Friday, 7 April 2023

DACTYLIOCERAS AMMONITE PREPPED BY HARRY TABINER

Dactylioceras ammonite, Photo: Harry Tabiner
A lovely Dactylioceras ammonite from the Lower Jurassic Upper Lias Holderness of the Yorkshire Coast. This beauty measures over 8cm with especially attractive colouring.

Holderness is an area of the East Riding of Yorkshire, on the east coast of England. An area of rich agricultural land, Holderness was marshland until it was drained in the Middle Ages. Topographically, Holderness has more in common with the Netherlands than with other parts of Yorkshire. To the north and west are the Yorkshire Wolds.

Geologically, Holderness is underlain by Cretaceous chalk but in most places, it is so deeply buried beneath glacial deposits that it has no influence on the landscape.

The landscape is dominated by deposits of till, boulder clays and glacial lake clays. These were deposited during the Devensian glaciation. The glacial deposits form a more or less continuous lowland plain which has some peat filled depressions (known locally as meres) which mark the presence of former lake beds. There are other glacial landscape features such as drumlin mounds, ridges and kettle holes scattered throughout the area.

Dactylioceras ammonite, Photo: Harry Tabiner
The well-drained glacial deposits provide fertile soils that can support intensive arable cultivation. Fields are generally large and bounded by drainage ditches. There is very little woodland in the area and this leads to a landscape that is essentially rural but very flat and exposed. The coast is subject to rapid marine erosion.

The Geology of Yorkshire in northern England shows a very close relationship between the major topographical areas and the geological period in which their rocks were formed. The rocks of the Pennine chain of hills in the west are of Carboniferous origin whilst those of the central vale are Permo-Triassic.

The North York Moors in the north-east of the county are Jurassic in age while the Yorkshire Wolds to the southeast are Cretaceous chalk uplands. The plain of Holderness and the Humberhead levels both owe their present form to the Quaternary ice ages.

The strata become gradually younger from west to east. Much of Yorkshire presents heavily glaciated scenery as few places escaped the direct or indirect impact of the great ice sheets as they first advanced and then retreated during the last ice age. This beauty is in the collection of the deeply awesome Harry Tabiner.

Thursday, 6 April 2023

HARRISON LAKE: FOSSILS AND THE BEATING HEART

Located three hours east of Vancouver, most folks head to Harrison Lake to enjoy its crisp waters, soak in the hot springs, camp or four-wheel-drive immersed in rugged scenery, or look for the elusive Sasquatch reported to live in the area. 

But there are some who come to Harrison Lake and miss the town entirely. Instead, they favour the upper west side of the lake and the fossiliferous bounty found here.

Indeed, this is the perfect location for local citizen scientists to strut their stuff. Harrison is a perfect family day trip, where you can discover wonderful marine fossil specimens as complete or partially crushed fossilized shells embedded in rock. 

It is truly amazing that we can find them at all. These beauties range in age from Jurassic to Cretaceous, with most being Lower Callovian, meaning the ammonites here swam our ancient oceans more than 160 million years ago. 

The area around Harrison Lake has been home to the Sts’ailes, a sovereign Coast Salish First Nation for thousands of years. Sts’ailes’ means, “the beating heart,” and it sums up this glorious wilderness perfectly. They describe their ancient home as Xa’xa Temexw or Sacred Earth. 

With the settling of Canada, Geologists began exploring the area in the 1880s, calling upon the Sts’ailes to help them look for coal and a route for the Canadian Pacific Railway. Coal was the aim, but happily, they also found fossils. Sacred Earth, indeed.  

Belemnite Fossils
In my favourite outcrops, you can find large, smooth inflated Jurassic ammonites along with their small grey and brown cousins. 

Further up the road, you will see Cretaceous cigar-shaped squid-like cephalopods called Belemnites, and the bivalve (clam) Buchia — gifts deposited by glaciers. Here are the most common.

Ammonites

Almost all of the ammonite specimens found near Harrison Lake are the toonie sized Cadoceras (Paracadoceras) tonniense with well-preserved outer whorls but flattened inner whorls. We find semi-squished elliptical specimens here, too. If you see a large, smooth, inflated grapefruit-sized ammonite, you are holding a rare prize — a Cadoceras comma ammonite, the macroconch or female of the species.  

Ammonites were predatory, squid-like creatures that lived inside coil-shaped shells. Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. They used these tentacles to snare prey — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunts today.

Within their shells, ammonites had a number of chambers called septa filled with gas or fluid, and they were interconnected through a wee air tube. By pushing air in or out, they were able to control their buoyancy. 

These small but mighty marine predators lived in the last chamber of their shell and continuously built new shell material as they grew. As they added each new chamber, they would move their squid-like body down to occupy the final outside chamber.

Interestingly, ammonites from Harrison Lake are quite similar to the ones found within the lower part of the Chinitna Formation near Cook Inlet, Alaska, and Jurassic Point, Kyuquot, on the west coast of Vancouver Island — some of the most beautiful places on Earth. 

Buchia (bivalve) Clams

The bivalve or clam Buchia are commonly found at Harrison Lake. You will see them cemented together en masse. . They populated Upper Jurassic–Lower Cretaceous waters like a team sport. When they thrived, they really thrived, building up large coquinas of material. Large boulders of Buchia cemented together en masse hitched a ride with the glaciers and were deposited around Harrison Lake. Some kept going and we find similar erratics or glacier-deposited boulders as far south as Washington state. 

Buchia is used as Index Fossils. Index fossils help us to figure out the age of the rock we are looking at because they are abundant, populate an area en masse, and then die out quickly. In other words, they make it easy to identify a geologic time span.

So what does this mean to you? Now, when you are out and about with friends and discover rocks with Buchia, or made entirely of Buchia, you can say, “Oh, this looks to be Upper Jurassic or Lower Cretaceous. Come take a look! We're likely the first to lay eyes on this little clam since dinosaurs roamed the Earth.” 

Fossil Collecting at Harrison Lake Fossil Field Trip — Getting there

This Harrison Lake site is a great day trip from Vancouver or the Fraser Valley. You will need a vehicle with good tires for travel on gravel roads. Search out the route ahead of time and share your trip plan with someone you trust. If you can pre-load the Google Earth map of the area, you will thank yourself. 

Heading east on from Vancouver, it will take you 1.5-2 hours to reach Harrison Mills. 

Access Forestry Road #17 at the northeast end of the parking lot from the Sasquatch Inn at 46001 Lougheed Hwy, Harrison Mills. From there, it will take about an hour to get to the site. Look for signs for the Chehalis River Fish Hatchery to get you started. 

Drive 30 km up Forestry Road #1, and stop just past Hale Creek at 49.5° N, 121.9° W (paleo-coordinates 42.5° N, 63.4° W) on the west side of Harrison Lake. You will see Long Island to your right. 

The first of the yummy fossil exposures are just north of Hale Creek on the west side of the road. Keep in mind that this is an active logging road, so watch your kids and pets carefully. Everyone should be wearing something bright so they can be easily spotted.

How to Spot the Fossils

The fossils here are easily collected—look in the bedrock and in the loose material that gathers in the ditches. Specimens will show up as either dark grey, grey-brown or black. Look for the large, dark-grey boulders the size of smart cars packed with Buchia. 

And while you are at it, be on the lookout for anything that looks like bone. This site is also ripe for marine reptiles—think plesiosaur, mosasaur and elasmosaur. As a citizen scientist and budding palaeontologist, you might just find something new!

