Monday, 10 November 2014

OWLS: SILENT ON THE WING

They move through the night as if stitched into it, seamless and soundless. You don’t hear an owl arrive. 

You feel it—the brief shift in the air above your head, a whisper of movement. It always feels me with a sense of awe. 

The silence is part of the hunt. Each feather, soft-edged and velvet-fringed, pulls the air apart without letting it stitch back into a sound. It is the most refined stealth technology evolution ever produced.

Out of the dusk they come, low and spectral. A heart-shaped face turns like a satellite dish, searching, mapping the world not with sight but with sound—every rustle of vole or beetle sketched in invisible lines. 

In Kwak’wala, the language of the Kwakwaka’wakw peoples of northern Vancouver Island, both an owl and a carved owl mask are called, Da̱xda̱xa̱luła̱mł, (though I have also heard them called Gwax̱w̱a̱lawadi, names that carries deep layers of meaning within their sounds. 

Among the Kwagu’ł (Kwaguith) and cousin Kwakwaka’wakw (those who speak Kwak'wala), the owl is often regarded as a messenger between worlds—a being that moves freely between the realm of the living and the spirit world. 

Its nocturnal calls are heard as sounds of the forest but also messages from ancestors, guiding, cautioning, or reminding listeners of their connection to those who came before. 

The owl’s ability to see in darkness and to travel silently through the night makes it a symbol of perception, transformation, and spiritual awareness, woven into the ceremonial stories and teachings that link human life to the greater cycles of nature and the unseen.

The Barn Owl, Tyto alba, pale as old linen and light as breath, drifts over stubble fields and meadows on a night wind. Its back is mottled with gold and grey, a shimmer of faded ochre dusted with starlight, while its underparts are moon-pale, unmarked. To see one cross a field in darkness is to glimpse a ghost that has learned to eat.

Barn Owls wear the night differently from their kin. Where they are gold and ivory, the Great Grey Owl, Strix nebulosa, is a storm of silver mist and charcoal, all rings and ripples of smoke. The Snowy Owl, Bubo scandiacus, gleams white as an Arctic sunbeam, each feather edged in ink like frost-shadow on snow. 

The Tawny Owl, Strix aluco, one of my favourite woodland companions, takes the colour of leaf litter and bark, warm brown and russet, perfectly disguised against a tree trunk’s skin. 

The diversity of owl plumage tells the story of their worlds—the open field, the frozen tundra, the dense woodland—and of their mastery of concealment. Every pattern is a negotiation with light and habitat, a balance between being unseen and seeing everything.

The eyes, of course, are what we remember. They are not round but tubes, locked in place by bone, forcing the head to turn instead. Two great wells of amber, gold, or black glass, evolved to harvest every drop of night. Behind them, the facial disc funnels sound to asymmetrical ears—one higher than the other, tuned to triangulate the faintest scurry in the dark. 

An owl hears in three dimensions; it knows precisely not just where a mouse is, but how far beneath the snow or under the leaf mould it crouches. 

The result is a predator with seemingly supernatural powers. The flight is the confirmation.

Yet for all their modern perfection, owls are ancient creatures. Their lineage stretches far back into the Oligocene and beyond. 

The earliest fossils we can confidently call owls—members of the order Strigiformes—appear around 60 million years ago, just after the age of dinosaurs gave way to the age of mammals. 

One of the oldest known is Ogygoptynx wetmorei, found in the Paleocene deposits of Colorado, a time when tropical forests spread across what is now the Rocky Mountain region. 

Slightly later, in the early Eocene, we meet Berruornis from France and Primoptynx from Wyoming—owls large and powerful, already showing the curved talons and forward-facing eyes that mark their descendants.

The fossil record reveals that the ancestors of modern owls were even larger and, in some cases, more diurnal than today’s secretive forms. 

The Miocene produced giants like Ornimegalonyx oteroi of Cuba—standing nearly a metre tall, possibly flightless, stalking prey through forest shadows. Europe once hosted Strix intermedia, and North America its share of extinct Tyto species, some with wingspans rivaling modern eagles. 

