Sunday, 26 July 2020

PHYLLOCERAS VELLEDAE

Lovely defined sutures on this rather involute, high-whorled ammonite from the middle part of the Lower Albian in the Mahajanga Province, northwestern Madagascar. This specimen of Phylloceras velledae (Michelin) has a shell with a small umbilicus, arched, acute venter, and at some growth stage, falcoid ribs that spring in pairs from umbilical tubercles, disappearing on the outer whorls.

While the large island of Madagascar off the southeast coast of Africa is known more for exotic lemurs, rainforests & beaches, it also boasts some of the world's loveliest fossils.

This specimen is from a quarry near the top of an escarpment, 3 km to the west of the village of Ambatolafia (coordinates: Lat. 16.330 23.600 S, Long. 46.120 10.20 E). Judging from plate tectonic reconstruction (Stampfli & Borel, 2002), the area was located in middle latitudes within the tropical-subtropical climatic zone at palaeo-latitudes of 40E45.S in the late Early Cretaceous of the early Albian approximately 113.0 ± 1.0 Ma to 100.5 ± 0.9 Ma. 

Madagascar was carved off from the African-South American landmass early on. The prehistoric break-up of the supercontinent Gondwana separated the Madagascar–Antarctica–India landmass from the Africa–South America landmass around 135 million years ago. Madagascar later split from India about 88 million years ago, during the Late Cretaceous, so the native plants and animals on the island evolved in relative isolation. It is a green and lush island country with more than it's fair share of excellent fossil exposures. 

Along the length of the eastern coast runs a narrow and steep escarpment containing much of the island's remaining tropical lowland forest. If you could look beneath this lush canopy, you'd see rocks of Precambrian age stretching from the east coast all the way to the centre of the island. The western edge is made up of sedimentary rock from the Carboniferous to the Quaternary. The beauty you see here is from sedimentary exposures from northwestern Madagascar and is in my personal collection. There is an exceptionally well-preserved and unusually large specimen in the collections of João Da Costa that I'll photograph and include in a future post.

Friday, 24 July 2020

SULPHATES AND CLIMATE CHANGE

The main direct effect of sulfates on the climate involves the scattering of light, effectively increasing the Earth's albedo. The term albedo was introduced into optics by Johann Heinrich Lambert in his 1760 work Photometria.

Albedo is the measure of the diffuse reflection of solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body that reflects all incident radiation. The average albedo of the Earth from the upper atmosphere, its planetary albedo, is 30–35% because of cloud cover, but widely varies locally across the surface because of different geological and environmental features.

This effect is moderately well understood and leads to cooling from the negative radiative forcing of about 0.4 W/m2 relative to pre-industrial values, partially offsetting the larger (about 2.4 W/m2) warming effect of greenhouse gases. The effect is strongly spatially non-uniform, being largest downstream of large industrial areas.

% of Diffusely Reflected Sunlight
The first indirect effect is also known as the Twomey effect. Sulfate aerosols can act as cloud condensation nuclei and this leads to greater numbers of smaller droplets of water. Many smaller droplets can diffuse light more efficiently than a few larger droplets. 

The second indirect effect is the further knock-on effects of having more cloud condensation nuclei. It is proposed that these include the suppression of drizzle, increased cloud height, to facilitate cloud formation at low humidities and longer cloud lifetime. Sulfate may also result in changes in the particle size distribution, which can affect the clouds radiative properties in ways that are not fully understood. 

Chemical effects such as the dissolution of soluble gases and slightly soluble substances, surface tension depression by organic substances and accommodation coefficient changes are also included in the second indirect effect.