What to Know Before You Go

Fill your gas tank and pack a tasty lunch. As with all trips into British Columbia's wild places, dress for the weather. You will need hiking boots, rain gear, gloves, eye protection, and a good geologic hammer and rock (cold) chisel. 

Wear bright clothing and keep your head covered. Slides are common, and you may start a few if you hike the cliffs. If you are with a group, those collecting below may want to consider hardhats in case of rockfall — chunks of rock the size of your fist up to the size of a grapefruit. They pack a punch. 

Bring a colourful towel or something to put your keepers on. Once you set rock down, it can be hard to find again given the terrain. I take the extra precaution of spraying the ends of my hammers and chisels with yellow fluorescent paint, as I have lost too many in the field. You will also want to bring a camera for the blocks of Buchia that are too big to carry home. 

Identifying Your Treasures

When you have finished for the day, compare your treasures to see which ones you would like to keep. In British Columbia, you are a steward of the fossil, which means they belong to the province, but you can keep them safe. You are not allowed to sell or ship them outside British Columbia without a permit. 

Once you get home, wash and identify your finds. Harrison Lake does not have a large variety of fossil fauna, so this should not be difficult. If your find is coiled and round, it is an ammonite. If it is long and straight, it is a belemnite. And if it looks like a wee fat baby oyster, it is Buchia. This is not always true, but mostly true.

What about collecting fossils in all seasons?. Everyone has a preference. I prefer not to collect in the snow, but I have done it. While sunny days are lovely, it can also be easier to see the specimens when the rock is wet. So, do we do this in the rain? Heck, yeah! 

In torrential rain? 

Yes — once you are hooked, but for your casual friends or the kiddos, the answer is likely no. Choose your battles. They may come with you, but a cold day getting soaked is no fun. 

In time, you will find your inner fossil geek — probably with your first find. And that's just the tip of the iceberg. First, it will be you, then your kids, your friends and then your neighbour. Once you start, it is easy to get hooked. Fossil addiction is real, and the only cure is to get out there and do it some more. You've got this!

References and further information:

A. J. Arthur, P. L. Smith, J. W. H. Monger and H. W. Tipper. 1993. Mesozoic stratigraphy and Jurassic palaeontology west of Harrison Lake, southwestern British Columbia. Geological Survey of Canada Bulletin 441:1-62

R. W. Imlay. 1953. Callovian (Jurassic) ammonites from the United States and Alaska Part 2. The Alaska Peninsula and Cook Inlet regions. United States Geological Survey Professional Paper 249-B:41-108

An overview of the tectonic history of the southern Coast Mountains, British Columbia; Monger, J W H; in, Field trips to Harrison Lake and Vancouver Island, British Columbia; Haggart, J W (ed.); Smith, P L (ed.). Canadian Paleontology Conference, Field Trip Guidebook 16, 2011 p. 1-11 (ESS Cont.# 20110248).


Wednesday, 5 April 2023

JELLYFISH: GAGISAMA

These festive lovelies are jellyfish. Jellyfish are found all over the world, from surface waters to our deepest seas — and they are old. They are some of the oldest animals in the fossil record.

Sea jellies and jellyfish are the common names for the medusa-phase or adult phase of certain gelatinous members of the subphylum Medusozoa, a major part of the phylum Cnidaria — more closely related to anemones and corals.

Jellyfish are not fish at all. Jellyfish evolved millions of years before true fish. 

The oldest conulariid scyphozoans — picture an ice-cream cone with fourfold symmetry — appeared between 635 and 577 million years ago in the Neoproterozoic of the Lantian Formation a 150-meter-thick sequence of rocks deposited in southern China. 

Others are found in the youngest Ediacaran rocks of the Tamengo Formation of Brazil, c. 505 mya, through to the Triassic. Cubozoans and hydrozoans appeared in the Cambrian of the Marjum Formation in Utah, USA, c. 540 mya. Like other soft-bodied organisms, ctenophores (comb jellies), sea jellies and jellyfish only produce fossils only under exceptional taphonomic conditions — think rare.

I have seen all sorts of their brethren growing up on the west coast of Canada. I have seen them in tide pools, washed up on the beach and swam amongst thousands of Moon Jellyfish while scuba diving in the Salish Sea. Their movement in the water is marvellous.  

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, jellyfish are known as ǥaǥisama.

The watercolour ǥaǥisama you see here is a bit of fancy. While I chose blue, purple and pink for these lovelies, they also come in bright yellow, orange and relatively clear — and are often luminescent.

Jellyfish such as comb jellies produce bright flashes to startle a predator, others such as siphonophores can produce a chain of light or release thousands of glowing particles into the water as a mimic of small plankton to confuse the predator.

For most jellyfish bioluminescence is used for defence against predators — and about half of all jellyfish are bioluminescent. Some produce a glowing sticky slime that clings to predators making them vulnerable to other predators. Some jellyfish can release their tentacles as glowing decoys. So you see that there are many strategies for using bioluminescence by jellyfish.

All bioluminescence comes from energy released from a chemical reaction. This is very different from other sources of light, such as from the sun or a light bulb, where the energy comes from heat. In a luminescent reaction, two types of chemicals, called luciferin and luciferase, combine together. The luciferase acts as an enzyme, allowing the luciferin to release energy as it is oxidized. The colour of the light depends on the chemical structures of the chemicals. 

There are more than a dozen known chemical luminescent systems, indicating that bioluminescence evolved independently in different groups of organisms. One type of luciferin is called coelenterazine, found in jellyfish, shrimp, and fish. Dinoflagellates and krill share another class of unique luciferins, while ostracods (firefleas) and some fish have a completely different luciferin. The occurrence of identical luciferins for different types of organisms suggests a dietary source for some groups. Organisms such as bacteria and fireflies have unique luminescent chemistries. In many other groups, the chemistry is still unknown

Some of the most amazing deep-sea jellyfish are the comb jellies, which can get as large as a basketball, and are in some cases so fragile that they are almost impossible to collect intact.

Also spectacular are the siphonophores, some of which can reach several meters in length. Siphonophores deploy many tentacles like a gill net casting for small fish.

Tuesday, 4 April 2023

HETEROPTERA: SNEAKOPTERA


A sweet little water bug from the suborder Heteroptera (Latreille, 1810). He looks more like a cartoon character that any other specimen I've seen. 

This fun fellow is in the collections of Tim Dingman. The deeply awesome Jim Barkley gets credit for this charming photo. The cartoon effect comes from this guy missing his abdomen. He hails from Eocene deposits of the Green River Formation of Western Colorado.

The Green River Formation is an Eocene geologic formation that records a 12 million year history of sedimentation in a group of intermountain lakes in three basins along the present-day Green River in Colorado, Wyoming, and Utah. It is one of the most important outcrops we have for insight into life in the Eocene. It gives a window into what our world looked like about 50 million years ago. 

The first documented records of invertebrate fossils from what is now called the Green River Formation are in the journals of early missionaries and explorers such as S. A. Parker, 1840, and J. C. Fremont, 1845. Geologist Dr. John Evans collected the first fossil fish, described as Culpea humilis — later renamed Knightia eocaena — from the Green River beds in 1856.

Edward Drinker Cope collected extensively from the area and produced several publications on the fossil fish from 1870 onwards. Ferdinand Vandeveer Hayden, geologist-in-charge of the United States Geological and Geographical Survey of the Territories, the forerunner of the United States Geological Survey,  first used the name "Green River Shales" for the fossil sites in 1869.

Millions of fish fossils have been collected from the area, commercial collectors operating from legal quarries on state and private land have been responsible for the majority of Green River vertebrate fossils in public and private collections all over the world.

