Sunday, 2 December 2018

HOLCOPHYLLOCERAS

Amazing suturing on this lovely ammonite, Holcophylloceras mediterraneum, (Neumayr 1871) from Late Jurassic (Oxfordian) deposits near Sokoja, Madagasgar.

The shells had many chambers divided by walls called septa. The chambers were connected by a tube called a siphuncle which allowed for the control of buoyancy with the hollow inner chambers of the shell acting as air tanks to help them float.

They were a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs, commonly referred to as ammonites, are more closely related to living coleoids — octopuses, squid, and cuttlefish) then they are to shelled nautiloids such as the living Nautilus species.

We can see the edges of this specimen's shell where it would have continued out to the last chamber, the body-chamber, where the ammonite lived. Picture a squid or octopus, now add a shell and a ton of water. That's him!


Saturday, 1 December 2018

AMMONITES OF THE CAUCAUS MOUNTAINS

A very pleasing example of the Ammonite Acanthohoplites bigoureti (Seunes, 1887). Lower Cretaceous, Upper Aptian, from a riverbed concretion, Kurdzhips River, North Caucasus Mountains, Republic of Adygea, Russia. 

Geologically, the Caucasus Mountains belong to a system that extends from southeastern Europe into Asia and is considered a border between them. The Greater Caucasus Mountains are mainly composed of Cretaceous and Jurassic rocks with the Paleozoic and Precambrian rocks in the higher regions. 

Some volcanic formations are found throughout the range. On the other hand, the Lesser Caucasus Mountains are formed predominantly of the Paleogene rocks with a much smaller portion of the Jurassic and Cretaceous rocks. 

The evolution of the Caucasus began from the Late Triassic to the Late Jurassic during the Cimmerian orogeny at the active margin of the Tethys Ocean while the uplift of the Greater Caucasus is dated to the Miocene during the Alpine orogeny.

The Caucasus Mountains formed largely as the result of a tectonic plate collision between the Arabian plate moving northwards with respect to the Eurasian plate. As the Tethys Sea was closed and the Arabian Plate collided with the Iranian Plate and was pushed against it and with the clockwise movement of the Eurasian Plate towards the Iranian Plate and their final collision, the Iranian Plate was pressed against the Eurasian Plate. 

As this happened, the entire rocks that had been deposited in this basin from the Jurassic to the Miocene were folded to form the Greater Caucasus Mountains. This collision also caused the uplift and the Cenozoic volcanic activity in the Lesser Caucasus Mountains.

The preservation of this Russian specimen is outstanding. Acanthohoplites bigoureti are also found in Madagascar, Mozambique, in the Rhone-Alps of France and the Western High Atlas Mountains and near Marrakech in Morocco. This specimen measures 55mm and is in the collection of the deeply awesome Emil Black.

Thursday, 29 November 2018

ANCIENT OCTOPUS: KEUPPIA

A sweet as you please example of Keuppia levante (Fuchs, Bracchi & Weis, 2009), an extinct genus of octopus that swam our ancient seas back in the Cretaceous. 

The dark black and brown area you see here is his ink sac which has been preserved for a remarkable 95 million years.

This cutie is in the family Palaeoctopodidae, and one of the earliest representatives of the order Octopoda — and perhaps my favourite fossil. It was this perfect specimen that inspired the logo for the Fossil Huntress brand.  

These ancient marine beauties are in the class Cephalopoda making them relatives of our modern octopus, squid and cuttlefish.

There are two species of Keuppia, Keuppia hyperbolaris and Keuppia levante, both of which we find as fossils. We find their remains, along with those of the genus Styletoctopus, in Cretaceous-age Hâqel and Hjoula localities in Lebanon. 