The indirect effects probably have a cooling effect, perhaps up to 2 W/m2, although the uncertainty is very large. Sulfates are therefore implicated in global dimming. Sulfate is also the major contributor to a stratospheric aerosol formed by oxidation of sulfur dioxide injected into the stratosphere by impulsive volcanoes such as the 1991 eruption of Mount Pinatubo in the Philippines. This aerosol exerts a cooling effect on climate during its 1-2 year lifetime in the stratosphere

Diagram: The percentage of diffusely reflected sunlight relative to various surface conditions. By CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=1060378

References: 
  • Lewis, Gilbert N. (1916). "The Atom and the Molecule". J. Am. Chem. Soc. 38: 762–785. doi:10.1021/ja02261a002. (See page 778.)
  • Pauling, Linus (1948). "The modern theory of valency". J. Chem. Soc.: 1461–1467. doi:10.1039/JR9480001461.
  • Coulson, C. A. (1969). "d Electrons and Molecular Bonding". Nature. 221: 1106. Bibcode:1969Natur.221.1106C. doi:10.1038/2211106a0.
  • Mitchell, K. A. R. (1969). "Use of outer d orbitals in bonding". Chem. Rev. 69: 157. doi:10.1021/cr60258a001.

Thursday, 23 July 2020

PYRITE PRESERVATION

Ammonite Preserved in Pyrite. Fossil Huntress
We sometimes find fossils preserved by pyrite. They are prized as much for their pleasing gold colouring as they are for their scientific value as windows into the past. Sometimes folk add a coating of brass to increase the aesthetic appeal. Though this practice is frowned upon in paleontological communities.

Pyrite is a brass-yellow mineral with a bright metallic lustre. It has a chemical composition of iron sulfide (FeS2) and is the most common sulfide mineral. It forms at high and low temperatures usually in small quantities, in igneous, metamorphic, and sedimentary rocks.

When we find a fossil preserved with pyrite, it tells us a lot about the conditions on the seabed where the organism died. Pyrite forms when there is a lot of organic carbon and not much oxygen in the vicinity. 

The reason for this is that bacteria in sediment usually respire aerobically (using oxygen), however, when there is no oxygen, they respire without oxygen (anaerobic) typically using sulphate. Sulphate is a polyatomic anion with the empirical formula SO2−4. It is generally highly soluble in water. Sulfate-reducing bacteria, some anaerobic microorganisms, such as those living in sediment or near deep-sea thermal vents, use the reduction of sulfates coupled with the oxidation of organic compounds or hydrogen as an energy source for chemosynthesis.

High quantities of organic carbon in the sediment form a barrier to oxygen in the water. This also works to encourage anaerobic respiration. Anaerobic respiration using sulphate releases hydrogen sulphide, which is one of the major components in pyrite. So, when we find a fossil preserved in pyrite, we know that it died and was buried in sediment with low quantities of oxygen and high quantities of organic carbon.

Wednesday, 22 July 2020

AMMOLITE

Ammolite is an opal-like organic gemstone found primarily along the eastern slopes of the Rocky Mountains of North America. It is made of the fossilized shells of ammonites, which in turn are composed primarily of aragonite, the same mineral contained in nacre, with a microstructure inherited from the shell. It is one of few biogenic gemstones; others include amber and pearl.

The chemical composition of ammolite is variable, and aside from aragonite may include a mix of calcite, silica, pyrite or other minerals. The shell itself may contain a number of trace elements based on the chemical composition of the original sediments. They can include aluminium, barium, chromium, copper, iron, magnesium, manganese, strontium, titanium, and vanadium. 

Its crystallography is orthorhombic. Its hardness is 3.5–4.5, and its specific gravity is 2.60–2.85. The refractive index of Canadian material (as measured via sodium light, 589.3 nm) is as follows: α 1.522; β 1.672–1.673; γ 1.676–1.679; biaxial negative. Under ultraviolet light, ammolite may fluoresce a mustard yellow.

Ammolite comes from the fossil shells of the Upper Cretaceous disk-shaped ammonites Placenticeras meeki and Placenticeras intercalare, and to a lesser degree, the cylindrical baculite, Baculites compressus. The ammonites that form our Alberta ammolite inhabited a prehistoric, inland subtropical sea that bordered the Rocky Mountains — this area is known today as the Cretaceous or Western Interior Seaway. As the ammonites died, they sank to the bottom and were buried by layers of bentonitic mud that eventually became shale. Many gem-quality ammonites are found within siderite concretions. These sediments preserved the aragonite of the shells, preventing it from converting to calcite.

