Monday, 15 August 2022

TOTEMS AND LEGENDS OF STANLEY PARK

Totem, Welcome & Mortuary Poles at Stanley Park
If you visit Brockton Point in Stanley Park, there are many carved red cedar First Nation poles for you to admire.  

What you are viewing are replicas of First Nation welcome and totem poles that once stood in the park but have been returned to their homes within the province's diverse First Nation communities — or held within museum collections. 

Some of the original totems came from Alert Bay on Cormorant Island, near the Port McNeill on the north coast of Vancouver Island. 

Others came from communities in Haida Gwaii — and still more from the Wuikinuxv First Nations at Rivers Inlet on British Columbia's central west coast — home of the Great Bear Rainforest with her Spirit Bears.

The exception is the most recent addition carved by Robert Yelton in 2009. Robert is a First Nation carver from the Squamish Nation and his original welcome pole graces Brockton Point, the original settlement site of a group of Squamish-Portuguese settlers.  

If you look at the photo above, the lovely chocolate, red and turquoise pole on the right is a replica of the mortuary pole raised to honour the Raven Chief of Skedans or Gida'nsta, the Haida phrase for from his daughter, the title of respect used when addressing a person of high rank. Early fur traders often took the name of the local Chief and used it synonymously as the place names for the sites they visited — hence Skedans from Gida'nsta.

Chief Skedans Mortuary Pole
Chief Skedans, or Qa'gials qe'gawa-i, to his children, lived in Ḵ’uuna Llnagaay, or village at the edge, in Xaayda Kil — a village on the exposed coast of Louise Island — now a Haida Heritage Site.  

There are some paintings you may have seen by Emily Carr of her visits to the site in 1912, She used the phonetic Q'una from Q:o'na to describe both the place name and title of her work. 

Carr's paintings of the totems have always looked to me to be a mash-up — imagine if painter Tamara de Lempicka and photographer Edward Curtis had a baby — not pretty, but interesting.

Some called this area, Huadju-lanas or Xu'adji la'nas, which means Grizzly-Bear-Town, in reference to resident grizzly bear population and their adornment of many totems and artwork by the local artists.

Upon Chief Skedan's death, the mortuary pole was carved both to honour him and provide his final resting place. Dates are a bit fuzzy, but local accounts have this as sometime between 1870-1878 — and at a cost of 290 blankets or roughly $600 in today's currency. 

The great artistry of the pole was much admired by those in the community and those organizing the celebrations for the 1936 Vancouver Golden Jubilee — witnessed by  350,000 newly arrived residents.

Negotiations were pursued and the pole made its way down from Haida Gwaii to Stanley Park in time for the celebrations. The original totem graced Stanley Park for a little over twenty years before eventually making its way back to Haida Gwaii. It was returned to the community with bits of plaster and shoddy paint marring the original. These bits were scraped off and the pole welcomed back with due ceremony. 

In 1964, respected and renowned Northwest Coast master carver, Bill Reid, from the Kaadaas gaah Kiiguwaay, Raven/Wolf Clan of T'anuu, Haida Gwaii and Scottish-German descent, was asked to carve this colourful replica. 

Mountain Goat Detail, Skedans Mortuary Pole
Reid carved the totem onsite in Stanley Park with the help of German carver Werner True. Interestingly, though I looked at length for information on Werner True, all I can find is that he aided Bill Reid on the carving for a payment of $1000.

Don Yeomans, Haida master carver, meticulously recarved the moon crest in 1998. If you have admired the totem pole in the Vancouver Airport, you will have seen some of Yeoman's incredible work. 

The crest is Moon with the face, wings, legs and claws of a mighty and proud Thunderbird with a fairly smallish hooked beak in a split design. We have Moon to thank for the tides and illuminating our darkest nights. As a crest, Moon is associated with transformation and acting as both guardian and protector.

The original pole had a mortuary box that held the Chief's remains. The crest sits atop a very charming mountain goat. I have included a nice close-up here of the replica for you to enjoy. 

Mountain Goats live in the high peaks of British Columbia and being so close to the sky, they have the supernatural ability to cross over to the sky world. They are also credited as being spirit guardians and guides to First Nation shamans.

I love his horns and tucked in cloven hooves. There is another pole being carved on Vancouver Island that I hope to see during its creation that also depicts a Mountain Goat. With permission and in time, I hope to share some of those photos with you. 

Mountain Goat is sitting atop Grizzly Bear or Huaji or Xhuwaji’ with little human figures placed in his ears to represent the Chief's daughter and son-in-law, who raised the pole and held a potlatch in his honour. 

Beneath the great bear is Seal or Killer Whale in his grasp. The inscription in the park says it is a Killer Whale but I am not sure about that interpretation — both the look and lore make Seal more likely. Perhaps if Killer Whale were within Thunderbird's grasp — maybe

Though it is always a pleasure to see Killer Whale carved in red cedar, as the first whales came into being when they were carved in wood by a human — or by Raven — then magically infused with the gift of life. We think of totem pole as being part of the material culture of all Indigenous cultures across Canada when, indeed, they are carved by only a few and not always in the ways that you expect. 

Some are welcome poles, others record the loss of a loved one in a mortuary pole, some have spread wings like those carved by the Kwakwaka'wakw. 

Some are house fronts or house posts, others are shaped like an entryway versus the tall thin poles you might expect. 

We can thank the talented artists of the Haida, Nuxalk, Kwakwaka'wakw, Tlingit, Tsimshian and Coast Salish for the poles we enjoy in the Pacific Northwest. 

It is their storytelling and clan crests that we are enjoying when we look upon these carvings. These are the stories of their ancestors, their heroics, challenges, titles, deeds and sorrow. Each a masterpiece as a visual that supports an oral tradition—stories told and reinforced year-upon-year at Winter ceremonies.

Siwash Rock on the northern end of Third Beach, Stanley Park
The ground these totems sit upon is composed of plutonic, volcanic and sedimentary layers of rock and exhibits the profound influences of glaciation and glacial retreat from the last ice age. 

Glacial deposits sit atop as a mix of clay, sand, cobbles and larger boulders of glacial till. 

There are a few areas of exposed volcanics within the park that speak to the scraping of the glaciers as they retreated about 12,500 years ago. 

The iconic moss and lichen coated Siwash Rock on the northern end of Third Beach is one of the more picturesque of these. It is a basaltic and andesitic volcanic rock — a blend of black phenocrysts of augite cemented together with plagioclase, hornblende and volcanic glass.

Images not shown: 

Do check out the work of Emily Carr and her paintings of Q:o'na from the 1940s. I'll share a link here but do not have permission to post her work. http://www.emilycarr.org/totems/exhibit/haida/ssintro.htm

Sunday, 14 August 2022

BIG HEAD LITTLE HOOVES: TRICERATOPS

This cutie is a Triceratops. The name means three-horned face in Greek but they might have been named Little Hooves instead as a nod to their weight-bearing fingers and toes that ended in sweet little hooves. 

Three of their five fingers and all of their toes end in a broad, flat-shaped hoof bone with a horny covering. 

Their hooves helped to protect their toes from wear and tear and support their heavy 5-ton bodies as they plodded along munching on cycads and palm fronds in the Late Cretaceous. These ceratopsid dinosaurs loved their plants. They used their beak-like jaws and slicing teeth to pluck and chew tasty foliage. Picture an animal about the size of an elephant, now lose the trunk, add the big head frill and horns. That's them!