Monday, 3 April 2023

ICE AGE PROBOSCIDEANS: WOOLLY MAMMOTHS

This disarticulated fellow is Mammutus primigenius a Woolly Mammoth from the Pleistocene of Siberia, Russia. 

He's now housed in the Museo Nacional De Ciencias Naturales in Madrid, Spain in a display that shows thoughtful comparisons between the proboscideans. They have a wonderful display of mammoth teeth, the diagnostic flat enamel plates and the equally distinct pointy cusped molars of the mastodons.

He was a true elephant, unlike his less robust cousins, the mastodons. Mammoths were bigger — both in girth and height — weighing in at a max of 13 tonnes. 

They are closely related to Asian elephants and were about the size of the African elephants you see roaming the grasslands of Africa today.

If you stood beside him and reached way up, you might be able to touch his tusks but likely not reach up to his mouth or even his eyes. 

He would have had a shaggy coat of light or dark coloured hair with long outer hair strands covering a dense thick undercoat. His oil glands would have worked overtime to secrete oils, giving him natural — and I'm guessing stinky — waterproofing.

Some of the hair strands we have recovered are more than a meter in length. These behemoth proboscideans boasted long, curved tusks, little ears, short tails and grazed on leaves, shrubs and grasses that would have been work to get at as much of the northern hemisphere was covered in ice and snow during his reign. It is often the teeth of mammoths like those you see in the photo here that we see displayed. 

Their molar teeth were large and have always struck me as looking like ink plates from a printing press. If they are allowed to dry out in collection, they fall apart into discreet plates that can be mistaken for mineralized or calcified rock and not the bits and pieces of mammoth molars that they indeed are. Their large surface area was perfect for grinding down the low nutrient, but for the most part, plentiful grasses that sustained them.

Woolly Mammoth Tusk, Wrangel Island
How did they use their tusks? Likely for displays of strength, protecting their delicate trunks, digging up ground vegetation and in dry riverbeds, digging holes to get at the precious life-giving water. It's a genius design, really. A bit like having a plough on the front of your skull. In the photo here you can see a tusk washed clean in a creek bed on Wrangel Island.

Their size offered protection against other predators once the mammoth was full grown. Sadly for the juveniles, they offered tasty prey to big cats like Homotherium who roamed those ancient grasslands alongside them.

They roamed widely in the Pliocene to Holocene, roaming much of Africa, Europe, Asia and North America. We see them first some 150,000 years ago from remains in Russia then expanding out from Spain to Alaska. They enjoyed a very long lifespan of 60-80 — up to 20 years longer than a mastodon and longer than modern elephants. They enjoyed the prime position as the Apex predator of the megafauna, then declined — partially because of the environment and food resources and partially because of their co-existence with humans. In places where the fossil record shows a preference for hunting smaller prey, humans and megafauna do better together. We see this in places like the Indian Subcontinent where primates and rodents made the menu more often than the large megafauna who roamed there. We also see this in present-day Africa, where the last of the large and lovely megafauna show remarkable resilience in the face of human co-existence.  

The woolly mammoths from the Ukrainian-Russian plains died out 15,000 years ago. This population was followed by woolly mammoths from St. Paul Island in Alaska who died out 5,600 years ago — and quite surprisingly, at least to me, the last mammoth died just 4,000 years ago in the frosty ice on the small island of Wrangel in the Arctic Ocean — their final days spent scratching out a dwindling existence of genetic mutations, howling winds, rain-darkened hills and subsistence on tough grasses grown in thin soil. 

Further reading: Laura Arppe, Juha A. Karhu, Sergey Vartanyan, Dorothée G. Drucker, Heli Etu-Sihvola, Hervé Bocherens. Thriving or surviving? The isotopic record of the Wrangel Island woolly mammoth population. Quaternary Science Reviews, 2019; 222: 105884 DOI: 10.1016/j.quascirev.2019.105884

Sunday, 2 April 2023

ALCIDS AUKS: PUFFLING AND DUTIFUL PARENTING

Puffins are any of three small species of alcids or auks in the bird genus Fratercula with a brightly coloured beak during the breeding season.

Their sexy orange beaks shift from a dull grey to bright orange when it is time to attract a mate. While not strictly monogamous, most Puffins choose the same mate year upon year producing adorable chicks or pufflings (awe) from their mating efforts.

Female Puffins produce one single white egg which the parents take turns to incubate over a course of about six weeks. Their dutiful parents share the honour of feeding the wee pufflings five to eight times a day until the chick is ready to fly. Towards the end of July, the fledgeling Puffins begin to venture from the safety of their parents and dry land. Once they take to the seas, mom and dad are released from duty and the newest members of the colony are left to hunt and survive on their own.

These are pelagic seabirds that feed primarily by diving in the water. They breed in large colonies on coastal cliffs or offshore islands, nesting in crevices among rocks or in burrows in the soil. Two species, the tufted puffin and horned puffin are found in the North Pacific Ocean, while the Atlantic puffin is found in the North Atlantic Ocean. This lovely fellow, with his distinctive colouring, is an Atlantic Puffin or "Sea Parrot" from Skomer Island near Pembrokeshire in the southwest of Wales. Wales is bordered by Camarthenshire to the east and Ceredigion to the northeast with the sea bordering everything else. It is a fine place to do some birding if it's seabirds you're after.

These Atlantic Puffins are one of the most famous of all the seabirds and form the largest colony in Southern Britain. They live about 25 years making a living in our cold seas dining on herring, hake and sand eels. Some have been known to live to almost 40 years of age. They are good little swimmers as you might expect, but surprisingly they are great flyers, too! They are hindered by short wings, which makes flight challenging but still possible with effort. Once they get some speed on board, they can fly up to 88 km an hour.

The oldest alcid fossil is Hydrotherikornis from Oregon dating to the Late Eocene while fossils of Aethia and Uria go back to the Late Miocene. Molecular clocks have been used to suggest an origin in the Pacific in the Paleocene. Fossils from North Carolina were originally thought to have been of two Fratercula species but were later reassigned to one Fratercula, the tufted puffin, and a Cerorhinca species. Another extinct species, Dow's puffin, Fratercula dowi,  was found on the Channel Islands of California until the Late Pleistocene or early Holocene.

The Fraterculini are thought to have originated in the Pacific primarily because of their greater diversity in the region. There is only one extant species in the Atlantic, compared to two in the Pacific. The Fraterculini fossil record in the Pacific extends at least as far back as the middle Miocene, with three fossil species of Cerorhinca, and material tentatively referred to that genus, in the middle Miocene to late Pliocene of southern California and northern Mexico.

Although there no records from the Miocene in the Atlantic, a re-examination of the North Carolina material indicated that the diversity of puffins in the early Pliocene was as great in the Atlantic as it is in the Pacific today. This diversity was achieved through influxes of puffins from the Pacific; the later loss of species was due to major oceanographic changes in the late Pliocene due to closure of the Panamanian Seaway and the onset of severe glacial cycles in the North Atlantic.

Saturday, 1 April 2023

AMMONITE OF THE RHÔNE

An exquisite specimen of the delicately ridged ammonite, Porpoceras verticosum, from Middle Toarcian outcrops adjacent the Rhône in southeastern France.

Porpoceras (Buchman, 1911) is a genus of ammonite that lived during the early and middle Toarcian stage of the Early Jurassic. We see members of this genus from the uppermost part of Serpentinum Zone to Variabilis Subzone. These beauties are found in Europe, Asia, North America and South America.

