Showing posts with label palaeontology. Show all posts
Showing posts with label palaeontology. Show all posts

Sunday, 31 January 2021

THERIZINOSAURUS: DINOSAUR EGGS

The brood of eggs you see here belong to the slow-moving but massive dinosaur Therizinosaurus. He belonged to a genus of sizable therizinosaurid that lived during the Late Cretaceous, 70 million years ago. 

Therizinosaurus was a colossal therizinosaur that could grow up to 9–10 m (30–33 ft) long and weigh possibly over 3 t (3,000 kg). Like other therizinosaurs, it would have been a bit of a slowpoke on the ground. These fellows had a rhamphotheca (horny beak) and a wide torso for food processing. 

The forelimbs were particularly robust and had three fingers that bore unguals which, unlike other relatives, were very stiffened, elongated, and only had significant curvatures at the tips. After years of taxonomic debate, nevertheless, they are now placed in one of the major dinosaur clades, Theropoda, specifically as maniraptorans. 

Sunday, 20 December 2020

AMMONOIDS, BIVALVES AND POLAR BEARS OF SVALBARD

 This marvellous block is filled with Aristoptychites (syn=Arctoptychites) euglyphus (Mojsisovics, 1886) and Daonella sp., oyster-like saltwater clams or bivalves from the Middle Triassic (Ladinian) outcrops in the Botneheia Formation of Spitzbergen, in Edgeøya and Barentsøya, eastern Svalbard, Norway. 

Daonella and Monotis are important species for our understanding of biostratigraphy in the Triassic and are useful as an index fossil. Daonellids preferred soft, soupy substrates and we tend to find them in massive shell beds.

Svalbard is a Norwegian archipelago between mainland Norway and the North Pole. One of the world’s northernmost inhabited areas, it's known for its rugged, remote terrain of glaciers and frozen tundra sheltering polar bears, reindeer and Arctic fox. The Northern Lights are visible during winter, and summer brings the “midnight sun”—sunlight 24 hours a day.

The Botneheia Formation is made up of dark grey, laminated shales coarsening upwards to laminated siltstones and sandstones. South of the type area, the formation shows several (up to four) coarsening-upward units. 

The formation is named for Botneheia Mountain, a mountain in Nordenskiöld Land at Spitsbergen, Svalbard. It has a height of 522 m.a.s.l., and is located south of Sassenfjorden, east of the valley of De Geerdalen. 

Polar Bears, Ursus maritimus
As well as lovely ammonoids and bivalves, we've found ichthyosaur remains here. We had been expecting too, but it was not until the early 2000s that the first bones were found.

Two specimens have of ichthyosaur have been recovered. They comprise part of the trunk and the caudal vertebral column respectively. 

Some features, such as the very high and narrow caudal and posterior thoracic neural spines, the relatively elongate posterior thoracic vertebrae and the long and slender haemapophyses indicate that they probably represent a member of the family Toretocnemidae. 

Numerous ichthyosaur finds are known from the underlying Lower Triassic Vikinghøgda Formation and the overlying Middle to Upper Triassic Tschermakfjellet Formation, the new specimens help to close a huge gap in the fossil record of the Triassic ichthyosaurs from Svalbard.

There is a resident research group working on the Triassic ichthyosaur fauna, the Spitsbergen Mesozoic Research Group. Lucky for them, they often find the fossil remains fully articulated — the bones having retained their spacial relationship to one another. Most of their finds are of the tail sections of primitive Triassic ichthyosaurs. In later ichthyosaurs, the tail vertebrae bend steeply downwards and have more of a fish-like look. In these primitive ancestors, the tail looks more eel-like — bending slightly so that the spines on the vertebrae form more of the tail.

Maisch, Michael W. and Blomeier, Dierk published on these finds back in 2009: Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen Band 254 Heft 3 (2009), p. 379 - 384. Nov 1, 2009

The lovely block you see here is in the collections of the deeply awesome John Fam. The image of the Polar Bears, Ursus maritimus, is courtesy of the Fossil Huntress. 

Sunday, 13 December 2020

GIANT GROUND SLOTH

In 1788, this magnificent specimen of a Megatherium sloth was sent to the Royal Cabinet of Natural History from the Viceroyalty of Rio de la Plata.

The megaterios were large terrestrial sloths belonging to the group, Xenarthra. These herbivores inhabited large areas of land on the American continent. Their powerful skeleton enabled them to stand on their hind legs to reach leaves high in the trees, a huge advantage given the calories needed to be consumed each day to maintain their large size.

Avocados were one of the food preferences of our dear Giant ground sloths. They ate then pooped them out, spreading the pits far and wide. The next time you enjoy avocado toast, thank this large beastie. One of his ancestors may have had a hand (or butt) in your meal.

In 1788, Bru assembled the skeleton as you see it here. It is exhibited at the Museo Nacional De Ciencias Naturales in Madrid, Spain, in its original configuration for historic value. If you look closely, you'll see it is not anatomically correct. But all good palaeontology is teamwork. Based upon the drawings of Juan Bautista Bru, George Cuvier used this specimen to describe the species for the very first time.

Friday, 4 December 2020

DESHAYESITES VOLGENSIS BLOCK

From Russia with Love — a lovely iridescent block of ammonites with Deshayesites volgensis (Sasonova, 1958), and Aconeceras (Sinzovia) trautscholdi (Sinzow. 1870) with their natural pink, blue and purple candy colouring. These beauties are from Lower Cretaceous, Aptian, 120 - 112 million-year-old outcrops near Shilovka, Ulyanovsk Region, Russia. This lovely block was collected by and is in the collections of the deeply awesome Emil Black.

Aptian deposits near the Volga River between Ul'yanovsk and Saratov have been studied for more than a century. The age of lower Aptian deposits was traditionally established based on changing ammonite assemblages of the family Deshayesitidae.

The diverse assemblage of heteromorphic ammonites, Ancyloceratidae, inhabitants of relatively deep basins, has made it possible to propose a new scheme of ammonoid zonation in the lower Aptian epipelagic deposits of the Russian plate.