Ammolite from the Bearpaw Formation
An iridescent opal-like play of colour is shown in fine specimens, mostly in shades of green and red; all the spectral colours are possible, however. The iridescence is due to the microstructure of the aragonite: unlike most other gems, whose colours come from light absorption, the iridescent colour of ammolite comes from interference with the light that rebounds from stacked layers of thin platelets that make up the aragonite. 

The thicker the layers, the more reds and greens are produced; the thinner the layers, the more blues and violets predominate. Reds and greens are the most commonly seen colours, owing to the greater fragility of the finer layers responsible for the blues. When freshly quarried, these colours are not especially dramatic; the material requires polishing and possibly other treatments in order to reveal the colours' full potential.

Ammolite itself is very thin. It is generally 0.5–0.8 millimetres (0.02–0.03 inches) thick. This thin coating covers a matrix typically made up of grey to brown shale, chalky clay, or limestone. 

Frost shattering of these specimens is common. If left exposed to the elements the thin ammolite tends to crack and flake. Prolonged exposure to sunlight can also lead to bleaching of the generally intense colouration. The cracking results in a tessellated appearance, sometimes described as a "dragon skin" or referred to as a stained glass window pattern. 

Ammolite mined from deeper deposits may be entirely smooth or with a rippled surface. Occasionally a complete ammonite shell is recovered with its structure well-preserved: fine, convoluted lines delineate the shell chambers, and the overall shape is suggestive of a nautilus. While these shells may be as large as 90 centimetres (35.5 inches) in diameter, the iridescent ammonites (as opposed to the pyritized variety) are typically much smaller. Most fossilized shells have had their aragonite pseudomorphously replaced by calcite or pyrite, making the presence of ammolite particularly uncommon.

In 1981, ammolite was given official gemstone status by the World Jewellery Confederation (CIBJO), the same year commercial mining of ammolite began. It was designated the official gemstone of the City of Lethbridge, Alberta in 2007.

Ammolite is also known as aapoak — Kainah for "small, crawling stone" — gem ammonite, calcentine, and Korite. The latter is a trade name given to the gemstone by the Alberta-based mining company Korite. Roughly half of all ammolite deposits are contained within the Kainah (Kainaiwa) reserve, and its inhabitants play a major role in ammolite mining. Marcel Charbonneau and his business partner Mike Berisoff were the first to create commercial doublets of the gem in 1967. They went on to form Ammolite Minerals Ltd.

Tuesday, 21 July 2020

FOSSIL PRESERVATION: REPLACEMENT

Ancient life can be preserved as fossils in a number of ways. Replacement is one of the ways both shellfish and wood can be preserved as fossils. Replacement occurs as the original atomic composition of the living organism is replaced cell by cell by a new chemical structure. 

It is the chemical composition of the groundwater that determines what the composition of the fossil will be. A common type of replacement is silification. Silification is the process by which silica minerals such as quartz, chalcedony, and opal fill pores or replace existing minerals, rock, or wood.

Silicification occurs in the earth’s interior through the action of hydrothermal and cold water saturated with silica. As aluminosilicate rock is weathered, a great deal of silica is freed and dissolves. Much of the dissolved silica is carried to the sea, but in places, it moves downward and replaces various rock. 

Hydrothermally silicified carbonate rock is frequently associated with ores of mercury, antimony, and other nonferrous metals. At ordinary temperatures, loose rock on the bottom of lakes and seas is subject to silicification, as is solid rock; this occurs most frequently with limestones and dolomites, more rarely with clays and phosphorites. 

Accumulations of fine-grained quartz form when carbonate rocks are replaced and aggregates of quartz and chalcedony develop when clayey rock is replaced. The presence of fine-grained quartz and quartz and chalcedony aggregates in ultrabasic rock indicates that deposits of silicate ores of nickel and cobalt may be found. Excellent examples of silification are fossil molluscs and petrified forests.

