiqtania wakei had a streamlined body and fins built for swimming, but unlike Tiktaalik, it lacked the robust limb bones that could have supported it on land. 

This begs the question of what those early vertebrates were up to and it seems their evolutionary path was experimenting with shallow-water or terrestrial habitats, while Qikiqtania remained fully aquatic, showing the diversity of evolutionary pathways at this pivotal moment in vertebrate history. Its name honors both the Qikiqtaaluk Region of Nunavut, where it was found, and the late evolutionary biologist David Wake, linking local geography with global science.

Jurassic and Cretaceous Dinosaurs of the Arctic — One of the most striking aspects of Nunavut’s fossil record is the presence of dinosaurs at high latitudes. On Bylot Island and Axel Heiberg Island, paleontologists have discovered hadrosaur (duck-billed dinosaur) remains dating to the Late Cretaceous, about 75 million years ago. These finds demonstrate that large herbivorous dinosaurs lived well within the Arctic Circle, enduring months of seasonal darkness and cooler climates than their relatives farther south.

Tracks preserved in sandstone also reveal the presence of theropods (predatory dinosaurs) that stalked these northern landscapes. The question of how dinosaurs adapted to Arctic conditions—whether through migration or physiological adaptations such as warm-bloodedness—remains an active field of study.

Fossil Forests of the High Arctic — Perhaps Nunavut’s most evocative paleontological record comes not from bones but from trees. On Axel Heiberg Island, paleontologists have uncovered the remains of Eocene-aged fossil forests dating to about 50 million years ago. These forests, preserved in remarkable detail, include upright stumps, leaf litter, and even mummified wood that still retains organic compounds.

At that time, the Arctic was much warmer, with a greenhouse climate that supported redwoods, dawn sequoias, and ginkgo trees. The fossil forests demonstrate that the Arctic once hosted lush ecosystems, challenging our assumptions about polar environments and providing crucial analogues for studying climate change today.

Marine Reptiles and Ancient Whales — The Cretaceous and early Cenozoic deposits of Nunavut also preserve marine reptiles such as plesiosaurs and mosasaurs, apex predators of the inland seas. Moving into the Cenozoic, fossils of early whales, including basilosaurids, have been recovered, highlighting the transition of mammals from land back to the ocean. These finds place Nunavut within the global story of marine evolution during a time when the Arctic Ocean was ice-free and biologically rich.

Fast forward to the Pleistocene (2.6 million–11,700 years ago), and Nunavut was home to a range of Ice Age megafauna. Fossils and subfossil remains of muskoxen, mammoths, caribou, and giant beavers have been found across the territory. These animals grazed tundra and steppe ecosystems during glacial cycles, coexisting with early human populations that migrated into the Arctic.

Human History and Fossil Knowledge — Nunavut’s paleontological heritage is intertwined with Indigenous knowledge. Inuit communities have long encountered fossils while traveling across the land, recognizing bones and shells as part of the natural history of their environment. Some fossils, like petrified wood or unusual stone shapes, carry cultural meanings and have been used in tools, carvings, or storytelling.

Nunavut’s population are Inuit, whose traditional language is Inuktut, which includes several dialects such as Inuktitut and Inuinnaqtun, still widely spoken across communities alongside English and French. Inuit knowledge of the land, sea, ice, and animals is profound, extending to fossils and unusual stones encountered on the tundra, which are often recognized and woven into oral traditions. 

Visitors interested in seeing fossils and learning more about Nunavut’s natural and cultural history can explore the Nunatta Sunakkutaangit Museum in Iqaluit, which preserves Inuit art and heritage alongside natural history exhibits, or the Canadian Museum of Nature in Ottawa, which holds important fossil collections from Nunavut that are not always displayed locally due to preservation and accessibility challenges.

A wave of scientific exploration of Nunavut’s fossils began in earnest in the 19th and 20th centuries with expeditions by geologists and paleontologists. Today, fossil research in Nunavut requires collaboration with Inuit communities, recognizing their stewardship of the land and the cultural importance of these discoveries.

