Showing posts with label paleontology. Show all posts
Showing posts with label paleontology. Show all posts

Wednesday, 1 December 2021

GOOSE / NAXAK

What's good for the goose is good for the gander. A goose is a bird of any of several waterfowl species in the family Anatidae. 

They can fly 40 mph and you'll notice that in the sky they choose the highly efficient V form as it gives them a 71% increased flight range. Smart those geese. 

A male goose is called a gander and a group of geese are charmingly called a gaggle. We use geese for the plural of male, female or a mix of both. The females are referred to as goose, as in Mother Goose from your childhood stories.

These social birds are very loyal and will follow you around like puppies if you happen to raise one from a wee gosling. And no matter which of the many geese you see as wee goslings, they are all charmingly fluffy and cute.

Geese fossils have been found ranging from 10 to 12 million years ago, so a relatively recent addition to our species list. We have found proto-geese fossils in Gargano, one of the most scenic but overlooked parts of the southern Italian region of Puglia in central Italy. This massive relative of our modern geese stood one and a half metres tall and was likely flightless, unlike modern geese.

The family Anatidae comprises the genera Anser — the grey geese and white geese — and Branta —the black geese. Some other birds, mostly related to the shelducks, have goose as part of their names which can muddle things a bit. More distantly related members of the family Anatidae are swans, most of which are larger than true geese, and ducks, which are significantly smaller.

The word goose is a direct descendant of the Proto-Indo-European root, ghans. In the Germanic languages, the root gave Old English gōs with the plural gēs and gandres — becoming our Modern English goose, geese, gander, and gosling, respectively. The Frisian's use goes, gies and guoske. In New High German, Gans, Gänse, and Ganter, and Old Norse gās.

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, na̱x̱aḵ is used to say goose. 

Around the world, we refer to these birds as: Lithuanian: žąsìs, Irish: gé (goose, from Old Irish géiss), Latin: anser, Spanish: ganso, Ancient Greek: χήν (khēn), Dutch: gans, Albanian: gatë (heron), Sanskrit haṃsa and haṃsī ("gander" and "goose", also the words for male and female swans), Finnish: hanhi, Avestan zāō, Polish: gęś, Romanian: gâscă / gânsac, Ukrainian: гуска / гусак (huska / husak), Russian: гусыня / гусь (gusyna / gus), Czech: husa, and Persian: غاز‎ (ghāz). 

By any name, geese are majestic birds. They are long lived at around 20 years for some species and spend their days eating seeds, nuts, plants and berries. Once fattened up, they have been on our menu for a very long time. They grace the wilderness around the globe and are fond of our parks, golf courses and are surprisingly comfortable in major cities. And while they are social and friendly, a threatened goose will chase you and take wee nips of your bottom if they take issue with your presence. You go, goose!

Sunday, 21 November 2021

MIGUASHA BOTHRIOLEPIS CANADENSIS

Bothriolepis canadensis
A stunning replica of Bothriolepis canadensis from Upper Devonian (Frasnian), Escuminac formation, Parc de Miguasha, Baie des Chaleurs, Gaspé, Québec, Canada.

Bothriolepis was found and originally described by geologist Abraham Gesner in 1842 as "a tortoise with fossil foot-marks." He was wrong, of course, but these placoderm fish in the order Antiarchi do bear a superficial resemblance to turtles.

For nearly two centuries, the Late Devonian Miguasha biota from eastern Canada has offered up a near-complete brackish water community — 20 species of lower vertebrates — anaspids, osteostra-cans, placoderms, acanthodians, actinopterygians and sarcopterygians — a limited invertebrate assemblage, and terrestrial plants and arthropods — scorpions and millipedes.

Originally interpreted as a freshwater lacustrine environment, recent paleontological, taphonomic, sedimentological and geochemical evidence corroborates a brackish estuarine setting. 

Over 18,000 fish specimens have been recovered from the rock lain down in these brackish waters. They show various modes of fossilization, including uncompressed material and soft-tissue preservation. 

Most vertebrates are known from numerous, complete, articulated specimens. Exceptionally well-preserved larval and juvenile specimens have been identified for fourteen out of the twenty species of fishes, allowing growth studies. 

Numerous horizons within the Escuminac Formation are now interpreted as either Konservat or Konzentrat–Lagerstätten. 

The fine replica above was purchased at the Musée d'Histoire Naturelle, Miguasha (MHNM) and is in the collection of the deeply awesome — and well-travelled — John Fam, Vice-Chair of the Vancouver Paleontological Society.

Great Canadian Lagerstätten 4. The Devonian Miguasha Biota (Québec): UNESCO World Heritage Site and a Time Capsule in the Early History of Vertebrates, Richard Cloutier, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, QC, Canada, G5L 3A1, richard_cloutier@uqar.ca, http://dx.doi.org/10.12789/geocanj.2013.40.008

Image: Restoration of the upper and underside of B. canadensis. By Unknown author - Popular Science Monthly Volume 82, Public Domain, https://commons.wikimedia.org/w/index.php?curid=20672589

Wednesday, 17 November 2021

UPPER CRETACEOUS TOOTHED BIRDS IN SOUTH AMERICA

70-Million-Year-Old Toothed Enantiornithes Bird Beak
Teeth and jaws, beaks and claws — all species adapt and change over time based on survival. One of the key features of being alive is needing to eat. Depending on what is on the menu, we adapt accordingly. 

I had been thinking about this from a very mammal-centric perspective, but it is true for all animals — birds included.

When we think of our feathered friends, we think of beaks and feathers. True, birds descend from the mighty lineage of dinosaurs, but our experience of them is of their modern forms. 

This modern viewpoint of their characteristics makes beaks with teeth seemingly more fantasy than reality — except this has not always been the case. 70 million years ago, birds flying our Cretaceous skies in what would become South America, Europe and Asia had teeth embedded in their beaks.

The discovery of polyphyodonty and dental replacement in toothed stem birds dates back to the nineteenth century. Marsh reported replacement teeth inside resorption pits in the Late Cretaceous Hesperornis and Ichthyornis.

Enantiornithine Birds & Cladogram
The birds that inhabit the current biomes do not have teeth, but the primitive birds found as fossils in the Upper Cretaceous of Brazil certainly did. 

These ancient relatives to our modern fauna had teeth embedded in their jaw-beaks, clawed fingers and a long tail. 

Both these ancient birds and their modern cousins are descended from the dinosaurs, more specifically the Maniraptora, that clade of coelurosaurian dinosaurs characterized by long arms and three-fingered hands — reduced or fused in some lineages — and semi-lunate or half-moon shaped bone in their wrists you will know as the carpus. 

As with all the dinosaurs in this clad, they had teeth and lots of them.

William Nava, head of the Marília Museum of Paleontology, São Paulo, Brazil, uncovered an outcrop in the city of Presidente Prudente with abundant fossilized bird bones. 

Bird bones are a rare thing as they are delicate, often scavenged before burial and hollow, making them poor candidates for preservation. While bird bones preserved as fossils are generally rare, this was not the case at William's Quarry. The site was a smorgasbord of bones from a number of primitive bird species that lived at the end of the Cretaceous. 

The birds belong to the group of Enantiornithes who looked very much like our modern birds on the outside, but internally they had clawed fingers on each wing and teeth which they replaced in a similar fashion to most reptiles. 

Two other sites have exceptionally preserved Enantiornithes bones. Since most Enantiornithes bones are fragmentary, some species are only known from a piece of a single bone. We are luckier at some sites than others. Almost all complete, fully articulated fossil specimens with soft tissue preserved were known from Las Hoyas in Cuenca, Spain and the Jehol group in Liaoning, China. But the fossil outcrops in the Adamantina Formation, Bauru Group of Brazil can now be added to that very short list.  