By the Pleistocene, many of the owl forms we know today had already arrived: Snowy Owls gliding over Ice Age steppes, Barn Owls haunting caves where mammoth bones lay.

Those caves, in fact, preserve some of our best records of owl life. Owls, being generous regurgitators, leave behind pellets—compressed bundles of fur and bone that fossilize beautifully in dry shelters. 

Through these, we reconstruct vanished ecosystems: field mice of species long extinct, voles that once roamed British lowlands before the sea cut us from the continent. Each pellet is a time capsule, the residue of a meal but also of a habitat. These little truth revealing pellets are a delight to find (don't be squeamish!) and pull apart as they tell us as much today as they do from the past. 

There’s something wonderfully contradictory about owls in prehistory: creatures so adapted to darkness, yet so enduring in stone. The silent of their wings does not fossilize, but echoes persist in bone and pellet and in the gouge marks of their claws on ancient prey. 

In the fossil layers of Rancho La Brea in California, the tar pits have trapped the remains of owls that hunted across the Late Pleistocene grasslands—Barn Owls and Great Horned Owls (Bubo virginianus) caught in the sticky legacy of bitumen. 

In Europe, the famous Messel Pit of Germany has yielded exquisite Eocene specimens, complete with impressions of feathers and talons—evidence that the essential owl form has changed little in 50 million years. Once you are perfect, evolution tends to leave you alone.

Their success lies in specialisation: asymmetrical hearing, silent flight, low metabolic rate, unmatched night vision. Yet their story is also one of vulnerability. The very silence that serves them in the wild renders them invisible to us until they are gone. Barn Owl numbers have fallen in much of Europe as hedgerows vanish and grasslands are ploughed. 

In contrast, urban owls like the adaptable Great Horned Owl have expanded their ranges, turning city parks into hunting grounds. Some species are reclaiming ancient territories; others fade into absence, leaving only their echoes and fossils behind. Where I live on Vancouver Island, I can hear their call in the night and early morning as they send out their plaintive calls for a mate.

So much of what makes an owl remarkable—the hush of its wings, the glimmer of its eyes, the shape of its face—seems almost designed for myth. We have read them as omens, messengers, symbols of wisdom or death. But the truth, as the fossil record reminds us, is simpler and deeper. 

Owls are survivors, engineers of silence that have watched the world change for sixty million years. When one glides over a moonlit field, I stand in humility watching its perfect design and adaptation to this world and its connection to realms I can only dream of.

Thursday, 30 October 2014

KOALA: BABY JOEY

Koala, Phasscolarctos cinereus, are truly adorable marsupials native to Australia. These cuddly "teddy bears" are not bears at all. Koalas belong to a group of mammals known as marsupials. 

Fossil remains of Koala-like animals have been found dating back 25 million years. Some of the relatives of modern koalas were much larger, including the Giant Koala, Phascolarctos stirtoni

It should likely have been named the Robust Koala, instead of Giant, but this big boy was larger than modern koalas by about a third. Phascolarctos yorkensis, from the Miocene, was twice the size of the modern koalas we know today. Both our modern koalas and their larger relatives co-existed during the Pleistocene, sharing trees and enjoying the tasty vegetation surrounding them.

Tuesday, 23 September 2014

TRACKING THEROPODS

Toe to Toe with a Theropod — In the outcrops around Clarens, South Africa.

We get a bird's eye view (or Theropod's eye view) of life back in the Late Triassic and Early Jurassic. Both here and at Elliott we see dinosaur remains tracks and dino eggs!

Thursday, 18 September 2014

PETRIFIED WOOD

Petrified wood is amazing to behold in person. The original tree or branch is sometimes subjected to such a high degree of replacement that it is impossible to tell from the original at first glance. But fossilized it is. All of the original cells are replaced one by one with minerals, often a silicate such as quartz, leaving the original cell structure intact.