Many of the identified ancyloceratids were established here for the first time. The analysis of coexisting deshayesitids and heteromorphs enabled a correlation of stratigraphic schemes for the monomorphic Deshayesitidae and heteromorphic Ancyloceratidae. The described generic taxa and species are Volgoceratoides I. Michailova et Baraboshkin, gen. nov., V. schilovkensis I. Michailova et Baraboshkin, sp. nov., Koeneniceras I. Michailova et Baraboshkin, gen. nov., K. tenuiplicatum (von Koenen, 1902), K. rareplicatum I. Michailova et Baraboshkin, sp. nov.

In few sections of the Saratov Volga area (central part of the Russian Platform), representing both offshore and nearshore lithofacies of the epicontinental Middle Russian Sea, researchers have recognized simultaneous changes in ammonite and belemnite successions. The significant influence of anoxic events on faunal turnovers in marine communities is well-established. However, many studies are focused on the impact of anoxic conditions on benthic organisms, not on the hunter-gatherers living higher up in the sea column. This means that coeval changes in pelagic cephalopod assemblages remain relatively poorly understood.

Belemnites, represented by the late members of the family Oxyteuthididae, are common in the interval directly preceding the anoxic event, but totally disappear with the onset of the black shale deposition. We see a reduction in the shell size of the Deshayesites ammonites across the mudstone – black shale boundary (maximum shell diameter of adults reduces from ∼20 cm to 7–8 cm).

Some other ammonites become numerous (Sinzovia) within the black shale interval or show the first occurrence in it (Koeneniceras and Volgoceratoides). In our opinion diminishing of Deshayesites shell size during the early Aptian OAE could be caused by the coupling of palaeoenvironmental factors such as progressive warming and regional input of brackish water. Preliminary results of carbon isotope studies of aragonite deriving from the ammonite nacreous layer are also provided.

The significant influence of anoxic events on faunal turnovers in marine communities is well-established. However, many studies are focused on the impact of anoxic conditions on benthic organisms, not on the hunter-gatherers living higher up in the sea column. This means that coeval changes in pelagic cephalopod assemblages remain relatively poorly understood. The maximum diameter on the Deshayesites shown here in the photo by Emil Black is 70 mm.

Rogov, Mikhail & Shchepetova, Elena & Ippolitov, Alexei & Seltser, Vladimir & Mironenko, Aleksandr & Pokrovsky, Boris & Desai, Bhawanisingh. (2019). Response of cephalopod communities on abrupt environmental changes during the early Aptian OAE1a in the Middle Russian Sea. Cretaceous Research. 10.1016/j.cretres.2019.01.007.

E. Yu. Baraboshkin and I. A. Mikhailova. New Stratigraphic Scheme of the Lower Aptian in the Volga River Middle Courses. Stratigraphy arid Geological Correlation, Vol 10, No 6, 2002, pp 603-626 Translated from Stratigrafiy a Geologicheskaya Korrelyatsiya, Vol 10, No 6, 2002, pp 82-105

Tuesday, 13 October 2020

FOSSIL HUNTRESS PODCAST

After much thinking and dreaming — the Fossil Huntress Podcast is now live. This is pure geeky goodness from the Fossil Huntress in personal bite-sized bits. 

If you love palaeontology, you'll love this podcast. Learn about fossils, head out on some virtual fossil field trips and palaeontological excavations, meet some truly awesome palaeo folk and share in the passion of fossils. 

We'll talk about what fossils are, who collects them and how to tell if you've found a fossil. You'll also learn the palaeontological history of the province of British Columbia, our regional societies and how the Huntress found her passion.

You can listen on Google Podcasts, Apple iTunes, Anchor, Spotify, Breaker, RadioPublic, Overcast and Pocket Casts right now. If you have ideas for an episode, feel free to send me a message on the Fossil Huntress page on Facebook or drop me a DM on Twitter or Instagram. I'm super excited to share all kinds of geeky goodness with you. I hope it lifts you up and gets you curious about the world so you'll join me on many exciting adventures.

Podcast Link: Fossil Huntress — Paleo Sommelier: https://anchor.fm/fossil-huntress

Tuesday, 22 September 2020

AVIAN RELATIONS


Although most of the skeletal features differentiating birds from other extant vertebrates can be traced back to the Mesozoic dinosaurs (Makovicky; Zanno, 2011; Xu et al., 2014a), the integration of the fossil record of stem-avians — all taxa closer to birds than crocodiles — with the developmental biology of living birds is more controversial.

The evolution of the three-fingered hand of birds from the ancestral pentadactyl condition of tetrapods is still debated, the former having been considered alternatively as homologous to the medial most three (I–II–III) or the central (II–III–IV) fingers of reptiles (Wagner & Gauthier, 1999; Bever, Gauthier & Wagner, 2011; Xu et al., 2014a).

This controversy has often been depicted as a dichotomy between a paleontological approach supporting the I–II–III pattern in three-fingered theropods, Tetanurans, and a developmental approach supporting the II–III–IV pattern based on the topology of the embryonic mesenchymal condensations from which the avian digits develop (Wagner & Gauthier, 1999).

Yet, both fossil and embryological data are involved in the two alternative interpretations (Bever, Gauthier & Wagner, 2011; Vargas et al., 2008; Xu et al., 2009; Tamura et al., 2011), and may eventually support additional, more complex, homology frameworks (Xu et al., 2014a). Pivotal among the fossil evidence, the unusual hand of the Late Jurassic ceratosaurian Limusaurus has been argued to support a II–III–IV digital identity in birds and a complex pattern of homeotic transformations in three-fingered, Tetanuran, theropods (Xu et al., 2009; Bever, Gauthier & Wagner, 2011), although criticism to this interpretation has been raised from both paleontological and developmental perspectives (Wang et al., 2011; Carrano & Choiniere, 2016).