For many years, Palaeoctopus newboldi (Woodward, 1896) from the Santonian limestones at Sâhel Aalma, Lebanon, was the only known pre‐Cenozoic coleoid cephalopod believed to have an unambiguous stem‐lineage representative of Octobrachia fioroni

With the unearthing of some extraordinary specimens with exquisite soft‐part preservation in the Lebanon limestones, our understanding of ancient octopus morphology has blossomed. The specimens are from the sub‐lithographical limestones of Hâqel and Hâdjoula, in northwestern Lebanon. These localities are about 15 km apart, 45 km away from Beirut and 15 km away from the coastal city of Jbail. Fuchs et al. put a nice little map in their 2009 paper that I've included and referenced here.

Palaeoctopus newboldi had a spherical mantle sac, a head‐mantle fusion, eight equal arms armed with suckers, an ink sac, a medially isolated shell vestige, and a pair of (sub‐) terminal fins. The bipartite shell vestige suggests that Palaeoctopus belongs to the octopod stem‐lineage, as the sister taxon of the Octopoda, the Cirroctopoda, is characterized by an unpaired clasp‐like shell vestige (Engeser 1988; Haas 2002; Bizikov 2004).

It is from the comparisons of Canadian fauna combined with those from Lebanon and Japan that things really started to get interesting with Octobrachia. Working with fossil specimens from the Campanian of Canada, Fuchs et al. (2007a ) published on the first record of an unpaired, saddle‐shaped shell vestige that might have belonged to a cirroctopod. 

Again from the Santonian–Campanian of Canada and Japan, Tanabe et al. (2008) reported on at least four different jaw morphotypes. Two of them — Paleocirroteuthis haggarti (Tanabe et al., 2008) and Paleocirroteuthis Pacifica  (Tanabe et al ., 2008) — have been interpreted as being of cirroctopod type, one of octopod type, and one of uncertain octobrachiate type. 

Interestingly Fuchs et al. have gone on to describe the second species of Palaeoctopus, the Turonian Palaeoctopus pelagicus from limestones at Vallecillo, Mexico. While more of this fauna will likely be recovered in time, their work is based solely on a medially isolated shell vestige.

Five new specimens have been found in the well-known Upper Cenomanian limestones at Hâqel and Hâdjoula in Lebanon that can be reliably placed within the Octopoda. Fuchs et al. described these exceptionally well‐preserved specimens and discuss their morphology in the context of phylogeny and evolution in their 2008 paper (2009 publishing) in the Palaeontology Association Journal, Volume 51, Issue 1.

The presence of a gladius vestige in this genus shows a transition from squid to octopus in which the inner shell has divided into two parts in early forms to eventually be reduced to lateralized stylets, as can be seen in Styletoctopus.

The adorable fellow you see here with his remarkable soft-bodied preservation and inks sack and beak clearly visible is Keuppia levante. He hails from Late Cretaceous (Upper Cenomanian) limestone deposits near Hâdjoula, northwestern Lebanon. The vampyropod coleoid, Glyphiteuthis abisaadiorum n. sp. is also found at this locality. This specimen is about 5 cm long.

Fuchs, D.; Bracchi, G.; Weis, R. (2009). "New octopods (Cephalopoda: Coleoidea) from the Late Cretaceous (Upper Cenomanian) of Hâkel and Hâdjoula, Lebanon". Palaeontology. 52: 65–81. doi:10.1111/j.1475-4983.2008.00828.x.

Photo one: Fossil Huntress. Figure Two: Topographic map of north‐western Lebanon with the outcrop area in the upper right-hand corner. Fuchs et al, 2009.  

Wednesday, 21 November 2018

SAN JUAN ISLANDS

The San Juan Islands Archipelago, a group of 175 named islands located in Washington State is in the heart of the Salish Sea, just north of Seattle.  

If all the exposed landmasses were counted at low tide, the number would rise to 700. 

Eighty-four of these islands are designated as National Wildlife Refuges and are mostly made up of Mesozoic bedrock.

People come to the San Juans from all over the world to enjoy the remote island lifestyle, to soak up the natural world, both in sights and sounds and to have the chance to be closer to what wild places can gift them.  