If you fancy a read, check out their publication, Dental replacement in Mesozoic birds: evidence from newly discovered Brazilian enantiornithines.” The team included Yun-Hsin Wu and Luis M. Chiappe of the Natural History Museum of Los Angeles County, David J. Bottjer of the University of Southern California, William Nava from the Marília Museum of Paleontology, and Agustín G. Martinelli from the Vertebrate Paleontology Section of the Bernardino Rivadavia Argentine Museum of Natural Sciences.

Publication link: https://www.nature.com/articles/s41598-021-98335-8

Images: Photographs of the enantiornithine specimens MPM-90, MPM-373, and MPM-351, and a simplified cladogram highlighting the stem avian taxa discussed in this study. MPM-373: (a) dorsal view; (b) right lateral view; (c) left lateral view. MPM-90: (d) dorsal view; (e) right lateral view. MPM-351: (f) left lateral view. En external nares, Fp frontal process. With an embedded illustration of a reconstruction of Sinornis santensis by McBlackneck. There is some mice type used so feel free to click the image to see if full size.

The studied specimens consist of two sets of premaxillae (MPM-90 and MPM-373) and an incomplete left dentary (MPM-351) exquisitely preserved in three dimensions. These specimens are housed at the Museu de Paleontologia de Marília (MPM), São Paulo State, Brazil.

Saturday, 2 October 2021

DORSET LYTOCERAS

A superbly prepped and extremely rare Lytoceras (Suess, 1865) ammonite found as a green ammonite nodule by Matt Cape in the Lower Lias of Dorset. 

Lytoceras are rare in the Lower Lias of Dorset — apart from the Belemnite Stone horizon — so much so that Paul Davis, whose skilled prep work you see here, initially thought it might be a Becheiceras hidden within the large, lumpy nodule. 

One of the reasons these lovelies are rarely found from here is that they are a Mediterranean Tethyian genus. The fossil fauna we find in the United Kingdom are dominated by Boreal Tethyian genera. 

We do find Lytoceras sp. in the Luridum subzone of the Pliensbachian showing that there was an influx of species from the Mediterranean realm during this time. This is the first occurrence of a Lytoceras that he has ever seen in a green nodule and Paul's seen quite a few. 

This absolutely cracking specimen was found and is in the collections of the awesome Matt Cape. Matt recognized that whatever was hidden in the nodule would take skilled and careful preparation using air scribes. Indeed it did. It took more than five hours of time and skill to unveil the lovely museum-worthy specimen you see here. 

We find Lytoceras in more than 1,000 outcrops around the globe ranging from the Jurassic through to the Cretaceous, some 189.6 to 109.00 million years ago. Once this specimen is fully prepped with the nodule material cut or scraped away, you can see the detailed crinkly growth lines or riblets on the shell and none of the expected coarse ribbing. 

Lytoceras sp. Photo: Craig Chivers
If you imagine running your finger along these, you would be tracing the work of decades of growth of these cephalopods. 

While we cannot know their actual lifespans, but we can make a healthy guess. 

The nautilus, their closest living cousins live upwards of 20 years — gods be good — and less than three years if conditions are poor.

The flanges, projecting flat ribs or collars, develop at the edge of the mouth border on the animal's mantle as they grow each new chamber. 

Each delicate flange grows over the course of the ammonites life, marking various points in time and life stages as the ammonite grew. There is a large variation within Lytoceras with regards to flanges. They provide both ornamentation and strength to the shell to protect it from water pressure as they moved into deeper seas.

The concretion prior to prep
This distinctive genus with its evolute shells are found in the Cretaceous marine deposits of: 

Antarctica (5 collections), Austria (19), Colombia (1), the Czech Republic (3), Egypt (2), France (194), Greenland (16), Hungary (25), Italy (11), Madagascar (2), Mexico (1), Morocco (4), Mozambique (1), Poland (2), Portugal (1), Romania (1), the Russian Federation (2), Slovakia (3), South Africa (1), Spain (24), Tanzania (1), Trinidad and Tobago (1), Tunisia (25); and the United States of America (17: Alaska, California, North Carolina, Oregon).

We also find them in Jurassic marine outcrops in:

Austria (15), Canada (9: British Columbia), Chile (6), France (181), Germany (11), Greenland (1), Hungary (189), India (1), Indonesia (1), Iran (1), Italy (50), Japan (14), Kenya (2), Luxembourg (4), Madagascar (2), Mexico (1), Morocco (43), New Zealand (15), Portugal (1), Romania (5), the Russian Federation (1), Slovakia (1), Spain (6), Switzerland (2), Tunisia (11), Turkey (12), Turkmenistan (1), Ukraine (5), the United Kingdom (12), United States (11: Alaska, California) — in at least 977 known collections. 

References:

Sepkoski, Jack (2002). "A compendium of fossil marine animal genera (Cephalopoda entry)". Bulletins of American Paleontology. 363: 1–560. Archived from the original on 2008-05-07. Retrieved 2017-10-18.

Paleobiology Database - Lytoceras. 2017-10-19.

Systematic descriptions, Mesozoic Ammonoidea, by W.J Arkell, Bernhard Kummel, and C.W. Wright. 1957. Treatise on Invertebrate Paleontology, Part L. Geological Society of America and University of Kansas press.

Sunday, 19 September 2021

OKANAGAN HIGHLAND LOCALITIES OF BRITISH COLUMBIA

Fossils from the Okanagan Highlands, an area centred in the Interior of British Columbia, provide important clues to our ancient climate. 

Okanagan Highlands refers to an arc of Eocene lakebed sites that extend from Smithers in the north, down to the fossil site of Republic Washington. 

The grouping includes the fossil sites of Driftwood Canyon, Quilchena, Allenby, Tranquille, McAbee, Princeton and Republic.

These fossil sites range in time from Early to Middle Eocene, and the fossil they contain give us a snapshot of what was happening in this part of the world because of the varied plant fossils they contain.

We can infer the difference in climates between the sites. McAbee was not as warm as some of the other Middle Eocene sites, a fact inferred by what we see and what is conspicuously missing. In looking at the plant species, it has been suggested that the area of McAbee had a more temperate climate, slightly cooler and wetter than other Eocene sites to the south at Princeton, British Columbia and Republic and Chuckanut, Washington. Missing are the tropical Sabal (palm), seen at Princeton and the impressive Ensete (banana) and Zamiaceae (cycad) found at Republic in north-central Washington, in the Swauk Formation near Skykomish and the Chuckanut Formation of northern Washington state.

Friday, 27 August 2021

ICE AGE MANATEES

Manatees do not live year-round in Texas, but these gentle sea cows are known to occasionally visit, swimming in for a summer vacation and returning to warmer waters for the winter. 

Interestingly, we have recently found fossil evidence for manatees along the Texas coast dating back to the most recent ice age. 

The discovery raises questions about whether manatees have been visiting for thousands of years, or if an ancient population of ice age manatees once called Texas home.

The findings were published in Palaeontologia Electronica by lead author Christopher Bell, a professor at the UT Jackson School of Geosciences with co-authors Sam Houston State University Natural History Collections curator William Godwin and SHSU alumna Kelsey Jenkins — now a graduate student at Yale University — and SHSU Professor Patrick Lewis.

The eight fossils described in the paper include manatee jawbones and rib fragments from the Pleistocene, the geological epoch of the last ice age. Most of the bones were collected from McFaddin Beach near Port Arthur and Caplen Beach near Galveston during the past 50 years by amateur fossil collectors who donated their finds to the SHSU collections.

The Jackson Museum of Earth History at UT holds two of the specimens. A lower jawbone fossil, which was donated to the SHSU collections by amateur collector Joe Liggio, jumpstarted the research.

Manatee jawbones have a distinct S-shaped curve that immediately caught Godwin's eye. But Godwin said he was met with scepticism when he sought other manatee fossils for comparison. He recalls reaching out to a local fossil enthusiast who told him point-blank, "there are no Pleistocene manatees in Texas."