Following the reinterpretation of the digital identity along the avian stem of Xu et al. (2009), a series of paleontological studies in the last decade used the II–III–IV homology pattern as a morphological framework for three-fingered theropods, challenging the I–II–III pattern traditionally followed in the interpretation of the theropod hand (Xu, Han & Zhao, 2014b). It must be remarked that the evolutionary scenario supporting the II–III–IV homology pattern of Xu et al. (2009) makes predictions that can be falsified in the fossil record (Bever, Gauthier & Wagner, 2011): the phalangeal formula at the root of Ceratosauria should be markedly simplified, compared to the ancestral theropod formula (i.e., 0-3-3/2-1-X vs 2-3-4-1-0).

The new ceratosaurian theropod, Saltriovenator zanellai, from the Saltrio Formation, Lower Jurassic, Lower Sinemurian, ∼198 million-year-old outcrops of Northern Italy (Dal Sasso, 2003), show a mosaic of features seen in four-fingered theropods and in basal tetanurans. Although fragmentary, the new theropod allows the reconstruction of the ancestral ceratosaurian hand, shedding light on the evolutionary digit pattern in tetanuran fingers and thus along the lineage leading to bird origin. The occurrence of large averostran theropods in the fossil record also helps us to understand the body size of this new Italian specimen and its stratigraphic and geochronological context.

The new find, in the context of Early Jurassic neotheropods Skeletal remains of theropod dinosaurs are extremely rare in the Lower Jurassic and most reports are of only fragmentary remains (Benton, Martill; Taylor, 1995; Owen, 1863; Woodward, 1908; Andrews, 1921; Cuny & Galton, 1993; Delsate & Ezcurra, 2014).

Ceratosaurian-grade taxa are absent until Middle Jurassic times (Maganuco et al., 2007; Pol & Rauhut, 2012), with one exception from the Pliensbachian–Toarcian of Northern Africa (Allain et al., 2007). This paucity of skeletal remains is a considerable gap in our knowledge of these animals at a time when theropods were diversifying rapidly. Just after the Triassic–Jurassic mass extinction event we begin to see a rich, worldwide distribution revealed through ichnofossils (Delsate & Ezcurra, 2014).

In Europe, we find theropod remains from the Hettangian, mostly non-diagnostic at the generic level: Scotland (Benton, Martill & Taylor, 1995), England (Owen, 1863; Woodward, 1908; Andrews, 1921), France (Cuny & Galton, 1993), and Luxembourg (Delsate & Ezcurra, 2014).

Two species of the genus Sarcosaurus have been reported from the Hettangian of England, S. woodi from Barrow upon Soar, Leicestershire, based on an isolated pelvis, vertebra, and proximal femur (BMNH 4840/1), and S. andrewsi (Huene, 1932), based on a partial tibia (NHMUK R3542) (Woodward, 1908).

There's also the neotheropod Dracoraptor hanigani, from the Hettangian of Wales, described by Martill et al. in 2016 on the basis of a 40% complete skeleton including cranial and postcranial material. In the rest of the world, the most famous Early Jurassic theropod is certainly Dilophosaurus wetherilli from the Hettangian of Arizona (Welles, 1954, 1984), which is known from several specimens.

Other relevant taxa are Sinosaurus (=“Dilophosaurus” sinensis) from the Hettangian–Sinemurian of China (Hu, 1993), Coelophysis rhodesiensis from the Hettangian–Pliensbachian of South Africa and Zimbabwe (Raath, 1990), a personal favourite Dracovenator from the Hettangian of South Africa (Yates, 2005), Cryolophosaurus from the Early Jurassic (?Sinemurian–Pliensbachian) of Antarctica (Hammer & Hickerson, 1994), Podokesaurus from the Pliensbachian to Toarcian of Massachusetts (Talbot, 1911), Segisaurus from the Pliensbachian to Toarcian of Arizona (Carrano, Hutchinson & Sampson, 2005), “Syntarsus kayentakatae from the Hettangian of Arizona (Rowe, 1989), and Berberosaurus from the Toarcian of Morocco (Allain et al., 2007).

Ignored is the enigmatic genus Eshanosaurus from the Lower Jurassic of China, tentatively dated as Hettangian (Xu, Zhao & Clark, 2001), pending correct identification and reliably dating, as this purported therizinosaurian coelurosaur might just well be a sauropodomorph.

In this context, the discovery of the new specimen from the Sinemurian of Italy is extremely relevant as it is among the oldest Jurassic theropods, it is larger than all other pre-Aalenian theropods and it helps us to understand some of the macroevolutionary patterns that would have characterized the evolution of Theropoda during the Jurassic.

It also represents the first dinosaur skeleton from the Italian Alps, the first of Jurassic age, and the second theropod skeleton found in Italy after Scipionyx samniticus (Dal Sasso & Signore, 1998; Dal Sasso & Maganuco, 2011). The discovery of the specimen was described accidentally. For a more detailed account, see Dal Sasso, 2004 or the post here from March 9, 2020.

Friday, 24 April 2020

ETHELDRED BENETT: SPONGE HUNTRESS

Hoplites (Hoplites) bennettiana (Sowerby, 1826)
A beautiful example of the ammonite, Hoplites (Hoplites) bennettiana (Sowerby, 1826), from Early Albian localities in the Carrière de Courcelles Villemoyenne, Région de Troyes, near Champagne in northeastern France.

The species name is an homage to Etheldred Benett, an early English geologist often credited with being the first female geologist — a fossil collector par excellence.

She was also credited with being a man  —  the Natural History Society of Moscow awarding her membership as Master Etheldredus Benett in 1836. The confusion over her name (it did sound masculine) came again with the bestowing of a Doctorate of Civil Law from Tsar Nicholas I.

The Tsar had read Sowerby's Mineral Conchology, a major fossil reference work which contained the second-highest number of contributed fossils of the day, many the best quality available at the time. Forty-one of those specimens were credited to Benett. Between her name and this wonderous contribution to a growing science, the Russian Tsar awarded the Doctorate to what he believed was a young male scientist on the rise. He believed in education, founding Kiev University in 1834, just not for women. He was an autocratic military man frozen in time — the thought that this work could have been done by a female unthinkable. Doubly charming is that the honour from the University of St Petersburg was granted at a time when women were not allowed to attend St. Pete's or any higher institutions. That privilege arrived in 1878, twenty years after Nicholas I's death.

