Sunday, 4 August 2019

SQUID EMPIRE: DANNA STAAF

Caught up with the Awesome Danna Staaf, "Cephalopodiatrist," today. If you haven’t picked up a copy of the infinitely readable, “Squid Empire,” please do! It’s an epic adventure through our primordial oceans, delightfully showcasing the rise & fall of the cephalopods as they moved from being the ocean’s top predator to its most delicious snack.

You’ll love Danna’s engaging writing style. I’m not the only one who thinks it’s awesome. It was named one of the best science books of 2017 by NPR. She writes about science with a particular penchant for marine biology along with science fiction and fantasy. Sometimes for grown-ups and sometimes for kids. She also makes art, including technical illustrations, comic strips, calligraphy, and origami -- and gives fabulous talks!

Danna & I were colleagues of a sort years ago. We both wrote for Science 2.0 and waxed poetic about all things squidy, cephie and paleo. She's become a mother since then and was up at UBC giving a talk at the Beatty Museum in Vancouver with her hubby. She's back in Vancouver in April 2020 for a talk. Once I have details, I'll post them here. Enjoy!

Here's her deliciously geeky site: http://www.cephalopodiatrist.com/p/home.html

Saturday, 3 August 2019

GRAND PRISMATIC SPRING

Aptly named, Grand Prismatic Spring in Yellowstone National Park is the largest hot spring in the United States (and one of the loveliest) and the third largest in the world. The rich yellow, red, orange, green and blue coloring you see here is the result of microbial mats of bacteria and archaea.

While a whole host of thermophilic (heat-loving) microorganisms are responsible, it is the cyanobacteria, one of the more common fellows from this group, which form most of the scum. Cyanobacteria grow together in huge colonies (bacterial mats) that form the delightfully colourful slimes and scum on the perimeter of hot springs. You can tell a fair bit about the water temperature and chemistry just by looking at the colour of the pools. The coloring shifts dependant upon the ratio of carotenoids to chlorophyll and ambient temperature. We see more orange and red in the summer and the colder temperature of late Fall and Winter bring more green to the coloring.

Friday, 2 August 2019

SYMBIOTIC SLOTHS

Ever wonder why the slow moving sloth has a slightly greenish hue? Ever consider the sloth at all? Well, perhaps not. Location, location, location, is the mantra for many of us in our macro world, but it is also true for the small world of algae.

Blue-green algae are microscopic, plant-like organisms. The term is used to describe any of a large, heterogeneous group of prokaryotic, principally photosynthetic organisms. These little oxygenic (oxygen-producing) fellows appeared are given credit for greatly increasing the oxygen content of the atmosphere, making possible the development of aerobic (oxygen-using) organisms and some very special relationships with some of the slowest moving mammals on the planet, the sloths or Folivora.

The tribes of South America who live close to these insect and leaf-eaters, call these arboreal browsers "Ritto, Rit or Ridette, which roughly translates to variations on sleep, sleepy, munching and filthy. Not all that far off when you consider the sloth and their lifestyle.

The sloth's body and shaggy coat, or pelage, provides a comfy habitat to two types of wee blue-green algae along with various other invertebrates. The hairs that make up the sloth's coat are long and coarse with grooves that help foster algal growth. They soak up water readily and make for the perfect habitat for algae, moths, beetles fungi and even cockroaches.

And, while Kermit the Frog says, "it's not easy being green," it couldn't be further from the truth for this slow-moving tree dweller. The blue-green algae gives the sloth a natural greenish camouflage, an arrangement that is certainly win-win.

Wednesday, 31 July 2019

AUSTRALOPITHECUS AFRICANUS

Two views of a natural endocranial cast articulated with a fragmentary skull of Australopithecus africanus, an early hominid living between 2-3 million years ago in the late Pliocene and into the early Pleistocene -- and the first pre-human to be discovered. They shared many characteristics with their older relatives the Australopithecus afarensis including a more gracile body. The casts you see here show the left maxilla, the orbital area and most of the skull base. Australopithecus africanus had a larger brain and more humanoid facial features than their older ancestors with an average endocranial volume of 485 cm3 (29.6 cu in). This specimen is TM 1511 and lives in the Ditsong National Museum of Natural History, in Pretoria, South Africa. Prior to a closer look by researchers, the skull was incorrectly believed to be a separate species, Plesianthropus transvaalensis. It was first discovered in South Africa by G. W. Barlow and described by Robert Broom in 1938. Photo credit: José Braga and Didier Descouens.

Tuesday, 30 July 2019

OPHTHALMOPLAX BRASILIANA

Ophthalmoplax brasiliana  / Photo: José F. Ventura‎
Ventral view of the carnivorous portunoid crab Ophthalmoplax brasiliana (Maury, 1930) from the latest Maastrichtian (~66.2 Ma.) deposits near Coahuila, northern Mexico.

This marine species was originally thought to have been found only in the upper Member (Owl Creek Formation) Late/Upper Maastrichtian deposits of Tippah County in Mississippi, USA. 