Ammonites belonging to this genus have evolute shells, with compressed to depressed whorl section. Flanks were slightly convex and venter has been low. The whorl section is sub-rectangular. 

The rib is pronounced and somewhat fibulate on the inner whorls — just wee nodes here — and tuberculate to spined on the ventrolateral shoulder. It differs from Peronoceras by not having a compressed whorl section and regular nodes or fibulation. Catacoeloceras is also similar, but it has regular ventrolateral tubercules and is missing the classic nodes or fibulation of his cousins.

This specimen hails from southern France near the Rhône, one of the major rivers of Europe. It has twice the average water level of the Loire and is fed by the Rhône Glacier in the Swiss Alps at the far eastern end of the Swiss canton of Valais then passes through Lake Geneva before running through southeastern France. This 10 cm specimen was prepared by the supremely talented José Juárez Ruiz

Friday, 31 March 2023

OH, MEDUSA: JELLYFISH. A HALF BILLION YEARS IN THE MAKING

Mesmerizing, delicate and seemingly impossible — this lovely luminescent denizen of the sea has been living in our oceans for more than half a billion years.

Jellyfish are found all over the world, from surface waters to our deepest seas — and they are old. They are some of the oldest animals in the fossil record.

Jellyfish are not fish at all. These gossamer wonders evolved millions of years before true fish.

Jellyfish and sea jellies are the informal common names given to the medusa-phase or adult phase of certain gelatinous members of the subphylum Medusozoa, a major part of the phylum Cnidaria — more closely related to anemones and corals.

The oldest conulariid scyphozoans appeared between 635 and 577 mya in the Neoproterozoic of the Lantian Formation in China. Others are found in the youngest Ediacaran rocks of the Tamengo Formation of Brazil, c. 505 mya, through to the Triassic. Cubozoans and hydrozoans appeared in the Cambrian of the Marjum Formation in Utah, USA, c. 540 mya.

I have seen all sorts of their brethren growing up on the west coast of Canada in tide pools, washed up on the beach and swam amongst thousands of Moon Jellyfish while scuba diving in the Salish Sea. Their pulsating movements are marvellous.  

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, jellyfish are known as ǥaǥisama.

The dreamy blue and purple ǥaǥisama you see here is but one of a large variety of colours and designs. Jellyfish come in bright yellow, orange, clear with pink spots and are often luminescent.


Thursday, 30 March 2023

HAIDA GWAII: HAADALA GWAII-AI

A wreck with tales to tell at Naikoon, Haida Gwaii. The islands have gone by many names. To the people who call the islands home, Haida Gwaii means “island of the people,” it is a shortened version of an earlier name, Haadala Gwaii-ai, or “taken out of concealment.” 

Back at the time of Nangkilslas, it was called Didakwaa Gwaii, or “shoreward country.” 

By any name, the islands are a place of rugged beauty and spirit and enjoy a special place in both the natural and supernatural world. The enormous difference between high and low tide in Haida Gwaii – up to twenty three vertical feet – means that twice a day, vast swathes of shellfish are unveiled, free for the taking. 

An ancient Haida saying is still often heard today, “When the tide is out, the table is set.” Archaeological evidence shows that by about five thousand years ago, gathering shellfish replaced hunting and fishing as their primary food source. The shellfish meat was skewered on sticks, smoked and stored for use in winter or for travel.

Steeped in mist and mythology, the islands of Haida Gwaii abound in local lore that surrounds their beginnings. Today, the Hecate Strait is a tempestuous 40-mile wide channel that separates the mist-shrouded archipelago of Haida Gwaii from the BC mainland. Haida oral tradition tells of a time when the strait was mostly dry, dotted here and there with lakes. During the last ice age, glaciers locked up so much water that the sea level was hundreds of feet lower than it is today. Soil samples from the sea floor contain wood, pollen, and other terrestrial plant materials that tell of a tundra-like environment.

The islands of Haida Gwaii are at the western edge of the continental shelf and form part of Wrangellia, an exotic terrane of former island arcs, which also includes Vancouver Island, parts of western mainland British Columbia and southern Alaska. 

Brewericeras hulenense (Anderson, 1938)
While we’ll see that there are two competing schools of thought on Wrangellia’s more recent history, both sides agree that many of the rocks, and the fossils they contain, were laid down somewhere near the equator. 

They had a long, arduous journey, first being pushed by advancing plates, then being uplifted, intruded, folded, and finally thrust up again. It’s reminiscent of how pastry is balled up, kneaded over and over, finally rolled out, then the process is repeated again.

This violent history applies to most of the rock that makes up the Insular Belt, the outermost edge of the Cordillera. Once in their present location, the rocks that make up the mountains and valleys of this island group were glaciated and eroded to their present form. Despite this tumultuous past, the islands have arguably the best-preserved and most fossil-rich rocks in the Canadian Cordillera, dating from very recent to more than 200 million years old. 

The fossils found in the Triassic rock of Wrangellia are equatorial or low latitude life forms quite different from those found today on the Continent at the latitude of Haida Gwaii. This suggests those rocks were in the equatorial region during the Late Triassic, just over 200 million years ago. 

The Lower Jurassic ammonite faunas found at Haida Gwaii are very similar to those found in the Eastern Pacific around South America and in the Mediterranean. The strata exposed at Maple Island, Haida Gwaii are stratigraphically higher than the majority of Albian localities in Skidegate Inlet. The macrofossil fauna belonged to the Upper part of the Sandstone Member of the Haida formation.

The western end of the island contains numerous well-preserved inoceramids such as Birostrina concentrica and a few rare ammonites of Desmoceras bearskinese. The eastern shores are home to unusual ammonite fauna in the finer grained sandstones. Here we find the fossils as extremely hard concretions while others were loose in the shale. Species include Anagaudryceras sacya and Tetragonites subtimotheanus. A large whorl section of the rare Ammonoceratites crenucostatus has also been found here. The ammonites, Desmoceras; Brewericeras hulenense; Cleoniceras perezianum, Douvelliceras spiniferum are all found in Lower Cretaceous, Middle Albian, Haida Formation deposits.

Wednesday, 29 March 2023

CTENOPHORES: COMB JELLIES

Cannibalistic Comb Jellies
This festive lantern looking lovely belongs to a group of invertebrates known as comb jellies.

Comb jellies are named for their unique plates of giant fused cilia, or combs, which run in eight rows up and down the length of their bodies. They are armed with sticky cells or colloblasts, that do not sting but display wonderful bioluminescent colouring as they move through the sea.

Ctenophores or comb jellies are one of the phylogenetically most important and controversial metazoan groups. They are not jellyfish and are not closely related, though they do share some characteristics with the gelatinous members of the subphylum Medusozoa. 

Comb jellies are not picky eaters. Their tastes range to what is at hand, including cannibalizing other comb jellies. They will feast on their kin along with tasty plankton, zooplankton, crustaceans and wee fish.

Interest in their fossil record has been catalysed by spectacularly preserved soft-bodied specimens from Cambrian Lagerstätten of the 518-million-years-old Chengjiang Biota, the 505-million-years-old Burgess Shale and other Burgess Shale-like deposits. 

We find them in the Late Devonian Escuminac Formation at Miguasha National Park, Quebec, Canada — a UNESCO world heritage site famous for its abundance of well-preserved vertebrate fossils including most major evolutionary groups of Devonian lower vertebrates from jawless fish to stem-tetrapods.