Benett took these honours (and social blunders) with grace. She devoted her life to collecting and studying fossils from the southwest of England, amassing an impressive personal collection she openly shared with geologist friends, colleagues and visitors to her home. Her specialty was fossils from the Middle Cretaceous, Upper Greensand in the Vale of Wardour — a valley in the county of Wiltshire near the River Nadder.

Etheldred was a local Wiltshire girl. Born Etheldred Benett on 22 July 1775 at Pyt House, Tisbury, Wiltshire, the eldest daughter of the local squire Thomas Benett. Etheldred's interest was cultivated by the botanist Aylmer Bourke Lambert (1761-1842), a founding member of the Linnean Society. Benett's brother had married Lucy Lambert, Aylmer's half-sister. Aylmer was a Fellow of the Royal Society and the Society of the Arts. He was also an avid fossil collector and member of the Geological Society of London. The two met and got on famously.

Aylmer kindled an interest in natural history in both of Benett's daughters. Etheldred had a great fondness in geology, stratigraphy and all things paleo, whilst her sister concentrated on botany. Etheldred had a distinct advantage over her near contemporary, the working-class Mary Anning (1799-1847), in that Benett was a woman of independent wealth who never married — and didn't need to — who could pursue the acquisition and study of fossils for her own interest.

While Anning was the marine reptile darling of the age, she was also greatly hindered by her finances. "She sells, seashells by the seashore..." while chanted in a playful spirit today, was not meant kindly at the time. Aylmer's encouragement emboldened Etheldred to go into the field to collect for herself — and collect she did. Profusely.

Benett’s contribution to the early history of Wiltshire geology is significant. She corresponded extensively with the coterie of gentlemen scientists of the day —  Gideon Mantell, William Buckland, James Sowerby, George Bellas Greenough and, Samuel Woodward. She also consorted with the lay folk and had an ongoing correspondence with William Smith, whose stratigraphy work had made a favourable impression on her brother-in-law, Aylmer.

Her collections and collaboration with geologists of the day were instrumental in helping to form the field of geology as a science. One colleague and friend, Gideon Mantell, British physician, geologist and paleontologist, who discovered four of the five genera of dinosaurs and Iguanadon, was so inspired by Benett's work he named this Cretaceous ammonite after her — Hoplites bennettiana.

Benett's fossil assemblage was a valuable resource for her contemporaries and remains so today. It contains thousands of Jurassic and Cretaceous fossil specimens from the Wiltshire area and the Dorset Coast, including a myriad of first recorded finds. The scientific name of every taxon is usually based on one particular specimen, or in some cases multiple specimens. Many of the specimens she collected serve as the Type Specimen for new species.

Fossil Sponge, Polypothecia quadriloba, Warminster, Wiltshire
Her particular interest was the collection and study of fossil sponges. Alcyonia caught her eye early on. She collected and recorded her findings with the hope that one of her colleagues might share her enthusiasm and publish her work as a contribution to their own.

Alas, no one took up the helm — those interested were busy with other pursuits (or passed away) and others were less than enthusiastic or never seemed to get around to it.

To ensure the knowledge was shared in a timely fashion, she finally wrote them up and published them herself. You can read her findings in her publication, ‘A Catalogue of Organic Remains of the County of Wiltshire’ (1831), where she shares observations on the fossil sponge specimens and other invert goodies from the outcrops west of town.

She shared her ideas freely and donated many specimens to local museums. It was through her exchange of observations, new ideas and open sharing of fossils with Gideon Mantell and others that a clearer understanding of the Lower Cretaceous sedimentary rocks of Southern England was gained.

In many ways, Mantell was drawn to Benett as his ideas went against the majority opinion. At a time when marine reptiles were dominating scientific discoveries and discussions, he pushed the view that dinosaurs were terrestrial, not amphibious, and sometimes bipedal. Mantell's life's work established the now-familiar idea that the Age of Reptiles preceded the Age of Mammals. Mantell kept a journal from 1819-1852, that remained unpublished until 1940 when E. Cecil Curwen published an abridged version. (Oxford University Press 1940). John A. Cooper, Royal Pavilion and Museums, Brighton and Hove, published the work in its entirety in 2010.

I was elated to get a copy, both to untangle the history of the time and to better learn about the relationship between Mantell and Benett. So much of our geologic past has been revealed since Mantell's first entry two hundred years ago. The first encounter we share with the two of them is a short note from March 8, 1819. "This morning I received a letter from Miss Bennett of Norton House near Warminster Wilts, informing me of her having sent a packet of fossils for me, to the Waggon Office..." The diary records his life, but also the social interactions of the day and the small connected community of the scientific social elite. It is a delight!

Though a woman in a newly evolving field, her work, dedication and ideas were recognized and appreciated by her colleagues. Gideon Mantell described her as, "a lady of great talent and indefatigable research," whilst the Sowerbys noted her, "labours in the pursuit of geological information have been as useful as they have been incessant."

Benett produced the first measured sections of the Upper Chicksgrove quarry near Tisbury in 1819, published and shared with local colleagues as, "the measure of different beds of stone in Chicksgrove Quarry in the Parish of Tisbury.” The stratigraphic section was later published by naturalist James Sowerby without her knowledge. Her research contradicted many of Sowerby’s conclusions.

She wrote and privately published a monograph in 1831, containing many of her drawings and sketches of molluscs and sponges. Her work included sketches of fossil Alcyonia (1816) from the Green Sand Formation at Warminster Common and the immediate vicinity of Warminster in Wiltshire.

Echinoids and Bivalves. Collection of Etheldred Benett (1775-1845)
The Society holds two copies, one was given to George Bellas Greenough, and another copy was given to her friend Gideon Mantell. This work established her as a true, pioneering biostratigrapher following but not always agreeing with the work of William Smith.