Sohl and Koch published on the Mississippian finds in the USGS in 1983. Fedorov and Nyborg published on this same species again in 2017. Paleocoordinates: (34.8° N, 88.9° W: 38.3° N, 66.2° W)

Monday, 29 July 2019

TETRALOPHODON OF ANANCIDAE

Quintus Sertorius, a Roman statesman come general, grew up in Umbria, the green heart of what is now central Italy. Born into a world at war just two years before the Romans sacked Corinth to bring Greece under Roman rule, Quintus lived much of his life as a military man far from the hills, mountains, and valleys of his birthplace.

In 81 BC, he traveled to Morocco, the land of opium, massive trilobites and the birthplace of Antaeus, the legendary North African ogre who was killed by the Greek hero Heracles.

The locals tell a tale that Quintus requested proof of Antaeus, hard evidence he could bring back to Rome to support their tales. They took him to a mound at Tingis, Morocco, where they unearthed the bones of a Neogene elephant, Tetralophodon, an extinct elephantoid belonging to the family Anancidae. During the Miocene and Pliocene, 12-1.6 million years ago, this diverse group of extinct proboscidean elephant-like lived in Europe, Asia and Africa.

Most of these large beasts had four tusks and likely a trunk similar to modern elephants. They were creatures of legend, inspiring myths and stories of fanciful creatures to the first humans to encounter them. Tetralophodon bones are large and skeletons singularly impressive. Impressive enough to be taken for something else entirely. By all accounts these proboscidean remains were that of the mythical ogre Antaeus and were thus reported back to Rome as such. It was hundreds of years before their true heritage was known.

I was lucky enough to travel to Morocco a many years ago and see the Tetralophodon remains. At the time, the tales of Antaeus ran through my mind. Could this be the proof that Quintus wanted. I believe it was. Pictured above are the fossil skull and tusks of T. longirostris, from Ballestar, Spain at the Museu Geològic del Seminari de Barcelona, Barcelona. Photo credit: Jordiferrer - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20028047

Sunday, 28 July 2019

MCABEE FOSSIL BEDS

Eocene Fossil Feather / McAbee Fossil Beds
The McAbee fossil beds are known for their incredible abundance, diversity and quality of fossils including lovely plant, insect and fish species that lived in an old lake bed setting 52 million years ago.

I was sharing with some friends, Lawrence and Shivinder (hello you two!) about the site earlier this evening. It is one of the best local sites in the province to experience a fossil dig first-hand. 

It is an easy 4-hour drive from Vancouver and easily done as a day trip. The site was designated a Provincial Heritage Site under British Columbia's Heritage Conservation Act in July of 2012, then promptly closed to the public.

It has recently been reopened to public collecting (as of June 21, 2019), with plans to build out a visitor's centre and educational programs. The Province is committed to providing access to the site to scientists and the lay public. The direction on what happens next at McAbee is being driven by the Heritage Branch in consultation with members of the Shuswap Nation and Bonaparte Band. Bonaparte traditional territory is located within the Shuswap Nation and includes the area known as McAbee.

Local members of the Bonaparte Band are Secwepemc. They want to share the spiritual significance of the area from a First Nations perspective and see McAbee as an indigenous tourism destination. So it looks like it will be palaeontology, archaeology with a cultural focus to add spice. In any case, the collection of fossils will continue with oversight to ensure significant fossil finds make their way to science.

While the area is referred to as the Okanagan, the term is used in a slightly misleading fashion to describe an arc of Eocene lakebed sites that extend from Smithers in the north, down to the fossil site of Republic Washington, in the south. The grouping includes the fossil sites of Driftwood Canyon, Quilchena, Allenby, Tranquille, McAbee, Princeton and Republic.

Fossils from the Okanagan Highlands, an area centred in the Interior of British Columbia, provide important clues to our ancient climate. The fossils range in age from the Early to Middle Eocene. McAbee had a more temperate climate, slightly cooler and wetter than other Eocene sites to the south at Princeton, British Columbia, Republic in north-central Washington, in the Swauk Formation near Skykomish and the Chuckanut Formation of northern Washington state.

The McAbee fossil beds consist of 30 metres of fossiliferous shale in the Eocene Kamloops Group.
The fossils are preserved here as impressions and carbonaceous films. We see gymnosperm (16 species); a variety of conifers (14 species to my knowledge); two species of ginkgo, a large variety of angiosperm (67 species); a variety of insects and fish remains, the rare feather and a boatload of mashed deciduous material. Nuts and cupules are also found from the dicotyledonous Fagus and Ulmus and members of the Betulaceae, including Betula and Alnus.

We see many species that look very similar to those growing in the Pacific Northwest today. Specifically, cypress, dawn redwood, fir, spruce, pine, larch, hemlock, alder, birch, dogwood, beech, sassafras, cottonwood, maple, elm and grape. If we look at the pollen data, we see over a hundred highly probable species from the site. Though rare, McAbee has also produced spiders, birds (and lovely individual feathers) along with multiple specimens of the freshwater crayfish, Aenigmastacus crandalli.