But an examination of the fossils by Bell and Lewis proved otherwise. The bones belonged to the same species of manatee that visits the Texas coast today, Trichechus manatus. An upper jawbone donated by U.S. Rep. Brian Babin was found to belong to an extinct form of the manatee, Trichechus manatus bakerorum.

The age of the manatee fossils is based on their association with better-known ice age fossils and paleo-Indian artefacts that have been found on the same beaches.

It is assumed that the cooler ice age climate would have made Texas waters even less hospitable to manatees than they are today. But the fact that manatees were in Texas — whether as visitors or residents — raises questions about the ancient environment and ancient manatees. The Texas coast stretched much farther into the Gulf of Mexico and hosted wider river outlets during the ice age than it does today. Either the coastal climate was warmer than is generally thought, or ice age manatees were more resilient to cooler temperatures than manatees of today.

Subsurface imaging of the now flooded modern continental shelf reveals both a greater number of coastal embayments and the presence of significantly wider channels during ice age times.

If there was a population of ice age manatees in Texas, it is entirely plausible that they would have ridden out winters in these warmer river outlets similar to how they do today in Florida and Mexico.

Reference: Christopher Bell, William Godwin, Kelsey Jenkins, Patrick Lewis. First fossil manatees in Texas: Trichechus manatus bakerorum in the Pleistocene fauna from beach deposits along the Texas Coast of the Gulf of Mexico. Palaeontologia Electronica, 2020; DOI: 10.26879/1006

Saturday, 21 August 2021

MUSKOX: CAPRINAE

Look at this soulful fellow. He is a muskox who spends his days slowly meandering through these gorgeous fields eating his fill of nutritious plants on the open tundra. They are social animals, moving together in large herds. 

As a member of the subfamily Caprinae of the family Bovidae, the muskox is more closely related to sheep and goats than to oxen. It has been placed in its own genus, Ovibos — Latin for sheep-ox. It is one of the two largest extant members of Caprinae, along with the similarly sized takin.

While the takin and muskox were once considered possibly closely related, the takin lacks common ovibovine features, such as the muskox's specialized horn morphology, and genetic analysis shows that their lineages actually separated early in caprine evolution. 

Instead, the muskox's closest living relatives appear to be the gorals of the genus Naemorhedus, nowadays common in many countries of central and east Asia. The vague similarity between takin and muskox must therefore be considered an example of convergent evolution.

The modern muskox is the last member of a line of ovibovines that first evolved in temperate regions of Asia and adapted to a cold tundra environment late in its evolutionary history. They lived alongside our lovely Mammoths and would have competed for the same plant resources as those much larger beasts. 

Muskox ancestors with sheep-like high-positioned horns — horn cores being mostly over the plane of the frontal bones, rather than below them as in modern muskoxen — first left the temperate forests for the developing grasslands of Central Asia during the Pliocene, expanding into Siberia and the rest of northern Eurasia. 

Later migration waves of Asian ungulates, including the high-horned muskox, reached Europe and North America during the first half of the Pleistocene. The first well-known muskox, the "shrub-ox" Euceratherium, crossed to North America over an early version of the Bering Land Bridge two million years ago and prospered in the American southwest and Mexico. Euceratherium was larger yet more lightly built than modern muskoxen, resembling a giant sheep with massive horns, and preferred hilly grasslands.

A genus with intermediate horns, Soergelia, inhabited Eurasia in the early Pleistocene, from Spain to Siberia, and crossed to North America during the Irvingtonian (1.8 million years to 240,000 years ago), soon after Euceratherium. Unlike Euceratherium, which survived in America until the Pleistocene-Holocene extinction event, Soergelia was a lowland dweller that disappeared fairly early, displaced by more advanced ungulates, such as the "giant muskox" Praeovibos (literally "before Ovibos"). 

The low-horned Praeovibos was present in Europe and the Mediterranean 1.5 million years ago, colonized Alaska and the Yukon one million years ago and disappeared half a million years ago. Praeovibos was a highly adaptable animal that appears associated with cold tundra (reindeer) and temperate woodland (red deer) faunas alike. 

During the Mindel glaciation 500,000 years ago, Praeovibos was present in the Kolyma river area in eastern Siberia in association with many Ice Age megafauna that would later coexist with Ovibos, in the Kolyma itself and elsewhere, including wild horses, reindeer, woolly mammoth and stag-moose. 

It is debated, however, if Praeovibos was directly ancestral to Ovibos, or both genera descended from a common ancestor since the two occurred together during the middle Pleistocene. Defenders of ancestry from Praeovibos have proposed that Praeovibos evolved into Ovibos in one region during a period of isolation and expanded later, replacing the remaining populations of Praeovibos.

Two more Praeovibos-like genera were named in America in the 19th century, Bootherium and Symbos, which are now identified as the male and female forms of a single, sexually dimorphic species, the "woodland muskox", Bootherium bombifrons. Bootherium inhabited open woodland areas of North America during the Late Pleistocene, from Alaska to Texas and maybe even Mexico, but was most common in the Southern United States, while Ovibos replaced it in the tundra-steppe to the north, immediately south of the Laurentian ice sheet.

Modern Ovibos appeared in Germany almost one million years ago and were common in the region through the Pleistocene. Muskoxen had also reached the British Isles. Both Germany and Britain were just south of the Scandinavian ice sheet and covered in the tundra during cold periods, but Pleistocene muskoxen are also rarely recorded in more benign and wooded areas to the south like France and Green Spain, where they coexisted with temperate ungulates like red deer and aurochs. Likewise, the muskox is known to have survived in Britain during warm interglacial periods.

Today's muskoxen are descended from others believed to have migrated from Siberia to North America between 200,000 and 90,000 years ago, having previously occupied Alaska (at the time united to Siberia and isolated periodically from the rest of North America by the union of the Laurentide and Cordilleran Ice Sheets during colder periods) between 250,000 and 150,000 years ago. 

After migrating south during one of the warmer periods of the Illinoian glaciation, non-Alaskan American muskoxen would be isolated from the rest in the colder periods. The muskox was already present in its current stronghold of Banks Island 34,000 years ago, but the existence of other ice-free areas in the Canadian Arctic Archipelago at the time is disputed.

Along with the bison and the pronghorn, the muskox was one of a few species of Pleistocene megafauna in North America to survive the Pleistocene/Holocene extinction event and live to the present day. The muskox is thought to have been able to survive the last glacial period by finding ice-free areas (refugia) away from prehistoric peoples.

Fossil DNA evidence suggests that muskoxen were not only more geographically widespread during the Pleistocene, but also more genetically diverse. During that time, other populations of muskoxen lived across the Arctic, from the Ural Mountains to Greenland. By contrast, the current genetic makeup of the species is more homogenous. Climate fluctuation may have affected this shift in genetic diversity: research indicates colder periods in Earth's history are correlated with more diversity and warmer periods with more homogeneity.

Thursday, 19 August 2021

DUGONG: SEA COW

One of the most delightful creatures to ever grace this planet is the dugong — a species of sea cow found throughout the warm latitudes of the Indian and western Pacific Oceans. 

It is one of four living species of the order Sirenia, which also includes three species of manatees — their large, fully aquatic, mostly herbivorous marine mammal cousins.

The closest living relatives of sirenians are elephants. Manatees evolved from the same land animals as elephants over 50 million years ago. 

If not for natural selection, we might have a much more diverse showing of the Sirenia as their fossil lineage shows a much more diverse group of sirenians back in the Eocene than we have today. It is the only living representative of the once-diverse family Dugongidae; its closest modern relative, Steller's sea cow, was hunted to extinction in the 18th century. 

While only one species of the dugong is alive today – a second, the Steller's sea cow only left this Earth a few years ago. Sadly, it was hunted to extinction within 27 years of its discovery – about 30 species have been recovered in the fossil record

The first appearance of sirenians in the fossil record was during the early Eocene, and by the late Eocene, sirenians had significantly diversified. Inhabitants of rivers, estuaries, and nearshore marine waters, they were able to spread rapidly.