Hike or bike the trails and roads, watch both sea and terrestrial birds, spend time observing whales, seals, sea lions, dolphins or porpoises from a land or water base. Opportunities to experience and learn begin as you step onto the ferry or land at the marina or airport. Natural beauty abounds and where words might fail, the sights and sounds fill in the frame. 

There are only four ferries serving the islands. The islands were formed by massive geological events, mountains moving, land shifting, volcanos erupting and glacial ice carving.  The result produced the Salish Sea, a body of water encompassing: West in the Strait of Juan de Fuca to the Pacific Ocean, North to the Georgia Strait and Canada and South to Puget Sound. 

They were formed by massive geological events, mountains moving, land shifting, volcanos erupting and glacial ice carving. The result produced the Salish Sea, a body of water encompassing: West in the Strait of Juan de Fuca to the Pacific Ocean, North to the Georgia Strait and Canada and South to Puget Sound.

Reference:

Western Prince Whale & Wildlife Tours: https://orcawhalewatch.com/san-juan-islands/

Tuesday, 20 November 2018

BEARS: URSIDAE

Bears are one of my favourite mammals. Had they evolved in a slightly different way, we might well have chosen them as pets instead of the dogs so many of us have in our lives today. 

Bears are carnivoran mammals of the family Ursidae. They are classified as caniforms or doglike carnivorans. 

Although only eight species of bears are extant, they are widespread, appearing in a wide variety of habitats throughout the Northern Hemisphere and partially in the Southern Hemisphere —  making a home in North America, South America, Europe, and Asia.

In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest — or Kwakwaka'wakw, speakers of Kwak'wala — a grizzly bear is known as na̱n and the ornamental grizzly bear headdress worn by the comic Dluwalakha grizzly bear dancers in the Grizzly Bear Dance, Gaga̱lalał, is known as na̱ng̱a̱mł. A black bear is known as t̕ła'yi — I do not know the word for Polar Bear in Kwak'wala.

The relatives of our black and brown bears, a dog-bear, entered the fossil record about 20 million years ago. We have found polar bear bones that tell us more about when they split off in the lineage.

DNA from a 110,000–130,000-year-old polar bear fossil has been successfully sequenced. The genome, from a jawbone found in Svalbard, Norway, in 2004, indicates when polar bears, Ursus maritimus, diverged from their nearest common relative, the brown bear — Ursus arctos.

Because polar bears live on ice and their remains are unlikely to be buried in sediment and preserved, polar bear fossils are very rare. So the discovery of a jawbone and canine tooth — the entirety of the Svalbard find — is impressive. 

But far more important, is that when molecular biologist Charlotte Lindqvist, then at the University of Oslo's Natural History Museum and now at the University at Buffalo in New York, drilled into the jaw, she was able to collect intact mitochondrial DNA. Yes, a bit Jurassic Park-esque.

Mitochondria — organelles found in animal cells — have their own DNA and can replicate. And because there are many mitochondria per cell, mitochondrial DNA is easier to find in fossils than nuclear DNA. 

Lindqvist wondered whether this mitochondrial DNA could illuminate the evolutionary history of how and when polar bears diverged from brown bears. To find out, she worked with Stephan Schuster, a molecular biologist at Pennsylvania State University in University Park, and a team of colleagues to sequence the genetic material she had collected and was successful.

It is the oldest mammalian mitochondrial genome yet sequenced — about twice the age of the oldest mammoth genome, which dates to around 65,000 years old. From Lindqvist's work, we learned that polar bears split off the lineage from brown bears about 150,000 years ago. They evolved rapidly in the Late Pleistocene, taking advantage of their hunting prowess to become the apex predators of the northern arctic region.

Friday, 16 November 2018

LIONS: THE BUSINESS OF BATTLE

Male lions run a harrowing, years-long gauntlet to reach adulthood. When they finally reach their prime, bloodshed is a foregone conclusion.

Lions were once the most globally widespread mammal species, with distinct populations in Africa, Eurasia, and America. 