Monday, 20 July 2020

AMMONITES: CHAMBERED BEAUTY

Ammonoids are a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs, commonly referred to as ammonites, are more closely related to living coleoids — octopus, squid, and cuttlefish — than they are to shelled nautiloids such as the living Nautilus species. The earliest ammonites appear during the Devonian, and the last species vanished in the Cretaceous–Paleogene extinction event. 

The chambered part of the ammonite shell is called a phragmocone. It contains a series of progressively larger chambers, called camerae — the singular is camera — that are divided by thin walls called septa —the singular is septum. You can see the interior of an ammonite with the discreet chambers in this lovely sliced Cleoniceras sp. from Madagascar.

Only the last and largest chamber, the body chamber, was occupied by the living animal at any given moment. As it grew, it added newer and larger chambers to the open end of the coil. Where the outer whorl of an ammonite shell largely covers the preceding whorls, the specimen is said to be involute. Anahoplites is a good example of this. Where it does not cover those preceding, the specimen is said to be evolute, something we see in the ammonite Dactylioceras.

A thin living tube called a siphuncle passed through the septa, extending from the ammonite's body into the empty shell chambers. Through a hyperosmotic active transport process, the ammonite emptied the water out of these shell chambers. This enabled it to control the buoyancy of the shell and thereby rise or descend in the water column.

A primary difference between ammonites and nautiloids is the siphuncle of ammonites — excepting Clymeniina — which runs along the ventral periphery of the septa and camerae — the inner surface of the outer axis of the shell — while the siphuncle of nautiloids runs more or less through the centre of the septa and camerae.

Clymenia has a closely coiled evolute shell that may be faintly ribbed. The dorsum, on the inside of the whorl, is slightly impressed, a result of the outermost whorl slightly enveloping the previous. The venter may be rounded or acute. The suture is simple, with a broad ventral saddle, broad lateral lobe, a dorsolateral saddle, and a moderately deep hidden dorsal lobe. Septal necks are usually short and do not form a continuous tube. The suture and siphuncle are characteristic of the family found in Europe and Western Australia.

If you fancy a read, check out the Treatise on Invertebrate Paleontology, Part L Ammonoidea; Geological Society of America and Univ of Kansas Press, 1964.

Sunday, 19 July 2020

DINOSAURS OF THAILAND

This beautiful dinosaur track is from Kalasin Dinosaur Park in northeastern Thailand. 

Thailand boasts some of the finest Mesozoic trackways from five endemic dinosaur species.  

Since 1976, the Department of Mineral Resources with Thai-French Paleontological Project had continuously investigated the dinosaurs in the Phu Wiang mountains. The project found so many vertebrae, teeth, and footprints of the dinosaurs mainly from the sandstones of the Early Cretaceous Sao Khua Formation (about 130 million years old). These include sauropods and theropods ranging in size from adorable chickens to beasties up to 15 meters long. 

The Thai dinosaur record from the continental rocks of the Khorat Plateau is the best in Southeast Asia. The oldest footprints are those from small dinosaurs from the Middle to Late Jurassic Phra Wihan Formation. The most varied dinosaur assemblages come from the Late Jurassic Sao Khua Formation. Here we see the sauropods dominate the fossil beds interspersed with a variety of theropods. Large theropod footprints are known from the Early Cretaceous Phu Phan Formation. Theropods and the primitive ceratopsian Psittacosaurus occur in the Aptian-Albian Khok Kruat Formation. We find dinosaur material further north along the Mekong River region of Laos. Thai fossils show a close relationship to those found in China and Mongolia. 

If you'd like to go visit them, there is a rather nice display at the Phu Wiang Dinosaur Museum in the newly established Wiang Kao district about 80 kilometres to the west of the provincial capital of Khon Kaen. They have several species on display, including: Phuwiangosaurus sirindhornae, Siamosaurus suteethorni, Siamotyrannus isanensis, Kinnareemimus khonkaenensis, Compsognathus (awe, a wee vicious chicken...) and, of course, the Phu Wiang dinosaur footprints.