For insects, we see dragonflies, damselflies, cockroaches, termites, earwigs, aphids, leaf hoppers, spittlebugs, lacewings, a variety of beetles, gnats, ants, hornets, stick insects, water striders, weevils, wasps and March flies. The insects are particularly well-preserved. Missing are the tropical Sabal (palm), seen at Princeton and the impressive Ensete (banana) and Zamiaceae (cycad) found at Eocene sites in Republic and Chuckanut, Washington.

My first trips up there were as a teenager, dragging my mother, sister and pretty near anyone else I could convince to hike up. This was in 1986-87, years before Dave Langevin and John Leahy, mineral rights/lease-holder and resident curator, respectively, began working at the site. I think Dave put in his mineral claim in 1991ish. 

Once they did a whole new world opened up with their efforts. Much of the overburden was removed and new exposures were revealed. John also used to leave a jeep at the base of the hill with a bit of gas in it that we'd hot wire and use to avoid the hike heading up and pack down fossils heading back. Good man, John. He was an avid collector and meticulous in his curation. Both of those gents have now passed and are sorely missed. Most of their personal collection is now in the Royal BC Museum in Victoria, British Columbia, and much of Dave is still at the site as his ashes were sprinkled there.

McAbee is located just east of Cache Creek, just north of and visible from Highway 1/97. 14.5 km to be exact and exactly the distance you need to drink one large coffee and then need a washroom. You'll be pleased to know they have installed one at the site. McAbee is a site for hiking boots, hand, head and eye protection. Keep yourself safe and well-hydrated.

As you drive up, you'll see telltale hoodoos on the ridge to let you know you've reached the right spot. If you have a GPS, pop in these coordinates and you're on your way. 50°47.831′N 121°8.469′W.




Saturday, 27 July 2019

CRETE: DEINOTHERIUM GIGANTEUM

The islands of the Aegean are peaks of underwater mountains that extend out from the mainland. Crete is the last of this range and boasts a diverse beauty from its high mountains of Psiloritis, Lefka Ori, Dikti, to its ocean caressed pink sand beaches.

Much of the island of Crete is Miocene and filled with fossil mollusks, bivalves, gastropods who lived 5 to 23 million years ago in warm, tropical seas.

They are easily collected from their pink limestone matrix and are often eroded out, mixing with their modern relatives. Aside from the marine deposits, the island boasts some great vertebrate finds, including the remains of Deinotherium giganteum, a massive 8 million year old mammal and primitive relative of the elephants roaming the Earth today. Deinotherium evolved from the slightly smaller, early Miocene, Prodeinotherium, though both genera were much larger than all of the more primitive proboscideans.

With an enormous large nasal opening at the centre of his skull, presumably to house a rather largish trunk, Deinotherium may be the inspiration behind the myth of the Cyclops, the one-eyed giant from Homer's famous Odyssey. I'll share about some of the North African finds with you and you can judge for yourself. I think the resemblance is striking. The photo above is from the Grigore Antipa National Museum of Natural History in Bucharest, Romania. If you're in Romania, it's definitely a highlight. Photo credit: Flavius70 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22541962

Friday, 26 July 2019

HYPODICRANOTUS STRIATULUS OF ONTARIO

Hypodicranotus striatulus
Take a gander at this unusual trilobite, Hypodicranotus striatulus (Walcott, 1875), with his gloriously bulbous head shield. Missing from this specimen is the wonderful forked hypostome from the dorsal exoskeleton that marks him as H. striatulus.

He’s from outcrops in the Verulam Formation, Bowmanville, Ontario, Canada. He lived in a deep subtidal environment as a nektobenthic deposit feeder some 460.9 to 449.5 million years ago.

These extinct pelagic trilobites are in the order Asaphida in the family Remopleuridae. Specimens have been found in Middle Ordovician marine outcrops from Ontario, Canada (this fellow is from here), the Northwest Territories, Quebec and in New York State, United States. Some of his sister taxa also in Remopleurididae (Hawle and Corda, 1847)  have been found in the Northwest Territories, Quebec, the UK and in Iowa, Wisconsin and Nevada. Collection of the awesome Marc R. Hänsel

Thursday, 25 July 2019

DINOSAUR GEORGE PODCAST

Recently, I had the very great pleasure of chatting with the deeply awesome "Dinosaur George" Blasting for his Dinosaur George Podcast. We talked about fossil sites of the Pacific Northwest, what's cool in paleontology, new fossil discoveries, finds that have made me cry and hunting ammonites (while getting shot at) in Alberta, Canada.

George is the host of the Dinosaur George Podcast. And, as one might expect, it is devoted entirely to paleontology and the natural sciences. In each episode, he and a guest explore what paleontologists do, what area of research or discovery lights them up, how they know what kind of fossil they have found and share personal stories from the field. If you're interested in learning more about paleontology, I highly recommend it.

Dinosaur George interviews some of the most interesting cats in paleo. Evolutionary Biologist, Dr. Devin O'Brien was on recently talking about canine teeth of our beloved saber-tooth-cat, Smilodon. Paleo-artist, Eric Warren shared about his craft which is a mix of science with pure-hearted creativity, and Dr. Dave Hone waxed poetic about pterosaurs. The podcast promises a veritable who's who in paleontology eager to share their love of fossils, along with stories of their very best and very worst days in the field.