Climate Change and the Future of Arctic Paleontology — As the Arctic warms, melting permafrost and retreating glaciers are exposing fossils at an unprecedented rate. While this accelerates discoveries—such as well-preserved Ice Age bones—it also threatens the long-term preservation of delicate specimens. Increased accessibility has also raised ethical and legal questions about fossil collection, ownership, and conservation.

Nunavut stands at the forefront of these challenges. Its fossils not only record the history of life but also offer lessons for the present: how species adapt (or fail to adapt) to climate shifts, how ecosystems respond to warming, and how biodiversity rebounds after mass extinctions. Protecting this paleontological heritage is essential for both science and culture. It is a remote part of the world that I would love to explore more of and see its rugged, natural beauty in all its splendor.

Wednesday, 24 September 2025

LOWER LIAS LYTOCERAS AMMONITE

A superbly prepped and extremely rare Lytoceras (Suess, 1865) ammonite found as a green ammonite nodule by Matt Cape in the Lower Lias of Dorset. 

Lytoceras are rare in the Lower Lias of Dorset — apart from the Belemnite Stone horizon — so much so that Paul Davis, whose skilled prep work you see here, initially thought it might be a Becheiceras hidden within the large, lumpy nodule. 

One of the reasons these lovelies are rarely found from here is that they are a Mediterranean Tethyian genus. The fossil fauna we find in the United Kingdom are dominated by Boreal Tethyian genera. 

We do find Lytoceras sp. in the Luridum subzone of the Pliensbachian showing that there was an influx of species from the Mediterranean realm during this time. This is the first occurrence of a Lytoceras that he has ever seen in a green nodule and Paul's seen quite a few. 

This absolutely cracking specimen was found and is in the collections of the awesome Matt Cape. Matt recognized that whatever was hidden in the nodule would take skilled and careful preparation using air scribes. Indeed it did. It took more than five hours of time and skill to unveil the lovely museum-worthy specimen you see here. 

We find Lytoceras in more than 1,000 outcrops around the globe ranging from the Jurassic through to the Cretaceous, some 189.6 to 109.00 million years ago. Once this specimen is fully prepped with the nodule material cut or scraped away, you can see the detailed crinkly growth lines or riblets on the shell and none of the expected coarse ribbing. 

Lytoceras sp. Photo: Craig Chivers
If you imagine running your finger along these, you would be tracing the work of decades of growth of these cephalopods. 

While we cannot know their actual lifespans, but we can make a healthy guess. 

The nautilus, their closest living cousins live upwards of 20 years — gods be good — and less than three years if conditions are poor.

The flanges, projecting flat ribs or collars, develop at the edge of the mouth border on the animal's mantle as they grow each new chamber. 

Each delicate flange grows over the course of the ammonites life, marking various points in time and life stages as the ammonite grew. There is a large variation within Lytoceras with regards to flanges. They provide both ornamentation and strength to the shell to protect it from water pressure as they moved into deeper seas.

The concretion prior to prep
This distinctive genus with its evolute shells are found in the Cretaceous marine deposits of: 

Antarctica (5 collections), Austria (19), Colombia (1), the Czech Republic (3), Egypt (2), France (194), Greenland (16), Hungary (25), Italy (11), Madagascar (2), Mexico (1), Morocco (4), Mozambique (1), Poland (2), Portugal (1), Romania (1), the Russian Federation (2), Slovakia (3), South Africa (1), Spain (24), Tanzania (1), Trinidad and Tobago (1), Tunisia (25); and the United States of America (17: Alaska, California, North Carolina, Oregon).

We also find them in Jurassic marine outcrops in:

Austria (15), Canada (9: British Columbia), Chile (6), France (181), Germany (11), Greenland (1), Hungary (189), India (1), Indonesia (1), Iran (1), Italy (50), Japan (14), Kenya (2), Luxembourg (4), Madagascar (2), Mexico (1), Morocco (43), New Zealand (15), Portugal (1), Romania (5), the Russian Federation (1), Slovakia (1), Spain (6), Switzerland (2), Tunisia (11), Turkey (12), Turkmenistan (1), Ukraine (5), the United Kingdom (12), United States (11: Alaska, California) — in at least 977 known collections. 