The oldest fossil evidence of lions is just under 1.5 million years old. We do know that Panthera spelaea and Panthera leo had an ancestor almost two million years ago. 

This means there are half a million years' worth of lion evolution we have not yet found in the fossil record. And whether fossilized or modern, their lineage shows signs of battle and trial by fire all the way through.

I have seen many a Male lion sporting a lost eye or scratches across its face—souvenirs obtained in the heat of the hunt. 

When your face is the business end of your biological machinery, the focal point of the operation, the hardware responsible for countless annihilations, somewhere along the line it is gonna take a few hits. 

As it stands, male lions already have a much harder come up when compared to their female counterparts, who can stay with the pride they are born with indefinitely. 

Males get kicked out when they are between 12-18-months old, and are left to fend for themselves in the harsh African bushland. If they are lucky, they may be blessed with a brother or two from the same litter and be able to help form a coalition outside of their former pride. 

This provides a slight advantage over the lone male that gets forced out into the great unknown. In both scenarios, the road to adulthood is long and extremely hard. For the handful that do make it, they get to experience a redemption arc that only a seldom few may claim. 

Literally discarded by their former pride, years later they return to wreak havoc on the archetypical old guard. This is done out of necessity, of course, not to sate any retributive lust, but if some part of them was holding on to some vengeful baggage, you really couldn't blame them. 


Wednesday, 14 November 2018

ISAAC LAKE: BOWRON CIRCUIT

It is day four of our holiday, with two days driving up from Vancouver to Cache Creek, past the Eocene insect and plant site at McAbee, the well-bedded Permian limestone near Marble Canyon and onto Bowron Provincial Park, a geologic gem near the gold rush town of Barkerville.

The initial draw for me, given that collecting in a provincial park is forbidden and all collecting close at hand outside the park appears to amount to a handful of crushed crinoid bits and a few conodonts, was the gorgeous natural scenery and a broad range of species extant. 

It was also the proposition of padding the Bowron Canoe Circuit, a 149,207-hectare geologic wonderland, where a fortuitous combination of plate tectonics and glacial erosion have carved an unusual 116-kilometre near-continuous rectangular circuit of lakes, streams and rivers bound on all sides by snowcapped mountains. From all descriptions, something like heaven.

The east and south sides of the route are bound by the imposing white peaks of the Cariboo Mountains, the northern boundary of the Interior wet belt, rising up across the Rocky Mountain Trench, and the Isaac Formation, the oldest of seven formations that make up the Cariboo Group (Struik, 1988). 

Some 270 million-plus years ago, had one wanted to buy waterfront property in what is now British Columbia, you’d be looking somewhere between Prince George and the Alberta border. The rest of the province had yet to arrive but would be made up of over twenty major terranes from around the Pacific. The rock that would eventually become the Cariboo Mountains and form the lakes and valleys of Bowron was far out in the Pacific Ocean, down near the equator.

With tectonic shifting, these rocks drifted north-eastward, riding their continental plate, until they collided with and joined the Cordillera in what is now British Columbia. Continued pressure and volcanic activity helped create the tremendous slopes of the Cariboo Range we see today with repeated bouts of glaciation during the Pleistocene carving their final shape.

Thursday, 8 November 2018

ATURIA: OLYMPIC PENINSULA NAUTILOID

Arturia angustata nautiloid, Clallam Formation, WA
This lovely Lower Miocene nautiloid is Aturia angustata collected on the foreshore near Clallam Bay, Olympic Peninsula, northwestern Washington. Aturia is an extinct genus of Paleocene to Miocene nautilids within Aturiidae, a monotypic family, established by Campman in 1857 for Aturia Bronn, 1838, and is included in the superfamily Nautilaceae in Kümmel 1964.