Give it a listen. I'm hugely biased (we love George) but I'm not alone. The Dinosaur George Podcast just made the Top 5 Podcasts of all time. I'll pop a live link here: http://www.dinosaurgeorgepodcast.com/

Wednesday, 24 July 2019

CRETACEOUS TERRESTRIAL TURTLE

A beautifully articulated Basilemys hand with osteoderms on the palmar surface. This specimen is from outcrops in the Kaiparowits Formation of Utah, USA. Basilemys is an extinct genus of terrestrial (land) turtle belonging to the family Nanhsiungchelyideae.

These ectotherms (cold-blooded) reptiles were amniotes -- they breathed air and did not lay eggs underwater but came to shore similar to modern turtles. They are known from Cretaceous deposits in North America and Asia.

Fossil remains of Basilemys have been found in Alberta, Saskatchewan, China, Kazakhstan, Mexico, Mongolia, the United States in California, Colorado, Montana, New Mexico, North Dakota, South Dakota, Texas, Utah, Wyoming and Uzbekistan from 144 collections and 152 occurrences. Photo credit: Joe Sertich

Tuesday, 23 July 2019

OLENELLUS OF THE KINZERS

Olenellus getzi, Kinzers Formation
A beautiful Lower Cambrian trilobite, Olenellus getzi, found in the 520 million years shales of the Kinzers Formation, Getz Woods, Pennsylvania.

The locality is plentiful. It was this same locality where we recently found a new species of edrioasteroid, Protoaster Haefneri, named after Chris Haefner.

The site has also produced two massive complete Anomalocarid (six and eight inches in length; one a new species); a new species of brown algae, over a hundred specimens of the cupcake-looking echinoderm, Camptostroma roddyi, upwards of four hundred Olenellus trilobites and forty complete Wannerias. Specimen and photo: Marc R. Hänsel

Monday, 22 July 2019

AMMONITES FROM THE MYSTERIOUS CREEK FORMATION

Cadoceras tonniense, Mysterious Creek Formation
The Cretaceous-Jurassic exposures near Harrison Lake, British Columbia are an easy two hour drive from Vancouver and another hour or so to our final destination, the unyielding siltstone of the Callovian, 166 million-year-old, Mysterious Creek Formation.

A few hours of collecting yield multiple bivalves, ammonites, including what looks to be two new species. Amongst the best specimens of the day are several small, fairly well preserved Cadoceras (Paracadoceras) tonniense, a few Cadoceras (Pseudocadoceras) grewingki and two relatively complete specimens of the larger, smooth Cadoceras comma.

Interestingly, the ammonites from here are quite similar to the ones found within the lower part of the Chinitna Formation, Alaska and Jurassic Point, Kyuquot, on the west coast of Vancouver Island. Further up the road, we photograph blocks of buchia and large boulders encrusted with perfectly preserved belemnites from ancient squid. The siltstones at Harrison have also offered up a small section of vertebra from a poorly preserved marine reptile. I'm ever hopeful to find the rest of that big fellow.

There are many fossils to be found on the west side of the Harrison lake near the town of Harrison, British Columbia. Exploration of the geology around Harrison Lake has a long history with geologists from the Geological Survey of Canada studying geology and paleontological exposures as far back as the 1880s. They were probably looking for coal exposures —  but happy day, they found fossils!

The paleo outcrops were first mentioned in the Geological Survey of Canada's Director's Report in 1888 (Selwyn, 1888), then studied by Whiteaves a year later. Whiteaves identified the prolific bivalve Aucella (now Buchia) from several specimens collected in 1882 by A. Bowman of the Geological Survey of Canada. The first detailed geological work in the Harrison Lake area was undertaken in a doctoral study by Crickmay (1925), who compiled a geological map, describing the stratigraphy and establishing the formational names, many of which we still use today. Crickmay went on to interpret the paleogeography and structure of the region.

Sunday, 21 July 2019

INOCERAMUS VANCOUVERENSIS

The late Cretaceous bivalve Inoceramus vancouverensis found in concretion amongst the 72 million year old grey shales of the Northumberland Formation, Campanian to the lower Maastrichtian, part of the upper Cretaceous, from Collishaw Point (Boulder Point to the locals), northwest side of Hornby Island, southwestern British Columbia.

Hornby is a glorious place to collect. The island is beautiful in it's own right and the fossils from here often keep some of their original shell or nacre which makes them quite fetching. Like most of the fossils found at this locality, the specimen was found in concretions rolled smooth by time and tide. The concretions you find on the beach are generally round or oval in shape and are made up of hard, compacted sedimentary rock -- and if you are lucky contain a fossil.

This fellow is found amongst ammonites, baculites and other bivalve fossils. A new species of pterosaur (flying reptile) Gwawinapterus beardi was found on the same beach site and named after Graham Beard, a local collector, author and great friend. I was sharing with "Dinosaur George" Blasting on a podcast today about some of my first trips to Hornby. They were with Graham and his lovely wife, Tina​. I'd split a huge boulder and found one of the most beautiful clustered inoceramus clams with its iridescent nacre intact. The specimen is larger than a dinner plate and had a lovely series of smaller shells nestled inside all Matryoshka-style.