Based on morphological similarities of this Canadian fossil with stem-ctenophore fossils from the Cambrian Lagerstätte of the Chinese locality Chengjiang, they have been assessed for their affinity to stem-group ctenophores (dinomischids, Siphusauctum, scleroctenophorans) and early crown-group ctenophores. Modern ctenophores and many fossil forms lack mineralized hard parts, which renders the rare fossils that have been extracted from several Lagerstätten quite remarkable. 

Like the soft bodies of jellyfish and the polyps of hydrozoans and anthozoans, the probability for such soft bodies (or body regions) to become fossilized is extremely low. In spite of this low preservation potential, remains of stem-ctenophores have become known from several Cambrian and younger conservation deposits, and with even older candidate ctenophores in the Ediacaran. 

While Cambrian Lagerstätten have yielded several genera, ctenophore remains are much rarer in the Devonian; in particular, two studies, describing material from the German Hunsrück Slate. 

Bioluminescent Comb Jellies
This Early Devonian material, however, appears to belong to crown ctenophores morphologically similar to living forms such as Pleurobrachia, unlike the stem Cambrian taxa and the new Devonian stem taxon described here.

The most basal stem ctenophores are the dinomischids: sessile benthic petaloid invertebrates, many of which are equipped with a stalk. This group first was described from the Middle Cambrian Burgess Shale. Based on the genus Dinomischus, these early stalked forms were commonly called ‘dinomischids’. 

Zhao et al. shared that dinomischids "form a grade in the lower part of the ctenophore stem group” and include taxa such as Xianguangia, Daihua, and Dinomischus that have hexaradiate-based symmetry (e.g., sixfold, 18-fold). 

Some later, skeletonised stem-ctenophores were termed ‘Scleroctenophora’; ‘scleroctenophorans’ have a shorter stalk, lack the ‘petals’ and have no bracts and might be monophyletic. 

To date, all known dinomischids and scleroctenophorans are Cambrian. Remarkably, analysis of the material described here suggests it is a very late-surviving member of this part of the ctenophore tree, occurring in strata over a hundred million years younger with no intervening known record, thus making it a Lazarus taxon with an extensive ghost lineage. 

Palaeozoic sediments yield a growing number of fossil invertebrates with radial symmetries, some being quite enigmatic with body plans differing radically from those of extant organisms.

The morphological similarities to Cambrian forms and the mix of characters regarding overall shape and symmetries render this discovery important. The aims of this study are to describe the only known specimen of this Devonian ctenophore, discuss its phylogenetic and systematic position, and the impact of fossil data for ctenophore affinities, and assess its palaeoecological role.

Tuesday, 28 March 2023

AWKWARD AND AWESOME: DIMORPHODON

This remarkable fellow is Dimorphodon — a genus of medium-sized pterosaur from the Early Jurassic. He is another favourite of mine for his charming awkwardness.

You can see this fellow's interesting teeth within his big, bulky skull. Dimorphodon had two distinct types of teeth in their jaws — an oddity amongst reptiles — and also proportionally short wings for their overall size. 

Just look at him. What an amazing beast. We understand their anatomy quite well today, but can you imagine being the first to study their fossils and try to make sense of them. 

The first fossil remains now attributed to Dimorphodon were found in England by fossil collector Mary Anning, at Lyme Regis in Dorset, United Kingdom in December 1828. While she faced many challenges in her life, she was blessed to live in one of the richest areas in Britain for finding fossils. 

She walked the beaches way back in the early 1800s of what would become the Jurassic Coast UNESCO World Heritage Site. The Jurassic Coast holds some of the most interesting fossils ever found — particularly within the strata of the Blue Lias which date back to the Hettangian-Sinemurian. It is one of the world’s most famous fossil sites. Millions come to explore the eroding coastline looking for treasures that provide delight and inspiration to young and old.
 
These fossil treasures provide us with tremendous insights into our world 185 million years ago when amazing animals like Dimorphodon ruled the skies. 

Mary's specimen was acquired by William Buckland and reported in a meeting of the Geological Society on 5 February 1829. Six years later, in 1835, William Clift and William John Broderip built upon the work by Buckland to publish in the Transactions of the Geological Society, describing and naming the fossil as a new species. 

As was the case with most early pterosaur finds, Buckland classified the remains in the genus Pterodactylus, coining the new species Pterodactylus macronyx. The specific name is derived from Greek makros, "large" and onyx, "claw", in reference to the large claws of the hand. The specimen, presently NHMUK PV R 1034, consisted of a partial and disarticulated skeleton on a slab — notably lacking the skull. Buckland in 1835 also assigned a piece of the jaw from the collection of Elizabeth Philpot to P. macronyx

Later, the many putative species assigned to Pterodactylus had become so anatomically diverse that they began to be broken into separate genera.

In 1858, Richard Owen reported finding two new specimens, NHMUK PV OR 41212 and NHMUK PV R 1035, again partial skeletons but this time including the skulls. Having found the skull to be very different from that of Pterodactylus, Owen assigned Pterodactylus macronyx its own genus, which he named Dimorphodon

His first report contained no description and the name remained a nomen nudum. In 1859, however, a subsequent publication by Owen provided a description. After several studies highlighting aspects of Dimorphodon's anatomy, Owen finally made NHMUK PV R 1034 the holotype in 1874  — 185 million years after cruising our skies the Dimorphodon had finally fully arrived.

Monday, 27 March 2023

TEYLERS OF THE NETHERLANDS

Exceptional fossil starfish Helianthaster preserved in minute detail in pyrite from the Devonian of Bundenbach, Germany.

Helianthaster rhenanus was first described in 1862 by Roemer, based on fossils found in the Bundenbach area in Germany, dating back to the lower Devonian. 

Helianthaster was variously attributed to Asteroidea, Ophiuroidea or to another group (Auluroidea ), but only recently this echinoderm and its close relatives (Helianthasteridae ) have been attributed with some certainty to Asteroidea (Blake, 2009). 

Other very similar starfish were the North Americans Arkonaster (Middle Devonian) and Lepidasterella ( Carboniferousmedium), the latter with 24 arms.

This animal, similar to modern starfish, had a diameter that could exceed 15 centimetres with extended arms. Helianthaster had 14 - 16 arms, elongated and thin, with an aboral surface with granular ossifications. The mouth was wide and composed of rather large oral plates; there were thorns on the adambulacrali, while the central disc was composed of small ossicles.

A study of the type specimen was examined with the use of X- rays. The result was images that seem to confirm the presence of large semicircular muscle flanges along the middle of the arms (Südkamp, ​​2011).

The second image you see here is a specimen from the Teylers Museum in Haarlem, the oldest museum in the Netherlands established in 1778. 

We have a cloth merchant turned banker to thank for both the building and this specimen. And, in a way, the beginnings of nomenclature. Pieter Teyler van der Hulst left us this legacy including many of the museum's specimens and the nest egg that would allow its expansion to the glory we enjoy today. 

Pieter lived next to George Clifford III, the financier of Swedish naturalist Carlo Linnaeus (1707-1778). Pieter's funds aided George in funding Linnaneus' work. In a bit of full circle scientific poetry, it was those dollars and this work that gave us the naming system that allowed us to attach a scientific name to this very specimen through Carl's binomial nomenclature. 

In taxonomy, binomial nomenclature ("two-term naming system"), or binary nomenclature, is a formal system of naming species of living things by giving each a name composed of two parts, both of which use Latin grammatical forms, although they can be based on words from other languages. Such a name is called a binomial name (which may be shortened to just "binomial"), a binomen, binominal name or a scientific name; more informally it is also historically called a Latin name. So, for this lovely specimen, Helianthaster rhenanus is this specimen's Latin name.