If you'd like to read a lovely tale on William's work, check out the Map that Changed the World: William Smith and the Birth of Modern Geology by Simon Winchester. It narrates the intellectual context of the time, the development of Smith's ideas and how they contributed to the theory of evolution and more generally to a dawning realization of the true age of the earth.

The book describes the social, economic or industrial context for Smith's insights and work, such as the importance of coal mining and the transport of coal by means of canals, both of which were a stimulus to the study of geology and the means whereby Smith supported his research. Benett debated many of the ideas Smith put forward. She was luckier than Smith financially, coming from a wealthy family, a financial perk that allowed her the freedom to add fossils to her curiosity cabinet at will.

Most of her impressive collection was assumed lost in the early 20th century. It was later found and purchased by an American, Thomas Bellerby Wilson, who donated it to the Academy of Natural Sciences of Philadelphia. Small parts of it made their way into British museums, including the Leeds City Museum, London, Bristol and to the University of St. Petersburg. These collections contain many type specimens and some of the very first fossils found — some with the soft tissues preserved. When Benett died in 1845, it was Mantell who penned her obituary for the London Geological Journal.

In 1989, almost a hundred and fifty years after her death, a review of her collection had Arthur Bogen and Hugh Torrens remark that her work has significantly impacted our modern understanding of Porifera, Coelenterata, Echinodermata, and the molluscan classes, Cephalopoda, Gastropoda, and Bivalvia. A worthy legacy, indeed.

Her renown lives on through her collections, her collaborations and through the beautiful 110 million-year-old ammonite you see here, Hoplites bennettiana. The lovely example you see here is in the collection of the deeply awesome Christophe Marot.

Spamer, Earle E.; Bogan, Arthur E.; Torrens, Hugh S. (1989). "Recovery of the Etheldred Benett Collection of fossils mostly from Jurassic-Cretaceous strata of Wiltshire, England, analysis of the taxonomic nomenclature of Benett (1831), and notes and figures of type specimens contained in the collection". Proceedings of the Academy of Natural Sciences of Philadelphia. 141. pp. 115–180. JSTOR 4064955.

Torrens, H. S.; Benamy, Elana; Daeschler, E.; Spamer, E.; Bogan, A. (2000). "Etheldred Benett of Wiltshire, England, the First Lady Geologist: Her Fossil Collection in the Academy of Natural Sciences of Philadelphia, and the Rediscovery of "Lost" Specimens of Jurassic Trigoniidae (Mollusca: Bivalvia) with Their Soft Anatomy Preserved.". Proceedings of the Academy of Natural Sciences of Philadelphia. 150. pp. 59–123. JSTOR 4064955.

Photo credit: Fossils from Wiltshire.  In the foreground are three examples of the echinoid, Cidaris crenularis, from Calne, a town in Wiltshire, southwestern England, with bivalves behind. Caroline Lam, Archivist at the Geological Society, London, UK. http://britgeodata.blogspot.com/2016/03/etheldred-benett-first-female-geologist_30.html

Photo credit: Fossil sponges Polypothecia quadriloba, from Warminster, Wiltshire. The genus labels are Benett’s, as is the handwriting indicating the species. The small number, 20812, is the Society’s original accession label from which we can tell that the specimen was received in April 1824. The tablet onto which the fossils were glued is from the Society’s old Museum.

Monday, 23 March 2020

YORKSHIRE ICHTHYOSAUR TAIL

Ichthyosaur Tail Section. Photo: Liam Langley
A beautiful piece of ichthyosaur tail section found on the Yorkshire Coast in 2019 by the deeply awesome Liam Langley.

Ichthyosaurus are an extinct marine reptile first described from fossil fragments found in 1699 in Wales. Shortly thereafter, fossil vertebrae were published in 1708 from the Lower Jurassic and the first member of the order Ichthyosauria to be discovered.

Over time, we discovered a number of these fossil specimens and a picture of the overall look and size began to emerge. We found fossils that ranged from quite small, just a foot or two, to well over twenty-six metres in length and resembled both modern fish and dolphins. This specimen holds a well-deserved spot of honour on Liam's mantle. The detail is tremendous and just look at that masterful prep work.

Sunday, 1 March 2020

AUSTRALOPITHECUS AFRICANUS

Two views of a natural endocranial cast articulated with a fragmentary skull of Australopithecus africanus, an early hominid living between 2-3 million years ago in the late Pliocene and into the early Pleistocene -- and the first pre-human to be discovered. They shared many characteristics with their older relatives the Australopithecus afarensis including a more gracile body. The casts you see here show the left maxilla, the orbital area and most of the skull base.

Australopithecus africanus had a larger brain and more humanoid facial features than their older ancestors with an average endocranial volume of 485 cm3 (29.6 cu in). This specimen is TM 1511 and lives in the Ditsong National Museum of Natural History, an amalgamation of eight museums, seven in Tshwane and one in Johannesburg. These museums have diverse collections covering the fields of fauna and flora, palaeontology, military history, cultural history, geology, anthropology and archaeology. The museum is enjoyed by children, youth, adults, students, tourists (foreign and local), researchers and the public in general. The museum is in Pretoria, South Africa which straddles the Apies River and has spread eastwards into the foothills of the Magaliesberg mountains.

Prior to a closer look by researchers, the skull was incorrectly believed to be a separate species, Plesianthropus transvaalensis. It was first discovered in South Africa by G. W. Barlow and described by Robert Broom in 1938. Photo credit: José Braga and Didier Descouens.

Thursday, 20 February 2020

TUZOIA OF THE BALANG FORMATION

A large extinct bivalved arthropod, Tuzoia sinesis (Pan, 1957) from Cambrian deposits of the Balang Formation. The Balang outcrops in beautiful Paiwu, northwestern Hunan Province in southern China. The site is intermediate in age between the Lower Cambrian Chengjiang fauna of Yunnan and the Lower to Middle Cambrian, Kaili Lagerstätten of Guizhou in southwestern China.

This specimen was collected in October 2019. It is one of many new and exciting arthropods to come from the site. Balang has a low diversity of trilobites and many soft-bodied fossils similar in preservation to Canada's Burgess Shale.