The most primitive sirenian known to date, Prorastomus, was found in Jamaica, not the Old World; however, more recently the contemporary Sobrarbesiren has been recovered from Spain. The first known quadrupedal sirenian was Pezosiren from the early Eocene. 

The earliest known sea cows, of the families Prorastomidae and Protosirenidae, are both confined to the Eocene and were about the size of a pig, four-legged amphibious creatures. 

By the time the Eocene drew to a close, the Dugongidae had arrived; sirenians had acquired their familiar fully aquatic streamlined body with flipper-like front legs with no hind limbs, powerful tail with horizontal caudal fin, with up and down movements which move them through the water, like cetaceans.

The last of the sirenian families to appear, Trichechidae, apparently arose from early dugongids in the late Eocene or early Oligocene. The current fossil record documents all major stages in hindlimb and pelvic reduction to the extreme reduction in the modern manatee pelvis, providing an example of dramatic morphological change among fossil vertebrates.

Since sirenians first evolved, they have been herbivores, depending on seagrasses and aquatic angiosperms, tasty flowering plants of the sea, for food. To the present, almost all have remained tropical — with the notable exception of Steller's Sea Cow — marine, and angiosperm consumers. Sea cows are shallow divers with large lungs. They have heavy skeletons to help them stay submerged; the bones are pachyostotic (swollen) and osteosclerotic (dense), especially the ribs which are often found as fossils.

Eocene sirenians, like Mesozoic mammals but in contrast to other Cenozoic ones, have five instead of four premolars, giving them a 3.1.5.3 dental formula. Whether this condition is truly primitive retention in sirenians is still under debate.

Although cheek teeth are relied on for identifying species in other mammals, they do not vary to a significant degree among sirenians in their morphology but are almost always low-crowned —brachyodont — with two rows of large, rounded cusps — bunobilophodont. The most easily identifiable parts of sirenian skeletons are the skull and mandible, especially the frontal and other skull bones. With the exception of a pair of tusk-like first upper incisors present in most species, front teeth — incisors and canines — are lacking in all, except the earliest sirenians.

Saturday, 14 August 2021

SEA ANEMONES: CNIDARIA

These colourful beauties are sea anemones. They are familiar inhabitants of rocky shores and coral reefs around the world — with some of their brethren found at very low depths in our oceans. They are one of the wonderful examples of the diversity that radiated out of the Cambrian Explosion.

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, sea anemones are known as 'mis'ma̱t̕sa. 

These beautiful predatory animals are a common site in tide pools all along the Pacific Coast. They form a large part of many special memories of exploring the tide pools along Storey's Beach on the east side of Vancouver Island as a child. 

Touching their soft tentacles is hypnotic and highly entertaining but our human skin is coated in oils and bacteria that may damage these delicate organisms. 

We sometimes see them turn up in First Nation's art — particularly in association with Kumugwe' or the Copper-Maker, Chief of the undersea world and the one to thank for the rising and ebbing of the tides.

At first glance, they look like beautiful and delicate marine flowers. If you have discovered them in tidepools, you will know that they retract or pull into themselves with the lightest touch. These would-be flowers are predatory marine animals of the order Actiniaria that have graced our oceans for over half a billion years. 

They are named after anemones — Anemonastrum, a genus of flowering plants in the family Ranunculaceae — because of their colourful flower-like appearance. Sea anemones are classified in the phylum Cnidaria, class Anthozoa, subclass Hexacorallia. 

As cnidarians, sea anemones are related to corals, jellyfish, tube-dwelling anemones, and Hydra. Jellyfish have a complex life cycle that includes both sexual and asexual phases, with the medusa being the sexual stage in most instances. 

A typical sea anemone is a single polyp attached to a hard surface by its base, but some species live in soft sediment and a few float near the surface of the water. The polyp has a columnar trunk topped by an oral disc with a ring of sticky tentacles that fold in towards its central mouth. If they have stung and paralyzed a tasty snack, it is pulled towards the gaping mouth to be consumed. 

The tentacles can be retracted or pulled back inside the body cavity or stretched out and expanded to catch passing prey. They are armed with cnidocytes or stinging cells. In many species, nourishment comes from a symbiotic relationship with single-celled dinoflagellates — zooxanthellae or with green algae, zoochlorellae, that live within the cells. Some species of sea anemone live in association with hermit crabs, small fish or other animals to their mutual benefit.

Most actinarians are sessile — that is, they live attached to rocks or other substrates and do not move, or move only very slowly by contractions of the pedal disk. 

A number of anemones burrow into sand, and a few can even swim short distances, by bending the column back and forth or by "flapping" their tentacles. In all, there are about 1000 species of sea anemone in the world's oceans — including those who live amongst the mythic sea lions that form the posts and beams of Kumugwe''s undersea home.

Sea anemones breed by releasing sperm and eggs through their mouth into the surrounding ocean. The fertilized eggs develop into wee planula larvae that live as tiny planktonic bits floating in the sea. Eventually, they settle on the seafloor and develop directly into juvenile polyps. Sea anemones can also breed asexually. They do this by breaking in half or into smaller pieces that regenerate into polyps.

We sometimes see these beauties kept in saltwater aquariums. I can understand the appeal but it comes with a price. The global trade in marine ornamentals threatens our lovely sea anemone populations. 

Most Actiniaria do not form hard parts that can be recognized as fossils, but a few fossils of sea anemones have been found. The bag-like — almost sea cucumber-like — Mackenzia, from the Middle Cambrian, Stephen Formation in the Canadian Rockies of British Columbia and Alberta, is the oldest fossil identified as a sea anemone. These ancient sea anemones attached themselves to hard surfaces, such as brachiopod shells in a similar fashion to their modern sessile cousins. 

Mackenzia costalis, Walcott 1911
Fourteen specimens of Mackenzia costalis are known from the Greater Phyllopod bed, where they make up less than <0.1% of the fossil community. Mackenzia was originally described by Charles Walcott in 1911 — but as a holothurian echinoderm, which was a reasonable assumption at the time. Once additional specimens had been found and studied, Mackenzia costalis was reclassified as a cnidarian and the great grandparent of our modern sea anemones.

Some fossil sea anemones have also been found from the Lower Cambrian of China. The new find lends support to genetic data that suggests anthozoans — anemones, corals, octocorals and their kin — were one the first Cnidarian groups to diversify. We will likely find more of these rare fossils over time and perhaps get a better view of their long lineage.

Photo: Charles Doolittle Walcott - Charles D. Walcott: Middle Cambrian Holothurians and Medusae. Smithsonian Miscellaneous Collections Volume 57, Number 3 (Publication 2011). City of Washington. Published by the Smithsonian Institution. June 13, 1911. 

References:  

Caron, Jean-Bernard; Jackson, Donald A. (October 2006). "Taphonomy of the Greater Phyllopod Bed community, Burgess Shale". PALAIOS. 21 (5): 451–65. doi:10.2110/palo.2003.P05-070R. JSTOR 20173022.

 Durham, J. W. (1974). "Systematic Position of Eldonia ludwigi Walcott". Journal of Paleontology. 48 (4): 750–755. JSTOR 1303225.

Conway Morris, S. (1993). "Ediacaran-like fossils in Cambrian Burgess Shale–type faunas of North America". Palaeontology. 36 (31–0239): 593–635.


Sunday, 8 August 2021

CONLINOCERAS TARRANTENSE

Previously Calycoceras Tarrantense, this ammonite is now called Conlinoceras tarrantense after J.P. Conlin, a famous early 20th-century fossil collector from Texas, USA.

Ammonite expert Bill Cobban used this collection to describe many Texas Cretaceous ammonites species including this species from Tarrant County, Arlington, Texas.

He was a surveyor by training and kept incredibly detailed notes on the context of his fossils.