In his will, Pieter Teyler decided that his collection and part of his fortune should be used to create a foundation for their promotion, the Teylers Stichting (Teyler foundation). 

Teyler's legacy to the city of Haarlem was divided into two societies Teylers Eerste Genootschap (Dutch: Teyler's First Society ) or 'Godgeleerd Genootschap' ( Theological Society ), aimed at the study of religion, and the Teylers Tweede Genootschap ( Second Society ), dedicated to physics, poetry, history, drawing and numismatics.

The executors of Teyler's wishes, the first directors of Teylers Stichting, decided to establish a centre for study and education. Books, scientific instruments, drawings, fossils and minerals, would be housed under one roof. 

The concept was based on a revolutionary ideal derived from the Enlightenment: people could discover the world independently, without coercion from the church or the state. The example that guided the founders in creating the Teyler Museum was the Mouseion of classical antiquity: a "temple for the muses of the arts and sciences" which would also be a meeting place for scholars and host various collections.

This was a time when science and religion were still intermixed but beginning to divide into separate camps. The world was at war, expeditions were undertaken to secure new lands and trade routes—and the slave trade was slowly being abolished. 

In 1778, Russia controlled Alaska and would not sell to the USA, a country two years old in 1778, for another eighty-nine years in 1867. It was also the year that we lost Carl Linnaeus. He left his scientific work and his legacy of more than 1,600 books covering the literature of natural history from the 15th century to his death, a collection that would become the foundation of the Linnaeus Society, established in his name a decade later in 1788—and to which I am an elected fellow.

Here are some of the world events that happened in 1778, the year this museum was founded to give all of this a bit more context:

  • January 18 – Third voyage of James Cook: Captain James Cook, with ships HMS Resolution and HMS Discovery, first views Oahu then Kauai in the Hawaiian Islands of the Pacific Ocean, which he names the Sandwich Islands.
  • February 5 – South Carolina becomes the first state to ratify the Articles of Confederation. General John Cadwalader shoots and seriously wounds Major General Thomas Conway in a duel after a dispute between the two officers over Conway's continued criticism of General George Washington's leadership of the Continental Army.
  • February 6 – American Revolutionary War – In Paris, the Treaty of Alliance and the Treaty of Amity and Commerce are signed by the United States and France, signalling official French recognition of the new republic.
  • February 23 – American Revolutionary War – Friedrich Wilhelm von Steuben arrives at Valley Forge, Pennsylvania and begins to train the American troops.
  • March 6–October 24 – Captain Cook explores and maps the Pacific Northwest coast of North America, from Cape Foulweather (Oregon) to the Bering Strait.
  • March 10 – American Revolutionary War – George Washington approves the dishonourable discharge of Lieutenant Frederick Gotthold Enslin, for "attempting to commit sodomy, with John Monhort a soldier."
  • July 10 – Louis XVI of France declares war on the Kingdom of Great Britain.
  • July 27 – American Revolutionary War – First Battle of Ushant – British and French fleets fight to a standoff.
  • August 3 – The La Scala Opera House opens in Milan, with the première of Antonio Salieri's Europa riconosciuta.
Many more things happened, of course. Folk were born, fell in love, died—and some left legacies that we still enjoy to this day. 

Photo two by Ghedoghedo, CC BY-SA 4.0.

Sunday, 26 March 2023

BACK IN THE USSR: KEPPLERITES

This glorious chocolate block contains the creamy grey ammonite Kepplerites gowerianus (Sowerby 1827) with a few invertebrate friends, including two brachiopods: Ivanoviella sp., Zeilleria sp. and the deep brown gastropod Bathrotomaria sp. There is also a wee bit of petrified wood on the backside.

These beauties hail from Jurassic, Lower Callovian outcrops in the Quarry of Kursk Magnetic Anomaly (51.25361,37.66944), Kursk region, Russia. Diameter ammonite 70мм. 

In the mid-1980s, during the expansion and development of one of the quarries, an unusual geological formation was found. This area had been part of the seafloor around an ancient island surrounded by Jurassic Seas. 

The outcrops of this geological formation turned out to be very rich in marine fossil fauna. This ammonite block was found there years ago by the deeply awesome Emil Black. 

In more recent years, the site has been closed to fossil collecting and is in use solely for the processing and extraction of iron ore deposits. Kursk Oblast is one of Russia's major producers of iron ore. The area of the Kursk Magnetic Anomaly has one of the richest iron-ore deposits in the world. Rare Earth minerals and base metals also occur in commercial quantities in several locations. Refractory loam, mineral sands, and chalk are quarried and processed in the region. 

The Kursk Magnetic Anomaly Quarry is not far from the Sekmenevsk Formation or Sekmenevska Svita in Russian, a Cretaceous (Albian to Cenomanian) terrestrial geologic formation where Pterosaur fossils have been found in the sandstones. 

If you head there for a visit, be sure to check out the Sekmenevska Svita and Oblast's artesian-well water — most refreshing!

Saturday, 25 March 2023

JURASSIC SEA URCHIN: AM'DA'MA

This lovely little biscuit is a Holectypus sea urchin from 120 million-year-old deposits from the Lagniro Formation of Madagascar.

The specimen you see here is in the collections of my beautiful friend Ileana. She and I were blessed to meet in China many years ago and formed an unbreakable bond that happens so few times in one's life. 

Holectypus are a genus of extinct echinoids related to modern sea urchins and sand dollars. They were abundant from the Jurassic to the Cretaceous (between 200 million and 65.5 million years ago).

This specimen is typical of Holectypus with his delicate five-star pattern adorning a slightly rounded test and flattened bottom. The specimen has been polished and was harvested both for its scientific and aesthetic value. 

I have many wonderful memories of collecting their modern cousins that live on the north end of Vancouver Island and along the beaches of Balaklava Island. In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, sea urchins are known as a̱m'da̱'ma and it is this name that I hear in my head when I think of them.

In echinoids, the skeleton is almost always made up of tightly interlocking plates that form a rigid structure or test — in contrast with the more flexible skeletal arrangements of starfish, brittle stars, and sea cucumbers. Test shapes range from nearly globular, as in some sea urchins, to highly flattened, as in sand dollars. 

Sea Urchin Detail
Living echinoids are covered with spines, which are movable and anchored in sockets in the test. These spines may be long and prominent, as in typical sea urchins and most have lovely raised patterns on their surface. 

In sand dollars and heart urchins, however, the spines are very short and form an almost felt-like covering. The mouth of most echinoids is provided with five hard teeth arranged in a circle, forming an apparatus known as Aristotle’s lantern.

Echinoids are classified by the symmetry of the test, the number and arrangement of plate rows making up the test, and the number and arrangement of respiratory pore rows called petals. Echinoids are divided into two subgroups: regular echinoids, with nearly perfect pentameral (five-part) symmetry; and irregular echinoids with altered symmetry.

Because most echinoids have rigid tests, their ability to fossilize is greater than that of more delicate echinoderms such as starfish, and they are common fossils in many deposits. The oldest echinoids belong to an extinct regular taxon called the Echinocystitoidea. 

They first appeared in the fossil record in the Late Ordovician. Cidaroids or pencil urchins appear in the Mississippian (Early Carboniferous) and were the only echinoids to survive the mass extinction at the Permo-Triassic boundary. Echinoids did not become particularly diverse until well after the Permo-Triassic mass extinction event, evolving the diverse forms we find them in today. 