Aturia is characterized by a smooth, highly involute, discoidal shell with a complex suture and subdorsal siphuncle. The shell of Aturia is rounded ventrally and flattened laterally; the dorsum is deeply impressed. The suture is one of the most complex within Nautiloidea. It has a broad flattened ventral saddle, narrow pointed lateral lobes, broad rounded lateral saddles, broad lobes on the dorso-umbilical slopes, and a broad dorsal saddle divided by a deep, narrow median lobe. The siphuncle is moderate in size and located subdorsally in the adapical dorsal flexure of the septum. Based on the feeding and hunting behaviours of living nautiluses, Aturia most likely preyed upon small fish and crustaceans. 

I've found a few of these specimens along the beaches of Clallam Bay and nearby in a local clay quarry. I've also seen calcified beauties of this species collected from river sites within the Olympic Peninsula range.

Thursday, 1 November 2018

Wednesday, 31 October 2018

THE POETRY OF PALAEOBOTONY: METASEQUOIA

Autumn is a wonderful time to explore Vancouver. It is a riot of yellow, orange and green. The fallen debris you crunch through send up wafts of earthy smells that whisper of decomposition, the journey from leaf to soil.

It is a wonderful time to be out and about. I do love the mountain trails but must confess to loving our cultivated gardens for their colour and variety. 

We have some lovely native plants and trees and more than a few exotics at Vancouver's arboreal trifecta — Van Dusen, Queen E Park and UBC Botanical Gardens. One of those exotics, at least exotic to me, is the lovely conifer you see here is Metasequoia glyptostroboides — the dawn redwood. 

Of this long lineage, this is the sole surviving species in the genus Metasequoia and one of three species of conifers known as redwoods. Metasequoia are the smaller cousins of the mighty Giant Sequoia, the most massive trees on Earth. 

As a group, the redwoods are impressive trees and very long-lived. The President, an ancient Giant Sequoia, Sequoiadendron giganteum, and granddaddy to them all has lived for more than 3,200 years. While this tree is named The President, a worthy name, it doesn't really cover the magnitude of this giant by half.   

This tree was a wee seedling making its way in the soils of the Sierra Nevada mountains of California before we invented writing. It had reached full height before any of the Seven Wonders of the Ancient World, those remarkable constructions of classical antiquity, were even an inkling of our budding human achievements. And it has outlasted them all save the Great Pyramid of Giza, the oldest and last of those seven still standing, though the tree has faired better. Giza still stands but the majority of the limestone façade is long gone.

Aside from their good looks (which can really only get you so far), they are resistant to fire and insects through a combined effort of bark over a foot thick, a high tannin content and minimal resin, a genius of evolutionary design. 

While individual Metasequoia live a long time, as a genus they have lived far longer. 

Like Phoenix from the Ashes, the Cretaceous (K-Pg) extinction event that wiped out the dinosaurs, ammonites and more than seventy-five percent of all species on the planet was their curtain call. The void left by that devastation saw the birth of this genus — and they have not changed all that much in the 65 million years since. Modern Metasequoia glyptostroboides looks pretty much identical to their late Cretaceous brethren.

Dawn Redwood Cones with scales paired in opposite rows
They are remarkably similar to and sometimes mistaken for Sequoia at first glance but are easily distinguishable if you look at their size (an obvious visual in a mature tree) or to their needles and cones in younger specimens. 

Metasequoia has paired needles that attach opposite to each other on the compound stem. Sequoia needles are offset and attached alternately. Think of the pattern as jumping versus walking with your two feet moving forward parallel to one another. 

Metasequoia needles are paired as if you were jumping forward, one print beside the other, while Sequoia needles have the one-in-front-of-the-other pattern of walking.

The seed-bearing cones of Metasequoia have a stalk at their base and the scales are arranged in paired opposite rows which you can see quite well in the visual above. Coast redwood cone scales are arranged in a spiral and lack a stalk at their base.

Although the least tall of the redwoods, it grows to an impressive sixty meters (200 feet) in height. It is sometimes called Shui-sa, or water fir by those who live in the secluded mountainous region of China where it was rediscovered.

Fossil Metasequoia, McAbee Fossil Beds
Metasequoia fossils are known from many areas in the Northern Hemisphere and were one of my first fossil finds as a teenager. 