References:

Sepkoski, Jack (2002). "A compendium of fossil marine animal genera (Cephalopoda entry)". Bulletins of American Paleontology. 363: 1–560. Archived from the original on 2008-05-07. Retrieved 2017-10-18.

Paleobiology Database - Lytoceras. 2017-10-19.

Systematic descriptions, Mesozoic Ammonoidea, by W.J Arkell, Bernhard Kummel, and C.W. Wright. 1957. Treatise on Invertebrate Paleontology, Part L. Geological Society of America and University of Kansas press.

Saturday, 20 September 2025

NOOTKA: FOSSILS AND FIRST NATIONS HISTORY

Nootka Fossil Field Trip. Photo: John Fam
The rugged west coast of Vancouver Island offers spectacular views of a wild British Columbia. Here the seas heave along the shores slowly eroding the magnificent deposits that often contain fossils. 

Just off the shores of Vancouver Island, east of Gold River and south of Tahsis is the picturesque and remote Nootka Island.

This is the land of the proud and thriving Nuu-chah-nulth First Nations who have lived here always

Always is a long time, but we know from oral history and archaeological evidence that the Mowachaht and Muchalaht peoples lived here, along with many others, for many thousands of years — a time span much like always

While we know this area as Nootka Sound and the land we explore for fossils as Nootka Island, these names stem from a wee misunderstanding. 

Just four years after the 1774 visit by Spanish explorer Juan Pérez — and only a year before the Spanish established a military and fur trading post on the site of Yuquot — the Nuu-chah-nulth met the Englishman, James Cook.  

Captain Cook sailed to the village of Yuquot just west of Vancouver Island to a very warm welcome. He and his crew stayed on for a month of storytelling, trading and ship repairs. Friendly, but not familiar with the local language, he misunderstood the name for both the people and land to be Nootka. In actual fact, Nootka means, go around, go around

Two hundred years later, in 1978, the Nuu-chah-nulth chose the collective term Nuu-chah-nulth — nuučaan̓uł, meaning all along the mountains and sea or along the outside (of Vancouver Island) — to describe themselves. 

It is a term now used to describe several First Nations people living along western Vancouver Island, British Columbia. 

It is similar in a way to the use of the United Kingdom to refer to the lands of England, Scotland and Wales — though using United Kingdom-ers would be odd. Bless the Nuu-chah-nulth for their grace in choosing this collective name.  

An older term for this group of peoples was Aht, which means people in their language and is a component in all the names of their subgroups, and of some locations — Yuquot, Mowachaht, Kyuquot, Opitsaht. While collectively, they are the Nuu-chah-nulth, be interested in their more regional name should you meet them. 

But why does it matter? If you have ever mistakenly referred to someone from New Zealand as an Aussie or someone from Scotland as English, you have likely been schooled by an immediate — sometimes forceful, sometimes gracious — correction of your ways. The best answer to why it matters is because it matters.

Each of the subgroups of the Nuu-chah-nulth viewed their lands and seasonal migration within them (though not outside of them) from a viewpoint of inside and outside. Kla'a or outside is the term for their coastal environment and hilstis for their inside or inland environment.

It is to their kla'a that I was most keen to explore. Here, the lovely Late Eocene and Early Miocene exposures offer up fossil crab, mostly the species Raninid, along with fossil gastropods, bivalves, pine cones and spectacularly — a singular seed pod. These wonderfully preserved specimens are found in concretion along the foreshore where time and tide erode them out each year.

Five years after Spanish explorer Juan Pérez's first visit, the Spanish built and maintained a military post at Yuquot where they tore down the local houses to build their own structures and set up what would become a significant fur trade port for the Northwest Coast — with the local Chief Maquinna's blessing and his warriors acting as middlemen to other First Nations. 

