- Alder
- Unidentified Bark
- Poplar (cottonwood) Populus sp.
- Bigleaf maple Acer machphyllum
- Alder Alnus rubra
- Buttercup Ranvuculus sp.
- Epilobrium
- Red cedar
- Blackberry
- Sword fern
My Norwegian cousins on my mother's side call them humle. Norway is a wonderful place to be something wild as the wild places have not been disturbed by our hands. Head out for a walk in the wild flowers and the sounds you will hear are the wind and the bees en masse amongst the flowers.
There are an impressive thirty-five species of bumblebee species that call Norway hjem (home), and one, Bombus consobrinus, boasts the longest tongue that they use to feast solely on Monkshood, genus Aconitum, you may know by the name Wolf's-bane.
In the Kwak̓wala language of the Kwakwaka'wakw, speakers of Kwak'wala, and my family on my father's side in the Pacific Northwest, bumblebees are known as ha̱mdzalat̕si — though I wonder if this is actually the word for a honey bee, Apis mellifera, as ha̱mdzat̕si is the word for a beehive.
I have a special fondness for all bees and look for them both in the garden and in First Nation art.
Bumblebees' habit of rolling around in flowers gives us a sense that these industrious insects are also playful. In First Nation art they provide levity — comic relief along with their cousins the mosquitoes and wasps — as First Nation dancers wear masks made to mimic their round faces, big round eyes and pointy stingers.
A bit of artistic license is taken with their forms as each mask may have up to six stingers. The dancers weave amongst the watchful audience and swoop down to playfully give many of the guests a good, albeit gentle, poke.
Honey bees actually do a little dance when they get back to the nest with news of an exciting new place to forage — truly they do. Bumblebees do not do a wee bee dance when they come home pleased with themselves from a successful foraging mission, but they do rush around excitedly, running to and fro to share their excitement. They are social learners, so this behaviour can signal those heading out to join them as they return to the perfect patch of wildflowers.
Bumblebees are quite passive and usually sting in defense of their nest or if they feel threatened. Female bumblebees can sting several times and live on afterwards — unlike honeybees who hold back on their single sting as its barbs hook in once used and their exit shears it off, marking their demise.They are important buzz pollinators both for our food crops and our wildflowers. Their wings beat at 130 times or more per second, literally shaking the pollen off the flowers with their vibration.
And they truly are busy bees, spending their days fully focused on their work. Bumblebees collect and carry pollen and nectar back to the nest which may be as much as 25% to 75% of their body weight.
And they are courteous — as they harvest each flower, they mark them with a particular scent to help others in their group know that the nectar is gone.
The food they bring back to the nest is eaten to keep the hive healthy but is not used to make honey as each new season's queen bees hibernate over the winter and emerge reinvigorated to seek a new hive each Spring. She will choose a new site, primarily underground depending on the bumblebee species, and then set to work building wax cells for each of her fertilized eggs.
Bumblebees are quite hardy. The plentiful hairs on their bodies are coated in oils that provide them with natural waterproofing. They can also generate more heat than their smaller, slender honey bee cousins, so they remain productive workers in cooler weather.
We see the first bumblebees arise in the fossil record 100 million years ago and diversify alongside the earliest flowering plants. Their evolution is an entangled dance with the pollen and varied array of flowers that colour our world.We have found many wonderful examples within the fossil record, including a rather famous Eocene fossil bee found by a dear friend and naturalist who has left this Earth, Rene Savenye.
His namesake, H. Savenyei, is a lovely fossil halictine bee from Early Eocene deposits near Quilchena, British Columbia — and the first bee body-fossil known from the Okanagan Highlands — and indeed from Canada.
It is a fitting homage, as bees symbolize honesty, playfulness and willingness to serve the community in our local First Nation lore and around the world — something Rene did his whole life.
Steeped in mist and mythology, the islands of the Queen Charlottes abound in local lore that surrounds their beginnings. 
Though we often see them today basking on beaches or popping their heads above the waves, their journey through the fossil record reveals a dramatic tale of land-to-sea adaptation and ancient global wanderings.
Seals belong to a group of marine mammals called pinnipeds, which also includes sea lions and walruses.
All pinnipeds share a common ancestry with terrestrial carnivores, and their closest living relatives today are bears and mustelids (like otters and weasels).
While it may seem unlikely, their ancestors walked on land before evolving to thrive in marine environments. It takes many adaptations for life at sea and these lovelies have adapted well.
The fossil record suggests that pinnipeds first emerged during the Oligocene, around 33 to 23 million years ago.
These early proto-seals likely lived along coastal environments, where they gradually adapted to life in the water. Over time, their limbs transformed into flippers, their bodies streamlined, and their reliance on the sea for food and movement became complete.
In Kwak'wala, the language of the Kwakwaka'wakw First Nations of the Pacific Northwest, seals are known as migwat, and fur seals are referred to as xa'wa.
Her brethren are playing in the waters of the deep all over the world, from surface waters to our deepest seas — and they are old. They are some of the oldest animals in the fossil record.
Jellyfish and sea jellies are the informal common names given to the medusa-phase or adult phase of certain gelatinous members of the subphylum Medusozoa, a major part of the phylum Cnidaria — more closely related to anemones and corals.
Jellyfish are not fish at all. They evolved millions of years before true fish. The oldest conulariid scyphozoans appeared between 635 and 577 million years ago in the Neoproterozoic of the Lantian Formation, a 150-meter-thick sequence of rocks deposited in southern China.
Others are found in the youngest Ediacaran rocks of the Tamengo Formation of Brazil, c. 505 mya, through to the Triassic. Cubozoans and hydrozoans appeared in the Cambrian of the Marjum Formation in Utah, USA, c. 540 million years ago.