And folk love naming them. More than twenty fossil species have been named over time —  some even identified as the genus Sequoia in error — but for all their collective efforts to beef up this genus there are just three species: Metasequoia foxii, Metasequoia milleri, and Metasequoia occidentalis.

During the Paleocene and Eocene, extensive forests of Metasequoia thrived as far north as Strathcona Fiord on Ellesmere Island and sites on Axel Heiberg Island in Canada's far north around 80° N latitude.

We find lovely examples of Metasequoia occidentalis in the Eocene outcrops at McAbee near Cache Creek, British Columbia, Canada. I shared a photo here of one of those specimens. Once this piece dries out a bit, I will take a dental pick to it to reveal some of the teaser fossils peeking out.

The McAbee Fossil Beds are known for their incredible abundance, diversity and quality of fossils including lovely plant, insect and fish species that lived in an old lake bed setting. While the Metasequoia and other fossils found here are 52-53 million years old, the genus is much older. It is quite remarkable that both their fossil and extant lineage were discovered in just a few years of one another. 

Metasequoia was first described as a new genus from a fossil specimen found in 1939 and published by Japanese paleobotanist Shigeru Miki in 1941. Remarkably, the living version of this new genus was discovered later that same year. 

Professor Zhan Wang, an official from the Bureau of Forest Research was recovering from malaria at an old school chum's home in central China. His friend told him of a stand of trees discovered in the winter of 1941 by Chinese botanist Toh Gan (干铎). The trees were not far away from where they were staying and Gan's winter visit meant he did not collect any specimen as the trees had lost their leaves. 

The locals called the trees Shui-sa, or water fir. As trees go, they were reportedly quite impressive with some growing as much as sixty feet tall. Wang was excited by the possibility of finding a new species and asked his friend to describe the trees and their needles in detail. Emboldened by the tale, Wang set off through the remote mountains to search for his mysterious trees and found them deep in the heart of  Modaoxi (磨刀溪; now renamed Moudao (谋道), in Lichuan County, in the central China province of Hubei. He found the trees and was able to collect living specimens but initially thought they were from Glyptostrobus pensilis (水松). 

A few years later, Wang showed the trees to botanist Wan-Chun Cheng and learned that these were not the leaves of s Glyptostrobus pensilis (水松 ) but belonged to a new species. 

While the find was exciting, it was overshadowed by China's ongoing conflict with the Japanese that was continuing to escalate. With war at hand, Wang's research funding and science focus needed to be set aside for another two years as he fled the bombing of Beijing. 

When you live in a world without war on home soil it is easy to forget the realities for those who grew up in it. 

Zhan Wang and his family lived to witness the 1931 invasion of Manchuria, then the 1937 clash between Chinese and Japanese troops at the Marco Polo Bridge, just outside Beijing. 

That clash sparked an all-out war that would grow in ferocity to become World War II. 

Within a year, the Chinese military situation was dire. Most of eastern China lay in Japanese hands: Shanghai, Nanjing, Beijing, Wuhan. As the Japanese advanced, they left a devastated population in their path where atrocity after atrocity was the norm. Many outside observers assumed that China could not hold out, and the most likely scenario was a Japanese victory over China.

Yet the Chinese hung on, and after the horrors of Pearl Harbor, the war became genuinely global. The western Allies and China were now united in their war against Japan, a conflict that would finally end on September 2, 1945, after Allied naval forces blockaded Japan and subjected the island nation to intensive bombing, including the utter devastation that was the Enola Gay's atomic payload over Hiroshima. 

With World War II behind them, the Chinese researchers were able to re-focus their energies on the sciences. Sadly, Wang was not able to join them. Instead, two of his colleagues, Wan Chun Cheng and Hu Hsen Hsu, the director of Fan Memorial Institute of Biology would continue the work. Wan-Chun Cheng sent specimens to Hu Hsen Hsu and upon examination realised they were the living version of the trees Miki had published upon in 1941. 