Following reports of Cook's exploration British traders began to use the harbour of Nootka (Friendly Cove) as a base for a promising trade with China in sea-otter pelts but became embroiled with the Spanish who claimed (albeit erroneously) sovereignty over the Pacific Ocean. 

Dan Bowen searching an outcrop. Photo: John Fam
The ensuing Nootka Incident of 1790 nearly led to war between Britain and Spain (over lands neither could actually claim) but talk of war settled and the dispute was settled diplomatically. 

George Vancouver on his subsequent exploration in 1792 circumnavigated the island and charted much of the coastline. His meeting with the Spanish captain Bodega y Quadra at Nootka was friendly but did not accomplish the expected formal ceding of land by the Spanish to the British. 

It resulted however in his vain naming the island "Vancouver and Quadra." The Spanish captain's name was later dropped and given to the island on the east side of Discovery Strait. Again, another vain and unearned title that persists to this day.

Early settlement of the island was carried out mainly under the sponsorship of the Hudson's Bay Company whose lease from the Crown amounted to 7 shillings per year — that's roughly equal to £100.00 or $174 CDN today. Victoria, the capital of British Columbia, was founded in 1843 as Fort Victoria on the southern end of Vancouver Island by the Hudson's Bay Company's Chief Factor, Sir James Douglas. 

With Douglas's help, the Hudson's Bay Company established Fort Rupert on the north end of Vancouver Island in 1849. Both became centres of fur trade and trade between First Nations and solidified the Hudson's Bay Company's trading monopoly in the Pacific Northwest.

The settlement of Fort Victoria on the southern tip of Vancouver Island — handily south of the 49th parallel — greatly aided British negotiators to retain all of the islands when a line was finally set to mark the northern boundary of the United States with the signing of the Oregon Boundary Treaty of 1846. Vancouver Island became a separate British colony in 1858. British Columbia, exclusive of the island, was made a colony in 1858 and in 1866 the two colonies were joined into one — becoming a province of Canada in 1871 with Victoria as the capital.

Dan Bowen, Chair of the Vancouver Island Palaeontological Society (VIPS) did a truly splendid talk on the Fossils of Nootka Sound. With his permission, I have uploaded the talk to the ARCHEA YouTube Channel for all to enjoy. Do take a boo, he is a great presenter. Dan also graciously provided the photos you see here. The last of the photos you see here is from the August 2021 Nootka Fossil Field Trip. Photo: John Fam, Vice-Chair, Vancouver Paleontological Society (VanPS).

Know Before You Go — Nootka Trail

The Nootka Trail passes through the traditional lands of the Mowachaht/Muchalat First Nations who have lived here since always. They share this area with humpback and Gray whales, orcas, seals, sea lions, black bears, wolves, cougars, eagles, ravens, sea birds, river otters, insects and the many colourful intertidal creatures that you'll want to photograph.

This is a remote West Coast wilderness experience. Getting to Nootka Island requires some planning as you'll need to take a seaplane or water taxi to reach the trailhead. The trail takes 4-8 days to cover the 37 km year-round hike. The peak season is July to September. Permits are not required for the hike. 

Access via: Air Nootka floatplane, water taxi, or MV Uchuck III

  • Dan Bowen, VIPS on the Fossils of Nootka: https://youtu.be/rsewBFztxSY
  • https://www.thecanadianencyclopedia.ca/en/article/sir-james-douglas
  • file:///C:/Users/tosca/Downloads/186162-Article%20Text-199217-1-10-20151106.pdf
  • Nootka Trip Planning: https://mbguiding.ca/nootka-trail-nootka-island/#overview


Wednesday, 17 September 2025

WEST COAST OYSTERS: T'LOXT'LOX

One of the now rare species of oysters in the Pacific Northwest is the Olympia oyster, Ostrea lurida, (Carpenter, 1864).  

While rare today, these are British Columbia’s only native oyster. 