If you'd like to visit Kalasin Dinosaur Park, follow route 227 towards Lam Pao Dam and Dok Ket Beach. Instead of turning left towards the dam, continue up towards Sirindhorn Dinosaur Museum. You'll see it on your left about 5km before the museum. For some GPS help, pop this into Google Maps: Dinosaur Park, Ni Khom, Sahatsakhan District, Kalasin 46140, Thailand.

References: 
  • Ingavat, R., Janvier, R., and Taquet, P. (1978) Decouverte en Thailande d'une portion de femur de dinosaure sauropode (Saurischia, Reptilia). C.R. Soc.Geol.France 3: 140-141
  • Wickanet Songtham and Benja Sektheera (2006) Phuwiangosaurus sirindhornae Bangkok: Department of Mineral Resources: 100 pages
  • Buffetaut, E., Suteethorn, V., and Tong, H. (2009) An earliest 'ostrich dinosaur' (Theropoda: Ornithomosauria) from the Early Cretaceous Sao Khua Formation of NE Thailand, pp. 229-243, in E. Buffetaut, G. Cuny, J. Le Loeuff, and V. Suteethorn (eds.), Late Palaeozoic and Mesozoic Ecosystem in SE Asia. Geological Society, London, Special Publication 315.

Friday, 17 July 2020

UPPER TRIASSIC LUNING FORMATION

Exposures of the Upper Triassic (Early Norian, Kerri zone), Luning formation, West Union Canyon, just outside Berlin-Ichthyosaur State Park, Nevada.

The Berlin-Ichthyosaur State Park in central Nevada is a very important locality for the understanding of the Carnian-Norian boundary (CNB) in North America.

Rich ammonoid faunas from this site within the Luning Formation were studied by Silberling (1959) and provided support for the definition of the Schucherti and Macrolobatus zones of the latest Carnian, which are here overlain by well-preserved faunas of the earliest Norian Kerri Zone. Despite its importance, no further investigations have been done at this site during the last 50 years.

Jim Haggart, Mike Orchard and Paul Smith (all local Vancouverites) collaborated on a project that took them down to Nevada to look at the conodonts (Oh, Mike) and ammonoids (Jim's fav); the group then published a paper, "Towards the definition of the Carnian/Norian Boundary: New data on Ammonoids and Conodonts from central Nevada," which you can find in the proceedings of the 21st Canadian Paleontology Conference; by Haggart, J W (ed.); Smith, P L (ed.); Canadian Paleontology Conference Proceedings no. 9, 2011 p. 9-10.

They conducted a bed-by-bed sampling of ammonoids and conodonts in West Union Canyon during October 2010. The eastern side of the canyon provides the best record of the Macrolobatus Zone, which is represented by several beds yielding ammonoids of the Tropites group, together with Anatropites div. sp. Conodont faunas from both these and higher beds are dominated by ornate 'metapolygnthids' that would formerly have been collectively referred to Metapolygnathus primitius, a species long known to straddle the CNB. Within this lower part of the section, they resemble forms that have been separated as Metapolygnathus mersinensis. Slightly higher, forms close to Epigondolella' orchardi and a single Orchardella n. sp. occur. This association can be correlated with the latest Carnian in British Columbia.

Higher in the section, the ammonoid fauna shows a sudden change and is dominated by Tropithisbites. Few tens of metres above, but slightly below the first occurrence of Norian ammonoids Guembelites jandianus and Stikinoceras, two new species of conodonts (Gen et sp. nov. A and B) appear that also occur close to the favoured Carnian/Norian boundary at Black Bear Ridge, British Columbia. Stratigraphically higher collections continue to be dominated by forms close to M. mersinensis and E. orchardi. after BC's own Mike Orchard.

The best exposure of the Kerri Zone is on the western side of the West Union Canyon. Ammonoids, dominated by Guembelites and Stikinoceras div. sp., have been collected from several fossil-bearing levels. Conodont faunas replicate those of the east section. The collected ammonoids fit perfectly well with the faunas described by Silberling in 1959, but they differ somewhat from coeval faunas of the Tethys and Canada.