Bearing a large bony frill, three horns on the skull, and a large four-legged body, exhibiting convergent evolution with rhinoceroses and bovines, Triceratops is one of the most recognizable of all dinosaurs and the most well-known ceratopsid. It was also one of the largest, up to 8–9 metres (26–30 ft) long and 5–9 metric tons (5.5–9.9 short tons) in body mass. 

It shared the landscape with and was most likely preyed upon by Tyrannosaurus, though it is less certain that two adults did battle in the fanciful manner often depicted in museum displays and popular images. The functions of the frills and three distinctive facial horns on its head have long inspired debate. Traditionally, these have been viewed as defensive weapons against predators. More recent interpretations find it probable that these features were primarily used in species identification, courtship, and dominance display, much like the antlers and horns of modern ungulates.

Triceratops was traditionally placed within the "short-frilled" ceratopsids, but modern cladistic studies show it to be a member of the Chasmosaurinae which usually have long frills. Two species, T. horridus and T. prorsus, are considered valid today, from the seventeen species that have ever been named. Research published in 2010 concluded that the contemporaneous Torosaurus, a ceratopsid long regarded as a separate genus, represents Triceratops in its mature form. This view has been disputed; further data is needed to settle the debate.

Triceratops has been documented by numerous remains collected since the genus was first described in 1889 by American paleontologist Othniel Charles Marsh. Specimens representing life stages from hatchling to adult have been found. As the archetypal ceratopsid, Triceratops is one of the most popular dinosaurs, and has been featured in film, postal stamps, and many other types of media.

Saturday, 13 August 2022

MAMMOTH CROSSES THE TUNDRA

A mammoth crosses the icy cold tundra in search of food. Mammoths have a wonderful display of mammoth teeth, the diagnostic flat enamel plates and the equally distinct pointy cusped molars of the mastodons. 

He was a true elephant, unlike his less robust cousins, the mastodons. Mammoths were bigger — both in girth and height — weighing in at a max of 13 tonnes. 

They are closely related to Asian elephants and were about the size of the African elephants you see roaming the grasslands of Africa today.

If you stood beside him and reached way up, you might be able to touch his tusks but likely not reach up to his mouth or even his eyes. He would have had a shaggy coat of light or dark coloured hair with long outer hair strands covering a dense thick undercoat. His oil glands would have worked overtime to secrete oils, giving him natural waterproofing.

Some of the hair strands we have recovered are more than a meter in length. These behemoth proboscideans boasted long, curved tusks, little ears, short tails and grazed on leaves, shrubs and grasses that would have been work to get at as much of the northern hemisphere was covered in ice and snow during his reign. It is often the teeth of mammoths like those you see in the photo here that we see displayed. 

Their molar teeth were large and have always struck me as looking like ink plates from a printing press. If they are allowed to dry out in collection, they fall apart into discreet plates that can be mistaken for mineralized or calcified rock and not the bits and pieces of mammoth molars that they indeed are. Their large surface area was perfect for grinding down the low nutrient, but for the most part, plentiful grasses that sustained them. You can imagine this big fellow ploughing through the snow in search of the life-giving plants that he'll need to get through another long winter.

Friday, 12 August 2022

AVES; LIVING DINOSAURS

Cassowary, Casuariiformes
Wherever you are in the world, it is likely that you know your local birds. True, you may call them des Oiseaux, pássaros or uccelli — but you'll know their common names by heart.

You will also likely know their sounds. The tweets, chirps, hoots and caws of the species living in your backyard.

Birds come in all shapes and sizes and their brethren blanket the globe. It is amazing to think that they all sprang from the same lineage given the sheer variety. 

If you picture them, we have such a variety on the planet — parrots, finches, wee hummingbirds, long-legged waterbirds, waddling penguins and showy toucans. 

But whether they are a gull, hawk, cuckoo, hornbill, potoo or albatross, they are all cousins in the warm-blooded vertebrate class Aves. The defining features of the Aves are feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweight skeleton. The best features, their ability to dance, bounce and sing, are not listed, but it is how I see them in the world.

These modern dinosaurs live worldwide and range in size from the 5 cm (2 in) bee hummingbird to the 2.75 m (9 ft) ostrich. 

There are about ten thousand living species, more than half of which are passerine, or "perching" birds. Birds have wings whose development varies according to species; the only known groups without wings are the extinct moa and elephant birds.

Wings evolved from forelimbs giving birds the ability to fly
Wings, which evolved from forelimbs, gave birds the ability to fly, although further evolution has led to the loss of flight in some birds, including ratites, penguins, and diverse endemic island species. 

The digestive and respiratory systems of birds are also uniquely adapted for flight. Some bird species of aquatic environments, particularly seabirds and some waterbirds, have further evolved for swimming.

Wee Feathered Theropod Dinosaurs

We now know from fossil and biological evidence that birds are a specialized subgroup of theropod dinosaurs, and more specifically, they are members of Maniraptora, a group of theropods that includes dromaeosaurs and oviraptorids, amongst others. As palaeontologists discover more theropods closely related to birds, the previously clear distinction between non-birds and birds has become a bit muddy.

Recent discoveries in the Liaoning Province of northeast China, which include many small theropod feathered dinosaurs — and some excellent arty reproductions — contribute to this ambiguity. 

Still, other fossil specimens found here shed a light on the evolution of Aves. Confuciusornis sanctus, an Early Cretaceous bird from the Yixian and Jiufotang Formations of China is the oldest known bird to have a beak.

Like modern birds, Confuciusornis had a toothless beak, but close relatives of modern birds such as Hesperornis and Ichthyornis were toothed, telling us that the loss of teeth occurred convergently in Confuciusornis and living birds.

The consensus view in contemporary palaeontology is that the flying theropods, or avialans, are the closest relatives of the deinonychosaurs, which include dromaeosaurids and troodontids.

Together, these form a group called Paraves. Some basal members of this group, such as Microraptor, have features that may have enabled them to glide or fly. 

The most basal deinonychosaurs were wee little things. This raises the possibility that the ancestor of all paravians may have been arboreal, have been able to glide, or both. Unlike Archaeopteryx and the non-avialan feathered dinosaurs, who primarily ate meat, tummy contents from recent avialan studies suggest that the first avialans were omnivores. Even more intriguing...

Avialae, which translates to bird wings, are a clade of flying dinosaurs containing the only living dinosaurs, the birds. It is usually defined as all theropod dinosaurs more closely related to modern birds — Aves — than to deinonychosaurs, though alternative definitions are occasionally bantered back and forth.

The Earliest Avialan: Archaeopteryx lithographica

Archaeopteryx, bird-like dinosaur from the Late Jurassic
Archaeopteryx lithographica, from the late Jurassic Period Solnhofen Formation of Germany, is the earliest known avialan that may have had the capability of powered flight. 

However, several older avialans are known from the Late Jurassic Tiaojishan Formation of China, dating to about 160 million years ago.

The Late Jurassic Archaeopteryx is well-known as one of the first transitional fossils to be found, and it provided support for the theory of evolution in the late 19th century. 

Archaeopteryx was the first fossil to clearly display both traditional reptilian characteristics — teeth, clawed fingers, and a long, lizard-like tail—as well as wings with flight feathers similar to those of modern birds. It is not considered a direct ancestor of birds, though it is possibly closely related to the true ancestor.

Unlikely yet true, the closest living relatives of birds are the crocodilians. Birds are descendants of the primitive avialans — whose members include Archaeopteryx — which first appeared about 160 million years ago in China.

DNA evidence tells us that modern birds — Neornithes — evolved in the Middle to Late Cretaceous, and diversified dramatically around the time of the Cretaceous–Paleogene extinction event 66 mya, which killed off the pterosaurs and all non-avian dinosaurs.