Had you been dining on their brethren in the 1800s or earlier, it would have been this species you were consuming. Middens from Port Hardy to California are built from Ostrea lurida.

These wonderful invertebrates bare their souls with every bite. Have they lived in cold water, deep beneath the sea, protected from the sun's rays and heat? Are they the rough and tumble beach denizens whose thick shells tell us of a life spent withstanding the relentless pounding of the sea? Is the oyster in your mouth thin and slimy having just done the nasty—spurred by the warming waters of Spring? 

Is this oyster a local or was it shipped to your current local and, if asked, would greet you with "Kon'nichiwa?" Not if the beauty on your plate is indeed Ostrea lurida

Oyster in Kwak'wala is t̕łox̱t̕łox̱
We have been cultivating, indeed maximizing the influx of invasive species to the cold waters of the Salish Sea for many years. 

But in the wild waters off the coast of British Columbia is the last natural abundant habitat of the tasty Ostrea lurida in the pristine waters of  Nootka Sound. 

The area is home to the Nuu-chah-nulth First Nations who have consumed this species boiled or steamed for thousands of years. Here these ancient oysters not only survive but thrive — building reefs and providing habitat for crab, anemones and small marine animals. 

Oysters are in the family Ostreidae — the true oysters. Their lineage evolved in the Early Triassic — 251 - 247 million years ago. 

In the Kwak̓wala language of the Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest and my family, an oyster is known as t̕łox̱t̕łox̱

I am curious to learn if any of the Nuu-chah-nulth have a different word for an oyster. If you happen to know, I would be grateful to learn.

Friday, 12 September 2025

HUMPBACK WHALES: GWA'YAM

Look deep into the knowing eye of this magnificent one. He is a Humpback whale, Megaptera novaeangliae, a species of baleen whale for whom I hold a special place in my heart. 

Baleens are toothless whales who feed on plankton and other wee oceanic tasties they consume through their baleens, a specialised filter of flexible keratin plates that frame their mouth and fit within their robust jaws.

Baleen whales, the mysticetes, split from toothed whales, the Odontoceti, around 34 million years ago. The split allowed our toothless friends to enjoy a new feeding niche and make their way in a sea with limited food resources. There are fifteen species of baleen whales who inhabit all major oceans. Their number include our humbacks, grays, right whales and the massive blue whale. Their territory runs as a wide band running from the Antarctic ice edge to 81°N latitude. 

In the Kwak̓wala language of Kwakwaka'wakw First Nations, speakers of Kwak'wala, of the Pacific Northwest, and my cousins on my father's side, whales are known as g̱wa̱'ya̱m, and revered along the coast. 

Both the California grey and the Humpback whale live on the coast. Only a small number of individuals in First Nation culture had the right to harpoon a whale. This is a practice from many years ago. It was generally only the Chief who was bestowed this great honour. Sometimes the whales would pass at sea and wash up on shore with this bounty to be shared by all.

Humpback whales like to feed close to shore and enter the local inlets. Around Vancouver Island and along the coast of British Columbia, this made them a welcome food source as the long days of winter passed into Spring.

Humpback whales are rorquals, members of the Balaenopteridae family that includes the blue, fin, Bryde's, sei and minke whales. The rorquals are believed to have diverged from the other families of the suborder Mysticeti during the middle Miocene. 

While cetaceans were historically thought to have descended from mesonychids—which would place them outside the order Artiodactyla—molecular evidence supports them as a clade of even-toed ungulates—our dear Artiodactyla. 

It is one of the larger rorqual species, with adults ranging in length from 12–16 m (39–52 ft) and weighing around 25–30 metric tons (28–33 short tons). The humpback has a distinctive body shape, with long pectoral fins and a knobbly head. It is known for breaching and other distinctive surface behaviours, making it popular with whale watchers and the lucky few who see them from the decks of our local ferries.