Some of the most interesting finds include the first discovery of anomalocaridid appendages (Appendage-F-type) from China along with the early arthropod Leanchoiliids with his atypical frontal appendages (and questionable phylogenetic placement) and the soft-shelled trilobite-like arthropod, Naraoiidae.

Jianheaspis jiaobangensis, is a newly described trilobite also from the Lower Cambrian Balang Formation of Guizhou Province, China. While the site is not as well-studied as the Chengjiang and Kaili Lagerstätten, it looks very promising. The exceptionally well-preserved fauna includes algae, sponges, chancelloriids, cnidarians, worms, molluscs, brachiopods, trilobites and a few non-mineralized arthropods. It is an exciting time for Cambrian paleontology. The Balang provides an intriguing new window into our ancient seas and the profound diversification of life that flourished there.

Tuesday, 18 February 2020

PHYLLOCERAS PONTICULI DE CORDOBA

Phylloceras (Hypophylloceras) ponticuli from the Subbético Externo de Córdoba, a fast-moving carnivorous ammonite. This classical Tethyan Mediterranean specimen is very well preserved, showing much of his delicate suturing in intricate detail. Phylloceras were primitive ammonites with involute, laterally flattened shells.

They were smooth, with very little ornamentation, which led researchers to think of them resembling plant leaves and gave rise to their name, which means leaf-horn. They can be found in three regions that I know of.  In the Jurassic of Italy near western Sicily's Rosso Ammonitico Formation, Lower Kimmeridgian fossiliferous beds of Monte Inici East and Castello Inici (38.0° N, 12.9° E: 26.7° N, 15.4° E) and in the Arimine area, southeastern Toyama Prefecture, northern central Japan, roughly, 36.5° N, 137.5° E: 43.6° N, 140.6° E. And in Madagascar, in the example seen here found near Sokoja, Madagascar, off the southeast coast of Africa at 22.8° S, 44.4° E: 28.5° S, 18.2° E. Photo: Manuel Peña Nieto

Tuesday, 31 December 2019

ECHINODERMATA: CRINOIDS

This lovely specimen is Zeacrinites magnoliaeformis, an Upper Mississippian-Chesterian crinoid found by Keith Metts in the Glen Dean Formation, Grayson County, Kentucky, USA.

Crinoids are unusually beautiful and graceful members of the phylum Echinodermata. They resemble an underwater flower swaying in an ocean current. But make no mistake they are marine animals. Picture a flower with a mouth on the top surface that is surrounded by feeding arms. Awkwardly, add an anus right beside that mouth. That's him!

Crinoids with root-like anchors are called Sea Lilies. They have graceful stalks that grip the ocean floor. Those in deeper water have longish stalks up to 3.3 ft or a meter in length.

Then there are other varieties that are free-swimming with only vestigial stalks. They make up the majority of this group and are commonly known as feather stars or comatulids. Unlike the sea lilies, the feather stars can move about on tiny hook-like structures called cirri. It is this same cirri that allows crinoids to latch to surfaces on the seafloor. Like other echinoderms, crinoids have pentaradial symmetry. The aboral surface of the body is studded with plates of calcium carbonate, forming an endoskeleton similar to that in starfish and sea urchins.

These make the calyx somewhat cup-shaped, and there are few, if any, ossicles in the oral (upper) surface called a tegmen. It is divided into five ambulacral areas, including a deep groove from which the tube feet project, and five interambulacral areas between them. The anus, unusually for echinoderms, is found on the same surface as the mouth, at the edge of the tegmen.

Crinoids are alive and well today. They are also some of the oldest fossils on the planet. We have lovely fossil specimens dating back to the Ordovician.

Wednesday, 13 November 2019

HADROSAURUS OF THE UPPER CRETACEOUS NANAIMO GROUP

Hadrosaurus, also known as the "duck-billed" dinosaurs, were a very successful group of plant-eaters that thrived throughout western Canada during the late Cretaceous, some 70 to 84 million years ago. Hadrosaurs may have lived as part of a herd, dining on pine needles, twigs and flowering plants.

There are two main groups of Hadrosaurs, crested and non-crested. The bony crest on the top of the head of the hadrosaurs was hollow and attached to the nasal passages. It is thought that the hollow crest was used to make different sounds. These sounds may have signalled distress or been the mating calls used to attract mates. Given their size it would have made for quite the trumpeting sound.

This beautiful specimen graces the back galleries of the Courtenay and District Museum on Vancouver Island, British Columbia, Canada. I was very fortunate to have a tour this past summer with the deeply awesome Mike Trask joined by the lovely Lori Vesper. The museum houses an extensive collection of palaeontological and archaeological material found on Vancouver Island, many of which have been donated by the Vancouver Island Palaeontological Society.

Dan Bowen, Chair of the Vancouver Island Palaeontological Society, shared a photo of the first partly articulated dinosaur from Vancouver Island ever found. The research efforts of the VIPS run deep in British Columbia and this new very significant find is no exception. A Hadrosauroid dinosaur is a rare occurrence and further evidence of the terrestrial influence in the Upper Cretaceous, Nanaimo Group, Vancouver Island.

This fossil bone material was found years ago by Mike Trask of the Vancouver Island Palaeontological Society. You may recall that he was the same fellow who found the Courtenay elasmosaur. The bone was initially thought to be a plesiosaur but turned out to be a hadrosauroid. The find was confirmed by hadrosaur authority Dr. David Evans, senior curator of the Royal Ontario Museum.
You can see the articulated Hadrodauriod fossil bone Mike found now prepped fully prepped.

This fellow has kissing cousins over in the state of New Jersey where this species is the official state fossil. The first of his kind was found by John Estaugh Hopkins in New Jersey back in 1838.

Sunday, 8 September 2019

NOOTKA ISLAND

Nootka Sound, Photo: Dan Bowen
Rugged West Coast VIPS Fossil Field Trip to Late Eocene - Early Oligocene, Hesquiat formation of Nootka Island, west coast of Vancouver Island, British Columbia, Canada.