I have seen all sorts of their brethren growing up on the west coast of Canada. I have seen them in tide pools, washed up on the beach and swam amongst thousands of Moon Jellyfish while scuba diving in the Salish Sea. Their movement in the water is marvellous.
In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, jellyfish are known as ǥaǥisama.
The watercolour ǥaǥisama you see here in dreamy pink and white is but one colour variation. They come in blue, purple, orange, yellow and clear — and are often luminescent. They produce light by the oxidation of a substrate molecule, luciferin, in a reaction catalyzed by a protein, luciferase.
Fossil remains of Koala-like animals have been found dating back 25 million years. Some of the relatives of modern koalas were much larger, including the Giant Koala, Phascolarctos stirtoni.
It should likely have been named the Robust Koala, instead of Giant, but this big boy was larger than modern koalas by about a third. Phascolarctos yorkensis, from the Miocene, was twice the size of the modern koalas we know today. Both our modern koalas and their larger relatives co-existed during the Pleistocene, sharing trees and enjoying the tasty vegetation surrounding them.
We get a bird's eye view (or Theropod's eye view) of life back in the Late Triassic and Early Jurassic. Both here and at Elliott we see dinosaur remains tracks and dino eggs!
![]() |
| Living Fossil / Comb Jelly / Ctenophore |
Look how epic this little guy is!
He is a crab — and if you asked him, the fiercest warrior that ever lived. While that may not be strictly true, crabs do have the heart of a warrior and will raise their claws, sometimes only millimetres into the air, to assert dominance over their world.
Crabs are decapod crustaceans of the Phylum Arthropoda.Crabs build their shells from highly mineralized chitin — and chitin gets around. It is the main structural component of the exoskeletons of many of our crustacean and insect friends. Shrimp, crab, and lobster all use it to build their exoskeletons.
Chitin is a polysaccharide — a large molecule made of many smaller monosaccharides or simple sugars, like glucose.
It is handy stuff, forming crystalline nanofibrils or whiskers. Chitin is actually the second most abundant polysaccharide after cellulose. It is interesting as we usually think of these molecules in the context of their sugary context but they build many other very useful things in nature — not the least of these are the hard shells or exoskeletons of our crustacean friends.
Crabs in the Fossil Record
The earliest unambiguous crab fossils date from the Early Jurassic, with the oldest being Eocarcinus from the early Pliensbachian of Britain, which likely represents a stem-group lineage, as it lacks several key morphological features that define modern crabs.
Most Jurassic crabs are only known from dorsal — or top half of the body — carapaces, making it difficult to determine their relationships. Crabs radiated in the Late Jurassic, corresponding with an increase in reef habitats, though they would decline at the end of the Jurassic as the result of the decline of reef ecosystems. Crabs increased in diversity through the Cretaceous and represented the dominant group of decapods by the end.
We find wonderful fossil crab specimens on Vancouver Island. The first I ever collected was at Shelter Point, then again on Hornby Island, down on the Olympic Peninsula and along Vancouver Island's west coast near Nootka Sound. They are, of course, found globally and are one of the most pleasing fossils to find and aggravating to prep of all the specimens you will ever have in your collection. Bless them.
The species named the Canadodus suntoki by Russian researcher Evgeny Popov is named after collector Steve Suntok who donated the fossil to the Royal BC Museum in 2014.
The name roughly translates to “tooth from Canada,” as the fossil is part of a fish dental plate.
Popov, who is one of the world’s leading experts on fossil holocephalian fishes, says that the fossil that Suntok found is an entirely new fish compared to anything found before.
“I knew it was something significant. Not necessarily a new species but something significant,” Suntok told CTV News Thursday.
The fossil dental plate indicates that the fish was likely a type of Chimaeridae, which is a species of fish that feeds on invertebrates by crushing their shells on its hard flat dental plates, before eating the animal inside, according to researchers.
Suntok found the fossil in a northwest portion of Sooke. Researchers say that Sooke is an excellent area for paleontological discoveries, with a variety of fossils at the Royal BC Museum coming from the region.
Ancient whale vertebrae and rib specimens have been found in Sooke and donated to the museum, as well as a potential terrestrial mammal bone, fossil leaves, and many invertebrate fossils, such as oysters, barnacles and snails.
The Suntok family has experience finding and preserving fossils on Vancouver Island. Many fossils discovered by the family have been donated to the Royal BC Museum, including a new waterbird coracoid bone which was named after Steve Suntok’s daughter, Leah, in 2015, named the Stemec suntokum.“Because of erosion, every time we go there there’s something new,” said Suntok.
“New things get exposed so from time to time I go back just to check out the site. On this occasion, I found something I’d never seen before, which was pretty exciting.”
Researchers say that cliff faces near Muir Creek and beaches near Kirby Creek in Sooke “easily contain the richest exposures of fossils near Victoria.” Fossils in the area tend to date back approximately 25 million years.
Vancouver Island palaeontologist Marji Johns, who is a co-author of research on the Canadodus suntoki, says that she was thrilled by the discovery.
![]() |
| Sooke, British Columbia and Juan de Fuca Strait |
Suntok says that having the Canadodus suntoki named after him is a dream come true.
“I’m ecstatic about it. It’s the dream of every amateur collector,” he said.
“It’s an honour. I don’t deserve it, but I’m extremely appreciative of it.”
Reference:
https://www.iheartradio.ca/580-cfra/it-s-an-honour-newly-discovered-fossil-fish-species-named-after-vancouver-island-collector-1.13515837