And while there is often amazing preservation of the big woody bits, the telltale leaves that help us identify that wood to species are often lost. If this is the case, we add our best guess at the genus and add xlon. So, Palmoxylon is the indeterminate wood of a palm, though we may never know which palm. If you have an interest in botany and fossils, you may want to consider making a career of it. The study of fossil wood is called palaeoxylology. And a palaeoxylologist is someone who studies fossil wood.

Thursday, 21 August 2014

Tuesday, 29 July 2014

Sunday, 27 July 2014

Tuesday, 22 July 2014

AMMONITES & MARINE REPTILES FROM THE MYSTERIOUS CREEK FORMATION

The Cretaceous-Jurassic exposures near Harrison Lake, British Columbia are an easy two hour drive from Vancouver and another hour or so to our final destination, the unyielding siltstone of the Callovian, 166 million year old, Mysterious Creek Formation.

A few hours of collecting yield multiple bivalves, ammonites, including what looks to be two new species. 

Amongst the best specimens of the day are several small, fairly well preserved Cadoceras (Paracadoceras) tonniense, a few Cadoceras (Pseudocadoceras) grewingki and two relatively complete specimens of the larger, smooth Cadoceras comma. Further up the road, we photograph blocks of buchia and large boulders encrusted with perfectly preserved belemnites from ancient squid.

Interestingly, the ammonites from here are quite similar to the ones found within the lower part of the Chinitna Formation, Alaska and Jurassic Point, Kyuquot, on the west coast of Vancouver Island. The siltstone here at Harrison has also offered up a small section of vertebra from a poorly preserved marine reptile, a find I'm rather keen to make one day. So, after much hammer swinging, I've enjoyed a splendid day, collected beautiful specimens and feel a wee bit closer to the big find. 

Sunday, 13 July 2014

TYLOSTOMA TUMIDUM

This lovely big fellow is Tylostoma tumidum, an epifaunal grazing Lower Cretaceous Gastropod from white, micritic, coarsely nodular limestone deposits of the Goodland Formation at White Settlement west of Fort Worth, Texas, USA. (171.6 to 58.7 Ma). The bedding here is massive with some thin clay beds. The macro fossil found here include the ammonite, Oxytropidoceras acutocarinatum, pelecypods such as Protocardia, Pinna and Lima wacoensis along with heart-shaped urchins in abundance and lovely gastropods such as this beauty, Tylostoma tumidum.

Tylostoma have thick, smooth shells with a moderately elevated spire. Their aperture is ovato-lunate with the lips meeting above at a sharp angle. The outer lip is furnished internally, running the whole length and ending with a thickened edge. This specimen shows the wear and tear of erosion common at the site.

Saturday, 5 July 2014

LIVING FOSSIL: COMB JELLY

Living Fossil / Comb Jelly / Ctenophore
This lovely invertebrate is a Comb Jelly, a living fossil. Coined by Charles Darwin, the term “living fossils” is used to describe organisms that have remained largely unchanged for millions of years. While simple in design, the Comb Jellies have stood the test of time. The color you see here is light refracting on rows of Mertensia ovum.

Saturday, 14 June 2014

FIERCE WARRIORS: CRABS

Look how epic this little guy is! 

He is a crab — and if you asked him, the fiercest warrior that ever lived. While that may not be strictly true, crabs do have the heart of a warrior and will raise their claws, sometimes only millimetres into the air, to assert dominance over their world. 

Crabs are decapod crustaceans of the Phylum Arthropoda. 

In the Kwak'wala language of the Kwakwaka'wakw of the Pacific Northwest, this brave fellow is ḵ̓u'mis — both a tasty snack and familiar to the supernatural deity Tuxw'id, a female warrior spirit. Given their natural armour and clear bravery, it is a fitting role.

They inhabit all the world's oceans, sandy beaches, many of our freshwater lakes and streams. Some few prefer to live in forests.

Crabs build their shells from highly mineralized chitin — and chitin gets around. It is the main structural component of the exoskeletons of many of our crustacean and insect friends. Shrimp, crab, and lobster all use it to build their exoskeletons.

Chitin is a polysaccharide — a large molecule made of many smaller monosaccharides or simple sugars, like glucose. 