The area is known for its exceptional natural beauty and bounty of beautifully preserved decapod fossil specimens. The formation is named for the Hesquiaht people of the Nuu-chah-nulth, of Nootka Sound. The VIPS has led many research expeditions to remote sites on our West Coast. Their efforts have been rewarded with many new species being identified and excellent cooperation with paleontological researchers from around the globe.

Friday, 12 July 2019

TRAGOPHYLLOCERAS LOSCOMBI

Tragophylloceras loscombi / Dorset Coast
A very interesting Tragophylloceras loscombi (134 mm with the peristome / 41 mm) from Lower Pliensbachian deposits near the coastal village of Seatown near Charmouth on the Dorset coast of the UK.

This lovely specimen is in the collection of the deeply awesome José Juárez Ruiz. He was amongst the many belemnite guards and ammonite shells of this lovely collection spot. Both beautiful in and of itself and highly prized for its fossil finds along the silty mudstone cliffs and fossiliferous boulders.

This fellow like to live in the offshore, deep subtidal shelves of our ancient seas around 189 to 183 million years ago.

He was a nektonic carnivore, an active swimmer cruising our ancient seas looking for tasty daily sustenance. Ammonites belong to the class of animals called mollusks. More specifically they are cephalopods and first appeared in the lower Devonian Period. Cephalopods were an abundant and diverse group during the Paleozoic Era.

Varying in size from millimeters to meters across, these elegant marine dwellers are prized as both works of art and index fossils helping us better understand and date strata. Cousins in the Class Cephalopoda, meaning "head-footed," ammonites are closely related to modern squid, cuttlefish and octopus with complex eye structures and advanced swimming abilities. They used these evolutionary benefits to their advantage, making them successful marine predators cruising our ancient oceans expertly capturing prey with their tentacles.

Tuesday, 11 June 2019

MCABEE FOSSIL SITE RE-OPENS

Eocene Plant Fauna / Eohiodon Fish Fossil / McAbee
An Eohiodon rosei and Eocene plant fossils from the McAbee Fossil Beds. McAbee is part of an old lake bed deposited 52 million years ago and is one of the most diverse fossil sites known in British Columbia.

The McAbee beds are known worldwide for their incredible abundance, diversity and quality of fossils including lovely plant, insect and fish species. The site was designated a Provincial Heritage Site under British Columbia's Heritage Conservation Act and closed to the public in July of 2012. This decision has now been reversed.

McAbee re-opened to the public on June 21, 2019, with plans to build out a visitor's centre and educational programs. Funding is in place to have two staff on site this summer to welcome visitors from the general public Thursday to Monday 10AM-5PM. Collecting will be open access with no fees charged. The Province is committed to providing access to scientists, the lay public and tourists interested in local First Nations history. The direction on what happens next at McAbee is being driven by the Heritage Branch in consultation with members of the Shuswap Nation and Bonaparte Band.

Local members of the Bonaparte Band want to share the spiritual significance of the area from a First Nations perspective and see McAbee as an indigenous tourism destination. So it looks like it will be paleontology, archaeology with a cultural focus to add spice. In any case, collection of fossils will continue, likely through the use of day-permits with oversight to ensure significant fossil finds make there way to museums. It is an exploratory year for those running it. They'll be asking a lot of questions from those who drop by then collating that information to make recommendations, seek funding and set a plan for the future. 

Wednesday, 15 May 2019

CAMBRIAN LASCAUX CHINOIS

Chengjiangocaris kunmingensis, a Cambrian Fuxinhuiid Arthropod
This fellow is Chengjiangocaris kunmingensis, a rather glorious fuxinhuiid arthropod. While he looks like he could be from the inside of the Lascaux Caves and their fire-kissed Palaeolithic paintings, albeit by a very ancient Picasso, he was found at a UNESCO World Heritage Cambrian fossil site in southern China.

As his name indicates, he is from a locality in the Yunnan region near Kunming. He is unusual in many ways, both because of the remarkable level of preservation and the position in which he was found.

This fellow was a bit of a tippy arthropod. His carapace had flipped over before fossilization, allowing researchers to examine this fuxianhuiid's head in great detail without a carapace in the way.

The study, published back in the February 27, 2013 issue of Nature, highlights the discovery of previously controversial limbs under the head. These limbs were used to shovel sediment into the mouth as the fuxianhuiid crawled across the seabed.

Using a feeding technique scientist's call 'detritus sweep-feeding', fuxianhuiids developed the limbs to push seafloor sediment into the mouth in order to filter it for organic matter – such as traces of decomposed seaweed – which constituted the creatures' food.

Fossils also revealed the oldest nervous system on record that is 'post-cephalic' – or beyond the head – consisting of only a single stark string in what was a very basic form of early life compared to today.

"Since biologists rely heavily on organization of head appendages to classify arthropod groups, such as insects and spiders, our study provides a crucial reference point for reconstructing the evolutionary history and relationships of the most diverse and abundant animals on Earth," said Javier Ortega-Hernández, from Cambridge's Department of Earth Sciences.

Ortega-Hernández co-authored the paper with Nicholas Butterfield and colleagues from Yunnan University in Kunming, South China.

The Xiaoshiba 'biota' in the Chiungchussu Formation Maotianshan shales of China's Yunnan Province is similar to the world-famous Chengjiang biota and also produces spectacular arthropod fossils.

The recent publication on the Qingjiang biota found on the edge of the Yangze craton along the banks of China’s Danshui River are similar in age, competing with the world's most famous Cambrian fossil assemblage, the Burgess Shale.

The roughly 518-million-year-old site contains a dizzying abundance of beautifully preserved weird and wonderful life-forms, from jellyfish and comb jellies to arthropods and algae and is about 10 million years older than Burgess and if you're following Chinese lagerstätte, the site is just over a thousand miles from the Chengjiang site.

Photo credit: Yie Jang (Yunnan University)

Monday, 4 March 2019

FERGUSONITES HENDERSONAE

Fergusonites hendersonae (Longridge, 2008)
Meet Fergusonites hendersonae, a Late Hettangian (Early Jurassic) ammonite from the Taseko Lakes area of British Columbia, Canadian Rockies.