Both male and female humpback whales vocalize, but only males produce the long, loud, complex "song" for which the species is famous. Males produce a complex soulful song lasting 10 to 20 minutes, which they repeat for hours at a time. I imagine Gregorian Monks vocalizing their chant with each individual melody strengthening and complimenting that of their peers. All the males in a group produce the same song, which differed in each season. Its purpose is not clear, though it may help induce estrus in females and bonding amongst the males.

Humpback Whale, Megaptera novaeangliae
Found in oceans and seas around the world, humpback whales typically migrate up to 25,000 km (16,000 mi) each year. 

They feed in polar waters and migrate to tropical or subtropical waters to breed and give birth, fasting and living off their fat reserves. Their diet consists mostly of krill and small fish. 

Humpbacks have a diverse repertoire of feeding methods, including the bubble net technique.

Humpbacks are a friendly species that interact with other cetaceans such as bottlenose dolphins. They are also friendly and oddly protective of humans. You may recall hearing about an incident off the Cook Islands a few years back. Nan Hauser was snorkelling and ran into a tiger shark. Two adult humpback whales rushed to her aid, blocking the shark from reaching her and pushing her back towards the shore. We could learn a thing or two from their kindness. We have not been as good to them as they have been to us.

Like other large whales, the humpback was a tasty and profitable target for the whaling industry. My grandfather and uncle participated in that industry out of Coal Harbour on northern Vancouver Island back in the 1950s. So did many of my First Nation cousins. My cousin John Lyon has told me tales of those days and the slippery stench of that work.

Six whaling stations operated on the coast of British Columbia between 1905 and 1976. Two of these stations were located at Haida Gwaii, one at Rose Harbour and the other at Naden Harbour. Over 9,400 large whales were taken from the waters around Haida Gwaii. The catch included blue whales, fin whales, sei whales, humpback whales, sperm whales and right whales. In the early years of the century, primarily humpback whales were taken. In later years, fin whales and sperm whales dominated the catch. 

Whales were hunted off South Moresby in Haida Gwaii, and on the north side of Holberg Inlet in the Quatsino Sound region. 

We squirm at this reality today but it was the norm at the time and a way to make a living—especially for those who had hoped to work in the local coal mine but lost their employment when it shut down. 

While my First Nations relatives hunted whales in small numbers and many years ago, my Norwegian relatives participated in the hunt on a scale that nearly led to their extinction before the process was banned. The Coal Harbour Whaling Station closed in 1967. Once it had closed, my grandfather Einar Eikanger, my mother's father, took to fishing and my uncle Harry lost his life the year before when he slipped and fell over the side of the boat. He was crushed between the hull and a Humpback in rough seas. 

Humpback populations have partially recovered since that time to build their population up to 80,000 animals worldwide—but entanglement in fishing gear, collisions with ships, and noise pollution continue to negatively impact the species. So be kind if you see them. Turn your engine off and see if you can hear their soulful cries echoing in the water.

I did up a video on Humpback Whales over on YouTube so you could see them in all their majesty. Here is the link: https://youtu.be/_Vbta7kQNoM

Tuesday, 2 September 2025

HIGHLANDS OF ICELAND

The Northern Lights over a sea of wildflowers in the marsh near Landmannalaugar, part of the Fjallabak Nature Reserve in the Highlands of Iceland.

Landmannalaugar is at the northern tip of the Laugavegur hiking trail that leads through natural geothermal hot springs and an austere yet poetically beautiful landscape. 

Here, you can see the Northern Lights play through the darkness of a night sky without light pollution and bask in the raw geology of this rugged land.

The Fjallabak region takes its name from the numerous wild and rugged mountains with deeply incised valleys, which are found there. 

The topography of the Torfajokull, a central volcano found within the Fjallabak Nature Reserve, is a direct result of the region being the largest rhyolite area in Iceland and the largest geothermal area (after Grimsvotn in Vatnajokull).