A fun fact about modern or extant bivalves is their life span. Some are among the longest-lived species in the world. In 2007, scientists discovered a species (Arctica islandica) specimen that was between 405 and 410 years old. Apparently you can date clams the way you date trees by counting their ring bands. We've got 160 year old geoducks living in Puget Sound. Giant clams live some 150 years while cold seep clams don't even reach maturity until they are 100 plus. Most species live between three and 10 years with tastier ones having a shorter life span and an affinity for garlic butter. If you're heading to Hornby, you'll want to plan your trip with the ferry schedule and as with most beach sites, the best collecting is during low tide.

If you'd like to check out Dinosaur George's website and link to his podcast, you'll find this link handy: https://dinosaurgeorge.com/ Dino George has a traveling museum with amazing specimens and he's one of the best paleontological educators you'll ever come across. Do check it out as the man is deeply awesome!

Saturday, 20 July 2019

ANCIENT OCTOPUS FROM CRETACEOUS SEAS

Keuppia levante
A wonderful example of Keuppia levante (Fuchs, Bracchi & Weis, 2009), an extinct genus of octopus that swam our ancient seas 95 million years ago.

Keuppia is in the family Palaeoctopodidae, and one of the earliest representatives of the order Octopoda. These ancient marine beauties are in the class Cephalopoda making them relatives of our modern octopus, squid and cuttlefish.

This fellow with his remarkable soft-bodied preservation and inks sack and beak clearly visible is Keuppia levante. He hails from Late Cretaceous (Upper Cenomanian) limestone deposits near Hâdjoula in northwestern Lebanon.

The vampyropod coleoid, Glyphiteuthis abisaadiorum n. sp., is also found at this locality. This specimen is in the collection of David Appleton. Photo credit: David Appleton.

Friday, 19 July 2019

SLEEPY KOALAS

The Koala, Phasscolarctos cinereus, is a lovely marsupial native to Australia. These cuddly "teddy bears" are not bears at all.

Koalas belong to a group of mammals known as marsupials. They have pouches on their bellies where their newborns develop. Wee baby Koalas are called joeys. They are born blind and earless but use their strong sense of touch and smell to guide them instinctively up into their mother's pouch when they are born. They live in her pouch for about six months. When they are a little stronger (and braver and get curious) they forage out, riding on their mother's backs until they are about a year old. Adult Koalas love eucalyptus trees and spend their leisurely days eating and napping amongst the foliage.

Thursday, 18 July 2019

GONDWANA: EVOLUTION OF A SUPERCONTINENT

The ancient supercontinent of Gondwana, as we think of it, came into being about 500 million years ago. We refer to that time as the Ediacaran, the time of the beginnings of multicellular organisms. These were exotic and primitive beasties, interesting segmented worms, rounded jellyfish-like organisms, enigmatic tubular and sea-pen-like beauties.

Gondwana split into the landmasses we know today about 180 million years ago. Not lost, just reformed as Africa, South America, Australia, Antarctica, the Indian subcontinent and the Arabian Peninsula. Gondwana joined with other landmasses to become Pangea by about 300 million years ago, before morphing again into Laurasia. By the middle of the Eocene, some fifty-five million years ago, only Australia, Antarctica and South America remained as they straddled the South Pole.

Free of ice and the giant marine and flying reptiles, a new line-up of mammals, flightless birds, crocodiles, snakes and turtles thrived in the warm, wet climate, rapidly adapting and dominating the forests, oceans and skies. New and fanciful creatures, the monotremes, marsupials and placentals explored and took root in the Gondwanan forests as conifers gave way to broad-leaved trees in an ever changing landscape.

Wednesday, 17 July 2019

CHENGJIANG LOBOPODIAN

A rather nice Onychodictyon ferox (lobopod) from the Chengjiang Biota, Lower Cambrian, Yunnan, China. The Lobopodians, or Velvet Worms, are small marine and terrestrial animals averaging about 70 mm in length. All recent forms of these wee beasties are terrestrial. Most of the fossil Lobopodians are marine and closely resemble Aysheaia from the Burgess Shale. Collection of Marc R. Hänsel.

Monday, 15 July 2019

SKØKKENMØDDINGER


Many First Nations sites were inhabited continually for centuries. These sites were both home, providing continuity and community and also formed a spiritual connection to the landscape.

The day to day activities of each of these communities would much like our own. Babies were born, meals were served and life followed a natural cycle.

As coastal societies lived their lives they also left their mark. Sometimes through totems and carvings but almost always through discarded shells and scraps of bone from their food. These refuse heaps contain a wealth of information about how that community lived, what they ate and what environmental conditions looked like over time. This physical history provides a wonderful resource for archaeologists in search of botanical material, artifacts, broken cooking implements and my personal favourite, mollusc shells.

These wonderfully informative heaps of the local gastronomic record provide a wealth of information. Especially those formed from enormous mounds of bivalves and clams. We call these middens. Left over time, these unwanted dinner scraps transform through a process of preservation.