True sea urchins first appear in the Late Triassic, cassiduloids in the Jurassic, and spatangoids or heart urchins in the Cretaceous. Sand dollars, a common and diverse group today, do not make an appearance in the fossil record until the Paleocene. They remain one of my favourite echinoderms and stand tall amongst the most pleasing of the invertebrates.

Friday, 24 March 2023

CORAL: CLIMATE CHANGE INDICATORS

A lovely specimen of fossilized coral. Corals are marine invertebrates within the class Anthozoa of the phylum Cnidaria. They typically live in compact colonies of many identical individual polyps.

Annual growth bands in some corals, such as the deep-sea bamboo coral, Isididae, may be among the first signs of the effects of ocean acidification on marine life. The growth rings allow geologists to construct year-by-year chronologies, a form of incremental dating, which underlies high-resolution records of past climatic and environmental changes using geochemical techniques.

Certain species form communities called microatolls, which are colonies whose top is dead and mostly above the waterline, but whose perimeter is mostly submerged and alive. The average tide level limits their height. By analyzing the various growth morphologies, microatolls offer a low-resolution record of sea-level change and help us to reconstruct Holocene sea levels. Fossilized microatolls can also be dated using Radiocarbon dating, a method of discovering how old something is by measuring the decay of the radioactive isotope Carbon-14. 

Increasing sea temperatures in tropical regions, ~1 degree C, over the last century have caused major coral bleaching, death, and collapsing of coral populations although they are able to adapt and acclimate. It is uncertain if this evolutionary process will happen quickly enough to prevent a major reduction in their numbers.

Though coral has large sexually-reproducing populations, their evolution can be slowed by abundant asexual reproduction. Gene flow is variable among our coral friends. According to the biogeography of coral species gene flow cannot be counted on as a dependable source of adaptation as they are very stationary organisms. Also, coral longevity might factor into their adaptivity.

However, adaptation to climate change has been demonstrated in many cases. These are usually due to a shift in coral and zooxanthellae genotypes. These shifts in allele frequency have progressed toward more tolerant types of zooxanthellae. Scientists found that a certain scleractinian zooxanthella is becoming more common where sea temperature is high. Symbionts able to tolerate warmer water seem to photosynthesize more slowly, implying an evolutionary trade-off.

In the Gulf of Mexico, where sea temperatures are rising, cold-sensitive staghorn and elkhorn coral have shifted in location. Not only have the symbionts and specific species been shown to shift, but there seems to be a certain growth rate favourable to selection. Slower-growing but more heat-tolerant corals have become more common. The changes in temperature and acclimation are complex. Some reefs in current shadows represent a refugium location that will help them adjust to the disparity in the environment even if eventually the temperatures may rise more quickly there than in other locations. This separation of populations by climatic barriers causes a realized niche to shrink greatly in comparison to the old fundamental niche.

Thursday, 23 March 2023

MIGHTY EAGLE: KWIKW

Bald Eagle / Kwikw / Haliaeetus leucocephalus
A mighty Bald Eagle sitting with wings spread looks to be controlling the weather with his will as much as being subject to it. This fellow has just taken a dip for his evening meal and is drying his feathers in the wind. 

As you can imagine, waterlogged feathers make flight difficult. Their wings are built for graceful soaring and gliding on updrafts of warm air called thermals. 

Their long feathers are slotted, easily separating so air flows smoothly and giving them the added benefit of soaring at slower speeds. 

As well as his wings, this fellow is also drying off his white head feathers. A bald eagle's white head can make it look bald from a distance but that is not where the name comes from. It is from the old English word balde, meaning white.

In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest — or Kwakwaka'wakw, speakers of Kwak'wala — an eagle is known as kwikw (kw-ee-kw) and an eagle's nest is called a kwigwat̕si

Should you encounter an eagle and wish to greet them in Kwak'wala, you would just say yo. Yup, just yo. They would like your yo hello better if you offered them some fresh fish. They dine on all sorts of small mammals, fish and birds but are especially fond of pink salmon or ha̱nu'n (han-oon).

These living dinosaurs are a true homage to their lineage. They soar our skies with effortless grace. Agile, violent and beautiful, these highly specialized predators can catch falling prey mid-flight and dive-bomb into rivers to snag delicious salmon. 

Their beauty and agility are millions of years in the making. From their skeletal structure to their blood cells, today’s birds share a surprising evolutionary foundation with reptiles. 

Between 144 million and 66 million years ago, during the Mesozoic era, we see the first birds evolve. Eventually, tens of millions of years ago, an ancient group of birds called kites developed. Like today’s bald eagle, early kites are thought to have scavenged and hunted fish.

About 36 million years ago, the first eagles descended from kites, their smaller cousins. First to appear were the early sea eagles, which — like kites — continued to prey on fish and whose feet were free of feathers, along with booted eagles, which had feathers below the knee. Fossils of Bald Eagles are very rare and date to the late Pleistocene. Eagles are known from the early Pleistocene of Florida, but they are extinct species not closely related to the bald eagle.

Like the kites, bald eagles have featherless feet, but they also developed a range of other impressive adaptations that help them hunt fish and fowl in a watery environment. Each foot has four powerful toes with sharp talons. Tiny projections on the bottom of their feet called “spicules” help bald eagles grasp their prey. A bald eagle also has serrations on the roof of its mouth that help it hold slippery fish, and incredibly, the black pigment in its wing feathers strengthens them against breakage when they dive head first into water.

Obviously, there is much more than their striking white heads that sets these iconic raptors apart from the crowd. Their incredible physiology, built for life near the water, is literally millions of years in the making. 

Wednesday, 22 March 2023

FRAGILE BEAUTY: FOSSILIZED SCLERACTINIAN CORAL

Scleractinian Fossil Coral, Florida
The delicate wintery beauty you see here is a Scleractinian coral we find first in the fossil record in the Mesozoic. 

Corals first appeared in the Cambrian about 535 million years ago. Fossils are extremely rare until the Ordovician period, 100 million years later, when rugose and tabulate corals became widespread. 

Palaeozoic corals seem to make friends wherever they live and often contain numerous endobiotic symbionts.

Tabulate corals occur in limestones and calcareous shales of the Ordovician and Silurian periods, and often form low cushions or branching masses of calcite alongside rugose corals. 

Their numbers began to decline during the middle of the Silurian period, and they became extinct at the end of the Permian period, 250 million years ago.

Rugose or horn corals became dominant by the middle of the Silurian and became extinct early in the Triassic period. The rugose corals existed in solitary and colonial forms and were also composed of calcite.

The famous Great Barrier Reef is thought to have been laid down about two million years ago. If you have had the pleasure of scuba diving near it to take in its modern wonders, perhaps you will be interested to learn how it was formed. Over long expanses of time, the corals here have broken up, fragmented and died. Sand and rubble accumulate between the corals, and the shells of clams and other molluscs decay to form a gradually evolving calcium carbonate structure to what you view today. 

Coral reefs are extremely diverse marine ecosystems hosting over 4,000 species of fish, massive numbers of cnidarians, molluscs, crustaceans, and many other animals.

Tuesday, 21 March 2023

BLADDER-BEARERS: HOODED SEALS

If you frequent the eastern coast of North America north of Maine to the western tip of Europe, along the coast of Norway near Svalbard you may have glimpsed one of their chubby, dark silver-grey and white residents. 

Hooded seals, Cystophora cristata, are large phocid seals in the family Phocidae, who live in some of the chilliest places on Earth, from 47° to 80° N in latitude. 