The Torfajokull central volcano is an active volcanic system but is now in a declining fumarolic stage as exemplified by numerous fumaroles and hot springs. The hot pools at Landmannalaugar are but one of many manifestations of geothermal activity in the area, which also tends to alter the minerals in the rocks, causing the beautiful colour variations from red and yellow to blue and green, a good example being Brennisteinsalda. Geologists believe that the Torfajokull central volcano is a caldera, the rim being Haalda, Suðurnamur, Norður-Barmur, Torfajokull, Kaldaklofsfjoll and Ljosartungur.

The bedrock of the Fjallabak Nature Reserve dates back 8-10 million years. At that time the area was on the Reykjanes – Langjokull ridge rift zone. 

The volcano has been most productive during the last 2 million years, that is during the last Ice Age Interglacial rhyolite lava (Brandsgil) and sub-glacial rhyolite (erupted under ice/water, examples being Blahnukur and Brennisteinsalda are characteristic formations in the area. 

To the north of the Torfajokull region, sub-glacial volcanic activity produced the hyaloclastites (Moberg) mountains, such as Lodmundur and Mogilshofdar.

On March 19, 2021, a volcanic eruption started in the Geldingadalir valley at the Fagradalsfjall mountain on the Reykjanes peninsula, South-West Iceland. The volcano is situated approximately 30 km from the country’s capital city, Reykjavík. The eruption is ongoing and the landscape in the valley and its surrounding area is constantly changing as a result.

Prior to the eruptive display earlier this year, volcanic activity over the past 10.000 years has been restricted to a few northeast-southwest fissures, the most recent one, the Veidivotn fissure from 1480, formed Laugahraun (by the hut at Landmannalaugar), Namshraun, Nordurnamshraun, Ljotipollur and other craters which extend 30 km, further to the north Eruptions in the area tend to be explosive and occur every 500 – 800 years, previous known eruptions being around AD 150 and 900.

Tuesday, 26 August 2025

OUR GREAT BEARS: URSAVUS TO NAN

GREAT BEAR NA̱N
Hiking in BC, both grizzly and black bear sightings are common. Nearly half the world's population, some 25,000 Grizzly Bears, roam the Canadian wilderness — of those, 14,000 or more call British Columbia home. 

These highly intelligent omnivores spend their days lumbering along our coastlines, mountains and forests.

Both bear families descend from a common ancestor, Ursavus, a bear-dog the size of a raccoon who lived more than 20 million years ago. Seems an implausible lineage given the size of their very large descendants. 

An average Grizzly weighs in around 800 lbs (363 kg), but a recent find in Alaska tops the charts at 1600 lbs (726 kg). 

This mighty beast stood 12' 6' high at the shoulder, 14' to the top of his head and is one of the largest grizzlies ever recorded — a na̱ndzi.

Adult bears tend to live solo except during mating season. Those looking for love congregate from May to July in the hopes of finding a mate. Through adaptation to shifting seasons, the females' reproductive system delays the implantation of fertilized eggs — blastocysts —until November or December to ensure her healthy pups arrive during hibernation. If food resources were slim that year, the newly formed embryo will not catch or attach itself to her uterine wall and she'll try again next year. 

Females reach mating maturity at 4-5 years of age. They give birth to a single or up to four cubs (though usually just two) in January or February. The newborn cubs are cute little nuggets — tiny, hairless, and helpless — weighing in at 2-3 kilograms or 4-8 pounds. They feast on their mother’s nutrient-dense milk for the first two months of life. The cubs stay with their mamma for 18 months or more. Once fully grown, they can run 56 km an hour, are good at climbing trees and swimming and live 20-25 years in the wild. 

A Grizzly bear encounter inspires a humbling appreciation of just how remarkable these massive beasts are. Knowing their level of intelligence, keen memory and that they have a bite force of over 8,000,000 pascals — enough to crush a bowling ball — inspires awe and caution in equal measure. 

They have an indescribable presence. It is likely because of this that these majestic bears show up often in the superb carvings and work of First Nations artists. I have had close encounters with many bears growing up in the Pacific Northwest, meeting them up close and personal in the South Chilcotins and along our many shorelines. 