The Danish term køkkenmøddinger (plural) was first used by Japetus Steenstrup, a Danish zoologist and biologist, to describe shell heaps and continues to be used by some researchers. I still prefer middens, but to each his own. Time and pressure leach the calcium carbonate, CaCO3, from the surrounding marine shells and help “embalm” bone and antler artifacts that would otherwise decay. Useful this, as antler makes for a fine sewing tool when worked into a needle. A bone that has had some time to harden through this natural embalming process makes for a fine needle indeed. Much of what we know around the modification of natural objects into tools comes from this preservation.

Calcium carbonate is a chemical compound that shares the typical properties of other carbonates. In prepping fossil specimens embedded in limestone, it is useful to know that limestone, itself a carbonate sedimentary rock, reacts with stronger acids, releasing carbon dioxide: CaCO3(s) + 2HCl(aq) → CaCl2(aq) + CO2(g) + H2O(l).

Calcium carbonate reacts with water saturated with carbon dioxide to form the soluble calcium bicarbonate. Bone already contains calcium carbonate, as well as calcium phosphate, Ca2, but it is also made of protein, cells and living tissue.

Decaying bone acts as a sort of natural sponge that wicks in the calcium carbonate displaced from the shells. As protein decays inside the bone, it is replaced by the incoming calcium carbonate, making the bone harder and more durable.

The shells, beautiful in their own right, make the surrounding soil more alkaline, helping to preserve the bone and turning the dinner scraps into exquisite scientific specimens for future generations.

Sunday, 14 July 2019

TYLOSTOMA TUMIDUM

This lovely big fellow is Tylostoma tumidum, an epifaunal grazing Lower Cretaceous Gastropod from white, micritic, coarsely nodular limestone deposits of the Goodland Formation at White Settlement west of Fort Worth, Texas, USA. (171.6 to 58.7 Ma).

The bedding here is massive with some thin clay beds. The macro fossil found here include the ammonite, Oxytropidoceras acutocarinatum, pelecypods such as Protocardia, Pinna and Lima wacoensis along with heart-shaped urchins in abundance and lovely gastropods such as this beauty, Tylostoma tumidum. This specimen shows the wear and tear of erosion common at the site.

Tylostoma have thick, smooth shells with a moderately elevated spire. Their aperture is ovato-lunate with the lips meeting above at a sharp angle. The outer lip is furnished internally, running the whole length and ending with a nice thickened edge. This chunky specimen is about 3 inches tip to tip.

Saturday, 13 July 2019

ANCIENT PLANKTON HUNTER

Pentremites sp. / Hardin County, Kentucky
This wee lovely Blastoid is Pentremites sp. from Mississippian deposits in Hardin County, Kentucky. This little fellow represents a specimen from the peak of their diversity in the Mississippian.

Blastoids are an extinct type of stemmed or stalked suspension feeding echinoderms, sometimes referred to as "sea buds."

They made a living feeding on planktonic organisms that inhabited our ancient seas from shelf to basin. Their lineage dates back to the Ordovician and died out at the end of the Permian, about 250 million years ago. This little guy measures 10mm top to bottom and 5mm at his widest.

Friday, 12 July 2019

TRAGOPHYLLOCERAS LOSCOMBI

Tragophylloceras loscombi / Dorset Coast
A very interesting Tragophylloceras loscombi (134 mm with the peristome / 41 mm) from Lower Pliensbachian deposits near the coastal village of Seatown near Charmouth on the Dorset coast of the UK.

This lovely specimen is in the collection of the deeply awesome José Juárez Ruiz. He was amongst the many belemnite guards and ammonite shells of this lovely collection spot. Both beautiful in and of itself and highly prized for its fossil finds along the silty mudstone cliffs and fossiliferous boulders.

This fellow like to live in the offshore, deep subtidal shelves of our ancient seas around 189 to 183 million years ago.

He was a nektonic carnivore, an active swimmer cruising our ancient seas looking for tasty daily sustenance. Ammonites belong to the class of animals called mollusks. More specifically they are cephalopods and first appeared in the lower Devonian Period. Cephalopods were an abundant and diverse group during the Paleozoic Era.

Varying in size from millimeters to meters across, these elegant marine dwellers are prized as both works of art and index fossils helping us better understand and date strata. Cousins in the Class Cephalopoda, meaning "head-footed," ammonites are closely related to modern squid, cuttlefish and octopus with complex eye structures and advanced swimming abilities. They used these evolutionary benefits to their advantage, making them successful marine predators cruising our ancient oceans expertly capturing prey with their tentacles.

Thursday, 11 July 2019

PLATRYACHELLA: DEVONIAN BRACHIOPOD

Platryachella sp. / Devonian Brachiopod
This fellow is Platyrachella sp. a brachiopod from Middle Devonian deposits of the renamed the Little Cedar Formation, Cedar Valley Group (probably out of the Solon Member) near Benton County, deep in the agricultural belt of east-central Iowa.

Driving through Benton you see long, gently rolling slopes, farms of corn and soybean growing in deep black soil.