These skilled divers are mainly concentrated around Bear Island, Norway, Iceland, and northeast Greenland. 

In rare cases, we find them in the icy waters in Siberia. They usually dive depths of 600 m (1,968 ft) in search of fishy treats but can go as deep as 1000 m (3,280 ft) when needed. That is deep into the cold, dark depths of our oceans. Sunlight entering the sea may travel as deep as 1,000 m (3,280 ft) under the right conditions, but there is rarely any significant light beyond 200 meters (656 ft). This is the dark zone and the place we find our bioluminescent friends. 

Hooded seals have a sparse fossil record. One of the first fossils found was a Pliocene specimen from Anvers, Belgium discovered in 1876. In 1983 a paper was published claiming there were some fossils found in North America thought to be from Cystophora cristata. Of the three accounts, the most creditable discovery was from a sewer excavation in Maine, the northeasternmost U.S. state, known for its rocky coastline, maritime history and nature areas like the granite and spruce islands of Acadia National Park. A scapula and humeri were found among other bones and thought to date to the post-Pleistocene. 

Of two other accounts, one was later reassigned to another species and the other left unsolved. (Folkow, et al., 2008; Kovacs and Lavigne, 1986; Ray, 1983)

The seals are typically silver-grey or white in colour, with black spots that vary in size covering most of the body. 

Hooded seal pups are known as, Blue-backs as their coats are blue-grey on the back with whitish bellies, though this coat is shed after 14 months of age when the pups moult.

FIRST NATION, INUIT, METIS, MI'KMAQ L'NU

In the Kwak̓wala language of the Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, seal are known as migwat — and fur seals are known as x̱a'wa.

Hooded seals live primarily on drifting pack ice and in deep water in the Arctic Ocean and North Atlantic. Although some drift away to warmer regions during the year their best survival rate is in colder climates. They can be found on four distinct areas with pack ice: near Jan Mayen Island, northeast of Iceland; off Labrador and northeastern Newfoundland; the Gulf of St. Lawrence; and the Davis Strait, off midwestern Greenland. 

The province of Newfoundland and Labrador is home to the Inuit, the Innu, the Mi'kmaq L'nu and the Southern Inuit of NunatuKavut, formerly the Labrador Inuit-Metis. The Hooded Seals that visit their traditional territory were a welcome source of food and clothing. In Mi'kmaw, the language spoken in Mi'kma'ki, the territory of the Mi'kmaq L'nu, the word for seal is waspu.

HOODED SEAL HABITAT

Males are localized around areas of complex seabeds, such as Baffin Bay, Davis Strait, and the Flemish Cap. Females concentrate their habitat efforts primarily on shelf areas, such as the Labrador Shelf. 

Females reach the age of sexual maturity between two and nine years old and it is estimated that most females give birth to their first young at around five years of age. Males reach sexual maturity a little later around four to six years old but often do not mate until much later. Females give birth to one young at a time through March and April. The gestation period is 240 to 250 days. 

Blue-back, Hooded Seal Pup
During this time the fetus, unlike those of other seals, sheds its lanugo — a covering of fine soft hair that is replaced by thicker pelage — in the uterus. 

These young are precocious and at birth are able to move about and swim with ease. They are independent and left to fend for themselves immediately after they have been weaned.

Hooded seals are known to be a highly migratory species that often wander long distances, as far west as Alaska and as far south as the Canary Islands and Guadeloupe. 

Prior to the mid-1990s, hooded seal sightings in Maine and the east Atlantic were rare but began increasing in the mid-1990s. From January 1997 to December 1999, a total of 84 recorded sightings of hooded seals occurred in the Gulf of Maine, one in France and one in Portugal. 

From 1996 to 2006, five strandings and sightings were noted near the Spanish coasts in the Mediterranean Sea. There is no scientific explanation for the increase in sightings and range of the hooded seal.

Cystophora means "bladder-bearer" in Greek and pays homage to this species' inflatable bladder septum on the heads of adult males. The bladder hangs between the eyes and down over the upper lip in a deflated state. 

The hooded seal can inflate a large balloon-like sac from one of its nostrils. This is done by shutting one nostril valve and inflating a membrane, which then protrudes from the other nostril. 

I was thinking of Hooded seals when contemplating the nasal bladders of Prosaurolophus maximum, large-headed duckbill dinosaurs, or hadrosaurid, in the ornithischian family Hadrosauridae. Perhaps both species used these bladders in a similar manner — to warn predators and attract mates.

Hooded seals are known for their uniquely elastic nasal cavity located at the top of their head, also known as the hood. Only males possess this display-worthy nasal sac, which they begin to develop around the age of four. The hood begins to inflate as the seal makes its initial breath prior to going underwater. It then begins to repetitively deflate and inflate as the seal is swimming. 

The purpose of this is acoustic signaling. It occurs when the seal feels threatened and attempt to ward off hostile species when competing for resources such as food and shelter. It also serves to communicate their health and superior status to both other males and females they are attempting to attract. 

In sexually mature males, a pinkish balloon-like nasal membrane comes out of the left nostril to further aid it in attracting a mate. This membrane, when shaken, is able to produce various sounds and calls depending on whether the seal is underwater or on land. Most of these acoustic signals are used in an acoustic situation (about 79%), while about 12% of the signals are used for sexual purposes.

References: Ray, C. 1983. Hooded Seal, Cystophora cristata: Supposed Fossil Records in North America. American Society of Mammalogists, Vol. 64 No. 3: 509-512; Cystophora cristata, Hooded Seal", 2007; "Seal Conservation Society", 2001; Kovacs and Lavigne, 1986.

Mi'kmaq Online Dictionary: https://www.mikmaqonline.org/servlet/dictionaryFrameSet.html?method=showCategory&arg0=animal

Monday, 20 March 2023

OYSTER: T'LOXT'LOX

One of the now rare species of oysters in the Pacific Northwest is the Olympia oyster, Ostrea lurida, (Carpenter, 1864).  

While rare today, these are British Columbia’s only native oyster. 

Had you been dining on their brethren in the 1800s or earlier, it would have been this species you were consuming. Middens from Port Hardy to California are built from Ostrea lurida.

These wonderful invertebrates bare their souls with every bite. Have they lived in cold water, deep beneath the sea, protected from the sun's rays and heat? Are they the rough and tumble beach denizens whose thick shells tell us of a life spent withstanding the relentless pounding of the sea? Is the oyster in your mouth thin and slimy having just done the nasty—spurred by the warming waters of Spring? 

Is this oyster a local or was it shipped to your current local and, if asked, would greet you with "Kon'nichiwa?" Not if the beauty on your plate is indeed Ostrea lurida

Oyster in Kwak'wala is t̕łox̱t̕łox̱
We have been cultivating, indeed maximizing the influx of invasive species to the cold waters of the Salish Sea for many years. 

But in the wild waters off the coast of British Columbia is the last natural abundant habitat of the tasty Ostrea lurida in the pristine waters of  Nootka Sound. 

The area is home to the Nuu-chah-nulth First Nations who have consumed this species boiled or steamed for thousands of years. Here these ancient oysters not only survive but thrive — building reefs and providing habitat for crab, anemones and small marine animals. 

Oysters are in the family Ostreidae — the true oysters. Their lineage evolved in the Early Triassic — 251 - 247 million years ago. 

In the Kwak̓wala language of the Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest and my family, an oyster is known as t̕łox̱t̕łox̱

I am curious to learn if any of the Nuu-chah-nulth have a different word for an oyster. If you happen to know, I would be grateful to learn.