First Nation Lore and Language

In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest — or Kwakwaka'wakw, speakers of Kwak'wala — a Grizzly bear is known as na̱n

The ornamental carved Grizzly bear headdress was worn by the comic Dluwalakha Grizzly Bear Dancers, Once more from Heaven, in the Grizzly Bear Dance or Gaga̱lalał, is known as na̱ng̱a̱mł

The Dluwalakha dancers were given supernatural treasures or dloogwi which they passed down from generation to generation. 

In the Hamat'sa Grizzly bear dance, Nanes Bakbakwalanooksiwae, no mask was worn. Instead, the dancers painted their faces red and wore a costume of bearskin or t̓ła̱ntsa̱m and long wooden claws attached to their hands. You can imagine how impressive that sight is lit by the warm flickering flames of firelight during a Winter Dance ceremony.

Smoke of the World / Speaking of the Ancestors — Na̱wiła

Kwaguʼł Winter Dancers — Qagyuhl
Should you encounter a black bear and wish to greet them in Kwak'wala, you would call them t̕ła'yi. Kwakiutl First Nations, Smoke of the World, count Grizzly Bears as an ancestor — along with Seagull, Sun and Thunderbird. 

To tell stories of the ancestors is na̱wiła. Each of these ancestors took off their masks to become human and founded the many groups that are now bound together by language and culture as Kwakwaka’wakw. 

The four First Nations who collectively make up the Kwakiutl are the Kwakiutl (Kwágu7lh), K’umk’utis/Komkiutis, Kwixa/Kweeha (Komoyoi) and Walas Kwakiutl (Lakwilala) First Nations. 

There is likely blood of the Lawit’sis in there, too, as they inhabited the village site at Tsax̱is/T'sakis, Fort Rupert before the Kwakiutl First Nations made it a permanent home. It was here that I grew up and learned to greet my ancestors. 

Not all Kwakwaka'wakw dance the Gaga̱lalał, but their ancestors likely attended feasts where the great bear was celebrated. To speak or tell stories of the ancestors is na̱wiła — and Grizzly bear as an ancestor is na̱n helus.

Visiting British Columbia's Great Bears

If you are interested in viewing British Columbia's Great Bears, do check out Indigenous Tourism BC's wonderfully informative website and the culturally-rich wildlife experiences on offer. You will discover travel ideas and resources to plan your next soul-powered adventure. To learn more about British Columbia's Great Bears and the continuing legacy of First Nation stewardship, visit: 

Indigenous Tourism BC: https://www.indigenousbc.com

Great Bear Lodge has been offering tours to view the majestic animals of the Pacific Northwest. They keep both the guests' and the animals' comfort and protection in mind. I highly recommend their hospitality and expertise. To see their offerings, visit: www.greatbeartours.com

Image: Group of Winter Dancers--Qagyuhl; Curtis, Edward S., 1868-1952, https://lccn.loc.gov/2003652753. 

Note: The Qagyuhl in the title of this photograph refers to the First Nation group, not the dancers themselves. I think our dear Edward was trying to spell Kwaguʼł and came as close as he was able. In Kwak'wala, the language of the Kwaguʼł or Kwakwakaʼwakw, speakers of Kwak'wala, the Head Winter Dancer is called t̕seḵa̱me' — and to call someone a really good dancer, you would use ya̱'winux̱w

Charmingly, when Edward S. Curtis was visiting Tsaxis/T'sakis, he was challenged to a wrestling competition with a Giant Pacific Octopus, Enteroctopus dofleini. George Hunt (1854-1933) my great great grandfather's elder brother had issued the challenge and laughed himself senseless when Edward got himself completely wrapped up in tentacles and was unable to move. Edward was soon untangled and went on to take many more photos of the First Nations of the Pacific Northwest. Things did not go as well for the octopus or ta̱ḵ̕wa. It was later served for dinner or dzaḵwax̱stala, as it seemed calamari was destined for that night's menu.