The genus Gonionotites, very common in the Tethys and British Columbia, is for the moment unknown in Nevada. More in general, the Upper Carnian faunas are dominated by Tropitidae, while Juvavitidae are lacking.

After years of reading about the correlation between British Columbia and Nevada, I had the very great pleasure of walking through these same sections in October 2019 with members of the Vancouver Paleontological Society and Vancouver Island Palaeontological Society. It was with that same crew that I'd originally explored fossil sites in the Canadian Rockies in the early 2000s. Those early trips led to paper after paper and the exciting revelations that inspired our Nevada adventure.

Thursday, 16 July 2020

PARASAUROLOPHUS WALKERI OF ALBERTA

Holotype Specimen of P. walkeri, Royal Ontario Museum
Closer to home, we can find species of Parasaurolophus walkeri in the Dinosaur Park Formation of Alberta, Canada. 

The Dinosaur Park Formation is the uppermost member of the Belly River Group — also known as the Judith River Group, a major geologic unit in southern Alberta. 

It is an area rich in fossils. The formation contains dense concentrations of dinosaur skeletons, both articulated and disarticulated, often found with preserved remains of soft-tissues. Remains of other animals such as fish, turtles, and crocodilians, as well as plant remains, are also abundant. The formation has been named after Dinosaur Provincial Park, a UNESCO World Heritage Site where the formation is well-exposed in the badlands that flank the Red Deer River.

The Dinosaur Park Formation was deposited during the Campanian stage of the Late Cretaceous, between about 76.9 and 75.8 million years ago in what was an alluvial and coastal plain environment. It is bounded by the nonmarine Oldman Formation below and the marine Bearpaw Formation above.

The formation includes diverse and well-documented fauna including dinosaurs such as the horned Centrosaurus, Chasmosaurus, and Styracosaurus, fellow duckbills Gryposaurus and Corythosaurus, the mighty tyrannosaurid Gorgosaurus, and armoured Edmontonia, Euoplocephalus and Dyoplosaurus

Dinosaur Park Formation is interpreted as a low-relief setting of rivers and floodplains that became more swampy and influenced by marine conditions over time as the Western Interior Seaway transgressed westward. The climate was warmer than present-day Alberta, without frost, but with wetter and drier seasons. Conifers were apparently the dominant canopy plants, with an understory of ferns, tree ferns, and angiosperms.

Some of the less common hadrosaurs in the Dinosaur Park Formation of Dinosaur Provincial Park, such as Parasaurolophus, may represent the remains of individuals who died while migrating through the region. They might also have had a more upland habitat where they may have nested or fed. The presence of Parasaurolophus and Kritosaurus in northern latitude fossil sites may represent faunal exchange between otherwise distinct northern and southern biomes in Late Cretaceous North America. Both taxa are uncommon outside of the southern biome, where, along with Pentaceratops, they are predominant members of the fauna.

Photo: Holotype Specimen: The incomplete Parasaurolophus walkeri type specimen in the Royal Ontario Museum. Location: 43° 40′ 5.09″ N, 79° 23′ 40.59″ W. Shared by MissBossy.

Tuesday, 14 July 2020

HAREMS AND BLUEHEAD WRASSE

The Bluehead Wrasse, Thalassoma bifasciatum, live in coral reefs of the Atlantic Ocean. They range from the Caribbean Sea to the Gulf of Mexico. They are an interesting species in that they live in harems. 

When the male dies, one of the females transforms into a male and take control of the harem. It's a relatively quick takeover that happens just over a week. Taking control and exuding their maleness takes on a whole new meaning with Bluehead Wrasse. The males have a specific social system. Terminal phase males — which are the most aggressive and have the "highest" ranking among the males — and initial phase males — think horn-dog as they'll mate any chance they get in a larger group.  

When aggressive terminal phase males chase initial phase males, their colour changes to metallic green. Like flowers attracting bees, Bluehead Wrasse change colour to indicate their willingness to mate. When they are courting a female, Wrasse change to a soothing pinkish-grey (awe) and form black circles on their fins. It's the Wrassy equivalent to bring her a bouquet of flowers. Initial phase males, terminal phase males, and females all have the capability of reproducing. Tricky little bastards these Wrasse.