It is handy stuff, forming crystalline nanofibrils or whiskers. Chitin is actually the second most abundant polysaccharide after cellulose. It is interesting as we usually think of these molecules in the context of their sugary context but they build many other very useful things in nature — not the least of these are the hard shells or exoskeletons of our crustacean friends.

Crabs in the Fossil Record

The earliest unambiguous crab fossils date from the Early Jurassic, with the oldest being Eocarcinus from the early Pliensbachian of Britain, which likely represents a stem-group lineage, as it lacks several key morphological features that define modern crabs. 

Most Jurassic crabs are only known from dorsal — or top half of the body — carapaces, making it difficult to determine their relationships. Crabs radiated in the Late Jurassic, corresponding with an increase in reef habitats, though they would decline at the end of the Jurassic as the result of the decline of reef ecosystems. Crabs increased in diversity through the Cretaceous and represented the dominant group of decapods by the end.

We find wonderful fossil crab specimens on Vancouver Island. The first I ever collected was at Shelter Point, then again on Hornby Island, down on the Olympic Peninsula and along Vancouver Island's west coast near Nootka Sound. They are, of course, found globally and are one of the most pleasing fossils to find and aggravating to prep of all the specimens you will ever have in your collection. Bless them.


Sunday, 1 June 2014

CANADODUS SUNTOKI: 25-MILLION YEAR OLD FOSSIL FISH FROM SOOKE

A new genus and species of prehistoric fish have been named after a Vancouver Island collector who discovered a well-preserved fossil of the creature in Sooke.

The species named the Canadodus suntoki by Russian researcher Evgeny Popov is named after collector Steve Suntok who donated the fossil to the Royal BC Museum in 2014.

The name roughly translates to “tooth from Canada,” as the fossil is part of a fish dental plate.

Popov, who is one of the world’s leading experts on fossil holocephalian fishes, says that the fossil that Suntok found is an entirely new fish compared to anything found before.

“I knew it was something significant. Not necessarily a new species but something significant,” Suntok told CTV News Thursday.

The fossil dental plate indicates that the fish was likely a type of Chimaeridae, which is a species of fish that feeds on invertebrates by crushing their shells on its hard flat dental plates, before eating the animal inside, according to researchers.

Suntok found the fossil in a northwest portion of Sooke. Researchers say that Sooke is an excellent area for paleontological discoveries, with a variety of fossils at the Royal BC Museum coming from the region.

Ancient whale vertebrae and rib specimens have been found in Sooke and donated to the museum, as well as a potential terrestrial mammal bone, fossil leaves, and many invertebrate fossils, such as oysters, barnacles and snails.

The Suntok family has experience finding and preserving fossils on Vancouver Island. Many fossils discovered by the family have been donated to the Royal BC Museum, including a new waterbird coracoid bone which was named after Steve Suntok’s daughter, Leah, in 2015, named the Stemec suntokum.

“Because of erosion, every time we go there there’s something new,” said Suntok.

“New things get exposed so from time to time I go back just to check out the site. On this occasion, I found something I’d never seen before, which was pretty exciting.”

Researchers say that cliff faces near Muir Creek and beaches near Kirby Creek in Sooke “easily contain the richest exposures of fossils near Victoria.” Fossils in the area tend to date back approximately 25 million years.

Vancouver Island palaeontologist Marji Johns, who is a co-author of research on the Canadodus suntoki, says that she was thrilled by the discovery.

Sooke, British Columbia and Juan de Fuca Strait

Johns says that very few palaeontologists in B.C. and Canada are able to do fieldwork while conducting research and that volunteer collectors like the Suntok family are largely responsible for finding rare and usual fossils..

Suntok says that having the Canadodus suntoki named after him is a dream come true.

“I’m ecstatic about it. It’s the dream of every amateur collector,” he said.

“It’s an honour. I don’t deserve it, but I’m extremely appreciative of it.” 

Reference: 

https://www.iheartradio.ca/580-cfra/it-s-an-honour-newly-discovered-fossil-fish-species-named-after-vancouver-island-collector-1.13515837

Wednesday, 21 May 2014