In birds, the brain, especially the telencephalon, is remarkably developed, both in relative volume and complexity. Unlike most early‐branching sauropsids, the adults of birds and other archosaurs have a well‐ossified neurocranium. In contrast to most of their reptilian relatives, but similar to what we see in mammals, bird brains fit closely to the endocranial cavity so that major external features are reflected in the endocasts. What you see on the inside is what you see on the outside.

This makes birds an excellent group for palaeoneurological investigations. The first observation of the brain in a long‐extinct bird was made in the first quarter of the 19th century. However, it was not until the 2000s and the application of modern imaging technologies that avian palaeoneurology really took off.

Understanding how the mode of life is reflected in the external morphology of the brains of birds is but one of several future directions in which avian palaeoneurological research may extend.

Although the number of fossil specimens suitable for palaeoneurological explorations is considerably smaller in birds than in mammals and will very likely remain so, the coming years will certainly witness a momentous strengthening of this rapidly growing field of research at the overlap between ornithology, palaeontology, evolutionary biology and the neurosciences.

Reference: Cau, Andrea; Brougham, Tom; Naish, Darren (2015). "The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc (Dinosauria, Maniraptora): Dromaeosaurid or flightless bird?". PeerJ. 3: e1032. doi:10.7717/peerj.1032. PMC 4476167. PMID 26157616.

Reference: Ivanov, M., Hrdlickova, S. & Gregorova, R. (2001) The Complete Encyclopedia of Fossils. Rebo Publishers, Netherlands. p. 312

Thursday, 11 August 2022

TRUMPET CALLS FROM THE CRETACEOUS

Reconstruction of Prosaurolophus maximus
When this good looking fellow was originally described by Brown, Prosaurolophus maximus was known only from a skull and jaw. Half of the skull was badly weathered at the time of examination, and the level of the parietal was distorted and crushed upwards to the side. 

You can imagine that these deformations in preservation created some grief in the final description.

Prosaurolophus maximus was a large-headed duckbill dinosaur, or hadrosaurid, in the ornithischian family Hadrosauridae.

The most complete Prosaurolophus maximus specimen had a massive skull an impressive 0.9 metres (3.0 ft) long that graced a skeleton about 8.5 metres (28 ft) long. 

He had a small, stout, triangular crest in front of his eyes. The sides of the crest are concave, forming depressions. 

The crest grew isometrically — without changing in proportion — throughout the lifetime of each individual, leading one to wonder if Prosaurolophus had had a soft tissue display structure such as inflatable nasal sacs. We see this feature in hooded seals, Cystophora cristata, who live in the central and western North Atlantic today. Prosaurolophus maximus may have used their inflatable nasal sac for a display to warn a predator or to entice the ladies, attracting the attention of a female.

The different bones of the skull are easily defined with the exception of the parietal and nasal bones. Brown found that the skull of the already described genus Saurolophus was very similar overall, just smaller than the skull of Prosaurolophus maximus. The unique feature of a shortened frontal in lambeosaurines is also found in Prosaurolophus maximus, and the other horned hadrosaurines Brachylophosaurus, Maiasaura, and Saurolophus. Although they lack a shorter frontal, the genera Edmontosaurus and Shantungosaurus share an elongated dentary structure.

Prosaurolophus maximus, Ottawa Museum of Nature
Patches of preserved skin are known from two juvenile specimens, TMP 1998.50.1 and TMP 2016.37.1; these pertain to the ventral extremity of the ninth through fourteenth dorsal ribs, the caudal margin of the scapular blade, and the pelvic region. 

Small basement scales (scales that make up the majority of the skin surface), 3–7 millimetres (0.12–0.28 in) in diameter, are preserved on these patches - this is similar to the condition seen in other saurolophine hadrosaurs.

More uniquely, feature scales (larger, less numerous scales which are interspersed within the basement scales) around 5 millimetres (0.20 in) wide and 29 millimetres (1.1 in) long are found interspersed in the smaller scales in the patches from the ribs and scapula (they are absent from the pelvic patches). 

Similar scales are known from the tail of the related Saurolophus angustirostris (on which they have been speculated to indicate pattern), and it is considered likely adult Prosaurolophus would've retained the feature scales on their flanks like the juveniles.

Image: Three-dimensional reconstruction of Prosaurolophus maximus. Created using the skull reconstructions in the original description as reference. (Fig. 1 and 3 in Brown 1916). According to Lull and Wright (1942), the muzzle was restored too long in its original description. The colours and/or patterns, as with nearly all reconstructions of prehistoric creatures, are speculative. Created & uploaded to Wikipedia by Steveoc 86.

Wednesday, 10 August 2022

FRAGILE BEAUTY: RUGOSE AND TABULATE CORALS

Scleractinian Fossil Coral, Florida
The delicate wintery beauty you see here is a Scleractinian coral we find first in the fossil record in the Mesozoic. 

Corals first appeared in the Cambrian about 535 million years ago. Fossils are extremely rare until the Ordovician period, 100 million years later, when rugose and tabulate corals became widespread. 

Palaeozoic corals seem to make friends wherever they live and often contain numerous endobiotic symbionts.

Tabulate corals occur in limestones and calcareous shales of the Ordovician and Silurian periods, and often form low cushions or branching masses of calcite alongside rugose corals. 

Their numbers began to decline during the middle of the Silurian period, and they became extinct at the end of the Permian period, 250 million years ago.

Rugose or horn corals became dominant by the middle of the Silurian and became extinct early in the Triassic period. The rugose corals existed in solitary and colonial forms and were also composed of calcite.

The famous Great Barrier Reef is thought to have been laid down about two million years ago. If you have had the pleasure of scuba diving near it to take in its modern wonders, perhaps you will be interested to learn how it was formed. Over long expanses of time, the corals here have broken up, fragmented and died. Sand and rubble accumulate between the corals, and the shells of clams and other molluscs decay to form a gradually evolving calcium carbonate structure to what you view today. 

Coral reefs are extremely diverse marine ecosystems hosting over 4,000 species of fish, massive numbers of cnidarians, molluscs, crustaceans, and many other animals.

Tuesday, 9 August 2022

EAST KOOTENAY PALAEONTOLOGY

Tanglefoot Mountain. Photo: Dan Bowden
The East Kootenay region on the south-eastern edge of British Columbia is a land of colossal mountains against a clear blue sky. 

That is not strictly true, of course, as this area does see its fair share of rain and temperature extremes — but visiting in the summer every view is a postcard of mountainous terrain.

Rocks from deep within the Earth's crust underlie the entire East Kootenay region and are commonly exposed in the area's majestic mountain peaks, craggy rocky cliffs, glaciated river canyons, and rock cuts along the highways. Younger Ice Age sediments blanket much of the underlying rock.

I have been heading to the Cranbrook and Fernie area since the early 1990s. My interest is the local geology and fossil history that these rocks have to tell. I am also drawn to the warm and welcoming locals who share a love for the land and palaeontological treasures that open a window to our ancient past.  

Cranbrook is the largest community in the region and is steeped in mining history and the opening of the west by the railway. It is also a stone's throw away from Fort Steele and the Lower Cambrian exposures of the Eager Formation. These fossil beds rival the slightly younger Burgess Shale fauna and while less varied, produce wonderful examples of olenellid trilobites and weird and wonderful arthropods nearly half a billion years old. 

Labiostria westriopi, McKay Group
The Lower Cambrian Eager Formation outcrops at a few localities close to Fort Steele, many known since the early 1920s, and up near Mount Grainger near the highway. 