Benton also has three very productive quarries that produce limestone, gravel and clay for industrial uses. While the quarries focus on the commercial aspects of the many varieties of limestone produced there, they also boasts some very nice macro fossils like the brachiopod specimen you see here. While brachiopods share some similarities with their molluscan friends they are in a phylum all their own. Clams or bivalves are molluscs, the second-largest phylum of invertebrates with about 85,000 extant species.

Brachiopods are small marine shellfish that are not so common today but back in the Palaeozoic they were plentiful the world over. The two valves that make up a brachiopods shell are of different sizes and if you look closely you'll see that the hinge runs top and bottom  -- versus left and right like a clam.

Brachiopods have been with us a long time. Their lineage dates back to the Cambrian with over 12,000 fossil species and 350 living species sorted between 6,000 genera. There are two major groups of brachiopods, articulate with toothed hinges and simple open and closing muscles to manipulate their shells and inarticulate brachiopods with untoothed hinges and a more complex set of muscles used to control the brachial supports used to open and close their shells. This specimen is 7cm long and about 2.5cm deep

Wednesday, 10 July 2019

OLIGOCENE FOSSIL WHALE VERTEBRAE

Oligocene Fossil Whale vertebrae from Majestic Beach, Olympic Peninsula, Washington State, USA.

These lovely water worn specimens are difficult to ID to species with certainty but may be from an early baleen whale. Found amongst the beach pebbles on the Olympic Peninsula, they are likely cetacean and very likely baleen as this area is home to some of the earliest baleen whales in the Pacific Northwest.

In 1993, a 27-million-year-old specimen was discovered in deposits nearby that represents a new species of early baleen whale. It is especially interesting as it is from a stage in the group’s evolutionary history when baleen whales transitioned from having teeth to filtering food with baleen bristles.

Visiting researcher Carlos Mauricio Peredo studied the fossil whale remains, publishing his research to solidify Sitsqwayk (pronounced sits-quake) cornishorum, in the annals of science history.

The earliest baleen whales clearly had teeth, and clearly still used them. Modern baleen whales have no teeth, and have instead evolved baleen plates for filter feeding. So when did this evolutionary change occur and what factors might have caused it?

Traditionally, paleontologists have sought answers about the evolution of baleen whales by turning to two extinct groups: the aetiocetids and the eomysticetids. The aetiocetids are small baleen whales that still have teeth, but they are very small, and it remains uncertain whether or not they used their teeth.

In contrast, the eomysticetids are about the size of an adult Minke Whale and seem to have been much more akin to modern baleen whales; though it’s not certain if they had baleen. Baleen typically does not preserve in the fossil record being soft tissue; generally only hard tissue, bones & teeth, are fossilized.

Tuesday, 9 July 2019

OLIGOCENE FOSSIL BEAVER

This may be the cutest fossil skull you'll see all day. This is Microtheriomys brevirhinus, an adorable teeny, 19 mm, fossil beaver skull from the John Day Formation in Oregon. Awe, right?

Paleontologists Dr William Korth of Rochester Institute of Vertebrate Paleontology and Dr Joshua Samuels of John Day Fossil Beds National Monument were chuffed to find a treasure trove of new fossil species during field work this past year building on the knowledge from previous finds. They have described four new genera and ten new species of prehistoric rodents that lived in what is now Oregon during the Oligocene -- 30- 22 million years ago.

The newly-discovered genera include this wee fellow, the early beaver, Microtheriomys brevirhinus, a dwarf tree squirrel, Miosciurus covensis, a primitive pocket mouse, Bursagnathus aterosseusm the birch mouse Plesiosminthus fremdi, an early relative of beavers, Allotypomys pictus along with bits and pieces of Proapeomys condoni; Apeomys whistleri; Neoadjidaumo arctozophus, Proheteromys latidens & Trogomys oregonensis.

Of these ten new species, four represent completely new genera: Allotypomys, Microtheriomys, Proapeomys, and Bursagnathus. It's a bit like winning the paleo lottery.

“This study fills some substantial gaps in our knowledge of past faunas, specifically smaller mammals,” said Dr Samuels, who is a co-author of the paper published in the Annals of Carnegie Museum. “Some of the new species are really interesting in their own right, and will ultimately help improve our understanding of the evolution of beavers and pocket mice.”

Monday, 8 July 2019

CHOCOLATE CHIP SEA STAR

Protoeaster nodosus / Chocolate Chip Sea Star
If you're lucky enough to swim in the warm, shallow waters of the Indo-Pacific region, you may encounter one of the most charming of all the sea stars, the Protoeaster nodosus.

These beauties are commonly known as Horned Sea Stars or, my personal favorite, Chocolate Chip Sea Stars.

They are part of the class Asteroidea (starfish or sea stars) one of the most diverse groups within the phylum Echinodermata and have a lengthy lineage in the fossil record stretching all the way back to the Triassic. These echinoderms make a living on near-shore sandy bottoms or lurk in the sea grass meadows of some of our most beautiful waters.