Conlin donated his collection to the USGS and we have learned much by studying it along with other specimens from the Lone Star State. Almost a quarter of Texas is covered by Cretaceous strata, much of it fossiliferous. If we stepped back 95 million years, the world and what we now call Texas was a very different place.

95 million years ago, during the Late Cretaceous, a shallow seaway separated North America into separate eastern and western landmasses. We have a pretty complete picture in the fossil record of the western groups of species but relatively little in comparison to their cohorts in the east.

At the time this fellow was swimming our ancient seas, he was sharing the Earth with carnivorous dinosaurs, duck-billed dinosaurs, mammals, crocodilians, turtles, a variety of amphibians, prehistoric bony fish, oddly prolific sea cucumbers, various invertebrates and plants. Many of these sites are just being written up now and contain new species just being discovered.

During the Late Cretaceous Period, a shallow seaway separated North America into separate eastern and western landmasses. The Woodbine Formation in Texas preserves a rare fossil record of this time for the east, but many of these fossils are isolated and incomplete, making interpretations more difficult. Preliminary excavations at the Arlington Archosaur Site (AAS) are providing hints at a more complete ecosystem, preserving similar patterns of change to what we see in the west.

The Arlington Archosaur site contains an extraordinary diversity, abundance, and quality of fossil material, preserving one of the most complete terrestrial ecosystems known for this time period and area.

These outcrops and the fossils they contain have a lot to tell us about Late Cretaceous life in the east. Over 2200 individual specimens have been found belonging to numerous groups including carnivorous dinosaurs, duck-billed dinosaurs, crocodilians, turtles, mammals, amphibians, sharks, bony fish, invertebrates, and plants.

Many of the fossils found here represent brand new species and studying these fossils will help to establish the geographic and environmental forces that shaped Cretaceous ecosystems in North America by providing a necessary comparison to the fossil record of the west.

Friday, 23 July 2021

DIMORPHODON: TWO TOOTH PTERODACTYLUS

This remarkable fellow is Dimorphodon — a genus of medium-sized pterosaur from the Early Jurassic. He is another favourite of mine for his charming awkwardness.

You can see this fellow's interesting teeth within his big, bulky skull. Dimorphodon had two distinct types of teeth in their jaws — an oddity amongst reptiles — and also proportionally short wings for their overall size. 

Just look at him. What an amazing beast. We understand their anatomy quite well today, but can you imagine being the first to study their fossils and try to make sense of them. 

The first fossil remains now attributed to Dimorphodon were found in England by fossil collector Mary Anning, at Lyme Regis in Dorset, United Kingdom in December 1828. While she faced many challenges in her life, she was blessed to live in one of the richest areas in Britain for finding fossils. 

She walked the beaches way back in the early 1800s of what would become the Jurassic Coast UNESCO World Heritage Site. The Jurassic Coast holds some of the most interesting fossils ever found — particularly within the strata of the Blue Lias which date back to the Hettangian-Sinemurian. It is one of the world’s most famous fossil sites. Millions come to explore the eroding coastline looking for treasures that provide delight and inspiration to young and old.
 
These fossil treasures provide us with tremendous insights into our world 185 million years ago when amazing animals like Dimorphodon ruled the skies. 

Mary's specimen was acquired by William Buckland and reported in a meeting of the Geological Society on 5 February 1829. Six years later, in 1835, William Clift and William John Broderip built upon the work by Buckland to publish in the Transactions of the Geological Society, describing and naming the fossil as a new species. 

As was the case with most early pterosaur finds, Buckland classified the remains in the genus Pterodactylus, coining the new species Pterodactylus macronyx. The specific name is derived from Greek makros, "large" and onyx, "claw", in reference to the large claws of the hand. The specimen, presently NHMUK PV R 1034, consisted of a partial and disarticulated skeleton on a slab — notably lacking the skull. Buckland in 1835 also assigned a piece of the jaw from the collection of Elizabeth Philpot to P. macronyx

Later, the many putative species assigned to Pterodactylus had become so anatomically diverse that they began to be broken into separate genera.

In 1858, Richard Owen reported finding two new specimens, NHMUK PV OR 41212 and NHMUK PV R 1035, again partial skeletons but this time including the skulls. Having found the skull to be very different from that of Pterodactylus, Owen assigned Pterodactylus macronyx its own genus, which he named Dimorphodon

His first report contained no description and the name remained a nomen nudum. In 1859, however, a subsequent publication by Owen provided a description. After several studies highlighting aspects of Dimorphodon's anatomy, Owen finally made NHMUK PV R 1034 the holotype in 1874  — 185 million years after cruising our skies the Dimorphodon had finally fully arrived.

Friday, 16 July 2021

TRILOBITES: DARLINGS OF THE FOSSIL RECORD

Trilobites are the darlings of most fossil collectors. These diverse beauties are an extinct group of marine arthropods that first appeared in the Early Cambrian. 

They left many beautifully preserved examples of their three-lobed exoskeletons in the fossil record.

Trilobites — in all their many wonderful forms — lived in our ancient oceans for more than 270 million years. The last of their lineage went extinct at the end of the Permian, 252 million years ago. 

Saturday, 10 July 2021

SPINY HETEROMORPH AMMONITE: INDEX FOSSILS

Ammonites, like this gorgeous spiny heteromorph, were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish.

We find ammonite fossils, and plenty of them, in sedimentary rock from all over the world. In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past. For this reason, they make excellent index fossils. 

An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. Generally, deeper is older, so we use the sedimentary layers of rock to match up to specific geologic time periods, rather like the way we use tree rings to date trees.

Wednesday, 7 July 2021

TREASURES OF CANADA: TRENT RIVER PALAEONTOLOGY

Dan Bowen, Chair, VIPS, Trent River
The rocks that make up the Trent River on Vancouver Island were laid down south of the equator as small, tropical islands. They rode across the Pacific heading north and slightly east over the past 85 million years to where we find them today.

The Pacific Plate is an oceanic tectonic plate that lies beneath the Pacific Ocean. And it is massive. At 103 million km2 (40 million sq mi), it is the largest tectonic plate and continues to grow fed by volcanic eruptions that piggyback onto its trailing edge.

This relentless expansion pushes the Pacific Plate into the North American Plate. The pressure subducts it beneath our continent where it then melts back into the earth. Plate tectonics are slow but powerful forces. 

The island chains that rode the plates across the Pacific smashed into our coastline and slowly built the province of British Columbia. And because each of those islands had a different origin, they create pockets of interesting and diverse geology.

It is these islands that make up the Insular Belt — a physio-geological region on the northwestern North American coast. It consists of three major island groups — and many smaller islands — that stretches from southern British Columbia up into Alaska and the Yukon. These bits of islands on the move arrived from the Late Cretaceous through the Eocene — and continues to this day.

The rocks that form the Insular Superterrane are allochthonous, meaning they are not related to the rest of the North American continent. The rocks we walk over along the Trent River are distinct from those we find throughout the rest of Vancouver Island, Haida Gwaii, the rest of the province of British Columbia and completely foreign to those we find next door in Alberta.

To discover what we do find on the Trent takes only a wee stroll, a bit of digging and time to put all the pieces of the puzzle together. The first geological forays to Vancouver Island were to look for coal deposits, the profitable remains of ancient forests that could be burned to the power industry.

Jim Monger and Charlie Ross of the Geological Survey of Canada both worked to further our knowledge of the complex geology of the Comox Basin. They were at the cutting edge of west coast geology in the 1970s. It was their work that helped tease out how and where the rocks we see along the Trent today were formed and made their way north.

We know from their work that by 85 million years ago, the Insular Superterrane had made its way to what is now British Columbia. 

The lands were forested much as they are now but by extinct genera and families. The fossil remains of trees similar to oak, poplar, maple and ash can be found along the Trent and Vancouver Island. We also see the lovely remains of flowering plants such as Cupanities crenularis, figs and breadfruit.