Further east, the Upper Cambrian McKay Group near Tanglefoot Mountain is a palaeontological delight with fifteen known outcrops that have produced some of the best-preserved and varied trilobites in the province — many of them new species. 

The McKay Formation also includes Ordovician outcrops sprinkled in for good measure.

Other cities in the area and the routes to and from them produce other fossil fauna from Kimberley to Fernie and the district municipality of Invermere and Sparwood. This is an arid country with native grasslands and forests of semi-open fir and pine. Throughout there are a host of fossiliferous exposures from Lower Cretaceous plants to brachiopods. 

The area around Whiteswan Lake has wonderful large and showy Ordovician graptolites including Cardiograptus morsus and Pseudoclimacograptus angustifolius elongates — some of our oldest relatives. A drive down to Flathead will bring you to ammonite outcrops and you can even find Eocene fresh-water snails in the region. 

The drive from Cranbrook to Fernie is about an hour and change through the Cambrian into the Devonian which flip-flops and folds over revealing Jurassic exposures. On my last visit, I made the trip with local geologist Guy Santucci who swings around the hairpin bends with panache. He is a delight to travel with and interspersed great conversation with tasty bits of information on the local geology.

Fernie Ichthyosaur Excavation, 1916
The Crowsnest Highway into Fernie follows Mutz Creek. From the highway, you can see the Fernie Group and the site along the Elk River where an ichthyosaur was excavated in 1916. 

The Fernie Formation is Jurassic. It is present in the western part of the Western Canada Sedimentary Basin in western Alberta and northeastern British Columbia. 

It takes its name from the town of Fernie, British Columbia, and was first defined by W.W. Leach in 1914. The town of Fernie is rimmed by rugged mountains tipped with Devonian marine outcrops. In essence, all these mountains are upside down with the oldest layers flipped to the top and a good 180 million years older than those they sit upon. 

Before they were mountains, these sedimentary rocks were formed as sediment collected in a shallow sea or inland basin. About 360 million years ago, the rocks that you see in Fernie today were down near the equator. They road tectonic plates, pushing northeast smashing into the coastline of what would become British Columbia. A little push here, shove there — compression and thrust faulting — and the rock was rolled over on its head — repeatedly. But that is how mountains are often formed, though not usually pushed so hard that they flip over. But still, it is a slow, relentless business. 

Cretaceous Plant Material, Fernie, BC
Within Fernie, there are small exposures of Triassic and Jurassic marine outcrops. East of the town there are Cretaceous plant sites, and of course, the Jurassic 1.4-metre Titanites occidentalis ammonite up on Coal Mountain.

Once up at the fossil exposures we begin to look for treasures. Over the next four or five hours, as the heat of the day sets in, we find block after block of dark brown to beige Cretaceous material embedded with coal seams and lithified fossil remains.

The regional district's dominant landform is the Rocky Mountain Trench, which is flanked by the Purcell Mountains and the Rocky Mountains on the east and west, and includes the Columbia Valley region. The southern half of which is in the regional district — its northern half is in the Columbia-Shuswap Regional District. 

The regional district of Elk Valley in the southern Rockies is the entryway to the Crowsnest Pass and an important coal-mining area. 

Other than the Columbia and Kootenay Rivers, whose valleys shape the bottomlands of the Rocky Mountain Trench, the regional districts form the northernmost parts of the basins of the Flathead, Moyie and Yahk Rivers. 

The Moyie and Yahk are tributaries of the Kootenay, entering it in the United States, and the Flathead is a tributary of the Clark Fork into Montana.

Photo One: Tyaughton Mountain, Mckay Group taken by Dan Bowden via drone; Photo Two: Labiostria westriopi, Upper Cambrian McKay Group, Site ML (1998); John Fam Collection; Photo Three: Ichthyosaur Excavation, Fernie, British Columbia, 1916; Photo Four: Cretaceous Plant Fossils, east of Fernie towards Coal Mountain. The deeply awesome Guy Santucci as hand-model for scale. 

Monday, 8 August 2022

SQUIRRELS: SHADOW TAILS

One of the little animals I see daily in Kitsilano, Vancouver, are the very busy, highly comic rodents we know as squirrels. 

They spend their days busily gathering and caching food and their nights resting from all that hard work. 

My neighbourhood has mostly Eastern Gray squirrels, Sciurus carolinensis (Gmelin, 1788) who come in a colour palette of reddish-brown, grey (British spelling) and black. 

These cuties have bushy tails and a spring in their step — racing around gathering nuts, finding secret hiding spots to cache them, teasing dogs and generally exuding cuteness.

We find the first fossil evidence of tree squirrels in the Pleistocene. At least twenty specimens have been found of Sciurus carolinensis in Pleistocene outcrops in Florida on the eastern coast of the United States. Over time, their body size grew larger then shrunk down to the 400 to 600 g (14 to 21 oz) weight we see them today.  

Eastern Gray squirrels have two breeding seasons in December-January and June-July. This past year was warm. On Vancouver Island, the Eastern Grays bred again in early September. One wonders if the heat dome killed off the July litter, and with the return of more favourable weather, the parents have been induced to breed again.

While they are not native to Vancouver, they are plentiful. They were introduced to the region over a hundred years ago and have been happily multiplying year upon year. 

Our native species are the smaller, reddish-brown, rather shy Douglas squirrels, Tamiasciurus douglasii (Bachman, 1839), and the nocturnal Northern Flying Squirrels, Glaucomys sabrinus (Shaw, 1801).  

Sciurus, is derived from two Greek words, skia, meaning shadow, and oura, meaning tail. The name choice is poetic, alluding to squirrels sitting in the shadow of their tails. 

The specific epithet, carolinensis, refers to the Carolinas on the eastern seaboard of the United States, an area that includes both North and South Carolina. It was here that the species was first recorded and still rather common. In the United Kingdom and Canada, Sciurus carolinensis is referred to as the Eastern Gray or grey squirrel — and though adorable is an invasive species. 

In the United States, Eastern is used to differentiate the species from the Western Gray or Silver-Gray squirrel, Sciurus griseus, (Ord, 1818). 

The Ord here, of course, is George Ord, the American zoologist who named the species based on notes recorded by Lewis and Clark in the early 1800s. If you fancy a read, check out his article from 1815, "Zoology of North America." It is charming, anachronistic and the first systemic zoology of America by an American. 

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, use the word ta̱minasux̱, to express: "that is a squirrel." 

The word for shadow in Kwak'wala is gagumas and tail is ha̱t̕sa̱x̱ste' — so I will think of these wee wonders of the Order Rodentia in the family Sciuridae as the Gagumas ha̱t̕sa̱x̱ste' of Khahtsahlano. 

Sunday, 7 August 2022

SNOWY TREE CRICKET: CHIRPING THERMOMETERS

About 250 million years ago, our once silent world became a cacophony of diverse animal sounds. 

One of the most lyrical of those voices to join the Earth's chorus were the true crickets. We can count them as some of the earliest musicians on the planet. 

This group evolved and contributed to the nocturnal circumambience of our planet a full 150 million years before our human ancestors would have heard them for the very first time. It is their long lineage that I am mindful of when I am out for an evening stroll and hear their pleasing serenade.

If you find yourself out in the woods and are wondering what the temperature might be, you need only slip closer to the nearest stand of deciduous trees to follow the musical sounds of the wee Snowy Tree Cricket, Oecanthus Fultoni, part of the order orthoptera.

Snowy Tree Crickets and their cousins double as thermometers and wee garden predators, dining on aphids and other wee beasties. Weather conditions, both hot and cold, alter the speed at which they rub the base of their wings together and consequently regulate their rate of chirping.