Hu and Cheng published a paper describing a new living species of Metasequoia in May 1948 in the Bulletin of Fan Memorial Institute of Biology.

That same year, Arnold Arboretum of Harvard University sent an expedition to collect seeds and, soon after, seedling trees were distributed to various universities and arboreta worldwide. 

Today, Metasequoia grow around the globe. When I see them, I think of Wang and all he went through. He survived the conflict and went on to teach other bright, young minds about the bountiful flora in China. I think of Wan Chun Cheng collaborating with Hu Hsen Hsu in a time of war and of Hu keeping up to date on scientific research, even published works from colleagues from countries with whom his country was at war. Deep in my belly, I ache for the huge cost to science, research and all the species impacted on the planet from our human conflicts. Each year in April, I plant more Metasequoia to celebrate Earth Day and all that means for every living thing on this big blue orb.  

References: 

  • https://web.stanford.edu/group/humbioresearch/cgi-bin/wordpress/?p=297
  • https://humboldtredwoods.org/redwoods

Monday, 29 October 2018

PHYLLOCERAS CONSANGUINEUM

Phylloceras consanguineum (Gemmellaro 1876) a fast-moving carnivorous ammonite from Late Jurassic (Middle Oxfordian) deposits near Sokoja, Madagasgar, off the southeast coast of Africa. (22.8° S, 44.4° E: 28.5° S, 18.2° E)

This classical Tethyan Mediterranean specimen is very well preserved, showing much of his delicate suturing in intricate detail. Phylloceras were primitive ammonites with involute, laterally flattened shells.

They were smooth, with very little ornamentation, which led researchers to think of them resembling plant leaves and gave rise to their name, which means "leaf-horn."

They can be found in three regions that I know of.  In the Jurassic of Italy near western Sicily's Rosso Ammonitico Formation, Lower Kimmeridgian fossiliferous beds of Monte Inici East and Castello Inici (38.0° N, 12.9° E: 26.7° N, 15.4° E) and in the Arimine area, southeastern Toyama Prefecture, northern central Japan, roughly (36.5° N, 137.5° E: 43.6° N, 140.6° E) Dōitashimashite ; )

Saturday, 27 October 2018

RHACOLEPIS BUCCALIS

Rhacolepis Buccalis, an extinct genus of ray-finned fossil fish in carbonate concretion, Lower Cretaceous, Santana Formation, Brazil. These nektonic carnivores swam our ancient seas 122-109 million years ago.

Le premier et unique géoparc mondial UNESCO est situé dans le Cariri du Ceará (géoparc Araripe), dans l'intérieur semi-aride de la région Nordeste, Brésil

Friday, 26 October 2018

GOAT: CAPRA AEGACRUS HIRCUS

Goats, Capra hircus, are a domesticated species of goat-antelope typically kept as livestock. 

They were domesticated from wild goats, C. aegagrus, from Southwest Asia and Eastern Europe. 

The goat is a member of the animal family Bovidae and the subfamily Caprinae, meaning it is closely related to sheep. 

There are over 300 distinct breeds of goat — one of the oldest domesticated species of animal. The archaeological evidence places their earliest domestication in Iran at 10,000 years ago.

Goat-herding is an ancient tradition that is still important in places like Egypt. Goats have been used for milk, meat, fur, and skins across much of the world. Milk from goats is often turned into white, crumbly goat cheese known as chèvre. If you love your palate, consider trying the Spanish take on slightly musty, velvety Garrotxa, a dense, aged explosion of flavour for the senses. You will taste some lemony tanginess with hints of toasted hazelnuts and aromatics of scrub brush and grasses growing in the foothills of the Pyrénées.

Female goats are referred to as does or nannies, intact males are called bucks or billies, and juvenile goats of both sexes are called kids. Castrated males are called wethers. While the words hircine and caprine both refer to anything having a goat-like quality, hircine is used most often to emphasize the distinct smell of domestic goats.