Heading up the river, you come to a delineation zone that clearly marks the contact between the dark grey marine shales and mudstones of the Haslam Formation where they meet the sandstones of the Comox Formation. Fossilized material is less abundant in the Comox sandstones but still contains some interesting specimens. Here you begin to see fossilized wood and identifiable fossil plant material.

Further upstream, there is a small tributary, Idle Creek, where you can find more of this terrestrial material in the sandy shales. As you walk up, you see identifiable fossil plants beneath your feet and jungle-like, overgrown moss-covered, snarly trees all around you.

Walking west from the Trent River Falls at the bottom, you pass the infamous Ammonite Alley, where you can find Mesopuzosia sp. and Kitchinites sp. of the Upper Cretaceous (Santonian), Haslam Formation. Minding the slippery green algae covering some of the river rocks, you can see the first of the Polytychoceras vancouverense zone.

Continuing west, you reach the first of two fossil turtle sites on the river — amazingly, one terrestrial and one marine. If you continue, you come to the Inland Island Highway.

The Trent River has yielded some very interesting marine specimens, and significant terrestrial finds. We have found a wonderful terrestrial helochelydrid turtle, Naomichelys speciosa, and the caudal vertebrae of a Hadrosauroid dinosaur. Walking down from the Hadrosaur site you come to the site of the fossil ratfish find — one of the ocean's oddest fish.

Ratfish, Hydrolagus Collie, are chimaera found in the north-eastern Pacific Ocean today. The fossil specimen from the Trent would be considered large by modern standards as it is a bruiser in comparison to his modern counterparts. 

This robust fellow had exceptionally large eyes and sex organs that dangled enticingly between them. You mock, but there are many ratfish who would differ. While inherently sexy by ratfish standards, this fellow was not particularly tasty to their ancient marine brethren (or humans today) — so not hugely sought after as a food source or prey.

A little further again from the ratfish site we reach the contact of the two Formations. The rocks here have travelled a long way to their current location. With them, we peel away the layers of the geologic history of both the Comox Valley and the province of British Columbia.

The Trent River is not far from the Puntledge, a river whose banks have also revealed many wonderful fossil specimens. The Puntledge is also the name used by the K'ómoks First Nation to describe themselves. They have lived here since time immemorial. Along with Puntledge, they refer to themselves as Sahtloot, Sasitla and Ieeksun.

References: Note on the occurrence of the marine turtle Desmatochelys (Reptilia: Chelonioidea) from the Upper Cretaceous of Vancouver Island Elizabeth L. Nicholls Canadian Journal of Earth Sciences (1992) 29 (2): 377–380. https://doi.org/10.1139/e92-033; References: Chimaeras - The Neglected Chondrichthyans". Elasmo-research.org. Retrieved 2017-07-01.

Directions: If you're keen to explore the area, park on the side of Highway 19 about three kilometres south of Courtenay and hike up to the Trent River. Begin to look for parking about three kilometres south of the Cumberland Interchange. There is a trail that leads from the highway down beneath the bridge which will bring you to the Trent River's north side.

Monday, 5 July 2021

PTEROSAURS OF HORNBY ISLAND

If you could travel through time and go back to observe our ancient skies, you would see massive pterosaurs — huge, winged flying reptiles of the extinct order Pterosauria — cruising along with you. They soared our skies during most of the Mesozoic — from the late Triassic to the end of the Cretaceous (228 to 66 million years ago). 

By the end of the Cretaceous, they had grown to giants and one of their brethren, Quetzalcoatlus, a member of the family Azhdarchidae, boasts being the largest known flying animal that ever lived. They were the earliest vertebrates known to have evolved powered flight. Their wings were formed by a membrane of skin, muscle, and other tissues stretching from the ankles to a dramatically lengthened fourth finger.

We divide their lineage into two major types: basal pterosaurs and pterodactyloids. Basal pterosaurs (also called 'non-pterodactyloid pterosaurs' or ‘rhamphorhynchoids’) were smaller animals with fully toothed jaws and long tails. Their wide wing membranes connected to their hind legs. This would have allowed them some manoeuvrability on the ground, but with an awkward sprawling posture. They were better climbers with flexible joint anatomy and strong claws. Basal pterosaurs preferred to dine on insects and small vertebrates.

Later pterosaurs (pterodactyloids) evolved many sizes, shapes, and lifestyles. Pterodactlyoids had narrower wings with free hind limbs, highly reduced tails, and long necks with large heads. On the ground, pterodactyloids walked better than their earlier counterparts, manoeuvring all four limbs smoothly with an upright posture. They walked standing plantigrade on the hind feet and folding the wing finger upward to walk on the three-fingered "hand." These later pterosaurs were more nimble. They could take off from the ground, run and wade and swim. Their jaws had horny beaks and some of these later groups lacked the teeth of earlier lineages. Some groups developed elaborate head crests that were likely used to attract mates' sexy-pterosaur style.

So can we or have we found pterosaurs on Hornby Island? The short answer is yes.

Collishaw Point, known locally as Boulder Point, Hornby Island
Hornby Island is a lovely lush, island in British Columbia's northern Gulf Islands. It was formed from sediments of the upper Nanaimo Group which are also widely exposed on adjacent Denman Island and the southern Gulf Islands.

Peter Mustard, a geologist from the Geologic Survey of Canada, did considerable work on the geology of the island. It has a total stratigraphic thickness of 1350 m of upper Nanaimo Group marine sandstone, conglomerate and shale. 

These are partially exposed in the Campanian to the lower Maastrichtian outcrops at Collishaw Point on the northwest side of Hornby Island. Four formations underlie the island from oldest to youngest, and from west to east: the Northumberland, Geoffrey, Spray and Gabriola.

During the upper Cretaceous, between ~90 to 65 Ma, sediments derived from the Coast Belt to the east and the Cascades to the southeast poured seaward to the west and northwest into what was the large ancestral Georgia Basin. This major forearc basin was situated between Vancouver Island and the mainland of British Columbia. The rocks you find here originated far to the south in Baja California and are the right age and type of sediment for a pterosaur find. But are we California dreaming?

Upper Cretaceous Nanaimo Group Fossil Concretion
Well, truth be told, we were with one of the potential pterosaur finds from Hornby. It wasn't just hopeful thinking that had the west coast in a paleo uproar many ago when Sharon Hubbard of the Vancouver Island Palaeontological Society found what looked very much like a pterosaur.

Right time period. Right location. And, we have found them here in the past.

Sandy McLachlan found the first definitive pterosaur, an azhdarchid, back in 2008.

But was Sharon's find a pterosaur?

Victoria Arbour, a Canadian evolutionary biologist and palaeontologist working as a Natural Sciences and Engineering Research Council of Canada postdoctoral fellow at the University of Toronto and Royal Ontario Museum, certainly thought so. 

While Arbour is an expert on ankylosaurs, our lumbering armoured dinosaurs friends, she has studied pterosaurs and participated in the naming of Gwawinapterus from Hornby Island. 

But here's the thing — bony material encased in stone and let to cement for millions of years can be tricky.

While this fossil find was initially described as a very late-surviving member of the pterosaur group Istiodactylidae, further examination cast doubt on the identification. Once more detail was revealed the remains were published as being those of a saurodontid fish, an ambush predator with very sharp serrated teeth and elongate, torpedo-like bodies that grew up to two meters. Not a pterosaur but still a massively exciting find. Arbour was very gracious at the renaming, taking it in stride. She has since gone on to name a partial ornithischian dinosaur from Sustut Basin, as well as the ankylosaurs Zuul, Zaraapelta, Crichtonpelta, and Ziapelta. But she may have another shot at a pterosaur.

Dan Bowen, Chair, VIPS. Photo: Deanna Steptoe Graham
In 2019, Dan Bowen, Chair of the Vancouver Island Palaeontological Society and a truly awesome possum, found some very interesting bones in concretion on Hornby. 