Listen closely for their tell-tale high pitch triple chirp sound in the early evening. Being in Canada, our crickets chirp in Celsius. To figure out the temperature, we simply count the number of chirps over a seven-second period and add five to learn the local temperature.

If did not happen to bring your calculator and you are still operating in old-school Fahrenheit, you can use this handy conversion — double the temperature in Celsius, add 32 you'll get the approximate temperature in Fahrenheit. And if you are not all that interested in the temperature, enjoy their pleasing serenade as you take your early evening stroll. They've been working on this number for millions of years. 

Daniel Otte from the Academy of Natural Sciences in Philadelphia did up a wonderful piece on the evolution of cricket songs. If you’re a keen bean & want to learn more, I'll attach the journal article for you. https://doi.org/10.2307/3503559. https://www.jstor.org/stable/3503559

Saturday, 6 August 2022

LOWER LIAS LYTOCERAS

A superbly prepped and extremely rare Lytoceras (Suess, 1865) ammonite found as a green ammonite nodule by Matt Cape in the Lower Lias of Dorset. 

Lytoceras are rare in the Lower Lias of Dorset — apart from the Belemnite Stone horizon — so much so that Paul Davis, whose skilled prep work you see here, initially thought it might be a Becheiceras hidden within the large, lumpy nodule. 

One of the reasons these lovelies are rarely found from here is that they are a Mediterranean Tethyian genus. The fossil fauna we find in the United Kingdom are dominated by Boreal Tethyian genera. 

We do find Lytoceras sp. in the Luridum subzone of the Pliensbachian showing that there was an influx of species from the Mediterranean realm during this time. This is the first occurrence of a Lytoceras that he has ever seen in a green nodule and Paul's seen quite a few. 

This absolutely cracking specimen was found and is in the collections of the awesome Matt Cape. Matt recognized that whatever was hidden in the nodule would take skilled and careful preparation using air scribes. Indeed it did. It took more than five hours of time and skill to unveil the lovely museum-worthy specimen you see here. 

We find Lytoceras in more than 1,000 outcrops around the globe ranging from the Jurassic through to the Cretaceous, some 189.6 to 109.00 million years ago. Once this specimen is fully prepped with the nodule material cut or scraped away, you can see the detailed crinkly growth lines or riblets on the shell and none of the expected coarse ribbing. 

Lytoceras sp. Photo: Craig Chivers
If you imagine running your finger along these, you would be tracing the work of decades of growth of these cephalopods. 

While we cannot know their actual lifespans, but we can make a healthy guess. 

The nautilus, their closest living cousins live upwards of 20 years — gods be good — and less than three years if conditions are poor.

The flanges, projecting flat ribs or collars, develop at the edge of the mouth border on the animal's mantle as they grow each new chamber. 

Each delicate flange grows over the course of the ammonites life, marking various points in time and life stages as the ammonite grew. There is a large variation within Lytoceras with regards to flanges. They provide both ornamentation and strength to the shell to protect it from water pressure as they moved into deeper seas.

The concretion prior to prep
This distinctive genus with its evolute shells are found in the Cretaceous marine deposits of: 

Antarctica (5 collections), Austria (19), Colombia (1), the Czech Republic (3), Egypt (2), France (194), Greenland (16), Hungary (25), Italy (11), Madagascar (2), Mexico (1), Morocco (4), Mozambique (1), Poland (2), Portugal (1), Romania (1), the Russian Federation (2), Slovakia (3), South Africa (1), Spain (24), Tanzania (1), Trinidad and Tobago (1), Tunisia (25); and the United States of America (17: Alaska, California, North Carolina, Oregon).

We also find them in Jurassic marine outcrops in:

Austria (15), Canada (9: British Columbia), Chile (6), France (181), Germany (11), Greenland (1), Hungary (189), India (1), Indonesia (1), Iran (1), Italy (50), Japan (14), Kenya (2), Luxembourg (4), Madagascar (2), Mexico (1), Morocco (43), New Zealand (15), Portugal (1), Romania (5), the Russian Federation (1), Slovakia (1), Spain (6), Switzerland (2), Tunisia (11), Turkey (12), Turkmenistan (1), Ukraine (5), the United Kingdom (12), United States (11: Alaska, California) — in at least 977 known collections. 

References:

Sepkoski, Jack (2002). "A compendium of fossil marine animal genera (Cephalopoda entry)". Bulletins of American Paleontology. 363: 1–560. Archived from the original on 2008-05-07. Retrieved 2017-10-18.

Paleobiology Database - Lytoceras. 2017-10-19.

Systematic descriptions, Mesozoic Ammonoidea, by W.J Arkell, Bernhard Kummel, and C.W. Wright. 1957. Treatise on Invertebrate Paleontology, Part L. Geological Society of America and University of Kansas press.

Friday, 5 August 2022

THAT'S A WRAP: BC'S FOSSIL BOUNTY COMING AUTUMN 2022

We live in a diverse province edged by mountains, ocean, forests and streams. While our lens is often on the rugged beauty all around us, beneath our feet is yet another world.

Layers of rock hold fossils, each an interface to our deep past. 

Within each fragment, these ancient beings whisper their secrets, share their life experiences, tell us tales of community, how they made a living, who they rubbed shoulders with (or fins, or seedlings...) and convey the essence of a world long embedded in stone.

Join me as we explore the rich fossil bounty of fossil plants, dinosaurs to mighty marine reptiles and the people who unearth them.

Discover British Columbia's violent past — how plate tectonics, volcanoes and glaciers shaped the land and why we find plant fossils along the Kitsilano foreshore and marine fossils beneath False Creek. Learn about the science of geochemistry from a palaeontologist who uses fossil teeth to reconstruct ancient environments.

Meet those who call Vancouver home and use this beautiful base for their mining explorations — opening up BC and communities through partnerships that honour First Nations wisdom, show a commitment to social responsibility & sound environmental practices.

​Hear from palaeontologists, geologists, geochemists, science organizations, dinosaur docents, palaeoartists and fossil preparators whose work brings our ancient world to life.

All this goodness is coming to you on TELUS Optik TV in a few short weeks. We had a great time filming BC's Fossil Bounty with some of the loveliest human beings on the planet. 

Funding is supported by TELUS STORYHIVE & DINO LAB INC. BC'S FOSSIL BOUNTY — SEASON ONE airs on TELUS Optik TV and the TELUS YouTube Channel to millions of viewers beginning Autumn 2022. Plans for SEASON TWO & SEASON THREE are in the works. 

Visit www.fossilhuntress.com to learn more and to hear updates on the project.

Thursday, 4 August 2022

WOOLLY MAMMOTHS: MAMMUTHUS PRIMEGENIUS

Woolly Mammoths, Mammuthus primigenius,  have always held wonder for me. These massive, hairy — and likely very smelly beasts — lived alongside us for a time. 

If you stood beside him and reached way up, you might be able to touch his tusks but likely not reach up to his mouth or even his eyes. 

He had a shaggy coat of light or dark coloured hair with long outer hair strands covering a dense thick undercoat. His oil glands would have worked overtime to secrete oils, giving him natural waterproofing. Some of the hair strands we have recovered are more than a meter in length. These behemoth proboscideans boasted long, curved tusks, little ears, short tails and grazed on leaves, shrubs and grasses that would have been hard work to get at as much of his world was covered in ice and snow during his reign.