Monday, 13 July 2020

FLOUNDERS: BILATERAL SYMMETRY AND SHOOTING X'S

Flounders are a group of flatfish species. They are demersal fish, found at the bottom of oceans around the world. A few of their brethren call estuaries home. 

They undulate their bodies, darting from place to place, then resting on the bottom camouflaged by the muddy bottom. As a group, they belong to the families Achiropsettidae, Pleuronectidae, Paralichthyidae, and Bothidae (order Pleuronectiformes). 

Flounders are born with bilateral symmetry with an eye on each side. A few days later, they begin to lean to the side. The eye on their lower side slowly migrates so both eyes are on top. To make this work, their bodies undergo various changes in bones, nerve and muscular structure. Their undersides slowly lose colour — as who cares what colour your belly is if nobody's going to see it when you mate. But flounders face other pressures.

We complain about first world problems, but stressors in mating for our fishy friends are very real. If a genotypically female flounder is stressed during sexual development, she'll become phenotypically male — though he'll shoot all X's when it comes time to fertilize. 

Sunday, 12 July 2020

CAMPANIAN OF HOKKAIDO

A very beautiful Lower Campanian block from Haroto, Hokkaido, Japan. This specimen contains an ancient undersea world at a glance.

The beautiful block you see here was prepared, photographed and is in the collections of José Juárez Ruiz. In it, you can see a lovely Pseudoxybeloceras (Parasolenoceras) soyaense (143 mm), Polyptychoceras jimboi (134 mm), Polyptychoceras sp. (114 mm), Gaudryceras mite (48 and 45 mm), Gaudryceras tenuiliratum (Hirano, 1978) at (48 and 20 mm), and a wee fragment of wood (69 mm).

Matsumoto published on the ammonites from the Campanian (Upper Cretaceous) of northern Hokkaido back in 1984, in the Palaeontological Society of Japan Special Series Papers, Number #27.

This was my first look at the glorious fauna from northern Japan. The species and preservation are truly outstanding. Since then, many of the Japanese palaeontologists have made their way over to Vancouver Island, to look at ammonites, inoceramids and coleoid jaws from the Nanaimo Group and compare them to the Japanese species.

Rick Ross and Pat Trask, both of Courtenay on Vancouver Island, collaborated with Dr. Kazushige Tanabe and Yoshinori Hikida of Japan, to produce a wonderful paper in the Journal of Paleontology, 82 (2), 2008, pp 398-408, on Late Cretaceous Octobrachiate Coleoid Lower Jaws from the North Pacific Regions. They compared eight well-preserved cephalopod jaws from Upper Cretaceous (Santonian and Campanian) deposits of Vancouver Island, Canada, and Hokkaido, Japan. Seven of these were from Santonian to lower Campanian strata of the Nanaimo Group in the northeastern region of Vancouver Island. The eighth specimen was from Santonian strata of the Yezo Group in the Nakagawa area, northern Hokkaido, Japan. 

While they were collaborating on identifying coleoid jaws from the Comox Valley, Rick was visited twice by Dr. Kazushige Tanabe who was joined by his colleague Akinori Takahashi. Takahashi is an expert on temporal species-diversity changes in Japanese Cretaceous inoceramid bivalves.

They had the very great pleasure of visiting many fossil sites and seeing personal and museum collections. If you'd like to read Matsumoto's paper, here is the link: http://www.palaeo-soc-japan.jp/download/SP/SP27.pdf  I have a pdf copy of the Coleoid paper from Rick. It has very nice photos and illustrations, including a drawing of the holotypes of Paleocirroteuthis haggerti n. gen. and Paleocirroteuithis pacifica.

Here's a link to one of Takahashi's papers: https://bioone.org/journals/paleontological-research/volume-9/issue-3/prpsj.9.217/Diversity-changes-in-Cretaceous-inoceramid-bivalves-of-Japan/10.2517/prpsj.9.217.short