The concretion was nestled amongst the 72 million-year-old grey shales of the Northumberland Formation, Campanian to the lower Maastrichtian, part of the Cretaceous Nanaimo Group from Collishaw Point.

The site is known as Boulder Point to the locals and it has been a popular fossil destination for many years. It is the same site where Sharon made her find years earlier.

The concretion contains four articulated vertebrae that looked to be fish at first glance. Jay Hawley, a local fossil enthusiast was asked to prep the block to reveal more details. Once the matrix was largely removed the vertebrae inside were revealed to be bird bones, not fish and not another saurodontid as originally thought. Palaeontologist Victoria Arbour was called back in to put her keen lens on the discovery. 

You will appreciate that she took a good long look at the specimen and confirmed it to be a bird or a pterosaur. We still do not have confirmation on which it is as yet. The delicate bony material is very flattened with a very shallow u-shape on the bottom but will need additional study to confirm if the skies above California were once home to a great pterosaur who died, was fossilized then rode our tectonic plates to now call Hornby home. It is a great story and one that I am keen to follow.

References: To learn more about the azhdarchid remains found by Sandy McLachlan, check out the paper by Martin-Silverston et al. 2016.

Sunday, 4 July 2021

DIPLOMOCERAS OF HORNBY / JA-DAI-AICH

Diplomoceras sp.
This gorgeous cream and brown big beast of a heteromorph, Diplomoceras (Diplomoceras) sp., (Hyatt, 1900) was found within the 72 million-year-old sediments of the upper Nanaimo Group on the northern Gulf Island of Hornby in southwestern British Columbia, Canada. 

The site is known as Boulder Point to the locals and it has been a popular fossil destination for many years. It is the home of the K'ómoks First Nation, who called the island Ja-dai-aich.

Many of the fossils found at this locality are discovered in concretions rolled smooth by time and tide. The concretions you find on the beach are generally round or oval in shape and are made up of hard, compacted sedimentary rock. 

If you are lucky, when you split these nodules you are rewarded with a fossil hidden within. That is not always the case but the rewards are worth the effort. 

These past few years, many new and wonderful specimens have been unearthed — particularly by members of the Vancouver Island Palaeontological Society. 

And so it was in the first warm days of early summer last year. Three members of the Vancouver Palaeontological Society excavated this 100 cm long fossil specimen over two days in June of 2020. The specimen was not in concretion but rather embedded in the hard sintered shale matrix beneath their feet. It was angled slightly downward towards the shoreline and locked within the rolling shale beds of the island. 

Diplomoceratidae (Spath, 1926) are often referred to as the paperclip ammonites. They are in the family of ammonites included in the order Ammonitida in the Class Cephalopoda and are found within marine offshore to shallow subtidal Cretaceous — 99.7 to 66.043 million-year-old — sediments worldwide. 

I was reading with interest this morning about a new find published by Muramiya and Shigeta in December 2020 of a new heteromorph ammonoid Sormaites teshioensis gen. et sp. nov. (Diplomoceratidae) described from the upper Turonian (Upper Cretaceous) in the Nakagawa area, Hokkaido, northern Japan. This lovely has a shell surface ornamented with simple, straight, sharp-tipped ribs throughout ontogeny, but infrequent flared ribs and constrictions occur on later whorls. Excluding its earliest whorls, its coiling and ornamentation are very similar to Scalarites mihoensis and Sc. densicostatus from the Turonian to Coniacian in Hokkaido and Sakhalin, suggesting that So. teshioensis was probably derived from one of these taxa in the Northwest Pacific during middle to late Turonian.

Much like the long-lived geoducks living in Puget Sound today, studies of Diplomoceras suggest that members of this family could live to be over 200 years old — a good 40-years longer than a geoduck but not nearly as long-lived as the extant bivalve Arctica islandica that reach 405 to 410 years in age. 

Along with this jaw-dropper of a heteromorph, the same group found an Actinosepia, gladius — internal hard body part found in many cephalopods of a Vampyropod. Vampyropods are members of the proposed group Vampyropoda — equivalent to the superorder Octopodiformes — which includes vampire squid and octopus.

The upper Nanaimo Group is a mix of marine sandstone, conglomerate and shale. These are partially exposed in the Campanian to the lower Maastrichtian outcrops at Collishaw Point on the northwest side of Hornby Island.

Along with fossil crabs, shark teeth, bivalves and occasional rare and exquisite saurodontid fish, an ambush predator with very sharp serrated teeth and elongate, torpedo-like body — we also find three heteromorph ammonite families are represented within the massive, dark-grey mudstones interlaminated and interbedded with siltstone and fine-grained sandstone of the upper Campanian (Upper Cretaceous) strata of the Northumberland Formation exposed here: Baculitidae, Diplomoceratidae and Nostoceratidae. 

A variety of species are distinguished within these families, of which only three taxa – Baculites occidentalis (Meek, 1862), Diplomoceras (Diplomoceras) cylindraceum (Defrance, 1816) and Nostoceras (Nostoceras) hornbyense (Whiteaves, 1895), have been studied and reported previously. 

Over the last decade, large new collections by many members of the Vancouver Island Palaeontological Society and palaeontologists working at the Geologic Survey of Canada, along with a renewed look at previous collections have provided new taxonomic and morphometric data for the Hornby Island ammonite fauna. This renewed lens has helped shape our understanding and revamp descriptions of heteromorph taxa. Eleven taxa are recognized, including the new species Exiteloceras (Exiteloceras) densicostatum sp. nov., Nostoceras (Didymoceras?) adrotans sp. nov. and Solenoceras exornatus sp. nov. 

A great variety of shape and form exist within each group. Morphometric analyses by Sandy McLachlan and Jim Haggart of over 700 specimens unveiled the considerable phenotypic plasticity of these ammonites. They exhibit an extraordinarily broad spectrum of variability in their ornamentation and shell dimensions. 

The presence of a vibrant amateur palaeontological community on Vancouver Island made the extent of their work possible. Graham Beard, Doug Carrick, Betty Franklin, Raymond Graham, Joe Haegert, Bob Hunt, Stevi Kittleson, Kurt Morrison and Jean Sibbald are thanked for their correspondence and generosity in contributing many of the exquisite specimens featured in that study. 

These generous individuals, along with many other members of the Vancouver Island Palaeontological Society (VIPS), Vancouver Paleontological Society (VanPS), and British Columbia Paleontological Alliance (BCPA), have contributed a great deal to our knowledge of the West Coast of Canada and her geologic and palaeontological correlations to the rest of the world; notably, Dan Bowen, Rick Ross, John Fam and Pat and Mike Trask, Naomi & Terry Thomas. Their diligence in the collection, preparation and documentation of macrofossils is a reflection of the passion they have for palaeontology and their will to help shape the narrative of Earth history.

Through their efforts, a large population sample of Nostoceras (Nostoceras) hornbyense was made available and provided an excellent case study of a member of the Nostoceratidae. It was through the well-documented collection and examination of a remarkable number of nearly complete, well-preserved specimens that a re-evaluation of diagnostic traits within the genus Nostoceras was made possible. 

The north-east Pacific Nostoceras (Nostoceras) hornbyense Zone and the global Nostoceras (Nostoceras) hyatti Assemblage Zone are regarded as correlative, reinforcing a late Campanian age for the Northumberland Formation. This builds on the earlier work of individuals like Alan McGugan and others. McGugan looked at the Upper Cretaceous (Campanian and Maastrichtian) Foraminifera from the Upper Lambert and Northumberland Formations, Gulf Islands, British Columbia, Canada.