We first see Woolly Mammoths in northeastern Siberia dating back 700,000 years. We find them in East Asia as far back as 800,000 years ago. They arose from the massive steppe mammoths, Mammuthus trogontherii, slowly evolving traits we see in this older species to the mammoths we think of today. 

Over time, their body size shrank and their teeth and tusks evolved to take advantage of the tough vegetation available to those few animals who could chew their way through ice and snow and work these tundra grasses into a digestible form. 

The enamel plates of their cheek teeth multiplied while the enamel itself became thinner. Tusks slowly took on more of a curved to act as ploughs for the snow. 

Those smaller than their predecessors, they were still formidable. Their size offered protection against predators once full grown. Sadly for the juveniles, they offered tasty prey to big cats like Homotherium who roamed these ancient grasslands alongside them.

The Mammoths of the Steppe spread to the northern areas of Eurasia, down through Europe, into the British Isles to Spain and crossed over to populate North America via the Bering Isthmus. It was the lowered sea levels during the last Ice Age that exposed dry land between Asia and the Americas. Here in this flat, grassy treeless plain known as the Bering Land Bridge or Isthmus, animals, including humans, could migrate from Europe west into North America.

The woolly mammoth coexisted with our ancestors who made good use of their bones and tusks for tools, housing, art and food. The last of their lineage died out relatively recently on Wrangel Island until 4,000 years ago — a time when we were making our first harps and flutes in Egypt, dams, canals and stone sculptures in Sumer, using numbers for the first time and using tin to make tools.

Wednesday, 3 August 2022

ORTHOCONE: STRAIGHT SHELLED CEPHALOPODS

Orthocone Nautiloid Fossil
An orthocone is an unusually long, straight shell of a nautiloid cephalopod. You have likely seen them from Ontario or Morocco. These straight-shelled nautiloids rules our seas during the Ordovician, nothing else was even close in size to them. 

To put that into context, they would have been more than two times longer than the tallest person you know. 

During the 18th and 19th centuries, all shells of this type were named Orthoceras, creating a wastebasket taxon, but it is now known that many groups of nautiloids developed or retained this type of shell.

An orthocone can be thought of as a nautilus but with a pencil-straight, uncoiled shell. You have likely seen living nautilus in the sea if you are very lucky or on social media, if your curiosity has you streaming cephalopod posts. Living nautilus are chunky and coiled with a wee squid-like body living within their shells that they use for protection and the air within for buoyancy to move through the water. Their ancestors were not dissimilar. For a long while, we thought that these marine lovelies represented the most primitive form of nautiloid, but we now know that the earliest nautiloids had shells that were slightly curved. 

An orthoconic form evolved several times amongst cephalopods. Amongst nautiloid cephalopods, we 
see this in the primitive ellesmerocerids, the endocerids — apex predators of the Ordovician who dined on trilobites, molluscs and brachiopods, in the generally straight-shelled actinocerids, the orthoceratoids (perhaps the last unexplored wilderness in the Cephalopoda).

Orthocone Fossil
We see this form again in the rather smallish order bactritids (relatively speaking within the vast array of the Class Cephalopoda).

These lovely straight-shelled fossils are found in Late Cambrian to Late Triassic outcrops but they were most common in the early Paleozoic. Revivals of the orthocone design later occurred in other cephalopod groups, notably baculitid ammonites in the Cretaceous Period. 

Orthocone nautiloids range in size from wee little fellas less than 25 mm (1 in) to a massive 5.2 metres or 17 feet long in the case of the giant endocerids of the Ordovician. Never underestimate just how large a cephalopod can get. If our oceans remain fertile, I expect we'd see one larger than a city block one day.


Tuesday, 2 August 2022

SACRED CEPHALOPODS: TAK'WA

This lovely with her colourful body is an octopus. Like ninety-seven percent of the world's animals, she lacks a backbone. 

To support their bodies, these spineless animals — invertebrates — have skeletons made of protein fibres. 

This flexibility can be a real advantage when slipping into nooks and crannies for protection and making a home in seemingly impossible places.

On the east side of Vancouver Island, British Columbia, Canada, there is an area called Madrona Point where beneath the surface of the sea many octopus have done just that. This is the home of the Giant Pacific Octopus, Enteroctopus dofleini, the largest known octopus species.

The land above is the home of the Snuneymuxw First Nation of the Coast Salish who live here, on the Gulf Islands, and along the Fraser River. In Hul'q'umin'um' — the lingua franca of the Snuneymuxw First Nation, a living language that expresses their worldview and way of life — the word for octopus is sqi'mukw'. In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, further north on Vancouver Island, octopus or devil fish are known as ta̱k̕wa.

I have gone scuba diving at Madrona Point many times and visited the octopus who squeeze into the eroded sections of a sandstone ledge about 18 metres or 60 feet below the surface. 

On one of those trips, my friend Suzanne Groulx ran into one of the larger males swimming just offshore. I was surfacing as I heard her shriek clear as a bell. Sound moves through water about four times faster than it does through the air — faster than a jet plane. 

On that day, I suspect Suzanne was neck and neck both in sound and motion. Seconds later, she popped up a good three feet above the surf, still screaming. I have never seen anyone surface quite so quickly — dangerous and impressive in equal measure. It was on another of those trips that I met Philip Torrens, with whom I would later co-author, In Search of Ancient BC.     

While the entire coastline is beautiful to explore, it was visiting the octopus that drew me back time and time again. I have seen wee octopus the size of the palm of your hand, large males swimming and feeding and the lovely females tucked into their nursery homes.

After forty days of mating, the female Giant Pacific Octopus attach strings of small fertilized eggs to the rocks within these crevices and call it home for a time — generally five months or 160 days. When I visit, I sometimes bring crab or sea urchin for her to snack on as the mothers guarding these eggs do not leave to hunt, staying ever vigilante protecting their brood from predators. All the while she is here, she gently blows fresh water over the eggs.

And sadly, this will be her only brood. Octopus breed once in their too-short lives. Males die directly after mating and females die once their young have hatched. They live in all the world's oceans and no matter the species, their lifespans are a brief one to five years. I rather hope they evolve to live longer and one day outcompete the humans who like to snack on them.

Octopus are soft-bodied, eight-limbed molluscs of the order Octopoda. They have one hard part, their beaks, which they use to crack open clams, crab and crustaceans. They are ninja-level skilled at squeezing through very tight holes, particularly if it means accessing a tasty snack. The size of their beaks determines exactly how small a hole they can fit through. Looking, you would likely guess it could not be done, but they are amazing — and mesmerizing!

At the Vancouver Aquarium, they have been known to unscrew lids, sneak out of one tank to feed in another then slip back so you do not notice, open simple hooks and latches — burglars of the sea. They can also change the colour and texture of their skin to blend perfectly into their surroundings. You can look for them around reefs and rocky shores. There are 300 species of octopus grouped within the class Cephalopoda, along with squid, cuttlefish, and nautiloids. 

The oldest fossil octopus at 300 million years old is Pohlsepia mazonensis from Carboniferous Mazon Creek fossil beds in Illinois. The only known specimen resembles modern octopuses with the exception of possessing eight arms and two tentacles (Kluessendorf and Doyle 2000).

My favourite fossil octopus is the darling Keuppia levante (Fuchs, Bracchi & Weis, 2009), an extinct genus of octopus that swam our ancient seas back in the Cretaceous.

Monday, 1 August 2022

CHARLES DARWIN: A TASTE FOR STUDY

Chelonia. Schildkröten by Ernst Haeckel, 1904
Care for some tarantula with that walrus? No? how about some Woolly mammoth?

While eating study specimens is not de rigueur today, it was once common practice for researchers in the 1700-1880s. 