Chocolate Chip Sea Stars live in the waters off the Philippine Sea, off the coast of Australia and New Guinea. Their range extends to the Marshall Islands through central and southeastern Polynesia, past Easter Island and all the way up to Hawaii. Pretty much pick any of the top contenders for a warm, tropical vacation and they've beat you to it!

This species of sea star have black rows of "horns" or "spines" meant to scare off predators. A noble deterrent for his fishy friends but I find this signature decoration rather fetching. These fellows like to graze on choice corals and sponges. They are also happy to make a meal of snails and bitter sea urchin when these ambrosial treats are presented. And they are social, both to mate, gathering in groups to aid in fertilization and acting as soft cover for shrimp, wee brittle stars and juvenile leatherjackets or filefish, who tuck in and enjoy the protective cover of those dark nodes.

Sunday, 7 July 2019

BALANG: TUZOIA SINENSIS

Tuzoia sinensis (Pan, 1957) / York Yuxi Wang Collection
A large extinct bivalved arthropod, Tuzoia sinesis (Pan, 1957) from Cambrian deposits of the Balang Formation. The Balang outcrops in beautiful Paiwu, northwestern Hunan Province in southern China. The site is intermediate in age between the Lower Cambrian Chengjiang fauna of Yunnan and the Lower to Middle Cambrian, Kaili Lagerstätten of Guizhou in southwestern China.

This specimen was collected earlier this week. It is one of many new and exciting arthropods to come from the site.

Balang has a low diversity of trilobites and many soft-bodied fossils similar in preservation to Canada's Burgess Shale. Some of the most interesting finds include the first discovery of anomalocaridid appendages (Appendage-F-type) from China along with the early arthropod Leanchoiliids with his atypical frontal appendages (and questionable phylogenetic placement) and the soft-shelled trilobite-like arthropod, Naraoiidae.

While the site is not as well-studied as the Chengjiang and Kaili Lagerstätten, it looks very promising. The exceptionally well-preserved fauna includes algae, sponges, chancelloriids, cnidarians, worms, molluscs, brachiopods, trilobites and a few non-mineralized arthropods. It is an exciting time for Cambrian paleontology. The Balang provides an intriguing new window into our ancient seas and the profound diversification of life that flourished there.

Saturday, 6 July 2019

SAUROPTERYGIAN MANDIBLE

Libonectes atlasense / Andy Chua Collection
A beautifully preserved mandible of an Libonectes atlasense, an elasmosaurid plesiosaur from early Turonian, Upper Cretaceous,  deposits of the Akrabou Formation near Asfla Village, Goulmima, Errachidia Province in eastern central Morocco.

The collecting area is in the region of Drâa-Tafilalet. You may know Errachidia as Ksar Souk. It was renamed My Rachid, in honor of Moroccan royal family. Libonectes is an genus of sauropterygian reptile belonging to the plesiosaurs. Specimens have been found in the Britton Formation of Texas and the Akrabou Formation of Morocco. Sauropterygian reptiles were a diverse taxon of extinct aquatic reptiles that arose from terrestrial ancestors just after the Permian extinction event. They flourished during the Triassic then all but the Plesiosaurs became extinct at the end of the Triassic -- with Plesiosaurs dying out at the end of the Cretaceous.

Thursday, 4 July 2019

LAMPLIT DINOSAUR TRACKS

Ankylosaur Trackway / Tumbler Ridge
A detailed view of the Dinosaur Trackway near Wolverine River, Tumbler Ridge, northeastern British Columbia.

The tracks are filled with water to reflect the lamplight, making them both beautiful and easier to view.

There are three types of footprints found in the Tumbler Ridge GeoPark. At the Wolverine River Tracksite there are theropods (at least four different sizes) and ankylosaurs. Also found in the area are ornithopod tracks from herbivorous dinosaurs with their nice wide tracks. You'll recognize them by their short-wide prints with three blunt toes. There are rare wee hand prints associated with some of those tracks if you look closely.


Wednesday, 3 July 2019

ANKYLOSAUR TRACKWAY

Fossil Field Trip / Ankylosaur Trackway
After an exciting hike in the dark through the woods and down a steep incline, we reached the river. The tracks in this photo are from a type of armoured dinosaur that dates from around 97 million years ago in the Late Cretaceous.

Imagine a meandering armoured tank munching on ferns, shrubs and low-growing vegetation as the grasses we picture in fields today had yet to evolve en masse. Their time would come about 30 million years later. We've found grass-like phytoliths (related to modern rice and bamboo) in the poop (coprolites) from Cretaceous dinosaurs.

There are three types of footprints at the Wolverine River site, the meat-eating theropods (at least four different sizes), the slow, lumbering plant-eating ankylosaurs and duck-billed dinosaurs. Bones from an Acrocanthosaurus, a meat-eating theropod have also been found in the area. These bad boys lived in the Aptian, in the Early Cretaceous and known from a single species, A. atokensis.

The trackway you see here was made by one of those armoured lumbering ankylosaurs and a few of the prints carry skin impressions. Filling the prints with water and using lamplight was genius for viewing tracks as they are all but invisible in the bright sunlight by day.