The Maastrichtian Bolivina incrassata fauna (upper part of Upper Lambert Formation) of Hornby Island (northern Comox Basin) is now recognized in the southern Nanaimo Basin on Gabriola and Galiano Islands. The Maastrichtian planktonic index species Globotruncana contusa occurs in the Upper Northumberland Formation of Mayne Island and Globotruncana calcarata (uppermost Campanian) occurs| in the Upper Northumberland Formation of Mayne Island and also in the Upper Lambert Formation at Manning Point on the north shore of Hornby Island (Comox Basin).

Very abundant benthonic and planktonic foraminiferal assemblages from the Upper Campanian Lower Northumberland Formation of Mayne Island enable paleoecological interpretations to be made using the Fisher diversity index, triangular plots of Texturlariina/Rotaliina/Miliolina, calcareous/agglutinated ratios, planktonic/benthonic ratios, generic models, and associated microfossils and megafossils. 

Combined with local geology and stratigraphy a relatively shallow neritic depositional environment is proposed for the Northumberland Formation in agreement with Scott but not Sliter who proposed an Outer shelf/slope environment with depths of 300 m or more.

References & further reading: Sandy M. S. McLachlan & James W. Haggart (2018) Reassessment of the late Campanian (Late Cretaceous) heteromorph ammonite fauna from Hornby Island, British Columbia, with implications for the taxonomy of the Diplomoceratidae and Nostoceratidae, Journal of Systematic Palaeontology, 16:15, 1247-1299, DOI: 10.1080/14772019.2017.1381651

Crickmay, C. H., and Pocock, S. A. J. 1963. Cretaceous of Vancouver, British Columbia. American Association of Petroleum Geologists Bulletin, 47, pp. 1928-1942.

England, T.D.J. and R. N. Hiscott (1991): Upper Nanaimo Group and younger strata, outer Gulf Islands, southwestern British Columbia: in Current Research, Part E; Geological Survey of Canada, Paper 91-1E, p. 117-125.

McGugan, Alan. (2011). Upper Cretaceous (Campanian and Maestrichtian) Foraminifera from the Upper Lambert and Northumberland Formations, Gulf Islands, British Columbia, Canada. Canadian Journal of Earth Sciences. 16. 2263-2274. 10.1139/e79-211. 

Scott, James. (2021). Upper Cretaceous foraminifera of the Haslam, Qualicum, and Trent River formations, Vancouver Island, British Columbia /. 

Sliter, W. & Baker, RA. (1972). Cretaceous bathymetric distribution of benthic foraminifers. Journal of Foraminiferal Research - J FORAMIN RES. 2. 167-183. 10.2113/gsjfr.2.4.167. 

Spath L. F. 1926. A Monograph of the Ammonoidea of the Gault; Part VI. Palaeontographical Society London

Sullivan, Rory (4 November 2020). "Large squid-like creature that looked like a giant paperclip lived for 200 years — 68 million years ago". The Independent. Archived from the original on 4 November 2020.

Urquhart, N. & Williams, C.. (1966). Patterns in Balance of Nature. Biometrics. 22. 206. 10.2307/2528236. 

Yusuke Muramiya and Yasunari Shigeta "Sormaites, a New Heteromorph Ammonoid Genus from the Turonian (Upper Cretaceous) of Hokkaido, Japan," Paleontological Research 25(1), 11-18, (30 December 2020). https://doi.org/10.2517/2020PR016.

Photos: Vancouver Island Palaeontological Society, Courtenay, British Columbia, Naomi and Terry Thomas.

Wednesday, 30 June 2021

FOSSILS, TEXTILES AND URINE

Yorkshire Coast
You may recall the eight-metre Type Specimen of the ichthyosaur, Temnodontosaurus crassimanus, found in an alum quarry in Yorkshire, northern England.

The Yorkshire Museum was given this important ichthyosaur fossil back in 1857 when alum production was still a necessary staple of the textile industry. Without that industry, many wonderful specimens would likely never have been unearthed.

These quarries are an interesting bit of British history as they helped shape the Yorkshire Coast, created an entirely new industry and gave us more than a fixative for dyes. With them came the discovery of many remarkable fossil specimens and, oddly, local employment in the collection of urine.

In the 16th century, alum was essential in the textile industry as a fixative for dyes. 

By the first half of the 16th century, the clothing of the Low Countries, German states, and Scandinavia had developed in a different direction than that of England, France, and Italy, although all absorbed the sobering and formal influence of Spanish dress after the mid-1520s. Those fashions held true until the Inquisition when religious persecution, politics and fashion underwent a much-needed overhaul to something lighter.

Fashion in Medieval Livonia (1521): Albrecht Dürer
Elaborate slashing was popular, especially in Germany. In the depiction you see here, an artist pokes a bit of fun at Germanic fashion from the time. Bobbin lace arose from passementerie in the mid-16th century in Flanders, the Flemish Dutch-speaking northern portion of Belgium. Black was increasingly worn for the most formal occasions.

This century saw the rise of the ruff, which grew from a mere ruffle at the neckline to immense, slightly silly, cartwheel shapes. They adorned the necklines of the ultra-wealthy and uber-stylish men and women of the age.

At their most extravagant, ruffs required wire supports and were made of fine Italian reticella, a cutwork linen lace.

16th Century Fashion / Ruff Collars and Finery
In contrast to all that ruff, lace and cutwork linen, folk needed dyed fabrics. And to fix those dyes, they needed Alum. For a time, Italy was the source of that alum.

The Pope held a tidy monopoly on the industry, supplying both alum and the best dyes. He also did a nice trade in the colourful and rare pigments for painting. And for a time, all was well with dandy's strutting their finery to the local fops in Britain.

All that changed during the Reformation. Great Britain, heathens as they were, were cut-off from their Papal source and found themselves needing to fend for themselves.

The good Thomas Challoner took up the charge and set up Britain's first Alum works in Guisborough. Challoner looked to paleontology for inspiration. Noticing that the fossils found on the Yorkshire coast were very similar to those found in the Alum quarries in Europe, he hatched a plan to set-up an alum industry on home soil. As the industry grew, sites along the coast were favoured as access to the shales and subsequent transportation was much easier.

Alum House, Photo: Joyce Dobson and Keith Bowers
Alum was extracted from quarried shales through a large scale and complicated process which took months to complete. The process involved extracting then burning huge piles of shale for 9 months, before transferring it to leaching pits to extract an aluminum sulphate liquor. This was sent along channels to the alum works where human urine was added.

At the peak of alum production, the industry required 200 tonnes of urine every year. That's the equivalent of all the potty visits of more than 1,000 people. Yes, strange but true.

The steady demand was hard to keep up with and urine became an imported resource from markets as far away as London and Newcastle upon Tyne in the northeast of England. Wooden buckets were left on street corners for folk to do their business then carted back to the south to complete the alum extraction process. The urine and alum would be mixed into a thick liquid. Once mixed, the aromatic slosh was left to settle and then the alum crystals were removed.

I'm not sure if this is a folktale or plain truth, but as the story goes, one knows when the optimum amount of alum had been extracted as you can pop an egg in the bucket and it floats on its own.

Alum House. Photo: Ann Wedgewood and Keith Bowers
The last Alum works on the Yorkshire Coast closed in 1871. This was due to the invention of manufacturing synthetic alum in 1855, then subsequently the creation of aniline dyes that contained their own fixative.

There are many sites along the Yorkshire Coast which bear evidence of the alum industry. These include Loftus Alum Quarries where the cliff profile is drastically changed by extraction and huge shale tips remain.

Further South are the Ravenscar Alum Works, which are well preserved and enable visitors to visualize the processes which took place. The photos you see here are of Alum House at Hummersea. The first shows the ruin of Alum House printed on a postcard from 1906. The second (bottom) image shows the same ruin from on high with Cattersty Point in the background.

The good folk at the National Trust in Swindon are to thank for much of the background shared here. If you'd like to learn more about the Yorkshire area or donate to a very worthy charity, follow their link below.

Reference: https://www.nationaltrust.org.uk/yorkshire-coast/features/how-alum-shaped-the-yorkshire-coast