The English naturalist, Charles Darwin belonged to an elite men's club dedicated to tasting exotic meats. In his first book, Darwin wrote almost three times as much about dishes like armadillo and tortoise urine as he did on the biogeography of his Galapagos finches. 

From his great love of gastronomy, I am surprised any of his tasty specimens made it back from his historic voyage on the HMS Beagle — particularly the turtles.

One of the most famous scientific meals occurred one Saturday evening on the 13th of January, 1951. This was at the 47th Explorers Club Annual Dinner (ECAD) when members purportedly dined on a frozen woolly mammoth. 

Commander Wendell Phillips Dodge was the promotor of the banquet. He sent out press notices proclaiming the event's signature dish would be a selection of prehistoric meat. Whether Dodge did this simply to gain attendees or play a joke remains a mystery. 

The prehistoric meat was supposedly found at Woolly Cove on Akutan in the Aleutians Islands of Alaska, USA, by the eminent polar explorers' Father Bernard Rosecrans Hubbard, American geologist, explorer sometimes called the Glacier Priest, and polar explorer Captain George Francis Kosco of the United States Navy.

Fried Tarantula & Goat Eyeballs

This much-publicized meal captured the public’s imagination and became an enduring legend and source of pride for the Club, popularizing an annual menu of exotics that continues today. The Club is well-known for its notorious hors d’oeuvres like fried tarantulas and goat eyeballs as it is for its veritable whose who of notable members — Teddy Roosevelt, Neil Armstrong, Buzz Aldrin, Roy Chapman Andrews, Thor Heyerdahl, James Cameron.

The Yale Peabody Museum holds a sample of meat preserved from the 1951 meal, interestingly labelled as a South American Giant Ground Sloth, Megatherium, not Mammoth. The specimen of meat from that famous meal was originally designated BRCM 16925 before a transfer in 2001 from the Bruce Museum to the Yale Peabody Museum of Natural History (New Haven, CT, USA) where it gained the number YPM MAM 14399.

The specimen is now permanently deposited in the Yale Peabody Museum with the designation YPM HERR 19475 and is accessible to outside researchers. The meat was never fixed in formalin and was initially stored in isopropyl alcohol before being transferred to ethanol when it arrived at the Peabody Museum. DNA extraction occurred at Yale University in a clean room with equipment reserved exclusively for aDNA analyses.

In 2016, Jessica Glass and her colleagues sequenced a fragment of the mitochondrial cytochrome-b gene and studied archival material to verify its identity, which if genuine, would extend the range of Megatherium over 600% and alter views on ground sloth evolution. 

Mammoth, Megatherium — Green Sea Turtle

Their results showed that the meat was not Mammoth or Megatherium, but a bit of Green Sea Turtle, Chelonia mydas. So much for elaborate legends. The prehistoric dinner was likely meant as a publicity stunt. 

Glass's study emphasizes the value of museums collecting and curating voucher specimens, particularly those used for evidence of extraordinary claims. Not so long before Glass et al. did their experiment, a friend's mother (and my kayaking partners) served up a venison steak from her freezer to dinner guests in Castlegar that hailed from 1978. Tough? Inedible? I have it on good report that the meat was surprisingly divine.

Reference: Glass, J. R., Davis, M., Walsh, T. J., Sargis, E. J., & Caccone, A. (2016). Was Frozen Mammoth or Giant Ground Sloth Served for Dinner at The Explorers Club?. PloS one, 11(2), e0146825. https://doi.org/10.1371/journal.pone.0146825

Image: Chelonia. Schildkröten by Ernst Haeckel, 1904, Prints & Photographs Division, Library of Congress, LC-DIG-ds-07619.

Join the Explorer's Club

Fancy yourself an explorer who should join the club? Here is a link to their membership application. The monied days of old are still inherent, but you will be well pleased to learn you can now join for as little as $50 US.

Link: https://www.explorers.org/wp-content/uploads/Membership-Application_2021-11-19.pdf

Saturday, 30 July 2022

BARNACLES: K'WIT'A'A

One of the most interesting and enigmatic little critters we find at the seashore are barnacles. They cling to rocks deep in the sea and at the waters' edge, closed to our curiosity, their domed mounds like little closed beaks shut to the water and the world.

They choose their permanent homes as larvae, sticking to hard substrates that will become their permanent homes for the rest of their lives. It has taken us a long time to find how they actually stick or what kind of "glue" they were using.

Remarkably, the barnacle glue sticks to rocks in a similar way to how red cells bind together. Red blood cells bind and clot with a little help from some enzymes. 

These work to create long protein fibres that first blind, clot then form a scab. The mechanism barnacles use, right down to the enzyme, is very similar. That's especially interesting as about a billion years separate our evolutionary path from theirs.

So, with the help of their clever enzymes, they can affix to most anything – ship hulls, rocks, and even the skin of whales. If you find them in tidepools, you begin to see their true nature as they open up, their delicate feathery finger-like projections flowing back and forth in the surf.

One of my earliest memories is of playing with them in the tidepools on the north end of Vancouver Island. It was here that I learned their many names. In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest, the word for barnacles is k̕wit̕a̱'a — and if it is a very small barnacle it is called t̕sot̕soma — and the Kwak'wala word for glue is ḵ̕wa̱dayu.

Friday, 29 July 2022

AN AMMONITE HOSTING WEE BIVALVES

What you are seeing here is a protuberance extruding from the venter of Quenstedtoceras cf. leachi (Sowerby). It is a pathology in the shell from hosting immature bivalves that shared the seas with these Middle Jurassic, Upper Callovian, Lamberti zone fauna from the Volga River basin. The collecting site is the now inactive Dubki commercial clay quarry and brickyard near Saratov, Russia. 

The site has produced thousands of ammonite specimens. A good 1,100 of those ended up at the Black Hills Institute of Geological Research in Hill City, South Dakota. 

Roughly 1,000 of those are Quenstedtoceras (Lamberticeras) lamberti and the other 100 are a mix of other species found in the same zone. These included Eboraciceras, Peltoceras, Kosmoceras, Grossouvria, Proriceras, Cadoceras and Rursiceras

What is especially interesting is the volume of specimens — 167 Quenstedtoceras (Lamberticeras) lamberti and 89 other species in the Black Hills collection — with healed predation injuries. It seems Quenstedtoceras (Lamberticeras) lamberti are the most common specimens found here and so not surprisingly the most common species found injured. Of the 1,000, 655 of the Quenstedtoceras (Lamberticeras) lamberti displayed some sort of deformation or growth on the shell or had grown in a tilted manner. 

Again, some of the Q. lamberti had small depressions in the centre likely due to a healed bite and hosting infestations of the immature bivalve Placunopsis and some Ostrea

The bivalves thrived on their accommodating hosts and the ammonites carried on, growing their shells right up and over their bivalve guests. This relationship led to some weird and deformities of their shells. They grow in, around, up and over nearly every surface of the shell and seem to have lived out their lives there. It must have gotten a bit unworkable for the ammonites, their shells becoming warped and unevenly weighted. Over time, both the flourishing bivalves and the ammonite shells growing up and over them produced some of the most interesting pathology specimens I have ever seen.    

In the photo here from Emil Black, you can see some of the distorted shapes of Quenstedtoceras sp. Look closely and you see a trochospiral or flattened appearance on one side while they are rounded on the other. 

All of these beauties hail from the Dubki Quarry near Saratov, Russia. The ammonites were collected in marl or clay used in brick making. The clay particles suggest a calm, deep marine environment. One of the lovely features of the preservation here is the amount of pyrite filling and replacement. It looks like these ammonites were buried in an oxygen-deficient environment. 