I had the very great honour of having this fellow, a new species of nektonic carnivorous ammonite, named after me by paleontologist Louse Longridge from the University of British Columbia. I'd met Louise as an undergrad and was pleased as punch to hear that she would be continuing the research by Dr. Howard Tipper.

We did several trips over the years up to the Taseko Lake area of the Rockies joined by many wonderful researchers from Vancouver Island Palaeontological Society and Vancouver Paleontological Society, as well as the University of British Columbia. Both Dan Bowen and John Fam were instrumental in planning those expeditions. We endured elevation sickness, rain, snow, grizzly bears and very chilly nights (we were sleeping right next to a glacier at one point) but were rewarded by the enthusiastic crew, helicopter rides (which really cut down the hiking time) excellent specimens and stunningly beautiful country. We were also blessed with excellent access as the area is closed to collecting except with a permit.

Reference: PaleoDB 157367 M. Clapham GSC C-208992, Section A 09, Castle Pass Angulata - Jurassic 1 - Canada, Longridge et al. (2008)

Full reference: L. M. Longridge, P. L. Smith, and H. W. Tipper. 2008. Late Hettangian (Early Jurassic) ammonites from Taseko Lakes, British Columbia, Canada. Palaeontology 51:367-404

PaleoDB taxon number: 297415; Cephalopoda - Ammonoidea - Juraphyllitidae; Fergusonites hendersonae Longridge et al. 2008 (ammonite); Average measurements (in mm): shell width 9.88, shell diameter 28.2; Age range: 201.6 to 196.5 Ma. Locality info: British Columbia, Canada (51.1° N, 123.0° W: paleo coordinates 22.1° N, 66.1° W)

Tuesday, 19 February 2019

FOSSIL CRINOID: UINTACRINUS OF UTAH

Crinoids are one of my favourite echinoderms. It is magical when all the elements come together to preserve a particularly lovely specimen in such glorious detail. 

If you look closely at the detail here you can see a stunning example of Upper Cretaceous, Santonian age, Uintacrinus socialis — named by O.C. Marsh for the Uinta Mountains of Utah nearly 150 years ago.  

These lovelies are best known from the Smoky Hills Niobrara Formation of central Kansas. 

Crinoids are unusually beautiful and graceful members of the phylum Echinodermata. They resemble an underwater flower swaying in an ocean current. 

But make no mistake they are marine animals. Picture a flower with a mouth on the top surface that is surrounded by feeding arms. Awkwardly, add an anus right beside that mouth. 

Crinoids with root-like anchors are called sea lilies. They have graceful stalks that grip the ocean floor. Those in deeper water have longish stalks up to 3.3 ft or a meter in length. Then there are other varieties that are free-swimming with only vestigial stalks. They make up the majority of this group and are commonly known as feather stars or comatulids. 

Unlike the sea lilies, the feather stars can move about on tiny hook-like structures called cirri. It is these same cirri that allow crinoids to latch to surfaces on the seafloor. Like other echinoderms, crinoids have pentaradial symmetry. The aboral surface of the body is studded with plates of calcium carbonate, forming an endoskeleton similar to that in starfish and sea urchins.

These make the calyx somewhat cup-shaped, and there are few, if any, ossicles in the oral (upper) surface, an area we call the tegmen. It is divided into five ambulacral areas, including a deep groove from which the tube feet project, and five interambulacral areas between them. 

Crinoids are alive and well today. They are also some of the oldest fossils on the planet. We have lovely fossil specimens dating back to the Ordovician — if one ignores the enigmatic Echmatocrinus of the Burgess Shale. And they can be quite plentiful. Crinoid fossils, and in particular disarticulated crinoid columnals, can be so abundant that they at times serve as the primary supporting clasts in sedimentary rocks.

Sunday, 3 June 2018

CaCO3 + CO2 + H2O → Ca (HCO3)2

 
Those of you who live near the sea understand the compulsion to collect shells. They add a little something to our homes and gardens.

With a strong love of natural objects, my own home boasts several stunning abalone shells conscripted into service as both spice dish and soap dish.

As well as beautiful debris, shells also played an embalming role as they collect in shell middens from coastal communities. Having food “packaging” accumulate in vast heaps around towns and villages is hardly a modern phenomenon.

Many First Nations sites were inhabited continually for centuries. The discarded shells and scraps of bone from their food formed enormous mounds, called middens. Left over time, these unwanted dinner scraps transform through a quiet process of preservation.

Time and pressure leach the calcium carbonate, CaCO3, from the surrounding marine shells and help “embalm” bone and antler artifacts that would otherwise decay. Useful this, as antler makes for a fine sewing tool when worked into a needle. Much of what we know around the modification of natural objects into tools comes from this preservation.

Calcium carbonate is a chemical compound that shares the typical properties of other carbonates. CaCO3 is common in rocks and shells and is a useful antacid for those of you with touchy stomachs. In prepping fossil specimens embedded in limestone, it is useful to know that it reacts with stronger acids, releasing carbon dioxide: CaCO3(s) + 2HCl(aq) → CaCl2(aq) + CO2(g) + H2O(l)

For those of you wildly interested in the properties of CaCO3, may also find it interesting to note that calcium carbonate also releases carbon dioxide on when heated to greater than 840°C, to form calcium oxide or quicklime, reaction enthalpy 178 kJ / mole: CaCO3 → CaO + CO2.

Calcium carbonate reacts with water saturated with carbon dioxide to form the soluble calcium bicarbonate. Bone already contains calcium carbonate, as well as calcium phosphate, Ca2, but it is also made of protein, cells and living tissue.

Decaying bone acts as a sort of natural sponge that wicks in the calcium carbonate displaced from the shells. As protein decays inside the bone, it is replaced by the incoming calcium carbonate, making makes the bone harder and more durable.

The shells, beautiful in their own right, make the surrounding soil more alkaline, helping to preserve the bone and turning the dinner scraps into exquisite scientific specimens for future generations.