The ammonites were likely living higher in the water column, well above the oxygen-poor bottom. An isotopic study would be interesting to prove this hypothesis. There's certainly enough of these ammonites that have been recovered to make that possible. It's estimated that over a thousand specimens have been recovered from the site but that number is likely much higher. But these are not complete specimens. We mostly find the phragmocones and partial body chambers. Given the numbers, this may be a site documenting a mass spawning death over several years or generations.

If you fancy a read on all things cephie, consider picking up a copy of Cephalopods Present and Past: New Insights and Fresh Perspectives edited by Neil Landman and Richard Davis. Figure 16.2 is from page 348 of that publication and shows the hosting predation quite well. 

Photos: Courtesy of the deeply awesome Emil Black. These are in his personal collection that I hope to see in person one day. 

It was his sharing of the top photo and the strange anomaly that had me explore more about the fossils from Dubki and the weird and wonderful hosting relationship between ammonites and bivalves. Thank you, my friend!

Thursday, 28 July 2022

FOSSIL AMMONOIDS OF NEVADA

Time Slows at Berlin-Ichthyosaur State Park
Around half past five, as the first flush of dawn appears, our group was up and ready to visit a site that has been on my bucket list for some time.

High on the hillside up a long entry road sits the entrance to Berlin-Ichthyosaur State Park in central Nevada. It is a short 2-hour drive from our lodgings through orange-hued grasslands and low sloping hills.

A worn American flag and sun-bleached outbuildings greet you on your way to the outcrops. Away from the hustle and bustle that defines the rest of Nevada this place feels remarkably serene. Your eyes squint against the sun as you search for ammonoids and other marine fossil fauna while your nose tends to the assault from the bracing smell of sagebrush.

This site holds many stories. The interpretive centre displays wonderful marine reptiles, ichthyosaurs in situ, as you might expect from the name of the park — but it also showcases years of history lovingly tended. This stretch of dry golden low hills dappled with the yellow of creosote and desert grasses is an important locality for our understanding of the Carnian-Norian boundary (CNB) in North America.

The area is known worldwide as one of the most important ichthyosaur Fossil-Lagerstätte because of the sheer volume of remarkably well-preserved, fully articulated (all the sweet bones laid out all in a row...) specimens of Shonisaurus popularis.

Rich ammonoid faunas outcrop in the barren hills of the Upper Triassic (Early Norian, Kerri zone), Luning Formation, West Union Canyon, Nevada. They were studied by N. J. Silberling (1959) and provide support for the definition of the Schucherti and Macrolobatus zones of the latest Carnian — which are here overlain by well-preserved faunas of the earliest Norian Kerri Zone. 

The genus Gonionotites, very common in the Tethys and British Columbia, is for the moment, unknown in Nevada. The Upper Carnian faunas are dominated by Tropitidae, while Juvavitidae are conspicuously lacking. 

Middle Triassic Ammonoids
Despite its importance, no further investigations had been done at this site for a good 50 years. That changed in 2010 when Jim Haggart, Mike Orchard and Paul Smith — all local Vancouverites — collaborated on a project that took them down to Nevada to look at the conodonts and ammonoids. They did a bed-by-bed sampling of ammonoids and conodonts in West Union Canyon during October of that year.

October is an ideal time to do fieldwork in this area. There are a few good weeks between screaming hot and frigid cold. It is also tarantula breeding season so keep your eyes peeled. Those sweet little burrows you see are not from rodents but rather largish arachnids. 

The eastern side of the canyon provides the best record of the Macrolobatus Zone, which is represented by several beds yielding ammonoids of the Tropites group, together with Anatropites div. sp. 

Conodont faunas from both these and higher beds are dominated by ornate metapolygnthids that would formerly have been collectively referred to Metapolygnathus primitius, a species long known to straddle the CNB. Within this lower part of the section, they resemble forms that have been separated as Metapolygnathus mersinensis. Slightly higher, forms close to Epigondolella' orchardi and a single Orchardella n. sp. occur. This association can be correlated with the latest Carnian in British Columbia.

Higher in the section, the ammonoid fauna shows a sudden change and is dominated by Tropithisbites. Few tens of metres above, but slightly below the first occurrence of Norian ammonoids Guembelites jandianus and Stikinoceras, two new species of conodonts (Gen et sp. nov. A and B) appear that also occur close to the favoured Carnian/Norian boundary at Black Bear Ridge, British Columbia. Stratigraphically higher collections continue to be dominated by forms close to M. mersinensis and E. orchardi after BC's own Mike Orchard.

The best exposure of the Kerri Zone is on the western side of the West Union Canyon. Ammonoids, dominated by Guembelites and Stikinoceras div. sp., have been collected from several fossil-bearing levels. Conodont faunas replicate those of the east section. The collected ammonoids fit perfectly well with the faunas described by Silberling in 1959, but they differ somewhat from coeval faunas of the Tethys and Canada. 

The ammonoid fauna paints a compelling picture of Tethyan influence with a series of smoking guns. We see an abundance of Tropitidae in the Carnian, a lack of Pterosirenites in the Norian, copious Guembelites, the Tethyan species G. philostrati, the stratigraphic position of G. clavatus and the rare occurrence of Gonionotites. Their hallelujah moment was likely finding an undescribed species of the thin-shelled bivalve Halobia similar to Halobia beyrichi — the clincher that perhaps seals this deal on Tethyan influence. 

I'll take a boo to see what Christopher McRoberts published on the find. A jolly good idea to have him on this expedition as it would have been easy to overlook if the focus remained solely on the conodonts and ammonoids. McRoberts has published on the much-studied Pardonet Formation up in the Willison Lake Area of Northeastern, British Columbia. He knows a thing or two about Upper Triassic Bivalvia and the correlation to coeval faunas elsewhere in the North American Cordillera, and to the Boreal, Panthalassan and Tethyan faunal realms. 

If you fancy a read, they published a paper: "Towards the definition of the Carnian/Norian Boundary: New data on Ammonoids and Conodonts from central Nevada," which you can find in the proceedings of the 21st Canadian Paleontology Conference; by Haggart, J W (ed.); Smith, P L (ed.); Canadian Paleontology Conference Proceedings no. 9, 2011 p. 9-10.

Fig. 1. Location map of Berlin-Ichthyosaur State Park

Marco Balini, James Jenks, Riccardo Martin, Christopher McRoberts, along with Mike Orchard and Norman Siberling, did a bed by bed sampling in 2013 and published on The Carnian/Norian boundary succession at Berlin-Ichthyosaur State Park (Upper Triassic, central Nevada, USA) and published in January 2014 in Paläontologische Zeitschrift 89:399–433. That work is available for download from ResearchGate. The original is in German, but there is a translation available.

After years of reading about the correlation between British Columbia and Nevada, I had the very great pleasure of walking through these same sections in October 2019 with members of the Vancouver Paleontological Society and Vancouver Island Palaeontological Society. It was with that same crew that I'd originally explored fossil sites in the Canadian Rockies in the early 2000s. Those early trips led to paper after paper and the exciting revelations that inspired our Nevada adventure.

If you plan your own adventure, you'll want to keep an eye out for some of the other modern fauna — mountain lions, snakes, lizards, scorpions, wolves, coyotes, foxes, ground squirrels, rabbits, falcons, hawks, eagles, bobcats, sheep, deer and pronghorns.

Figure One: Location map of Berlin-Ichthyosaur State Park. A detailed road log with access information for this locality is provided in Lucas et al. (2007).